Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2re Structured version   Visualization version   Unicode version

Theorem ftc2re 30676
Description: The Fundamental Theorem of Calculus, part two, for functions continuous on  D. (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e  |-  E  =  ( C (,) D
)
ftc2re.a  |-  ( ph  ->  A  e.  E )
ftc2re.b  |-  ( ph  ->  B  e.  E )
ftc2re.le  |-  ( ph  ->  A  <_  B )
ftc2re.f  |-  ( ph  ->  F : E --> CC )
ftc2re.1  |-  ( ph  ->  ( RR  _D  F
)  e.  ( E
-cn-> CC ) )
Assertion
Ref Expression
ftc2re  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t
Allowed substitution hints:    C( t)    D( t)    E( t)

Proof of Theorem ftc2re
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2re.e . . . . . 6  |-  E  =  ( C (,) D
)
2 ioossre 12235 . . . . . 6  |-  ( C (,) D )  C_  RR
31, 2eqsstri 3635 . . . . 5  |-  E  C_  RR
43a1i 11 . . . 4  |-  ( ph  ->  E  C_  RR )
5 ftc2re.a . . . 4  |-  ( ph  ->  A  e.  E )
64, 5sseldd 3604 . . 3  |-  ( ph  ->  A  e.  RR )
7 ftc2re.b . . . 4  |-  ( ph  ->  B  e.  E )
84, 7sseldd 3604 . . 3  |-  ( ph  ->  B  e.  RR )
9 ftc2re.le . . 3  |-  ( ph  ->  A  <_  B )
10 ax-resscn 9993 . . . . . . 7  |-  RR  C_  CC
1110a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
12 ftc2re.f . . . . . 6  |-  ( ph  ->  F : E --> CC )
13 iccssre 12255 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
146, 8, 13syl2anc 693 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
15 eqid 2622 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1615tgioo2 22606 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
1715, 16dvres 23675 . . . . . 6  |-  ( ( ( RR  C_  CC  /\  F : E --> CC )  /\  ( E  C_  RR  /\  ( A [,] B )  C_  RR ) )  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( ( RR  _D  F
)  |`  ( ( int `  ( topGen `  ran  (,) )
) `  ( A [,] B ) ) ) )
1811, 12, 4, 14, 17syl22anc 1327 . . . . 5  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) ) )
19 iccntr 22624 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
206, 8, 19syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
2120reseq2d 5396 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )
2218, 21eqtrd 2656 . . . 4  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  =  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )
23 ioossicc 12259 . . . . . . 7  |-  ( A (,) B )  C_  ( A [,] B )
2423a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
251, 5, 7fct2relem 30675 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  E )
2624, 25sstrd 3613 . . . . 5  |-  ( ph  ->  ( A (,) B
)  C_  E )
27 ftc2re.1 . . . . 5  |-  ( ph  ->  ( RR  _D  F
)  e.  ( E
-cn-> CC ) )
28 rescncf 22700 . . . . 5  |-  ( ( A (,) B ) 
C_  E  ->  (
( RR  _D  F
)  e.  ( E
-cn-> CC )  ->  (
( RR  _D  F
)  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) ) )
2926, 27, 28sylc 65 . . . 4  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) )
3022, 29eqeltrd 2701 . . 3  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  e.  ( ( A (,) B ) -cn-> CC ) )
31 ioombl 23333 . . . . . . 7  |-  ( A (,) B )  e. 
dom  vol
3231a1i 11 . . . . . 6  |-  ( ph  ->  ( A (,) B
)  e.  dom  vol )
33 cnmbf 23426 . . . . . 6  |-  ( ( ( A (,) B
)  e.  dom  vol  /\  ( ( RR  _D  F )  |`  ( A (,) B ) )  e.  ( ( A (,) B ) -cn-> CC ) )  ->  (
( RR  _D  F
)  |`  ( A (,) B ) )  e. MblFn
)
3432, 29, 33syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  e. MblFn )
35 dmres 5419 . . . . . . 7  |-  dom  (
( RR  _D  F
)  |`  ( A (,) B ) )  =  ( ( A (,) B )  i^i  dom  ( RR  _D  F
) )
3635fveq2i 6194 . . . . . 6  |-  ( vol `  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  =  ( vol `  ( ( A (,) B )  i^i  dom  ( RR  _D  F ) ) )
37 cncff 22696 . . . . . . . . . . . 12  |-  ( ( RR  _D  F )  e.  ( E -cn-> CC )  ->  ( RR  _D  F ) : E --> CC )
3827, 37syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
) : E --> CC )
39 fdm 6051 . . . . . . . . . . 11  |-  ( ( RR  _D  F ) : E --> CC  ->  dom  ( RR  _D  F
)  =  E )
4038, 39syl 17 . . . . . . . . . 10  |-  ( ph  ->  dom  ( RR  _D  F )  =  E )
4140ineq2d 3814 . . . . . . . . 9  |-  ( ph  ->  ( ( A (,) B )  i^i  dom  ( RR  _D  F
) )  =  ( ( A (,) B
)  i^i  E )
)
42 df-ss 3588 . . . . . . . . . 10  |-  ( ( A (,) B ) 
C_  E  <->  ( ( A (,) B )  i^i 
E )  =  ( A (,) B ) )
4326, 42sylib 208 . . . . . . . . 9  |-  ( ph  ->  ( ( A (,) B )  i^i  E
)  =  ( A (,) B ) )
4441, 43eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( A (,) B )  i^i  dom  ( RR  _D  F
) )  =  ( A (,) B ) )
4544fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( vol `  (
( A (,) B
)  i^i  dom  ( RR 
_D  F ) ) )  =  ( vol `  ( A (,) B
) ) )
46 volioo 23337 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( vol `  ( A (,) B ) )  =  ( B  -  A
) )
476, 8, 9, 46syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( vol `  ( A (,) B ) )  =  ( B  -  A ) )
488, 6resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( B  -  A
)  e.  RR )
4947, 48eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  ( vol `  ( A (,) B ) )  e.  RR )
5045, 49eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( vol `  (
( A (,) B
)  i^i  dom  ( RR 
_D  F ) ) )  e.  RR )
5136, 50syl5eqel 2705 . . . . 5  |-  ( ph  ->  ( vol `  dom  ( ( RR  _D  F )  |`  ( A (,) B ) ) )  e.  RR )
52 rescncf 22700 . . . . . . . . 9  |-  ( ( A [,] B ) 
C_  E  ->  (
( RR  _D  F
)  e.  ( E
-cn-> CC )  ->  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) ) )
5325, 52syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( RR  _D  F )  e.  ( E -cn-> CC )  ->  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) ) )
5427, 53mpd 15 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
55 cniccbdd 23230 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  (
( RR  _D  F
)  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )  ->  E. x  e.  RR  A. y  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x )
566, 8, 54, 55syl3anc 1326 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ( A [,] B ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  y ) )  <_  x )
5735, 44syl5eq 2668 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) )  =  ( A (,) B ) )
5857, 24eqsstrd 3639 . . . . . . . . . 10  |-  ( ph  ->  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) )  C_  ( A [,] B ) )
59 ssralv 3666 . . . . . . . . . 10  |-  ( dom  ( ( RR  _D  F )  |`  ( A (,) B ) ) 
C_  ( A [,] B )  ->  ( A. y  e.  ( A [,] B ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  y ) )  <_  x  ->  A. y  e.  dom  ( ( RR  _D  F )  |`  ( A (,) B ) ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x ) )
6058, 59syl 17 . . . . . . . . 9  |-  ( ph  ->  ( A. y  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x  ->  A. y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x ) )
6160adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. y  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  y ) )  <_  x  ->  A. y  e.  dom  (
( RR  _D  F
)  |`  ( A (,) B ) ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A [,] B ) ) `  y ) )  <_  x ) )
6258adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR )  ->  dom  (
( RR  _D  F
)  |`  ( A (,) B ) )  C_  ( A [,] B ) )
6362sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  y  e.  ( A [,] B
) )
64 fvres 6207 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A [,] B )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
6563, 64syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
66 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )
6757ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  dom  ( ( RR  _D  F )  |`  ( A (,) B ) )  =  ( A (,) B ) )
6866, 67eleqtrd 2703 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  y  e.  ( A (,) B
) )
69 fvres 6207 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A (,) B )  ->  (
( ( RR  _D  F )  |`  ( A (,) B ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  (
( ( RR  _D  F )  |`  ( A (,) B ) ) `
 y )  =  ( ( RR  _D  F ) `  y
) )
7165, 70eqtr4d 2659 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y )  =  ( ( ( RR 
_D  F )  |`  ( A (,) B ) ) `  y ) )
7271fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A [,] B
) ) `  y
) )  =  ( abs `  ( ( ( RR  _D  F
)  |`  ( A (,) B ) ) `  y ) ) )
7372breq1d 4663 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  (
( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x  <->  ( abs `  ( ( ( RR 
_D  F )  |`  ( A (,) B ) ) `  y ) )  <_  x )
)
7473biimpd 219 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  y  e.  dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  ->  (
( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x  ->  ( abs `  ( ( ( RR  _D  F )  |`  ( A (,) B
) ) `  y
) )  <_  x
) )
7574ralimdva 2962 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. y  e.  dom  ( ( RR  _D  F )  |`  ( A (,) B
) ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  y ) )  <_  x  ->  A. y  e.  dom  (
( RR  _D  F
)  |`  ( A (,) B ) ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A (,) B ) ) `  y ) )  <_  x ) )
7661, 75syld 47 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( A. y  e.  ( A [,] B ) ( abs `  ( ( ( RR 
_D  F )  |`  ( A [,] B ) ) `  y ) )  <_  x  ->  A. y  e.  dom  (
( RR  _D  F
)  |`  ( A (,) B ) ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A (,) B ) ) `  y ) )  <_  x ) )
7776reximdva 3017 . . . . . 6  |-  ( ph  ->  ( E. x  e.  RR  A. y  e.  ( A [,] B
) ( abs `  (
( ( RR  _D  F )  |`  ( A [,] B ) ) `
 y ) )  <_  x  ->  E. x  e.  RR  A. y  e. 
dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) ( abs `  (
( ( RR  _D  F )  |`  ( A (,) B ) ) `
 y ) )  <_  x ) )
7856, 77mpd 15 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. y  e.  dom  (
( RR  _D  F
)  |`  ( A (,) B ) ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A (,) B ) ) `  y ) )  <_  x )
79 bddibl 23606 . . . . 5  |-  ( ( ( ( RR  _D  F )  |`  ( A (,) B ) )  e. MblFn  /\  ( vol ` 
dom  ( ( RR 
_D  F )  |`  ( A (,) B ) ) )  e.  RR  /\ 
E. x  e.  RR  A. y  e.  dom  (
( RR  _D  F
)  |`  ( A (,) B ) ) ( abs `  ( ( ( RR  _D  F
)  |`  ( A (,) B ) ) `  y ) )  <_  x )  ->  (
( RR  _D  F
)  |`  ( A (,) B ) )  e.  L^1 )
8034, 51, 78, 79syl3anc 1326 . . . 4  |-  ( ph  ->  ( ( RR  _D  F )  |`  ( A (,) B ) )  e.  L^1 )
8122, 80eqeltrd 2701 . . 3  |-  ( ph  ->  ( RR  _D  ( F  |`  ( A [,] B ) ) )  e.  L^1 )
82 dvcn 23684 . . . . 5  |-  ( ( ( RR  C_  CC  /\  F : E --> CC  /\  E  C_  RR )  /\  dom  ( RR  _D  F
)  =  E )  ->  F  e.  ( E -cn-> CC ) )
8311, 12, 4, 40, 82syl31anc 1329 . . . 4  |-  ( ph  ->  F  e.  ( E
-cn-> CC ) )
84 rescncf 22700 . . . . 5  |-  ( ( A [,] B ) 
C_  E  ->  ( F  e.  ( E -cn->
CC )  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) ) )
8525, 84syl 17 . . . 4  |-  ( ph  ->  ( F  e.  ( E -cn-> CC )  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) ) )
8683, 85mpd 15 . . 3  |-  ( ph  ->  ( F  |`  ( A [,] B ) )  e.  ( ( A [,] B ) -cn-> CC ) )
876, 8, 9, 30, 81, 86ftc2 23807 . 2  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B
) ) ) `  t )  _d t  =  ( ( ( F  |`  ( A [,] B ) ) `  B )  -  (
( F  |`  ( A [,] B ) ) `
 A ) ) )
8822fveq1d 6193 . . . . 5  |-  ( ph  ->  ( ( RR  _D  ( F  |`  ( A [,] B ) ) ) `  t )  =  ( ( ( RR  _D  F )  |`  ( A (,) B
) ) `  t
) )
89 fvres 6207 . . . . 5  |-  ( t  e.  ( A (,) B )  ->  (
( ( RR  _D  F )  |`  ( A (,) B ) ) `
 t )  =  ( ( RR  _D  F ) `  t
) )
9088, 89sylan9eq 2676 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( F  |`  ( A [,] B ) ) ) `  t
)  =  ( ( RR  _D  F ) `
 t ) )
9190ralrimiva 2966 . . 3  |-  ( ph  ->  A. t  e.  ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B ) ) ) `  t )  =  ( ( RR 
_D  F ) `  t ) )
92 itgeq2 23544 . . 3  |-  ( A. t  e.  ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B
) ) ) `  t )  =  ( ( RR  _D  F
) `  t )  ->  S. ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B
) ) ) `  t )  _d t  =  S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t )
9391, 92syl 17 . 2  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  ( F  |`  ( A [,] B
) ) ) `  t )  _d t  =  S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t )
946rexrd 10089 . . . . 5  |-  ( ph  ->  A  e.  RR* )
958rexrd 10089 . . . . 5  |-  ( ph  ->  B  e.  RR* )
96 ubicc2 12289 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
9794, 95, 9, 96syl3anc 1326 . . . 4  |-  ( ph  ->  B  e.  ( A [,] B ) )
9897fvresd 6208 . . 3  |-  ( ph  ->  ( ( F  |`  ( A [,] B ) ) `  B )  =  ( F `  B ) )
99 lbicc2 12288 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
10094, 95, 9, 99syl3anc 1326 . . . 4  |-  ( ph  ->  A  e.  ( A [,] B ) )
101100fvresd 6208 . . 3  |-  ( ph  ->  ( ( F  |`  ( A [,] B ) ) `  A )  =  ( F `  A ) )
10298, 101oveq12d 6668 . 2  |-  ( ph  ->  ( ( ( F  |`  ( A [,] B
) ) `  B
)  -  ( ( F  |`  ( A [,] B ) ) `  A ) )  =  ( ( F `  B )  -  ( F `  A )
) )
10387, 93, 1023eqtr3d 2664 1  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   RR*cxr 10073    <_ cle 10075    - cmin 10266   (,)cioo 12175   [,]cicc 12178   abscabs 13974   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821   -cn->ccncf 22679   volcvol 23232  MblFncmbf 23383   L^1cibl 23386   S.citg 23387    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  fdvposlt  30677  fdvposle  30679  itgexpif  30684
  Copyright terms: Public domain W3C validator