MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mudivsum Structured version   Visualization version   Unicode version

Theorem mudivsum 25219
Description: Asymptotic formula for  sum_ n  <_  x ,  mmu (
n )  /  n  =  O(1). Equation 10.2.1 of [Shapiro], p. 405. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mudivsum  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem mudivsum
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10055 . . 3  |-  ( T. 
->  1  e.  RR )
2 reex 10027 . . . . . . 7  |-  RR  e.  _V
3 rpssre 11843 . . . . . . 7  |-  RR+  C_  RR
42, 3ssexi 4803 . . . . . 6  |-  RR+  e.  _V
54a1i 11 . . . . 5  |-  ( T. 
->  RR+  e.  _V )
6 fzfid 12772 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
7 rpre 11839 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
8 elfznn 12370 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
9 nndivre 11056 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  n  e.  NN )  ->  ( x  /  n
)  e.  RR )
107, 8, 9syl2an 494 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
1110recnd 10068 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
12 reflcl 12597 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  e.  RR )
1310, 12syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
1413recnd 10068 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
1511, 14subcld 10392 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x  /  n )  -  ( |_ `  ( x  /  n
) ) )  e.  CC )
168adantl 482 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
17 mucl 24867 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
1816, 17syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1918zcnd 11483 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
2015, 19mulcld 10060 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
216, 20fsumcl 14464 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
22 rpcn 11841 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
23 rpne0 11848 . . . . . . 7  |-  ( x  e.  RR+  ->  x  =/=  0 )
2421, 22, 23divcld 10801 . . . . . 6  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  e.  CC )
2524adantl 482 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  e.  CC )
26 ovexd 6680 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e. 
_V )
27 eqidd 2623 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) ) )
28 eqidd 2623 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  =  ( x  e.  RR+  |->  ( 1  /  x ) ) )
295, 25, 26, 27, 28offval2 6914 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
303a1i 11 . . . . . 6  |-  ( T. 
->  RR+  C_  RR )
3121adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC )
3222adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  CC )
3323adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  =/=  0 )
3431, 32, 33absdivd 14194 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  ( abs `  x
) ) )
35 rprege0 11847 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
36 absid 14036 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
3735, 36syl 17 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( abs `  x )  =  x )
3837adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  x )  =  x )
3938oveq2d 6666 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  ( abs `  x
) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x ) )
4034, 39eqtrd 2656 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x ) )
4131abscld 14175 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
42 fzfid 12772 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
4320adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  e.  CC )
4443abscld 14175 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
4542, 44fsumrecl 14465 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  e.  RR )
467adantr 481 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR )
4742, 43fsumabs 14533 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) ) )
48 reflcl 12597 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
4946, 48syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  RR )
50 1red 10055 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
5115adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  e.  CC )
52 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
5352ssriv 3607 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... ( |_ `  x ) )  C_  NN
5453a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
1 ... ( |_ `  x ) )  C_  NN )
5554sselda 3603 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
5655, 17syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
5756zcnd 11483 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
5851, 57absmuld 14193 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  =  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) ) )
5951abscld 14175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  e.  RR )
6057abscld 14175 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  n )
)  e.  RR )
6151absge0d 14183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) ) )
6257absge0d 14183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( mmu `  n ) ) )
63 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  x  e.  RR+ )
648nnrpd 11870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
65 rpdivcl 11856 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6663, 64, 65syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
673, 66sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
6867, 12syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  RR )
69 flle 12600 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  /  n )  e.  RR  ->  ( |_ `  ( x  /  n ) )  <_ 
( x  /  n
) )
7067, 69syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  <_  (
x  /  n ) )
7168, 67, 70abssubge0d 14170 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  =  ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) ) )
72 fracle1 12604 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  /  n )  e.  RR  ->  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  <_  1 )
7367, 72syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  <_  1 )
7471, 73eqbrtrd 4675 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( x  /  n
)  -  ( |_
`  ( x  /  n ) ) ) )  <_  1 )
75 mule1 24874 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
7655, 75syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  n )
)  <_  1 )
7759, 50, 60, 50, 61, 62, 74, 76lemul12ad 10966 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) )  <_ 
( 1  x.  1 ) )
78 1t1e1 11175 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
7977, 78syl6breq 4694 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) ) )  x.  ( abs `  ( mmu `  n
) ) )  <_ 
1 )
8058, 79eqbrtrd 4675 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  1 )
8142, 44, 50, 80fsumle 14531 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  x ) ) 1 )
82 1cnd 10056 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  CC )
83 fsumconst 14522 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  1  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  1 ) )
8442, 82, 83syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  1 ) )
85 flge1nn 12622 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
867, 85sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  NN )
8786nnnn0d 11351 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e. 
NN0 )
88 hashfz1 13134 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
8987, 88syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( # `
 ( 1 ... ( |_ `  x
) ) )  =  ( |_ `  x
) )
9089oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( # `  ( 1 ... ( |_ `  x ) ) )  x.  1 )  =  ( ( |_ `  x )  x.  1 ) )
9149recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  CC )
9291mulid1d 10057 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( |_ `  x
)  x.  1 )  =  ( |_ `  x ) )
9384, 90, 923eqtrd 2660 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) 1  =  ( |_
`  x ) )
9481, 93breqtrd 4679 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( |_ `  x ) )
95 flle 12600 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
9646, 95syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  <_  x )
9745, 49, 46, 94, 96letrd 10194 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  x )
9841, 45, 46, 47, 97letrd 10194 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  x )
9932mulid1d 10057 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  1 )  =  x )
10098, 99breqtrrd 4681 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( x  x.  1 ) )
101 1red 10055 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  RR )
10241, 101, 63ledivmuld 11925 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x )  <_ 
1  <->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  <_  ( x  x.  1 ) ) )
103100, 102mpbird 247 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) ) )  /  x )  <_ 
1 )
10440, 103eqbrtrd 4675 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  <_ 
1 )
105104adantl 482 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  <_ 
1 )
10630, 25, 1, 1, 105elo1d 14267 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  e.  O(1) )
107 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
108 divrcnv 14584 . . . . . . 7  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
109107, 108ax-mp 5 . . . . . 6  |-  ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0
110 rlimo1 14347 . . . . . 6  |-  ( ( x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )
111109, 110mp1i 13 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  e.  O(1) )
112 o1add 14344 . . . . 5  |-  ( ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( 1  /  x ) )  e.  O(1) )  ->  ( (
x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
113106, 111, 112syl2anc 693 . . . 4  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x ) )  oF  +  ( x  e.  RR+  |->  ( 1  /  x ) ) )  e.  O(1) )
11429, 113eqeltrrd 2702 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )  e.  O(1) )
115 ovexd 6680 . . 3  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) )  e.  _V )
11618zred 11482 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
117116, 16nndivred 11069 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
118117recnd 10068 . . . . 5  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
1196, 118fsumcl 14464 . . . 4  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
120119adantl 482 . . 3  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
121119adantr 481 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
122121abscld 14175 . . . . 5  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  e.  RR )
123118adantlr 751 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  n )  /  n
)  e.  CC )
12442, 32, 123fsummulc2 14516 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( x  x.  ( ( mmu `  n )  /  n
) ) )
12514, 19mulcld 10060 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  ( x  /  n ) )  x.  ( mmu `  n
) )  e.  CC )
126125adantlr 751 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( |_
`  ( x  /  n ) )  x.  ( mmu `  n
) )  e.  CC )
12742, 43, 126fsumadd 14470 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  +  ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) ) )
12811adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
12914adantlr 751 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  n
) )  e.  CC )
130128, 129npcand 10396 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  +  ( |_ `  (
x  /  n ) ) )  =  ( x  /  n ) )
131130oveq1d 6665 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  +  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  =  ( ( x  /  n
)  x.  ( mmu `  n ) ) )
13251, 129, 57adddird 10065 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  +  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  =  ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) ) )
13332adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  x  e.  CC )
13455nnrpd 11870 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
135 rpcnne0 11850 . . . . . . . . . . . . . 14  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
136134, 135syl 17 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
137 div23 10704 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( mmu `  n ) )  /  n )  =  ( ( x  /  n
)  x.  ( mmu `  n ) ) )
138 divass 10703 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  x.  ( mmu `  n ) )  /  n )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
139137, 138eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( mmu `  n )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( x  /  n )  x.  ( mmu `  n
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
140133, 57, 136, 139syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( x  /  n )  x.  ( mmu `  n
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
141131, 132, 1403eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )  =  ( x  x.  ( ( mmu `  n )  /  n ) ) )
142141sumeq2dv 14433 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( x  /  n )  -  ( |_ `  ( x  /  n
) ) )  x.  ( mmu `  n
) )  +  ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( x  x.  (
( mmu `  n
)  /  n ) ) )
143 eqidd 2623 . . . . . . . . . . . . 13  |-  ( k  =  ( n  x.  m )  ->  (
mmu `  n )  =  ( mmu `  n ) )
144 ssrab2 3687 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  k }  C_  NN
145 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  { y  e.  NN  |  y  ||  k } )
146144, 145sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  n  e.  NN )
147146, 17syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  ZZ )
148147zcnd 11483 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  n  e.  {
y  e.  NN  | 
y  ||  k }
) )  ->  (
mmu `  n )  e.  CC )
149143, 46, 148dvdsflsumcom 24914 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( mmu `  n ) )
1501483impb 1260 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } )  ->  (
mmu `  n )  e.  CC )
151150mulid1d 10057 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) )  /\  n  e.  { y  e.  NN  |  y  ||  k } )  ->  (
( mmu `  n
)  x.  1 )  =  ( mmu `  n ) )
1521512sumeq2dv 14436 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  1 )  =  sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )
)
153 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  1  =  1 )
154 nnuz 11723 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
15586, 154syl6eleq 2711 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( |_ `  x )  e.  ( ZZ>= `  1 )
)
156 eluzfz1 12348 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
157155, 156syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
158 1cnd 10056 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  k  e.  (
1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
159153, 42, 54, 157, 158musumsum 24918 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
( mmu `  n
)  x.  1 )  =  1 )
160152, 159eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ n  e.  { y  e.  NN  |  y 
||  k }  (
mmu `  n )  =  1 )
161 fzfid 12772 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  n ) ) )  e.  Fin )
162 fsumconst 14522 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... ( |_ `  ( x  /  n ) ) )  e.  Fin  /\  (
mmu `  n )  e.  CC )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( mmu `  n
)  =  ( (
# `  ( 1 ... ( |_ `  (
x  /  n ) ) ) )  x.  ( mmu `  n
) ) )
163161, 57, 162syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( mmu `  n
)  =  ( (
# `  ( 1 ... ( |_ `  (
x  /  n ) ) ) )  x.  ( mmu `  n
) ) )
164 rprege0 11847 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR+  ->  ( ( x  /  n )  e.  RR  /\  0  <_  ( x  /  n
) ) )
165 flge0nn0 12621 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  /  n
)  e.  RR  /\  0  <_  ( x  /  n ) )  -> 
( |_ `  (
x  /  n ) )  e.  NN0 )
166 hashfz1 13134 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( x  /  n ) )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  =  ( |_
`  ( x  /  n ) ) )
16766, 164, 165, 1664syl 19 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( # `  (
1 ... ( |_ `  ( x  /  n
) ) ) )  =  ( |_ `  ( x  /  n
) ) )
168167oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  ( ( # `  ( 1 ... ( |_ `  ( x  /  n ) ) ) )  x.  ( mmu `  n ) )  =  ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )
169163, 168eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  1  <_  x )  /\  n  e.  (
1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( mmu `  n
)  =  ( ( |_ `  ( x  /  n ) )  x.  ( mmu `  n ) ) )
170169sumeq2dv 14433 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  n
) ) ) ( mmu `  n )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
) )
171149, 160, 1703eqtr3rd 2665 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( |_ `  ( x  /  n
) )  x.  (
mmu `  n )
)  =  1 )
172171oveq2d 6666 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( |_ `  (
x  /  n ) )  x.  ( mmu `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
173127, 142, 1723eqtr3d 2664 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( x  x.  (
( mmu `  n
)  /  n ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
174124, 173eqtrd 2656 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 ) )
175174oveq1d 6665 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  /  x )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
) )
176121, 32, 33divcan3d 10806 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  /  x )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )
177 rpcnne0 11850 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
178177adantr 481 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
x  e.  CC  /\  x  =/=  0 ) )
179 divdir 10710 . . . . . . . 8  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  e.  CC  /\  1  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  -> 
( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
18031, 82, 178, 179syl3anc 1326 . . . . . . 7  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  +  1 )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
181175, 176, 1803eqtr3d 2664 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) )
182181fveq2d 6195 . . . . 5  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  =  ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
183 eqle 10139 . . . . 5  |-  ( ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  e.  RR  /\  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  =  ( abs `  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
184122, 182, 183syl2anc 693 . . . 4  |-  ( ( x  e.  RR+  /\  1  <_  x )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  <_  ( abs `  ( ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( x  /  n
)  -  ( |_
`  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
185184adantl 482 . . 3  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n ) )  <_  ( abs `  (
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( x  /  n )  -  ( |_ `  ( x  /  n ) ) )  x.  ( mmu `  n ) )  /  x )  +  ( 1  /  x ) ) ) )
1861, 114, 115, 120, 185o1le 14383 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O(1) )
187186trud 1493 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    oFcof 6895   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   |_cfl 12591   #chash 13117   abscabs 13974    ~~> r crli 14216   O(1)co1 14217   sum_csu 14416    || cdvds 14983   mmucmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-mu 24827
This theorem is referenced by:  mulogsumlem  25220  mulog2sumlem3  25225  selberglem1  25234
  Copyright terms: Public domain W3C validator