Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hasheuni Structured version   Visualization version   Unicode version

Theorem hasheuni 30147
Description: The cardinality of a disjoint union, not necessarily finite. cf. hashuni 14558. (Contributed by Thierry Arnoux, 19-Nov-2016.) (Revised by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 20-Jun-2017.)
Assertion
Ref Expression
hasheuni  |-  ( ( A  e.  V  /\ Disj  x  e.  A  x )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
Distinct variable groups:    x, A    x, V

Proof of Theorem hasheuni
StepHypRef Expression
1 nfdisj1 4633 . . . . . . . 8  |-  F/ xDisj  x  e.  A  x
2 nfv 1843 . . . . . . . 8  |-  F/ x  A  e.  Fin
3 nfv 1843 . . . . . . . 8  |-  F/ x  A  C_  Fin
41, 2, 3nf3an 1831 . . . . . . 7  |-  F/ x
(Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )
5 simp2 1062 . . . . . . 7  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
6 simp3 1063 . . . . . . 7  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  A  C_  Fin )
7 simp1 1061 . . . . . . 7  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  -> Disj  x  e.  A  x
)
84, 5, 6, 7hashunif 29562 . . . . . 6  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  ( # `  U. A )  =  sum_ x  e.  A  ( # `  x ) )
9 simpl 473 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  ->  A  e.  Fin )
10 dfss3 3592 . . . . . . . . . . 11  |-  ( A 
C_  Fin  <->  A. x  e.  A  x  e.  Fin )
11 hashcl 13147 . . . . . . . . . . . . 13  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
12 nn0re 11301 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  e.  NN0  ->  ( # `  x
)  e.  RR )
13 nn0ge0 11318 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  e.  NN0  ->  0  <_  (
# `  x )
)
14 elrege0 12278 . . . . . . . . . . . . . 14  |-  ( (
# `  x )  e.  ( 0 [,) +oo ) 
<->  ( ( # `  x
)  e.  RR  /\  0  <_  ( # `  x
) ) )
1512, 13, 14sylanbrc 698 . . . . . . . . . . . . 13  |-  ( (
# `  x )  e.  NN0  ->  ( # `  x
)  e.  ( 0 [,) +oo ) )
1611, 15syl 17 . . . . . . . . . . . 12  |-  ( x  e.  Fin  ->  ( # `
 x )  e.  ( 0 [,) +oo ) )
1716ralimi 2952 . . . . . . . . . . 11  |-  ( A. x  e.  A  x  e.  Fin  ->  A. x  e.  A  ( # `  x
)  e.  ( 0 [,) +oo ) )
1810, 17sylbi 207 . . . . . . . . . 10  |-  ( A 
C_  Fin  ->  A. x  e.  A  ( # `  x
)  e.  ( 0 [,) +oo ) )
1918r19.21bi 2932 . . . . . . . . 9  |-  ( ( A  C_  Fin  /\  x  e.  A )  ->  ( # `
 x )  e.  ( 0 [,) +oo ) )
2019adantll 750 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  A  C_  Fin )  /\  x  e.  A
)  ->  ( # `  x
)  e.  ( 0 [,) +oo ) )
219, 20esumpfinval 30137 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A  C_  Fin )  -> Σ* x  e.  A ( # `  x
)  =  sum_ x  e.  A  ( # `  x
) )
22213adant1 1079 . . . . . 6  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  -> Σ* x  e.  A ( # `  x )  =  sum_ x  e.  A  ( # `  x ) )
238, 22eqtr4d 2659 . . . . 5  |-  ( (Disj  x  e.  A  x  /\  A  e.  Fin  /\  A  C_  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
24233adant1l 1318 . . . 4  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e. 
Fin  /\  A  C_  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
25243expa 1265 . . 3  |-  ( ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e.  Fin )  /\  A  C_ 
Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
26 uniexg 6955 . . . . . . . 8  |-  ( A  e.  V  ->  U. A  e.  _V )
2710notbii 310 . . . . . . . . . 10  |-  ( -.  A  C_  Fin  <->  -.  A. x  e.  A  x  e.  Fin )
28 rexnal 2995 . . . . . . . . . 10  |-  ( E. x  e.  A  -.  x  e.  Fin  <->  -.  A. x  e.  A  x  e.  Fin )
2927, 28bitr4i 267 . . . . . . . . 9  |-  ( -.  A  C_  Fin  <->  E. x  e.  A  -.  x  e.  Fin )
30 elssuni 4467 . . . . . . . . . . 11  |-  ( x  e.  A  ->  x  C_ 
U. A )
31 ssfi 8180 . . . . . . . . . . . . 13  |-  ( ( U. A  e.  Fin  /\  x  C_  U. A )  ->  x  e.  Fin )
3231expcom 451 . . . . . . . . . . . 12  |-  ( x 
C_  U. A  ->  ( U. A  e.  Fin  ->  x  e.  Fin )
)
3332con3d 148 . . . . . . . . . . 11  |-  ( x 
C_  U. A  ->  ( -.  x  e.  Fin  ->  -.  U. A  e. 
Fin ) )
3430, 33syl 17 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( -.  x  e.  Fin  ->  -.  U. A  e. 
Fin ) )
3534rexlimiv 3027 . . . . . . . . 9  |-  ( E. x  e.  A  -.  x  e.  Fin  ->  -.  U. A  e.  Fin )
3629, 35sylbi 207 . . . . . . . 8  |-  ( -.  A  C_  Fin  ->  -.  U. A  e.  Fin )
37 hashinf 13122 . . . . . . . 8  |-  ( ( U. A  e.  _V  /\ 
-.  U. A  e.  Fin )  ->  ( # `  U. A )  = +oo )
3826, 36, 37syl2an 494 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  C_  Fin )  ->  ( # `  U. A )  = +oo )
39 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
40 hashinf 13122 . . . . . . . . . . 11  |-  ( ( x  e.  _V  /\  -.  x  e.  Fin )  ->  ( # `  x
)  = +oo )
4139, 40mpan 706 . . . . . . . . . 10  |-  ( -.  x  e.  Fin  ->  (
# `  x )  = +oo )
4241reximi 3011 . . . . . . . . 9  |-  ( E. x  e.  A  -.  x  e.  Fin  ->  E. x  e.  A  ( # `  x
)  = +oo )
4329, 42sylbi 207 . . . . . . . 8  |-  ( -.  A  C_  Fin  ->  E. x  e.  A  ( # `  x
)  = +oo )
44 nfv 1843 . . . . . . . . . 10  |-  F/ x  A  e.  V
45 nfre1 3005 . . . . . . . . . 10  |-  F/ x E. x  e.  A  ( # `  x )  = +oo
4644, 45nfan 1828 . . . . . . . . 9  |-  F/ x
( A  e.  V  /\  E. x  e.  A  ( # `  x )  = +oo )
47 simpl 473 . . . . . . . . 9  |-  ( ( A  e.  V  /\  E. x  e.  A  (
# `  x )  = +oo )  ->  A  e.  V )
48 hashf2 30146 . . . . . . . . . . 11  |-  # : _V
--> ( 0 [,] +oo )
49 ffvelrn 6357 . . . . . . . . . . 11  |-  ( (
# : _V --> ( 0 [,] +oo )  /\  x  e.  _V )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
5048, 39, 49mp2an 708 . . . . . . . . . 10  |-  ( # `  x )  e.  ( 0 [,] +oo )
5150a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  E. x  e.  A  ( # `  x )  = +oo )  /\  x  e.  A )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
52 simpr 477 . . . . . . . . 9  |-  ( ( A  e.  V  /\  E. x  e.  A  (
# `  x )  = +oo )  ->  E. x  e.  A  ( # `  x
)  = +oo )
5346, 47, 51, 52esumpinfval 30135 . . . . . . . 8  |-  ( ( A  e.  V  /\  E. x  e.  A  (
# `  x )  = +oo )  -> Σ* x  e.  A
( # `  x )  = +oo )
5443, 53sylan2 491 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  C_  Fin )  -> Σ* x  e.  A ( # `  x )  = +oo )
5538, 54eqtr4d 2659 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  C_  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
56553adant2 1080 . . . . 5  |-  ( ( A  e.  V  /\  A  e.  Fin  /\  -.  A  C_  Fin )  -> 
( # `  U. A
)  = Σ* x  e.  A
( # `  x ) )
57563adant1r 1319 . . . 4  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e. 
Fin  /\  -.  A  C_ 
Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
58573expa 1265 . . 3  |-  ( ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e.  Fin )  /\  -.  A  C_  Fin )  -> 
( # `  U. A
)  = Σ* x  e.  A
( # `  x ) )
5925, 58pm2.61dan 832 . 2  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  A  e. 
Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
60 pwfi 8261 . . . . . . 7  |-  ( U. A  e.  Fin  <->  ~P U. A  e.  Fin )
61 pwuni 4474 . . . . . . . 8  |-  A  C_  ~P U. A
62 ssfi 8180 . . . . . . . 8  |-  ( ( ~P U. A  e. 
Fin  /\  A  C_  ~P U. A )  ->  A  e.  Fin )
6361, 62mpan2 707 . . . . . . 7  |-  ( ~P
U. A  e.  Fin  ->  A  e.  Fin )
6460, 63sylbi 207 . . . . . 6  |-  ( U. A  e.  Fin  ->  A  e.  Fin )
6564con3i 150 . . . . 5  |-  ( -.  A  e.  Fin  ->  -. 
U. A  e.  Fin )
6626, 65, 37syl2an 494 . . . 4  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( # `  U. A )  = +oo )
67 nftru 1730 . . . . . . . . 9  |-  F/ x T.
68 unrab 3898 . . . . . . . . . . 11  |-  ( { x  e.  A  | 
( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x
)  =  0 } )  =  { x  e.  A  |  (
( # `  x )  =  0  \/  -.  ( # `  x )  =  0 ) }
69 exmid 431 . . . . . . . . . . . . 13  |-  ( (
# `  x )  =  0  \/  -.  ( # `  x )  =  0 )
7069rgenw 2924 . . . . . . . . . . . 12  |-  A. x  e.  A  ( ( # `
 x )  =  0  \/  -.  ( # `
 x )  =  0 )
71 rabid2 3118 . . . . . . . . . . . 12  |-  ( A  =  { x  e.  A  |  ( (
# `  x )  =  0  \/  -.  ( # `  x )  =  0 ) }  <->  A. x  e.  A  ( ( # `  x
)  =  0  \/ 
-.  ( # `  x
)  =  0 ) )
7270, 71mpbir 221 . . . . . . . . . . 11  |-  A  =  { x  e.  A  |  ( ( # `  x )  =  0  \/  -.  ( # `  x )  =  0 ) }
7368, 72eqtr4i 2647 . . . . . . . . . 10  |-  ( { x  e.  A  | 
( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x
)  =  0 } )  =  A
7473a1i 11 . . . . . . . . 9  |-  ( T. 
->  ( { x  e.  A  |  ( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x )  =  0 } )  =  A )
7567, 74esumeq1d 30097 . . . . . . . 8  |-  ( T. 
-> Σ* x  e.  ( {
x  e.  A  | 
( # `  x )  =  0 }  u.  { x  e.  A  |  -.  ( # `  x
)  =  0 } ) ( # `  x
)  = Σ* x  e.  A
( # `  x ) )
7675trud 1493 . . . . . . 7  |- Σ* x  e.  ( { x  e.  A  |  ( # `  x
)  =  0 }  u.  { x  e.  A  |  -.  ( # `
 x )  =  0 } ) (
# `  x )  = Σ* x  e.  A ( # `
 x )
77 nfrab1 3122 . . . . . . . 8  |-  F/_ x { x  e.  A  |  ( # `  x
)  =  0 }
78 nfrab1 3122 . . . . . . . 8  |-  F/_ x { x  e.  A  |  -.  ( # `  x
)  =  0 }
79 rabexg 4812 . . . . . . . 8  |-  ( A  e.  V  ->  { x  e.  A  |  ( # `
 x )  =  0 }  e.  _V )
80 rabexg 4812 . . . . . . . 8  |-  ( A  e.  V  ->  { x  e.  A  |  -.  ( # `  x )  =  0 }  e.  _V )
81 rabnc 3962 . . . . . . . . 9  |-  ( { x  e.  A  | 
( # `  x )  =  0 }  i^i  { x  e.  A  |  -.  ( # `  x
)  =  0 } )  =  (/)
8281a1i 11 . . . . . . . 8  |-  ( A  e.  V  ->  ( { x  e.  A  |  ( # `  x
)  =  0 }  i^i  { x  e.  A  |  -.  ( # `
 x )  =  0 } )  =  (/) )
8350a1i 11 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  { x  e.  A  |  ( # `
 x )  =  0 } )  -> 
( # `  x )  e.  ( 0 [,] +oo ) )
8450a1i 11 . . . . . . . 8  |-  ( ( A  e.  V  /\  x  e.  { x  e.  A  |  -.  ( # `  x )  =  0 } )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
8544, 77, 78, 79, 80, 82, 83, 84esumsplit 30115 . . . . . . 7  |-  ( A  e.  V  -> Σ* x  e.  ( { x  e.  A  |  ( # `  x
)  =  0 }  u.  { x  e.  A  |  -.  ( # `
 x )  =  0 } ) (
# `  x )  =  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) ) )
8676, 85syl5eqr 2670 . . . . . 6  |-  ( A  e.  V  -> Σ* x  e.  A
( # `  x )  =  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) ) )
8786adantr 481 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  A (
# `  x )  =  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) ) )
88 nfv 1843 . . . . . . 7  |-  F/ x
( A  e.  V  /\  -.  A  e.  Fin )
8980adantr 481 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { x  e.  A  |  -.  ( # `
 x )  =  0 }  e.  _V )
90 simpr 477 . . . . . . . . 9  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  -.  A  e.  Fin )
91 dfrab3 3902 . . . . . . . . . . . 12  |-  { x  e.  A  |  ( # `
 x )  =  0 }  =  ( A  i^i  { x  |  ( # `  x
)  =  0 } )
92 hasheq0 13154 . . . . . . . . . . . . . . . 16  |-  ( x  e.  _V  ->  (
( # `  x )  =  0  <->  x  =  (/) ) )
9339, 92ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( (
# `  x )  =  0  <->  x  =  (/) )
9493abbii 2739 . . . . . . . . . . . . . 14  |-  { x  |  ( # `  x
)  =  0 }  =  { x  |  x  =  (/) }
95 df-sn 4178 . . . . . . . . . . . . . 14  |-  { (/) }  =  { x  |  x  =  (/) }
9694, 95eqtr4i 2647 . . . . . . . . . . . . 13  |-  { x  |  ( # `  x
)  =  0 }  =  { (/) }
9796ineq2i 3811 . . . . . . . . . . . 12  |-  ( A  i^i  { x  |  ( # `  x
)  =  0 } )  =  ( A  i^i  { (/) } )
9891, 97eqtri 2644 . . . . . . . . . . 11  |-  { x  e.  A  |  ( # `
 x )  =  0 }  =  ( A  i^i  { (/) } )
99 snfi 8038 . . . . . . . . . . . 12  |-  { (/) }  e.  Fin
100 inss2 3834 . . . . . . . . . . . 12  |-  ( A  i^i  { (/) } ) 
C_  { (/) }
101 ssfi 8180 . . . . . . . . . . . 12  |-  ( ( { (/) }  e.  Fin  /\  ( A  i^i  { (/)
} )  C_  { (/) } )  ->  ( A  i^i  { (/) } )  e. 
Fin )
10299, 100, 101mp2an 708 . . . . . . . . . . 11  |-  ( A  i^i  { (/) } )  e.  Fin
10398, 102eqeltri 2697 . . . . . . . . . 10  |-  { x  e.  A  |  ( # `
 x )  =  0 }  e.  Fin
104103a1i 11 . . . . . . . . 9  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { x  e.  A  |  ( # `  x )  =  0 }  e.  Fin )
105 difinf 8230 . . . . . . . . 9  |-  ( ( -.  A  e.  Fin  /\ 
{ x  e.  A  |  ( # `  x
)  =  0 }  e.  Fin )  ->  -.  ( A  \  {
x  e.  A  | 
( # `  x )  =  0 } )  e.  Fin )
10690, 104, 105syl2anc 693 . . . . . . . 8  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  -.  ( A  \  { x  e.  A  |  ( # `  x
)  =  0 } )  e.  Fin )
107 notrab 3904 . . . . . . . . 9  |-  ( A 
\  { x  e.  A  |  ( # `  x )  =  0 } )  =  {
x  e.  A  |  -.  ( # `  x
)  =  0 }
108107eleq1i 2692 . . . . . . . 8  |-  ( ( A  \  { x  e.  A  |  ( # `
 x )  =  0 } )  e. 
Fin 
<->  { x  e.  A  |  -.  ( # `  x
)  =  0 }  e.  Fin )
109106, 108sylnib 318 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  -.  { x  e.  A  |  -.  ( # `  x )  =  0 }  e.  Fin )
11050a1i 11 . . . . . . 7  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
11139a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  x  e.  _V )
112 simpr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 } )
113 rabid 3116 . . . . . . . . . . 11  |-  ( x  e.  { x  e.  A  |  -.  ( # `
 x )  =  0 }  <->  ( x  e.  A  /\  -.  ( # `
 x )  =  0 ) )
114112, 113sylib 208 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  ( x  e.  A  /\  -.  ( # `
 x )  =  0 ) )
115114simprd 479 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  -.  ( # `
 x )  =  0 )
11693biimpri 218 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( # `  x )  =  0 )
117116necon3bi 2820 . . . . . . . . 9  |-  ( -.  ( # `  x
)  =  0  ->  x  =/=  (/) )
118115, 117syl 17 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  x  =/=  (/) )
119 hashge1 13178 . . . . . . . 8  |-  ( ( x  e.  _V  /\  x  =/=  (/) )  ->  1  <_  ( # `  x
) )
120111, 118, 119syl2anc 693 . . . . . . 7  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  |  -.  ( # `  x
)  =  0 } )  ->  1  <_  (
# `  x )
)
121 1re 10039 . . . . . . . . 9  |-  1  e.  RR
122121rexri 10097 . . . . . . . 8  |-  1  e.  RR*
123122a1i 11 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  1  e.  RR* )
124 0lt1 10550 . . . . . . . 8  |-  0  <  1
125124a1i 11 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  0  <  1
)
12688, 78, 89, 109, 110, 120, 123, 125esumpinfsum 30139 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  -.  ( # `  x )  =  0 }  ( # `
 x )  = +oo )
127126oveq2d 6666 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +eΣ* x  e.  { x  e.  A  |  -.  ( # `  x
)  =  0 }  ( # `  x
) )  =  (Σ* x  e.  { x  e.  A  |  ( # `  x )  =  0 }  ( # `  x
) +e +oo ) )
128 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
12979adantr 481 . . . . . . . 8  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  { x  e.  A  |  ( # `  x )  =  0 }  e.  _V )
13050a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  -.  A  e.  Fin )  /\  x  e.  {
x  e.  A  | 
( # `  x )  =  0 } )  ->  ( # `  x
)  e.  ( 0 [,] +oo ) )
131130ralrimiva 2966 . . . . . . . 8  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  A. x  e.  {
x  e.  A  | 
( # `  x )  =  0 }  ( # `
 x )  e.  ( 0 [,] +oo ) )
13277esumcl 30092 . . . . . . . 8  |-  ( ( { x  e.  A  |  ( # `  x
)  =  0 }  e.  _V  /\  A. x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  ( 0 [,] +oo )
)  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  ( 0 [,] +oo )
)
133129, 131, 132syl2anc 693 . . . . . . 7  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  ( 0 [,] +oo )
)
134128, 133sseldi 3601 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  e.  RR* )
135 xrge0neqmnf 12276 . . . . . . 7  |-  (Σ* x  e. 
{ x  e.  A  |  ( # `  x
)  =  0 }  ( # `  x
)  e.  ( 0 [,] +oo )  -> Σ* x  e.  { x  e.  A  |  ( # `  x
)  =  0 }  ( # `  x
)  =/= -oo )
136133, 135syl 17 . . . . . 6  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  =/= -oo )
137 xaddpnf1 12057 . . . . . 6  |-  ( (Σ* x  e.  { x  e.  A  |  ( # `  x )  =  0 }  ( # `  x
)  e.  RR*  /\ Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x )  =/= -oo )  ->  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +e +oo )  = +oo )
138134, 136, 137syl2anc 693 . . . . 5  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  (Σ* x  e.  { x  e.  A  |  ( # `
 x )  =  0 }  ( # `  x ) +e +oo )  = +oo )
13987, 127, 1383eqtrd 2660 . . . 4  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  -> Σ* x  e.  A (
# `  x )  = +oo )
14066, 139eqtr4d 2659 . . 3  |-  ( ( A  e.  V  /\  -.  A  e.  Fin )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
141140adantlr 751 . 2  |-  ( ( ( A  e.  V  /\ Disj  x  e.  A  x )  /\  -.  A  e.  Fin )  ->  ( # `
 U. A )  = Σ* x  e.  A (
# `  x )
)
14259, 141pm2.61dan 832 1  |-  ( ( A  e.  V  /\ Disj  x  e.  A  x )  ->  ( # `  U. A )  = Σ* x  e.  A ( # `  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   NN0cn0 11292   +ecxad 11944   [,)cico 12177   [,]cicc 12178   #chash 13117   sum_csu 14416  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090
This theorem is referenced by:  cntmeas  30289
  Copyright terms: Public domain W3C validator