Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsubsticclem Structured version   Visualization version   Unicode version

Theorem itgsubsticclem 40191
Description: lemma for itgsubsticc 40192. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsubsticclem.1  |-  F  =  ( u  e.  ( K [,] L ) 
|->  C )
itgsubsticclem.2  |-  G  =  ( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
itgsubsticclem.3  |-  ( ph  ->  X  e.  RR )
itgsubsticclem.4  |-  ( ph  ->  Y  e.  RR )
itgsubsticclem.5  |-  ( ph  ->  X  <_  Y )
itgsubsticclem.6  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( K [,] L ) ) )
itgsubsticclem.7  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
itgsubsticclem.8  |-  ( ph  ->  F  e.  ( ( K [,] L )
-cn-> CC ) )
itgsubsticclem.9  |-  ( ph  ->  K  e.  RR )
itgsubsticclem.10  |-  ( ph  ->  L  e.  RR )
itgsubsticclem.11  |-  ( ph  ->  K  <_  L )
itgsubsticclem.12  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
itgsubsticclem.13  |-  ( u  =  A  ->  C  =  E )
itgsubsticclem.14  |-  ( x  =  X  ->  A  =  K )
itgsubsticclem.15  |-  ( x  =  Y  ->  A  =  L )
Assertion
Ref Expression
itgsubsticclem  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Distinct variable groups:    u, A    u, E    x, G    u, K, x    u, L, x   
u, X, x    u, Y, x    ph, u, x
Allowed substitution hints:    A( x)    B( x, u)    C( x, u)    E( x)    F( x, u)    G( u)

Proof of Theorem itgsubsticclem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( u  =  w  ->  ( G `  u )  =  ( G `  w ) )
2 nfcv 2764 . . . 4  |-  F/_ w
( G `  u
)
3 itgsubsticclem.2 . . . . . 6  |-  G  =  ( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
4 nfmpt1 4747 . . . . . 6  |-  F/_ u
( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
53, 4nfcxfr 2762 . . . . 5  |-  F/_ u G
6 nfcv 2764 . . . . 5  |-  F/_ u w
75, 6nffv 6198 . . . 4  |-  F/_ u
( G `  w
)
81, 2, 7cbvditg 23618 . . 3  |-  S__ [ K  ->  L ] ( G `  u )  _d u  =  S__
[ K  ->  L ] ( G `  w )  _d w
9 itgsubsticclem.11 . . . 4  |-  ( ph  ->  K  <_  L )
10 itgsubsticclem.9 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
11 itgsubsticclem.10 . . . . . . . . 9  |-  ( ph  ->  L  e.  RR )
1210, 11iccssred 39727 . . . . . . . 8  |-  ( ph  ->  ( K [,] L
)  C_  RR )
1312adantr 481 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( K [,] L )  C_  RR )
14 ioossicc 12259 . . . . . . . . 9  |-  ( K (,) L )  C_  ( K [,] L )
1514sseli 3599 . . . . . . . 8  |-  ( u  e.  ( K (,) L )  ->  u  e.  ( K [,] L
) )
1615adantl 482 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  u  e.  ( K [,] L ) )
1713, 16sseldd 3604 . . . . . 6  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  u  e.  RR )
1816iftrued 4094 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  if (
u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  =  ( F `
 u ) )
19 itgsubsticclem.1 . . . . . . . . . . . . 13  |-  F  =  ( u  e.  ( K [,] L ) 
|->  C )
2019a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  F  =  ( u  e.  ( K [,] L )  |->  C ) )
21 itgsubsticclem.8 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( K [,] L )
-cn-> CC ) )
22 cncff 22696 . . . . . . . . . . . . 13  |-  ( F  e.  ( ( K [,] L ) -cn-> CC )  ->  F :
( K [,] L
) --> CC )
2321, 22syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( K [,] L ) --> CC )
2420, 23feq1dd 39347 . . . . . . . . . . 11  |-  ( ph  ->  ( u  e.  ( K [,] L ) 
|->  C ) : ( K [,] L ) --> CC )
2524mptex2 6384 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( K [,] L ) )  ->  C  e.  CC )
2616, 25syldan 487 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  C  e.  CC )
2719fvmpt2 6291 . . . . . . . . 9  |-  ( ( u  e.  ( K [,] L )  /\  C  e.  CC )  ->  ( F `  u
)  =  C )
2816, 26, 27syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( F `  u )  =  C )
2928, 26eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( F `  u )  e.  CC )
3018, 29eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  if (
u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  e.  CC )
313fvmpt2 6291 . . . . . 6  |-  ( ( u  e.  RR  /\  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  e.  CC )  ->  ( G `  u )  =  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
3217, 30, 31syl2anc 693 . . . . 5  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( G `  u )  =  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) )
3332, 18, 283eqtrd 2660 . . . 4  |-  ( (
ph  /\  u  e.  ( K (,) L ) )  ->  ( G `  u )  =  C )
349, 33ditgeq3d 40180 . . 3  |-  ( ph  ->  S__ [ K  ->  L ] ( G `  u )  _d u  =  S__ [ K  ->  L ] C  _d u )
35 itgsubsticclem.3 . . . 4  |-  ( ph  ->  X  e.  RR )
36 itgsubsticclem.4 . . . 4  |-  ( ph  ->  Y  e.  RR )
37 itgsubsticclem.5 . . . 4  |-  ( ph  ->  X  <_  Y )
38 mnfxr 10096 . . . . 5  |- -oo  e.  RR*
3938a1i 11 . . . 4  |-  ( ph  -> -oo  e.  RR* )
40 pnfxr 10092 . . . . 5  |- +oo  e.  RR*
4140a1i 11 . . . 4  |-  ( ph  -> +oo  e.  RR* )
42 ioomax 12248 . . . . . . . . 9  |-  ( -oo (,) +oo )  =  RR
4342eqcomi 2631 . . . . . . . 8  |-  RR  =  ( -oo (,) +oo )
4443a1i 11 . . . . . . 7  |-  ( ph  ->  RR  =  ( -oo (,) +oo ) )
4512, 44sseqtrd 3641 . . . . . 6  |-  ( ph  ->  ( K [,] L
)  C_  ( -oo (,) +oo ) )
46 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
4744, 46syl6eqssr 3656 . . . . . 6  |-  ( ph  ->  ( -oo (,) +oo )  C_  CC )
48 cncfss 22702 . . . . . 6  |-  ( ( ( K [,] L
)  C_  ( -oo (,) +oo )  /\  ( -oo (,) +oo )  C_  CC )  ->  ( ( X [,] Y )
-cn-> ( K [,] L
) )  C_  (
( X [,] Y
) -cn-> ( -oo (,) +oo ) ) )
4945, 47, 48syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( X [,] Y ) -cn-> ( K [,] L ) ) 
C_  ( ( X [,] Y ) -cn-> ( -oo (,) +oo )
) )
50 itgsubsticclem.6 . . . . 5  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( K [,] L ) ) )
5149, 50sseldd 3604 . . . 4  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( X [,] Y
) -cn-> ( -oo (,) +oo ) ) )
52 itgsubsticclem.7 . . . 4  |-  ( ph  ->  ( x  e.  ( X (,) Y ) 
|->  B )  e.  ( ( ( X (,) Y ) -cn-> CC )  i^i  L^1 ) )
53 nfmpt1 4747 . . . . . . . . . . 11  |-  F/_ u
( u  e.  ( K [,] L ) 
|->  C )
5419, 53nfcxfr 2762 . . . . . . . . . 10  |-  F/_ u F
55 eqid 2622 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
56 eqid 2622 . . . . . . . . . 10  |-  U. ( TopOpen
` fld
)  =  U. ( TopOpen
` fld
)
57 eqid 2622 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5857cnfldtop 22587 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  e.  Top
5958a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( TopOpen ` fld )  e.  Top )
6012, 46syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K [,] L
)  C_  CC )
61 ssid 3624 . . . . . . . . . . . . 13  |-  CC  C_  CC
62 eqid 2622 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  ( K [,] L
) )  =  ( ( TopOpen ` fld )t  ( K [,] L ) )
63 unicntop 22589 . . . . . . . . . . . . . . . . 17  |-  CC  =  U. ( TopOpen ` fld )
6463restid 16094 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
6558, 64ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
6665eqcomi 2631 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
6757, 62, 66cncfcn 22712 . . . . . . . . . . . . 13  |-  ( ( ( K [,] L
)  C_  CC  /\  CC  C_  CC )  ->  (
( K [,] L
) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) ) )
6860, 61, 67sylancl 694 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K [,] L ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( K [,] L
) )  Cn  ( TopOpen
` fld
) ) )
69 reex 10027 . . . . . . . . . . . . . . . 16  |-  RR  e.  _V
7069a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  RR  e.  _V )
71 restabs 20969 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( K [,] L
)  C_  RR  /\  RR  e.  _V )  ->  (
( ( TopOpen ` fld )t  RR )t  ( K [,] L ) )  =  ( ( TopOpen ` fld )t  ( K [,] L ) ) )
7259, 12, 70, 71syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  RR )t  ( K [,] L ) )  =  ( (
TopOpen ` fld )t  ( K [,] L
) ) )
7357tgioo2 22606 . . . . . . . . . . . . . . . . 17  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
7473eqcomi 2631 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  RR )  =  (
topGen `  ran  (,) )
7574a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( TopOpen ` fld )t  RR )  =  (
topGen `  ran  (,) )
)
7675oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  RR )t  ( K [,] L ) )  =  ( (
topGen `  ran  (,) )t  ( K [,] L ) ) )
7772, 76eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( K [,] L ) )  =  ( ( topGen `  ran  (,) )t  ( K [,] L
) ) )
7877oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( TopOpen ` fld )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) )  =  ( ( ( topGen `  ran  (,) )t  ( K [,] L
) )  Cn  ( TopOpen
` fld
) ) )
7968, 78eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( ( K [,] L ) -cn-> CC )  =  ( ( (
topGen `  ran  (,) )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) ) )
8021, 79eleqtrd 2703 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( ( topGen `  ran  (,) )t  ( K [,] L ) )  Cn  ( TopOpen ` fld ) ) )
8154, 55, 56, 3, 10, 11, 9, 59, 80icccncfext 40100 . . . . . . . . 9  |-  ( ph  ->  ( G  e.  ( ( topGen `  ran  (,) )  Cn  ( ( TopOpen ` fld )t  ran  F ) )  /\  ( G  |`  ( K [,] L ) )  =  F ) )
8281simpld 475 . . . . . . . 8  |-  ( ph  ->  G  e.  ( (
topGen `  ran  (,) )  Cn  ( ( TopOpen ` fld )t  ran  F ) ) )
83 uniretop 22566 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
84 eqid 2622 . . . . . . . . 9  |-  U. (
( TopOpen ` fld )t  ran  F )  = 
U. ( ( TopOpen ` fld )t  ran  F )
8583, 84cnf 21050 . . . . . . . 8  |-  ( G  e.  ( ( topGen ` 
ran  (,) )  Cn  (
( TopOpen ` fld )t  ran  F ) )  ->  G : RR --> U. ( ( TopOpen ` fld )t  ran  F ) )
8682, 85syl 17 . . . . . . 7  |-  ( ph  ->  G : RR --> U. (
( TopOpen ` fld )t  ran  F ) )
8744feq2d 6031 . . . . . . 7  |-  ( ph  ->  ( G : RR --> U. ( ( TopOpen ` fld )t  ran  F )  <->  G :
( -oo (,) +oo ) --> U. ( ( TopOpen ` fld )t  ran  F ) ) )
8886, 87mpbid 222 . . . . . 6  |-  ( ph  ->  G : ( -oo (,) +oo ) --> U. (
( TopOpen ` fld )t  ran  F ) )
8988feqmptd 6249 . . . . 5  |-  ( ph  ->  G  =  ( w  e.  ( -oo (,) +oo )  |->  ( G `  w ) ) )
90 frn 6053 . . . . . . . 8  |-  ( F : ( K [,] L ) --> CC  ->  ran 
F  C_  CC )
9123, 90syl 17 . . . . . . 7  |-  ( ph  ->  ran  F  C_  CC )
92 cncfss 22702 . . . . . . 7  |-  ( ( ran  F  C_  CC  /\  CC  C_  CC )  ->  ( ( -oo (,) +oo ) -cn-> ran  F )  C_  ( ( -oo (,) +oo ) -cn-> CC ) )
9391, 61, 92sylancl 694 . . . . . 6  |-  ( ph  ->  ( ( -oo (,) +oo ) -cn-> ran  F )  C_  ( ( -oo (,) +oo ) -cn-> CC ) )
9443oveq2i 6661 . . . . . . . . . . 11  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  ( -oo (,) +oo ) )
9573, 94eqtri 2644 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  ( -oo (,) +oo ) )
96 eqid 2622 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t 
ran  F )  =  ( ( TopOpen ` fld )t  ran  F )
9757, 95, 96cncfcn 22712 . . . . . . . . 9  |-  ( ( ( -oo (,) +oo )  C_  CC  /\  ran  F 
C_  CC )  -> 
( ( -oo (,) +oo ) -cn-> ran  F )  =  ( ( topGen ` 
ran  (,) )  Cn  (
( TopOpen ` fld )t  ran  F ) ) )
9847, 91, 97syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( -oo (,) +oo ) -cn-> ran  F )  =  ( ( topGen ` 
ran  (,) )  Cn  (
( TopOpen ` fld )t  ran  F ) ) )
9998eqcomd 2628 . . . . . . 7  |-  ( ph  ->  ( ( topGen `  ran  (,) )  Cn  ( (
TopOpen ` fld )t 
ran  F ) )  =  ( ( -oo (,) +oo ) -cn-> ran  F
) )
10082, 99eleqtrd 2703 . . . . . 6  |-  ( ph  ->  G  e.  ( ( -oo (,) +oo ) -cn->
ran  F ) )
10193, 100sseldd 3604 . . . . 5  |-  ( ph  ->  G  e.  ( ( -oo (,) +oo ) -cn->
CC ) )
10289, 101eqeltrrd 2702 . . . 4  |-  ( ph  ->  ( w  e.  ( -oo (,) +oo )  |->  ( G `  w
) )  e.  ( ( -oo (,) +oo ) -cn-> CC ) )
103 itgsubsticclem.12 . . . 4  |-  ( ph  ->  ( RR  _D  (
x  e.  ( X [,] Y )  |->  A ) )  =  ( x  e.  ( X (,) Y )  |->  B ) )
104 fveq2 6191 . . . 4  |-  ( w  =  A  ->  ( G `  w )  =  ( G `  A ) )
105 itgsubsticclem.14 . . . 4  |-  ( x  =  X  ->  A  =  K )
106 itgsubsticclem.15 . . . 4  |-  ( x  =  Y  ->  A  =  L )
10735, 36, 37, 39, 41, 51, 52, 102, 103, 104, 105, 106itgsubst 23812 . . 3  |-  ( ph  ->  S__ [ K  ->  L ] ( G `  w )  _d w  =  S__ [ X  ->  Y ] ( ( G `  A )  x.  B )  _d x )
1088, 34, 1073eqtr3a 2680 . 2  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( ( G `  A )  x.  B )  _d x )
1093a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  G  =  ( u  e.  RR  |->  if ( u  e.  ( K [,] L ) ,  ( F `  u ) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) ) ) )
110 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  u  =  A )
11157cnfldtopon 22586 . . . . . . . . . . . . . 14  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
11235, 36iccssred 39727 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
113112, 46syl6ss 3615 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X [,] Y
)  C_  CC )
114 resttopon 20965 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( X [,] Y )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( X [,] Y
) )  e.  (TopOn `  ( X [,] Y
) ) )
115111, 113, 114sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( X [,] Y ) )  e.  (TopOn `  ( X [,] Y ) ) )
116 resttopon 20965 . . . . . . . . . . . . . 14  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( K [,] L )  C_  CC )  ->  ( (
TopOpen ` fld )t  ( K [,] L
) )  e.  (TopOn `  ( K [,] L
) ) )
117111, 60, 116sylancr 695 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( K [,] L ) )  e.  (TopOn `  ( K [,] L ) ) )
118 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( (
TopOpen ` fld )t  ( X [,] Y
) )  =  ( ( TopOpen ` fld )t  ( X [,] Y ) )
11957, 118, 62cncfcn 22712 . . . . . . . . . . . . . . 15  |-  ( ( ( X [,] Y
)  C_  CC  /\  ( K [,] L )  C_  CC )  ->  ( ( X [,] Y )
-cn-> ( K [,] L
) )  =  ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  Cn  ( ( TopOpen ` fld )t  ( K [,] L ) ) ) )
120113, 60, 119syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X [,] Y ) -cn-> ( K [,] L ) )  =  ( ( (
TopOpen ` fld )t  ( X [,] Y
) )  Cn  (
( TopOpen ` fld )t  ( K [,] L ) ) ) )
12150, 120eleqtrd 2703 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A )  e.  ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  Cn  ( ( TopOpen ` fld )t  ( K [,] L ) ) ) )
122 cnf2 21053 . . . . . . . . . . . . 13  |-  ( ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  e.  (TopOn `  ( X [,] Y ) )  /\  ( ( TopOpen ` fld )t  ( K [,] L ) )  e.  (TopOn `  ( K [,] L ) )  /\  ( x  e.  ( X [,] Y )  |->  A )  e.  ( ( ( TopOpen ` fld )t  ( X [,] Y ) )  Cn  ( ( TopOpen ` fld )t  ( K [,] L ) ) ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( K [,] L ) )
123115, 117, 121, 122syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( X [,] Y ) 
|->  A ) : ( X [,] Y ) --> ( K [,] L
) )
124123adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( K [,] L ) )
125 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  ( X [,] Y )  |->  A )  =  ( x  e.  ( X [,] Y
)  |->  A )
126125fmpt 6381 . . . . . . . . . . 11  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( K [,] L
)  <->  ( x  e.  ( X [,] Y
)  |->  A ) : ( X [,] Y
) --> ( K [,] L ) )
127124, 126sylibr 224 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A. x  e.  ( X [,] Y
) A  e.  ( K [,] L ) )
128 ioossicc 12259 . . . . . . . . . . . 12  |-  ( X (,) Y )  C_  ( X [,] Y )
129128sseli 3599 . . . . . . . . . . 11  |-  ( x  e.  ( X (,) Y )  ->  x  e.  ( X [,] Y
) )
130129adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  x  e.  ( X [,] Y ) )
131 rsp 2929 . . . . . . . . . 10  |-  ( A. x  e.  ( X [,] Y ) A  e.  ( K [,] L
)  ->  ( x  e.  ( X [,] Y
)  ->  A  e.  ( K [,] L ) ) )
132127, 130, 131sylc 65 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  ( K [,] L ) )
133132adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  A  e.  ( K [,] L
) )
134110, 133eqeltrd 2701 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  u  e.  ( K [,] L
) )
135134iftrued 4094 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  if ( u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  =  ( F `
 u ) )
136 simpll 790 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  ph )
137136, 134, 25syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  C  e.  CC )
138134, 137, 27syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  ( F `  u )  =  C )
139 itgsubsticclem.13 . . . . . . 7  |-  ( u  =  A  ->  C  =  E )
140139adantl 482 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  C  =  E )
141135, 138, 1403eqtrd 2660 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  if ( u  e.  ( K [,] L ) ,  ( F `  u
) ,  if ( u  <  K , 
( F `  K
) ,  ( F `
 L ) ) )  =  E )
14212adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( K [,] L )  C_  RR )
143142, 132sseldd 3604 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  RR )
144 elex 3212 . . . . . . . 8  |-  ( A  e.  ( K [,] L )  ->  A  e.  _V )
145132, 144syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  A  e.  _V )
146 isset 3207 . . . . . . 7  |-  ( A  e.  _V  <->  E. u  u  =  A )
147145, 146sylib 208 . . . . . 6  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E. u  u  =  A )
148140, 137eqeltrrd 2702 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( X (,) Y
) )  /\  u  =  A )  ->  E  e.  CC )
149147, 148exlimddv 1863 . . . . 5  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  E  e.  CC )
150109, 141, 143, 149fvmptd 6288 . . . 4  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( G `  A )  =  E )
151150oveq1d 6665 . . 3  |-  ( (
ph  /\  x  e.  ( X (,) Y ) )  ->  ( ( G `  A )  x.  B )  =  ( E  x.  B ) )
15237, 151ditgeq3d 40180 . 2  |-  ( ph  ->  S__ [ X  ->  Y ] ( ( G `
 A )  x.  B )  _d x  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
153108, 152eqtrd 2656 1  |-  ( ph  ->  S__ [ K  ->  L ] C  _d u  =  S__ [ X  ->  Y ] ( E  x.  B )  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   -cn->ccncf 22679   L^1cibl 23386   S__cdit 23610    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-ditg 23611  df-limc 23630  df-dv 23631
This theorem is referenced by:  itgsubsticc  40192
  Copyright terms: Public domain W3C validator