| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subfaclim | Structured version Visualization version Unicode version | ||
| Description: The subfactorial
converges rapidly to |
| Ref | Expression |
|---|---|
| derang.d |
|
| subfac.n |
|
| Ref | Expression |
|---|---|
| subfaclim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 11299 |
. . . . . . 7
| |
| 2 | faccl 13070 |
. . . . . . 7
| |
| 3 | 1, 2 | syl 17 |
. . . . . 6
|
| 4 | 3 | nncnd 11036 |
. . . . 5
|
| 5 | ere 14819 |
. . . . . . 7
| |
| 6 | 5 | recni 10052 |
. . . . . 6
|
| 7 | epos 14935 |
. . . . . . 7
| |
| 8 | 5, 7 | gt0ne0ii 10564 |
. . . . . 6
|
| 9 | divcl 10691 |
. . . . . 6
| |
| 10 | 6, 8, 9 | mp3an23 1416 |
. . . . 5
|
| 11 | 4, 10 | syl 17 |
. . . 4
|
| 12 | derang.d |
. . . . . . . 8
| |
| 13 | subfac.n |
. . . . . . . 8
| |
| 14 | 12, 13 | subfacf 31157 |
. . . . . . 7
|
| 15 | 14 | ffvelrni 6358 |
. . . . . 6
|
| 16 | 1, 15 | syl 17 |
. . . . 5
|
| 17 | 16 | nn0cnd 11353 |
. . . 4
|
| 18 | 11, 17 | subcld 10392 |
. . 3
|
| 19 | 18 | abscld 14175 |
. 2
|
| 20 | peano2nn 11032 |
. . . . 5
| |
| 21 | 20 | peano2nnd 11037 |
. . . 4
|
| 22 | 21 | nnred 11035 |
. . 3
|
| 23 | 20, 20 | nnmulcld 11068 |
. . 3
|
| 24 | 22, 23 | nndivred 11069 |
. 2
|
| 25 | nnrecre 11057 |
. 2
| |
| 26 | eqid 2622 |
. . . . . 6
| |
| 27 | eqid 2622 |
. . . . . 6
| |
| 28 | eqid 2622 |
. . . . . 6
| |
| 29 | neg1cn 11124 |
. . . . . . 7
| |
| 30 | 29 | a1i 11 |
. . . . . 6
|
| 31 | ax-1cn 9994 |
. . . . . . . . . 10
| |
| 32 | 31 | absnegi 14139 |
. . . . . . . . 9
|
| 33 | abs1 14037 |
. . . . . . . . 9
| |
| 34 | 32, 33 | eqtri 2644 |
. . . . . . . 8
|
| 35 | 1le1 10655 |
. . . . . . . 8
| |
| 36 | 34, 35 | eqbrtri 4674 |
. . . . . . 7
|
| 37 | 36 | a1i 11 |
. . . . . 6
|
| 38 | 26, 27, 28, 20, 30, 37 | eftlub 14839 |
. . . . 5
|
| 39 | 20 | nnnn0d 11351 |
. . . . . . . . 9
|
| 40 | eluznn0 11757 |
. . . . . . . . 9
| |
| 41 | 39, 40 | sylan 488 |
. . . . . . . 8
|
| 42 | 26 | eftval 14807 |
. . . . . . . 8
|
| 43 | 41, 42 | syl 17 |
. . . . . . 7
|
| 44 | 43 | sumeq2dv 14433 |
. . . . . 6
|
| 45 | 44 | fveq2d 6195 |
. . . . 5
|
| 46 | 34 | oveq1i 6660 |
. . . . . . . 8
|
| 47 | 20 | nnzd 11481 |
. . . . . . . . 9
|
| 48 | 1exp 12889 |
. . . . . . . . 9
| |
| 49 | 47, 48 | syl 17 |
. . . . . . . 8
|
| 50 | 46, 49 | syl5eq 2668 |
. . . . . . 7
|
| 51 | 50 | oveq1d 6665 |
. . . . . 6
|
| 52 | faccl 13070 |
. . . . . . . . . . 11
| |
| 53 | 39, 52 | syl 17 |
. . . . . . . . . 10
|
| 54 | 53, 20 | nnmulcld 11068 |
. . . . . . . . 9
|
| 55 | 22, 54 | nndivred 11069 |
. . . . . . . 8
|
| 56 | 55 | recnd 10068 |
. . . . . . 7
|
| 57 | 56 | mulid2d 10058 |
. . . . . 6
|
| 58 | 51, 57 | eqtrd 2656 |
. . . . 5
|
| 59 | 38, 45, 58 | 3brtr3d 4684 |
. . . 4
|
| 60 | eqid 2622 |
. . . . . . 7
| |
| 61 | eftcl 14804 |
. . . . . . . . 9
| |
| 62 | 29, 61 | mpan 706 |
. . . . . . . 8
|
| 63 | 41, 62 | syl 17 |
. . . . . . 7
|
| 64 | 26 | eftlcvg 14836 |
. . . . . . . 8
|
| 65 | 29, 39, 64 | sylancr 695 |
. . . . . . 7
|
| 66 | 60, 47, 43, 63, 65 | isumcl 14492 |
. . . . . 6
|
| 67 | 66 | abscld 14175 |
. . . . 5
|
| 68 | 3 | nnred 11035 |
. . . . 5
|
| 69 | 3 | nngt0d 11064 |
. . . . 5
|
| 70 | lemul2 10876 |
. . . . 5
| |
| 71 | 67, 55, 68, 69, 70 | syl112anc 1330 |
. . . 4
|
| 72 | 59, 71 | mpbid 222 |
. . 3
|
| 73 | 12, 13 | subfacval2 31169 |
. . . . . . . . . 10
|
| 74 | 1, 73 | syl 17 |
. . . . . . . . 9
|
| 75 | nncn 11028 |
. . . . . . . . . . . . 13
| |
| 76 | pncan 10287 |
. . . . . . . . . . . . 13
| |
| 77 | 75, 31, 76 | sylancl 694 |
. . . . . . . . . . . 12
|
| 78 | 77 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 79 | 78 | sumeq1d 14431 |
. . . . . . . . . 10
|
| 80 | 79 | oveq2d 6666 |
. . . . . . . . 9
|
| 81 | 74, 80 | eqtr4d 2659 |
. . . . . . . 8
|
| 82 | 81 | oveq1d 6665 |
. . . . . . 7
|
| 83 | divrec 10701 |
. . . . . . . . . 10
| |
| 84 | 6, 8, 83 | mp3an23 1416 |
. . . . . . . . 9
|
| 85 | 4, 84 | syl 17 |
. . . . . . . 8
|
| 86 | df-e 14799 |
. . . . . . . . . . . 12
| |
| 87 | 86 | oveq2i 6661 |
. . . . . . . . . . 11
|
| 88 | efneg 14828 |
. . . . . . . . . . . 12
| |
| 89 | 31, 88 | ax-mp 5 |
. . . . . . . . . . 11
|
| 90 | efval 14810 |
. . . . . . . . . . . 12
| |
| 91 | 29, 90 | ax-mp 5 |
. . . . . . . . . . 11
|
| 92 | 87, 89, 91 | 3eqtr2i 2650 |
. . . . . . . . . 10
|
| 93 | nn0uz 11722 |
. . . . . . . . . . 11
| |
| 94 | 42 | adantl 482 |
. . . . . . . . . . 11
|
| 95 | 62 | adantl 482 |
. . . . . . . . . . 11
|
| 96 | 0nn0 11307 |
. . . . . . . . . . . . 13
| |
| 97 | 26 | eftlcvg 14836 |
. . . . . . . . . . . . 13
|
| 98 | 29, 96, 97 | mp2an 708 |
. . . . . . . . . . . 12
|
| 99 | 98 | a1i 11 |
. . . . . . . . . . 11
|
| 100 | 93, 60, 39, 94, 95, 99 | isumsplit 14572 |
. . . . . . . . . 10
|
| 101 | 92, 100 | syl5eq 2668 |
. . . . . . . . 9
|
| 102 | 101 | oveq2d 6666 |
. . . . . . . 8
|
| 103 | fzfid 12772 |
. . . . . . . . . 10
| |
| 104 | elfznn0 12433 |
. . . . . . . . . . . 12
| |
| 105 | 104 | adantl 482 |
. . . . . . . . . . 11
|
| 106 | 29, 105, 61 | sylancr 695 |
. . . . . . . . . 10
|
| 107 | 103, 106 | fsumcl 14464 |
. . . . . . . . 9
|
| 108 | 4, 107, 66 | adddid 10064 |
. . . . . . . 8
|
| 109 | 85, 102, 108 | 3eqtrd 2660 |
. . . . . . 7
|
| 110 | 82, 109 | eqtr4d 2659 |
. . . . . 6
|
| 111 | 4, 66 | mulcld 10060 |
. . . . . . 7
|
| 112 | 11, 17, 111 | subaddd 10410 |
. . . . . 6
|
| 113 | 110, 112 | mpbird 247 |
. . . . 5
|
| 114 | 113 | fveq2d 6195 |
. . . 4
|
| 115 | 4, 66 | absmuld 14193 |
. . . 4
|
| 116 | 3 | nnnn0d 11351 |
. . . . . . 7
|
| 117 | 116 | nn0ge0d 11354 |
. . . . . 6
|
| 118 | 68, 117 | absidd 14161 |
. . . . 5
|
| 119 | 118 | oveq1d 6665 |
. . . 4
|
| 120 | 114, 115, 119 | 3eqtrd 2660 |
. . 3
|
| 121 | facp1 13065 |
. . . . . . . 8
| |
| 122 | 1, 121 | syl 17 |
. . . . . . 7
|
| 123 | 122 | oveq1d 6665 |
. . . . . 6
|
| 124 | 20 | nncnd 11036 |
. . . . . . 7
|
| 125 | 4, 124, 124 | mulassd 10063 |
. . . . . 6
|
| 126 | 123, 125 | eqtr2d 2657 |
. . . . 5
|
| 127 | 126 | oveq2d 6666 |
. . . 4
|
| 128 | 21 | nncnd 11036 |
. . . . 5
|
| 129 | 23 | nncnd 11036 |
. . . . 5
|
| 130 | 23 | nnne0d 11065 |
. . . . 5
|
| 131 | 3 | nnne0d 11065 |
. . . . 5
|
| 132 | 128, 129, 4, 130, 131 | divcan5d 10827 |
. . . 4
|
| 133 | 54 | nncnd 11036 |
. . . . 5
|
| 134 | 54 | nnne0d 11065 |
. . . . 5
|
| 135 | 4, 128, 133, 134 | divassd 10836 |
. . . 4
|
| 136 | 127, 132, 135 | 3eqtr3d 2664 |
. . 3
|
| 137 | 72, 120, 136 | 3brtr4d 4685 |
. 2
|
| 138 | nnmulcl 11043 |
. . . . . . 7
| |
| 139 | 21, 138 | mpancom 703 |
. . . . . 6
|
| 140 | 139 | nnred 11035 |
. . . . 5
|
| 141 | 140 | ltp1d 10954 |
. . . 4
|
| 142 | 129 | mulid2d 10058 |
. . . . 5
|
| 143 | 31 | a1i 11 |
. . . . . 6
|
| 144 | 75, 143, 124 | adddird 10065 |
. . . . 5
|
| 145 | 75, 124 | mulcomd 10061 |
. . . . . . 7
|
| 146 | 124 | mulid2d 10058 |
. . . . . . 7
|
| 147 | 145, 146 | oveq12d 6668 |
. . . . . 6
|
| 148 | 124, 143, 75 | adddird 10065 |
. . . . . . . 8
|
| 149 | 148 | oveq1d 6665 |
. . . . . . 7
|
| 150 | 75 | mulid2d 10058 |
. . . . . . . . 9
|
| 151 | 150 | oveq2d 6666 |
. . . . . . . 8
|
| 152 | 151 | oveq1d 6665 |
. . . . . . 7
|
| 153 | 124, 75 | mulcld 10060 |
. . . . . . . 8
|
| 154 | 153, 75, 143 | addassd 10062 |
. . . . . . 7
|
| 155 | 149, 152, 154 | 3eqtrd 2660 |
. . . . . 6
|
| 156 | 147, 155 | eqtr4d 2659 |
. . . . 5
|
| 157 | 142, 144, 156 | 3eqtrd 2660 |
. . . 4
|
| 158 | 141, 157 | breqtrrd 4681 |
. . 3
|
| 159 | nnre 11027 |
. . . . 5
| |
| 160 | nngt0 11049 |
. . . . 5
| |
| 161 | 159, 160 | jca 554 |
. . . 4
|
| 162 | 1red 10055 |
. . . 4
| |
| 163 | nnre 11027 |
. . . . . 6
| |
| 164 | nngt0 11049 |
. . . . . 6
| |
| 165 | 163, 164 | jca 554 |
. . . . 5
|
| 166 | 23, 165 | syl 17 |
. . . 4
|
| 167 | lt2mul2div 10901 |
. . . 4
| |
| 168 | 22, 161, 162, 166, 167 | syl22anc 1327 |
. . 3
|
| 169 | 158, 168 | mpbid 222 |
. 2
|
| 170 | 19, 24, 25, 137, 169 | lelttrd 10195 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-e 14799 |
| This theorem is referenced by: subfacval3 31171 |
| Copyright terms: Public domain | W3C validator |