Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circlemethhgt Structured version   Visualization version   Unicode version

Theorem circlemethhgt 30721
Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions  H and  K. Statement 7.49 of [Helfgott] p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021.)
Hypotheses
Ref Expression
circlemethhgt.h  |-  ( ph  ->  H : NN --> RR )
circlemethhgt.k  |-  ( ph  ->  K : NN --> RR )
circlemethhgt.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
circlemethhgt  |-  ( ph  -> 
sum_ n  e.  ( NN (repr `  3 ) N ) ( ( (Λ `  ( n `  0 ) )  x.  ( H `  ( n `  0
) ) )  x.  ( ( (Λ `  (
n `  1 )
)  x.  ( K `
 ( n ` 
1 ) ) )  x.  ( (Λ `  (
n `  2 )
)  x.  ( K `
 ( n ` 
2 ) ) ) ) )  =  S. ( 0 (,) 1
) ( ( ( ( (Λ  oF  x.  H )vts N
) `  x )  x.  ( ( ( (Λ  oF  x.  K
)vts N ) `  x ) ^ 2 ) )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( -u N  x.  x ) ) ) )  _d x )
Distinct variable groups:    n, H, x    n, K, x    n, N, x    ph, n, x

Proof of Theorem circlemethhgt
Dummy variables  a 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 circlemethhgt.n . . 3  |-  ( ph  ->  N  e.  NN0 )
2 3nn 11186 . . . 4  |-  3  e.  NN
32a1i 11 . . 3  |-  ( ph  ->  3  e.  NN )
4 s3len 13639 . . . . . 6  |-  ( # `  <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> )  =  3
54eqcomi 2631 . . . . 5  |-  3  =  ( # `  <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> )
65a1i 11 . . . 4  |-  ( ph  ->  3  =  ( # `  <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> ) )
7 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
8 simprr 796 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
97, 8remulcld 10070 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
109recnd 10068 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  CC )
11 vmaf 24845 . . . . . . . 8  |- Λ : NN --> RR
1211a1i 11 . . . . . . 7  |-  ( ph  -> Λ : NN --> RR )
13 circlemethhgt.h . . . . . . 7  |-  ( ph  ->  H : NN --> RR )
14 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
1514a1i 11 . . . . . . 7  |-  ( ph  ->  NN  e.  _V )
16 inidm 3822 . . . . . . 7  |-  ( NN 
i^i  NN )  =  NN
1710, 12, 13, 15, 15, 16off 6912 . . . . . 6  |-  ( ph  ->  (Λ  oF  x.  H
) : NN --> CC )
18 cnex 10017 . . . . . . 7  |-  CC  e.  _V
1918, 14elmap 7886 . . . . . 6  |-  ( (Λ  oF  x.  H
)  e.  ( CC 
^m  NN )  <->  (Λ  oF  x.  H ) : NN --> CC )
2017, 19sylibr 224 . . . . 5  |-  ( ph  ->  (Λ  oF  x.  H
)  e.  ( CC 
^m  NN ) )
21 circlemethhgt.k . . . . . . 7  |-  ( ph  ->  K : NN --> RR )
2210, 12, 21, 15, 15, 16off 6912 . . . . . 6  |-  ( ph  ->  (Λ  oF  x.  K
) : NN --> CC )
2318, 14elmap 7886 . . . . . 6  |-  ( (Λ  oF  x.  K
)  e.  ( CC 
^m  NN )  <->  (Λ  oF  x.  K ) : NN --> CC )
2422, 23sylibr 224 . . . . 5  |-  ( ph  ->  (Λ  oF  x.  K
)  e.  ( CC 
^m  NN ) )
2520, 24, 24s3cld 13617 . . . 4  |-  ( ph  ->  <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) ">  e. Word  ( CC  ^m  NN ) )
266, 25wrdfd 30616 . . 3  |-  ( ph  ->  <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> : ( 0..^ 3 ) --> ( CC  ^m  NN ) )
271, 3, 26circlemeth 30718 . 2  |-  ( ph  -> 
sum_ n  e.  ( NN (repr `  3 ) N ) prod_ a  e.  ( 0..^ 3 ) ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  S. ( 0 (,) 1 ) ( prod_ a  e.  ( 0..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( -u N  x.  x )
) ) )  _d x )
28 fveq2 6191 . . . . . 6  |-  ( a  =  0  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  0 ) )
29 fveq2 6191 . . . . . 6  |-  ( a  =  0  ->  (
n `  a )  =  ( n ` 
0 ) )
3028, 29fveq12d 6197 . . . . 5  |-  ( a  =  0  ->  (
( <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  0 ) `  (
n `  0 )
) )
31 fveq2 6191 . . . . . 6  |-  ( a  =  1  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 ) )
32 fveq2 6191 . . . . . 6  |-  ( a  =  1  ->  (
n `  a )  =  ( n ` 
1 ) )
3331, 32fveq12d 6197 . . . . 5  |-  ( a  =  1  ->  (
( <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 ) `  (
n `  1 )
) )
34 fveq2 6191 . . . . . 6  |-  ( a  =  2  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 ) )
35 fveq2 6191 . . . . . 6  |-  ( a  =  2  ->  (
n `  a )  =  ( n ` 
2 ) )
3634, 35fveq12d 6197 . . . . 5  |-  ( a  =  2  ->  (
( <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 ) `  (
n `  2 )
) )
3726adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> : ( 0..^ 3 ) --> ( CC  ^m  NN ) )
3837ffvelrnda 6359 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( NN (repr ` 
3 ) N ) )  /\  a  e.  ( 0..^ 3 ) )  ->  ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  a )  e.  ( CC  ^m  NN ) )
39 elmapi 7879 . . . . . . 7  |-  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  e.  ( CC  ^m  NN )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) : NN --> CC )
4038, 39syl 17 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( NN (repr ` 
3 ) N ) )  /\  a  e.  ( 0..^ 3 ) )  ->  ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  a ) : NN --> CC )
41 ssid 3624 . . . . . . . . 9  |-  NN  C_  NN
4241a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  NN  C_  NN )
431nn0zd 11480 . . . . . . . . 9  |-  ( ph  ->  N  e.  ZZ )
4443adantr 481 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  N  e.  ZZ )
45 3nn0 11310 . . . . . . . . 9  |-  3  e.  NN0
4645a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  3  e.  NN0 )
47 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  n  e.  ( NN (repr `  3
) N ) )
4842, 44, 46, 47reprf 30690 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  n : ( 0..^ 3 ) --> NN )
4948ffvelrnda 6359 . . . . . 6  |-  ( ( ( ph  /\  n  e.  ( NN (repr ` 
3 ) N ) )  /\  a  e.  ( 0..^ 3 ) )  ->  ( n `  a )  e.  NN )
5040, 49ffvelrnd 6360 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( NN (repr ` 
3 ) N ) )  /\  a  e.  ( 0..^ 3 ) )  ->  ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  e.  CC )
5130, 33, 36, 50prodfzo03 30681 . . . 4  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  prod_ a  e.  ( 0..^ 3 ) ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  0 ) `  (
n `  0 )
)  x.  ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 ) `  (
n `  1 )
)  x.  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 ) `  (
n `  2 )
) ) ) )
52 ovex 6678 . . . . . . . 8  |-  (Λ  oF  x.  H )  e.  _V
53 s3fv0 13636 . . . . . . . 8  |-  ( (Λ  oF  x.  H
)  e.  _V  ->  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  0 )  =  (Λ  oF  x.  H
) )
5452, 53mp1i 13 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  0 )  =  (Λ  oF  x.  H
) )
5554fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  0 ) `  ( n `  0
) )  =  ( (Λ  oF  x.  H
) `  ( n `  0 ) ) )
56 simpl 473 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ph )
57 c0ex 10034 . . . . . . . . . . 11  |-  0  e.  _V
5857tpid1 4303 . . . . . . . . . 10  |-  0  e.  { 0 ,  1 ,  2 }
59 fzo0to3tp 12554 . . . . . . . . . 10  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
6058, 59eleqtrri 2700 . . . . . . . . 9  |-  0  e.  ( 0..^ 3 )
6160a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  0  e.  ( 0..^ 3 ) )
6248, 61ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( n ` 
0 )  e.  NN )
63 ffn 6045 . . . . . . . . . 10  |-  (Λ : NN
--> RR  -> Λ  Fn  NN )
6411, 63ax-mp 5 . . . . . . . . 9  |- Λ  Fn  NN
6564a1i 11 . . . . . . . 8  |-  ( ph  -> Λ  Fn  NN )
6613ffnd 6046 . . . . . . . 8  |-  ( ph  ->  H  Fn  NN )
67 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  ( n `  0 )  e.  NN )  ->  (Λ `  ( n `  0
) )  =  (Λ `  ( n `  0
) ) )
68 eqidd 2623 . . . . . . . 8  |-  ( (
ph  /\  ( n `  0 )  e.  NN )  ->  ( H `  ( n `  0 ) )  =  ( H `  ( n `  0
) ) )
6965, 66, 15, 15, 16, 67, 68ofval 6906 . . . . . . 7  |-  ( (
ph  /\  ( n `  0 )  e.  NN )  ->  (
(Λ  oF  x.  H
) `  ( n `  0 ) )  =  ( (Λ `  (
n `  0 )
)  x.  ( H `
 ( n ` 
0 ) ) ) )
7056, 62, 69syl2anc 693 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( (Λ  oF  x.  H ) `  ( n `  0
) )  =  ( (Λ `  ( n `  0 ) )  x.  ( H `  ( n `  0
) ) ) )
7155, 70eqtrd 2656 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  0 ) `  ( n `  0
) )  =  ( (Λ `  ( n `  0 ) )  x.  ( H `  ( n `  0
) ) ) )
72 ovex 6678 . . . . . . . . 9  |-  (Λ  oF  x.  K )  e.  _V
73 s3fv1 13637 . . . . . . . . 9  |-  ( (Λ  oF  x.  K
)  e.  _V  ->  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 )  =  (Λ  oF  x.  K
) )
7472, 73mp1i 13 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 )  =  (Λ  oF  x.  K
) )
7574fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  1 ) `  ( n `  1
) )  =  ( (Λ  oF  x.  K
) `  ( n `  1 ) ) )
76 1ex 10035 . . . . . . . . . . . 12  |-  1  e.  _V
7776tpid2 4304 . . . . . . . . . . 11  |-  1  e.  { 0 ,  1 ,  2 }
7877, 59eleqtrri 2700 . . . . . . . . . 10  |-  1  e.  ( 0..^ 3 )
7978a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  1  e.  ( 0..^ 3 ) )
8048, 79ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( n ` 
1 )  e.  NN )
8121ffnd 6046 . . . . . . . . 9  |-  ( ph  ->  K  Fn  NN )
82 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  ( n `  1 )  e.  NN )  ->  (Λ `  ( n `  1
) )  =  (Λ `  ( n `  1
) ) )
83 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  ( n `  1 )  e.  NN )  ->  ( K `  ( n `  1 ) )  =  ( K `  ( n `  1
) ) )
8465, 81, 15, 15, 16, 82, 83ofval 6906 . . . . . . . 8  |-  ( (
ph  /\  ( n `  1 )  e.  NN )  ->  (
(Λ  oF  x.  K
) `  ( n `  1 ) )  =  ( (Λ `  (
n `  1 )
)  x.  ( K `
 ( n ` 
1 ) ) ) )
8556, 80, 84syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( (Λ  oF  x.  K ) `  ( n `  1
) )  =  ( (Λ `  ( n `  1 ) )  x.  ( K `  ( n `  1
) ) ) )
8675, 85eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  1 ) `  ( n `  1
) )  =  ( (Λ `  ( n `  1 ) )  x.  ( K `  ( n `  1
) ) ) )
87 s3fv2 13638 . . . . . . . . 9  |-  ( (Λ  oF  x.  K
)  e.  _V  ->  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 )  =  (Λ  oF  x.  K
) )
8872, 87mp1i 13 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 )  =  (Λ  oF  x.  K
) )
8988fveq1d 6193 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  2 ) `  ( n `  2
) )  =  ( (Λ  oF  x.  K
) `  ( n `  2 ) ) )
90 2ex 11092 . . . . . . . . . . . 12  |-  2  e.  _V
9190tpid3 4307 . . . . . . . . . . 11  |-  2  e.  { 0 ,  1 ,  2 }
9291, 59eleqtrri 2700 . . . . . . . . . 10  |-  2  e.  ( 0..^ 3 )
9392a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  2  e.  ( 0..^ 3 ) )
9448, 93ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( n ` 
2 )  e.  NN )
95 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  ( n `  2 )  e.  NN )  ->  (Λ `  ( n `  2
) )  =  (Λ `  ( n `  2
) ) )
96 eqidd 2623 . . . . . . . . 9  |-  ( (
ph  /\  ( n `  2 )  e.  NN )  ->  ( K `  ( n `  2 ) )  =  ( K `  ( n `  2
) ) )
9765, 81, 15, 15, 16, 95, 96ofval 6906 . . . . . . . 8  |-  ( (
ph  /\  ( n `  2 )  e.  NN )  ->  (
(Λ  oF  x.  K
) `  ( n `  2 ) )  =  ( (Λ `  (
n `  2 )
)  x.  ( K `
 ( n ` 
2 ) ) ) )
9856, 94, 97syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( (Λ  oF  x.  K ) `  ( n `  2
) )  =  ( (Λ `  ( n `  2 ) )  x.  ( K `  ( n `  2
) ) ) )
9989, 98eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  2 ) `  ( n `  2
) )  =  ( (Λ `  ( n `  2 ) )  x.  ( K `  ( n `  2
) ) ) )
10086, 99oveq12d 6668 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 ) `  (
n `  1 )
)  x.  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 ) `  (
n `  2 )
) )  =  ( ( (Λ `  (
n `  1 )
)  x.  ( K `
 ( n ` 
1 ) ) )  x.  ( (Λ `  (
n `  2 )
)  x.  ( K `
 ( n ` 
2 ) ) ) ) )
10171, 100oveq12d 6668 . . . 4  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  ( ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  0 ) `  (
n `  0 )
)  x.  ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 ) `  (
n `  1 )
)  x.  ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 ) `  (
n `  2 )
) ) )  =  ( ( (Λ `  (
n `  0 )
)  x.  ( H `
 ( n ` 
0 ) ) )  x.  ( ( (Λ `  ( n `  1
) )  x.  ( K `  ( n `  1 ) ) )  x.  ( (Λ `  ( n `  2
) )  x.  ( K `  ( n `  2 ) ) ) ) ) )
10251, 101eqtrd 2656 . . 3  |-  ( (
ph  /\  n  e.  ( NN (repr `  3
) N ) )  ->  prod_ a  e.  ( 0..^ 3 ) ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  ( ( (Λ `  ( n `  0 ) )  x.  ( H `  ( n `  0
) ) )  x.  ( ( (Λ `  (
n `  1 )
)  x.  ( K `
 ( n ` 
1 ) ) )  x.  ( (Λ `  (
n `  2 )
)  x.  ( K `
 ( n ` 
2 ) ) ) ) ) )
103102sumeq2dv 14433 . 2  |-  ( ph  -> 
sum_ n  e.  ( NN (repr `  3 ) N ) prod_ a  e.  ( 0..^ 3 ) ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a ) `  (
n `  a )
)  =  sum_ n  e.  ( NN (repr ` 
3 ) N ) ( ( (Λ `  (
n `  0 )
)  x.  ( H `
 ( n ` 
0 ) ) )  x.  ( ( (Λ `  ( n `  1
) )  x.  ( K `  ( n `  1 ) ) )  x.  ( (Λ `  ( n `  2
) )  x.  ( K `  ( n `  2 ) ) ) ) ) )
104 nfv 1843 . . . . . 6  |-  F/ a ( ph  /\  x  e.  ( 0 (,) 1
) )
105 nfcv 2764 . . . . . 6  |-  F/_ a
( ( (Λ  oF  x.  H )vts N ) `  x
)
106 fzofi 12773 . . . . . . 7  |-  ( 1..^ 3 )  e.  Fin
107106a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
1..^ 3 )  e. 
Fin )
10857a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  0  e.  _V )
109 eqid 2622 . . . . . . . . 9  |-  0  =  0
110109orci 405 . . . . . . . 8  |-  ( 0  =  0  \/  0  =  3 )
111 0elfz 12436 . . . . . . . . 9  |-  ( 3  e.  NN0  ->  0  e.  ( 0 ... 3
) )
112 elfznelfzob 12574 . . . . . . . . 9  |-  ( 0  e.  ( 0 ... 3 )  ->  ( -.  0  e.  (
1..^ 3 )  <->  ( 0  =  0  \/  0  =  3 ) ) )
11345, 111, 112mp2b 10 . . . . . . . 8  |-  ( -.  0  e.  ( 1..^ 3 )  <->  ( 0  =  0  \/  0  =  3 ) )
114110, 113mpbir 221 . . . . . . 7  |-  -.  0  e.  ( 1..^ 3 )
115114a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  -.  0  e.  ( 1..^ 3 ) )
1161ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  N  e.  NN0 )
117 ioossre 12235 . . . . . . . . . . 11  |-  ( 0 (,) 1 )  C_  RR
118 ax-resscn 9993 . . . . . . . . . . 11  |-  RR  C_  CC
119117, 118sstri 3612 . . . . . . . . . 10  |-  ( 0 (,) 1 )  C_  CC
120119a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 0 (,) 1
)  C_  CC )
121120sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  x  e.  CC )
122121adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  x  e.  CC )
12326ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> : ( 0..^ 3 ) --> ( CC  ^m  NN ) )
124 fzo0ss1 12498 . . . . . . . . . . 11  |-  ( 1..^ 3 )  C_  (
0..^ 3 )
125124a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
1..^ 3 )  C_  ( 0..^ 3 ) )
126125sselda 3603 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  a  e.  ( 0..^ 3 ) )
127123, 126ffvelrnd 6360 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  a )  e.  ( CC  ^m  NN ) )
128127, 39syl 17 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  a ) : NN --> CC )
129116, 122, 128vtscl 30716 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  ( (
( <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  e.  CC )
13052, 53ax-mp 5 . . . . . . . . 9  |-  ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  0 )  =  (Λ  oF  x.  H
)
13128, 130syl6eq 2672 . . . . . . . 8  |-  ( a  =  0  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (Λ  oF  x.  H
) )
132131oveq1d 6665 . . . . . . 7  |-  ( a  =  0  ->  (
( <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N )  =  ( (Λ  oF  x.  H )vts N ) )
133132fveq1d 6193 . . . . . 6  |-  ( a  =  0  ->  (
( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  =  ( ( (Λ  oF  x.  H )vts N ) `  x
) )
1341adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  N  e.  NN0 )
13517adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (Λ  oF  x.  H ) : NN --> CC )
136134, 121, 135vtscl 30716 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
( (Λ  oF  x.  H )vts N ) `
 x )  e.  CC )
137104, 105, 107, 108, 115, 129, 133, 136fprodsplitsn 14720 . . . . 5  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  prod_ a  e.  ( ( 1..^ 3 )  u.  {
0 } ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  =  ( prod_ a  e.  ( 1..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  x.  ( ( (Λ  oF  x.  H )vts N ) `  x
) ) )
138 uncom 3757 . . . . . . . 8  |-  ( ( 1..^ 3 )  u. 
{ 0 } )  =  ( { 0 }  u.  ( 1..^ 3 ) )
139 fzo0sn0fzo1 12557 . . . . . . . . 9  |-  ( 3  e.  NN  ->  (
0..^ 3 )  =  ( { 0 }  u.  ( 1..^ 3 ) ) )
1402, 139ax-mp 5 . . . . . . . 8  |-  ( 0..^ 3 )  =  ( { 0 }  u.  ( 1..^ 3 ) )
141138, 140eqtr4i 2647 . . . . . . 7  |-  ( ( 1..^ 3 )  u. 
{ 0 } )  =  ( 0..^ 3 )
142141a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
( 1..^ 3 )  u.  { 0 } )  =  ( 0..^ 3 ) )
143142prodeq1d 14651 . . . . 5  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  prod_ a  e.  ( ( 1..^ 3 )  u.  {
0 } ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  = 
prod_ a  e.  (
0..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x ) )
144 fzo13pr 12552 . . . . . . . . . . . . . . 15  |-  ( 1..^ 3 )  =  {
1 ,  2 }
145144eleq2i 2693 . . . . . . . . . . . . . 14  |-  ( a  e.  ( 1..^ 3 )  <->  a  e.  {
1 ,  2 } )
146 vex 3203 . . . . . . . . . . . . . . 15  |-  a  e. 
_V
147146elpr 4198 . . . . . . . . . . . . . 14  |-  ( a  e.  { 1 ,  2 }  <->  ( a  =  1  \/  a  =  2 ) )
148145, 147bitri 264 . . . . . . . . . . . . 13  |-  ( a  e.  ( 1..^ 3 )  <->  ( a  =  1  \/  a  =  2 ) )
14931adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  = 
1 )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 ) )
15072, 73mp1i 13 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  = 
1 )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  1 )  =  (Λ  oF  x.  K
) )
151149, 150eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  = 
1 )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (Λ  oF  x.  K
) )
15234adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  = 
2 )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 ) )
15372, 87mp1i 13 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  = 
2 )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  2 )  =  (Λ  oF  x.  K
) )
154152, 153eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  = 
2 )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (Λ  oF  x.  K
) )
155151, 154jaodan 826 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  =  1  \/  a  =  2 ) )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (Λ  oF  x.  K
) )
156148, 155sylan2b 492 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  ( 1..^ 3 ) )  ->  ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )  =  (Λ  oF  x.  K
) )
157156adantlr 751 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  ( <" (Λ  oF  x.  H
) (Λ  oF  x.  K ) (Λ  oF  x.  K ) "> `  a )  =  (Λ  oF  x.  K
) )
158157oveq1d 6665 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N )  =  ( (Λ  oF  x.  K )vts N ) )
159158fveq1d 6193 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0 (,) 1
) )  /\  a  e.  ( 1..^ 3 ) )  ->  ( (
( <" (Λ  oF  x.  H )
(Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  =  ( ( (Λ  oF  x.  K )vts N ) `  x
) )
160159prodeq2dv 14653 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  prod_ a  e.  ( 1..^ 3 ) ( ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  = 
prod_ a  e.  (
1..^ 3 ) ( ( (Λ  oF  x.  K )vts N
) `  x )
)
16122adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (Λ  oF  x.  K ) : NN --> CC )
162134, 121, 161vtscl 30716 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
( (Λ  oF  x.  K )vts N ) `
 x )  e.  CC )
163 fprodconst 14708 . . . . . . . . 9  |-  ( ( ( 1..^ 3 )  e.  Fin  /\  (
( (Λ  oF  x.  K )vts N ) `
 x )  e.  CC )  ->  prod_ a  e.  ( 1..^ 3 ) ( ( (Λ  oF  x.  K
)vts N ) `  x )  =  ( ( ( (Λ  oF  x.  K )vts N ) `  x
) ^ ( # `  ( 1..^ 3 ) ) ) )
164107, 162, 163syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  prod_ a  e.  ( 1..^ 3 ) ( ( (Λ  oF  x.  K
)vts N ) `  x )  =  ( ( ( (Λ  oF  x.  K )vts N ) `  x
) ^ ( # `  ( 1..^ 3 ) ) ) )
165 nnuz 11723 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
1662, 165eleqtri 2699 . . . . . . . . . . . 12  |-  3  e.  ( ZZ>= `  1 )
167 hashfzo 13216 . . . . . . . . . . . 12  |-  ( 3  e.  ( ZZ>= `  1
)  ->  ( # `  (
1..^ 3 ) )  =  ( 3  -  1 ) )
168166, 167ax-mp 5 . . . . . . . . . . 11  |-  ( # `  ( 1..^ 3 ) )  =  ( 3  -  1 )
169 3m1e2 11137 . . . . . . . . . . 11  |-  ( 3  -  1 )  =  2
170168, 169eqtri 2644 . . . . . . . . . 10  |-  ( # `  ( 1..^ 3 ) )  =  2
171170a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  ( # `
 ( 1..^ 3 ) )  =  2 )
172171oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
( ( (Λ  oF  x.  K )vts N ) `  x
) ^ ( # `  ( 1..^ 3 ) ) )  =  ( ( ( (Λ  oF  x.  K )vts N ) `  x
) ^ 2 ) )
173160, 164, 1723eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  prod_ a  e.  ( 1..^ 3 ) ( ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  =  ( ( ( (Λ  oF  x.  K
)vts N ) `  x ) ^ 2 ) )
174173oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  ( prod_ a  e.  ( 1..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  x.  ( ( (Λ  oF  x.  H )vts N ) `  x
) )  =  ( ( ( ( (Λ  oF  x.  K
)vts N ) `  x ) ^ 2 )  x.  ( ( (Λ  oF  x.  H
)vts N ) `  x ) ) )
175162sqcld 13006 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
( ( (Λ  oF  x.  K )vts N ) `  x
) ^ 2 )  e.  CC )
176136, 175mulcomd 10061 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  (
( ( (Λ  oF  x.  H )vts N ) `  x
)  x.  ( ( ( (Λ  oF  x.  K )vts N
) `  x ) ^ 2 ) )  =  ( ( ( ( (Λ  oF  x.  K )vts N
) `  x ) ^ 2 )  x.  ( ( (Λ  oF  x.  H )vts N ) `  x
) ) )
177174, 176eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  ( prod_ a  e.  ( 1..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  x.  ( ( (Λ  oF  x.  H )vts N ) `  x
) )  =  ( ( ( (Λ  oF  x.  H )vts N ) `  x
)  x.  ( ( ( (Λ  oF  x.  K )vts N
) `  x ) ^ 2 ) ) )
178137, 143, 1773eqtr3d 2664 . . . 4  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  prod_ a  e.  ( 0..^ 3 ) ( ( (
<" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  =  ( ( ( (Λ  oF  x.  H
)vts N ) `  x )  x.  (
( ( (Λ  oF  x.  K )vts N ) `  x
) ^ 2 ) ) )
179178oveq1d 6665 . . 3  |-  ( (
ph  /\  x  e.  ( 0 (,) 1
) )  ->  ( prod_ a  e.  ( 0..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( -u N  x.  x )
) ) )  =  ( ( ( ( (Λ  oF  x.  H
)vts N ) `  x )  x.  (
( ( (Λ  oF  x.  K )vts N ) `  x
) ^ 2 ) )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( -u N  x.  x ) ) ) ) )
180179itgeq2dv 23548 . 2  |-  ( ph  ->  S. ( 0 (,) 1 ) ( prod_
a  e.  ( 0..^ 3 ) ( ( ( <" (Λ  oF  x.  H ) (Λ  oF  x.  K
) (Λ  oF  x.  K ) "> `  a )vts N ) `
 x )  x.  ( exp `  (
( _i  x.  (
2  x.  pi ) )  x.  ( -u N  x.  x )
) ) )  _d x  =  S. ( 0 (,) 1 ) ( ( ( ( (Λ  oF  x.  H
)vts N ) `  x )  x.  (
( ( (Λ  oF  x.  K )vts N ) `  x
) ^ 2 ) )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( -u N  x.  x ) ) ) )  _d x )
18127, 103, 1803eqtr3d 2664 1  |-  ( ph  -> 
sum_ n  e.  ( NN (repr `  3 ) N ) ( ( (Λ `  ( n `  0 ) )  x.  ( H `  ( n `  0
) ) )  x.  ( ( (Λ `  (
n `  1 )
)  x.  ( K `
 ( n ` 
1 ) ) )  x.  ( (Λ `  (
n `  2 )
)  x.  ( K `
 ( n ` 
2 ) ) ) ) )  =  S. ( 0 (,) 1
) ( ( ( ( (Λ  oF  x.  H )vts N
) `  x )  x.  ( ( ( (Λ  oF  x.  K
)vts N ) `  x ) ^ 2 ) )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( -u N  x.  x ) ) ) )  _d x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    C_ wss 3574   {csn 4177   {cpr 4179   {ctp 4181    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895    ^m cmap 7857   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    x. cmul 9941    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   ...cfz 12326  ..^cfzo 12465   ^cexp 12860   #chash 13117   <"cs3 13587   sum_csu 14416   prod_cprod 14635   expce 14792   picpi 14797   S.citg 23387  Λcvma 24818  reprcrepr 30686  vtscvts 30713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824  df-repr 30687  df-vts 30714
This theorem is referenced by:  tgoldbachgtde  30738
  Copyright terms: Public domain W3C validator