MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem1 Structured version   Visualization version   Unicode version

Theorem selberglem1 25234
Description: Lemma for selberg 25237. Estimation of the asymptotic part of selberglem3 25236. (Contributed by Mario Carneiro, 20-May-2016.)
Hypothesis
Ref Expression
selberglem1.t  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
Assertion
Ref Expression
selberglem1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Distinct variable group:    x, n
Allowed substitution hints:    T( x, n)

Proof of Theorem selberglem1
StepHypRef Expression
1 fzfid 12772 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 12370 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
32adantl 482 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4 mucl 24867 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
53, 4syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
65zred 11482 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
76, 3nndivred 11069 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
87recnd 10068 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
92nnrpd 11870 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
10 rpdivcl 11856 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
119, 10sylan2 491 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
12 relogcl 24322 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( log `  ( x  /  n
) )  e.  RR )
1311, 12syl 17 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
1413recnd 10068 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
1514sqcld 13006 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) ) ^
2 )  e.  CC )
168, 15mulcld 10060 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  e.  CC )
171, 16fsumcl 14464 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  e.  CC )
18 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
1918a1i 11 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
2019, 14mulcld 10060 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  (
x  /  n ) ) )  e.  CC )
2119, 20subcld 10392 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) )  e.  CC )
228, 21mulcld 10060 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
231, 22fsumcl 14464 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC )
24 relogcl 24322 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
2524recnd 10068 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
26 mulcl 10020 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( log `  x )  e.  CC )  -> 
( 2  x.  ( log `  x ) )  e.  CC )
2718, 25, 26sylancr 695 . . . . 5  |-  ( x  e.  RR+  ->  ( 2  x.  ( log `  x
) )  e.  CC )
2817, 23, 27addsubd 10413 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
29 selberglem1.t . . . . . . . . 9  |-  T  =  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n )
3029oveq2i 6661 . . . . . . . 8  |-  ( ( mmu `  n )  x.  T )  =  ( ( mmu `  n )  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )
315zcnd 11483 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
3215, 21addcld 10059 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  e.  CC )
333nnrpd 11870 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3433rpcnne0d 11881 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
35 divass 10703 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( mmu `  n )  x.  ( ( ( ( log `  (
x  /  n ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  /  n
) ) )
36 div23 10704 . . . . . . . . . . 11  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( ( mmu `  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  /  n
)  =  ( ( ( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
3735, 36eqtr3d 2658 . . . . . . . . . 10  |-  ( ( ( mmu `  n
)  e.  CC  /\  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  e.  CC  /\  (
n  e.  CC  /\  n  =/=  0 ) )  ->  ( ( mmu `  n )  x.  (
( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )  /  n ) )  =  ( ( ( mmu `  n )  /  n )  x.  ( ( ( log `  ( x  /  n
) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
3831, 32, 34, 37syl3anc 1326 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n ) )  =  ( ( ( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
398, 15, 21adddid 10064 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4038, 39eqtrd 2656 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  ( ( ( ( log `  ( x  /  n ) ) ^ 2 )  +  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) )  /  n ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4130, 40syl5eq 2668 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  x.  T )  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n )  /  n )  x.  ( 2  -  (
2  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
4241sumeq2dv 14433 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( ( log `  (
x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
431, 16, 22fsumadd 14470 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( ( log `  (
x  /  n ) ) ^ 2 ) )  +  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
4442, 43eqtrd 2656 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  x.  T
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) ) )
4544oveq1d 6665 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )  -  ( 2  x.  ( log `  x
) ) ) )
4618a1i 11 . . . . . . . 8  |-  ( x  e.  RR+  ->  2  e.  CC )
478, 14mulcld 10060 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) )  e.  CC )
488, 47subcld 10392 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  -  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) ) )  e.  CC )
491, 46, 48fsummulc2 14516 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 2  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) ) )
501, 8, 47fsumsub 14520 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
5150oveq2d 6666 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 2  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
5249, 51eqtr3d 2658 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
5319, 8mulcomd 10061 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( mmu `  n )  /  n
) )  =  ( ( ( mmu `  n )  /  n
)  x.  2 ) )
5419, 8, 14mul12d 10245 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  x.  ( log `  (
x  /  n ) ) ) )  =  ( ( ( mmu `  n )  /  n
)  x.  ( 2  x.  ( log `  (
x  /  n ) ) ) ) )
5553, 54oveq12d 6668 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  ( ( mmu `  n )  /  n ) )  -  ( 2  x.  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  2 )  -  ( ( ( mmu `  n )  /  n )  x.  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5619, 8, 47subdid 10486 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  -  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( 2  x.  ( ( mmu `  n )  /  n ) )  -  ( 2  x.  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
578, 19, 20subdid 10486 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) )  =  ( ( ( ( mmu `  n )  /  n
)  x.  2 )  -  ( ( ( mmu `  n )  /  n )  x.  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5855, 56, 573eqtr4d 2666 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( ( ( mmu `  n )  /  n )  -  ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( ( ( mmu `  n
)  /  n )  x.  ( 2  -  ( 2  x.  ( log `  ( x  /  n ) ) ) ) ) )
5958sumeq2dv 14433 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 2  x.  (
( ( mmu `  n )  /  n
)  -  ( ( ( mmu `  n
)  /  n )  x.  ( log `  (
x  /  n ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )
6052, 59eqtr3d 2658 . . . . 5  |-  ( x  e.  RR+  ->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) )
6160oveq2d 6666 . . . 4  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( 2  -  ( 2  x.  ( log `  (
x  /  n ) ) ) ) ) ) )
6228, 45, 613eqtr4d 2666 . . 3  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
6362mpteq2ia 4740 . 2  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )
64 ovexd 6680 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) )  e.  _V )
65 ovexd 6680 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  _V )
66 mulog2sum 25226 . . . . 5  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( ( log `  ( x  /  n
) ) ^ 2 ) )  -  (
2  x.  ( log `  x ) ) ) )  e.  O(1)
6766a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) ) )  e.  O(1) )
68 2ex 11092 . . . . . 6  |-  2  e.  _V
6968a1i 11 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  2  e. 
_V )
70 ovexd 6680 . . . . 5  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  _V )
71 rpssre 11843 . . . . . . 7  |-  RR+  C_  RR
72 o1const 14350 . . . . . . 7  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O(1) )
7371, 18, 72mp2an 708 . . . . . 6  |-  ( x  e.  RR+  |->  2 )  e.  O(1)
7473a1i 11 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  2 )  e.  O(1) )
75 reex 10027 . . . . . . . . 9  |-  RR  e.  _V
7675, 71ssexi 4803 . . . . . . . 8  |-  RR+  e.  _V
7776a1i 11 . . . . . . 7  |-  ( T. 
->  RR+  e.  _V )
78 sumex 14418 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  _V
7978a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  _V )
80 sumex 14418 . . . . . . . 8  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e. 
_V
8180a1i 11 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) )  e. 
_V )
82 eqidd 2623 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) ) )
83 eqidd 2623 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  =  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )
8477, 79, 81, 82, 83offval2 6914 . . . . . 6  |-  ( T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
) )  oF  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )
85 mudivsum 25219 . . . . . . 7  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O(1)
86 mulogsum 25221 . . . . . . 7  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1)
87 o1sub 14346 . . . . . . 7  |-  ( ( ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O(1)  /\  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) )  e.  O(1) )  ->  (
( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  oF  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O(1) )
8885, 86, 87mp2an 708 . . . . . 6  |-  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  oF  -  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O(1)
8984, 88syl6eqelr 2710 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) )  e.  O(1) )
9069, 70, 74, 89o1mul2 14355 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) )  e.  O(1) )
9164, 65, 67, 90o1add2 14354 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )  e.  O(1) )
9291trud 1493 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( ( log `  ( x  /  n ) ) ^ 2 ) )  -  ( 2  x.  ( log `  x
) ) )  +  ( 2  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( log `  ( x  /  n
) ) ) ) ) ) )  e.  O(1)
9363, 92eqeltri 2697 1  |-  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  x.  T )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   RR+crp 11832   ...cfz 12326   |_cfl 12591   ^cexp 12860   O(1)co1 14217   sum_csu 14416   logclog 24301   mmucmu 24821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-mu 24827
This theorem is referenced by:  selberglem2  25235
  Copyright terms: Public domain W3C validator