MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd2 Structured version   Visualization version   Unicode version

Theorem chebbnd2 25166
Description: The Chebyshev bound, part 2: The function π ( x ) is eventually upper bounded by a positive constant times  x  /  log ( x ). Alternatively stated, the function π ( x )  /  (
x  /  log (
x ) ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
chebbnd2  |-  ( x  e.  ( 2 [,) +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  e.  O(1)

Proof of Theorem chebbnd2
StepHypRef Expression
1 ovexd 6680 . . . . 5  |-  ( T. 
->  ( 2 [,) +oo )  e.  _V )
2 ovexd 6680 . . . . 5  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( theta `  x )  /  x )  e.  _V )
3 ovexd 6680 . . . . 5  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( (π `  x )  x.  ( log `  x
) )  /  ( theta `  x ) )  e.  _V )
4 eqidd 2623 . . . . 5  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x
)  /  x ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( (
theta `  x )  /  x ) ) )
5 simpr 477 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  ( 2 [,) +oo ) )
6 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
7 elicopnf 12269 . . . . . . . . . . 11  |-  ( 2  e.  RR  ->  (
x  e.  ( 2 [,) +oo )  <->  ( x  e.  RR  /\  2  <_  x ) ) )
86, 7ax-mp 5 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) +oo )  <->  ( x  e.  RR  /\  2  <_  x ) )
95, 8sylib 208 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  e.  RR  /\  2  <_  x ) )
10 chtrpcl 24901 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
( theta `  x )  e.  RR+ )
119, 10syl 17 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  ( theta `  x )  e.  RR+ )
1211rpcnne0d 11881 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( theta `  x )  e.  CC  /\  ( theta `  x )  =/=  0
) )
13 ppinncl 24900 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
149, 13syl 17 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (π `  x )  e.  NN )
1514nnrpd 11870 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (π `  x )  e.  RR+ )
169simpld 475 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  RR )
17 1red 10055 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  1  e.  RR )
186a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  2  e.  RR )
19 1lt2 11194 . . . . . . . . . . . 12  |-  1  <  2
2019a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  1  <  2 )
219simprd 479 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  2  <_  x )
2217, 18, 16, 20, 21ltletrd 10197 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  1  <  x )
2316, 22rplogcld 24375 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2415, 23rpmulcld 11888 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  RR+ )
2524rpcnne0d 11881 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( (π `  x )  x.  ( log `  x
) )  e.  CC  /\  ( (π `  x )  x.  ( log `  x
) )  =/=  0
) )
26 recdiv 10731 . . . . . . 7  |-  ( ( ( ( theta `  x
)  e.  CC  /\  ( theta `  x )  =/=  0 )  /\  (
( (π `  x )  x.  ( log `  x
) )  e.  CC  /\  ( (π `  x )  x.  ( log `  x
) )  =/=  0
) )  ->  (
1  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) )  =  ( ( (π `  x )  x.  ( log `  x ) )  /  ( theta `  x
) ) )
2712, 25, 26syl2anc 693 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
1  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) )  =  ( ( (π `  x )  x.  ( log `  x ) )  /  ( theta `  x
) ) )
2827mpteq2dva 4744 . . . . 5  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( 1  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( (π `  x )  x.  ( log `  x
) )  /  ( theta `  x ) ) ) )
291, 2, 3, 4, 28offval2 6914 . . . 4  |-  ( T. 
->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x )  /  x
) )  oF  x.  ( x  e.  ( 2 [,) +oo )  |->  ( 1  / 
( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( ( (
theta `  x )  /  x )  x.  (
( (π `  x )  x.  ( log `  x
) )  /  ( theta `  x ) ) ) ) )
30 0red 10041 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  0  e.  RR )
31 2pos 11112 . . . . . . . . . . 11  |-  0  <  2
3231a1i 11 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  0  <  2 )
3330, 18, 16, 32, 21ltletrd 10197 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  0  <  x )
3416, 33elrpd 11869 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  x  e.  RR+ )
3534rpcnne0d 11881 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
x  e.  CC  /\  x  =/=  0 ) )
3624rpcnd 11874 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  CC )
37 dmdcan 10735 . . . . . . 7  |-  ( ( ( ( theta `  x
)  e.  CC  /\  ( theta `  x )  =/=  0 )  /\  (
x  e.  CC  /\  x  =/=  0 )  /\  ( (π `  x )  x.  ( log `  x
) )  e.  CC )  ->  ( ( (
theta `  x )  /  x )  x.  (
( (π `  x )  x.  ( log `  x
) )  /  ( theta `  x ) ) )  =  ( ( (π `  x )  x.  ( log `  x
) )  /  x
) )
3812, 35, 36, 37syl3anc 1326 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( theta `  x
)  /  x )  x.  ( ( (π `  x )  x.  ( log `  x ) )  /  ( theta `  x
) ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
3915rpcnd 11874 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (π `  x )  e.  CC )
4023rpcnne0d 11881 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( log `  x
)  e.  CC  /\  ( log `  x )  =/=  0 ) )
41 divdiv2 10737 . . . . . . 7  |-  ( ( (π `  x )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  (
( log `  x
)  e.  CC  /\  ( log `  x )  =/=  0 ) )  ->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
4239, 35, 40, 41syl3anc 1326 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  =  ( ( (π `  x )  x.  ( log `  x
) )  /  x
) )
4338, 42eqtr4d 2659 . . . . 5  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( ( theta `  x
)  /  x )  x.  ( ( (π `  x )  x.  ( log `  x ) )  /  ( theta `  x
) ) )  =  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )
4443mpteq2dva 4744 . . . 4  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( ( ( theta `  x )  /  x
)  x.  ( ( (π `  x )  x.  ( log `  x
) )  /  ( theta `  x ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) )
4529, 44eqtrd 2656 . . 3  |-  ( T. 
->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x )  /  x
) )  oF  x.  ( x  e.  ( 2 [,) +oo )  |->  ( 1  / 
( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) ) ) )  =  ( x  e.  ( 2 [,) +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) ) )
4634ex 450 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  ->  x  e.  RR+ )
)
4746ssrdv 3609 . . . . 5  |-  ( T. 
->  ( 2 [,) +oo )  C_  RR+ )
48 chto1ub 25165 . . . . . 6  |-  ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  e.  O(1)
4948a1i 11 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( theta `  x
)  /  x ) )  e.  O(1) )
5047, 49o1res2 14294 . . . 4  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x
)  /  x ) )  e.  O(1) )
51 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
5251a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  1  e.  CC )
5311, 24rpdivcld 11889 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
5453rpcnd 11874 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  CC )
55 pnfxr 10092 . . . . . . . . 9  |- +oo  e.  RR*
56 icossre 12254 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\ +oo  e.  RR* )  ->  (
2 [,) +oo )  C_  RR )
576, 55, 56mp2an 708 . . . . . . . 8  |-  ( 2 [,) +oo )  C_  RR
58 rlimconst 14275 . . . . . . . 8  |-  ( ( ( 2 [,) +oo )  C_  RR  /\  1  e.  CC )  ->  (
x  e.  ( 2 [,) +oo )  |->  1 )  ~~> r  1 )
5957, 51, 58mp2an 708 . . . . . . 7  |-  ( x  e.  ( 2 [,) +oo )  |->  1 )  ~~> r  1
6059a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  1 )  ~~> r  1 )
61 chtppilim 25164 . . . . . . 7  |-  ( x  e.  ( 2 [,) +oo )  |->  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) )  ~~> r  1
6261a1i 11 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) )  ~~> r  1 )
63 ax-1ne0 10005 . . . . . . 7  |-  1  =/=  0
6463a1i 11 . . . . . 6  |-  ( T. 
->  1  =/=  0
)
6553rpne0d 11877 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 2 [,) +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
6652, 54, 60, 62, 64, 65rlimdiv 14376 . . . . 5  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( 1  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  ~~> r  ( 1  /  1 ) )
67 rlimo1 14347 . . . . 5  |-  ( ( x  e.  ( 2 [,) +oo )  |->  ( 1  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) ) )  ~~> r  ( 1  /  1 )  -> 
( x  e.  ( 2 [,) +oo )  |->  ( 1  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  e.  O(1) )
6866, 67syl 17 . . . 4  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( 1  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  e.  O(1) )
69 o1mul 14345 . . . 4  |-  ( ( ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x
)  /  x ) )  e.  O(1)  /\  (
x  e.  ( 2 [,) +oo )  |->  ( 1  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) ) )  e.  O(1) )  -> 
( ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x )  /  x
) )  oF  x.  ( x  e.  ( 2 [,) +oo )  |->  ( 1  / 
( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) ) ) )  e.  O(1) )
7050, 68, 69syl2anc 693 . . 3  |-  ( T. 
->  ( ( x  e.  ( 2 [,) +oo )  |->  ( ( theta `  x )  /  x
) )  oF  x.  ( x  e.  ( 2 [,) +oo )  |->  ( 1  / 
( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) ) ) )  e.  O(1) )
7145, 70eqeltrrd 2702 . 2  |-  ( T. 
->  ( x  e.  ( 2 [,) +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  e.  O(1) )
7271trud 1493 1  |-  ( x  e.  ( 2 [,) +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   RR+crp 11832   [,)cico 12177    ~~> r crli 14216   O(1)co1 14217   logclog 24301   thetaccht 24817  πcppi 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-ppi 24826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator