MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumlem2 Structured version   Visualization version   Unicode version

Theorem dvfsumlem2 23790
Description: Lemma for dvfsumrlim 23794. (Contributed by Mario Carneiro, 17-May-2016.)
Hypotheses
Ref Expression
dvfsum.s  |-  S  =  ( T (,) +oo )
dvfsum.z  |-  Z  =  ( ZZ>= `  M )
dvfsum.m  |-  ( ph  ->  M  e.  ZZ )
dvfsum.d  |-  ( ph  ->  D  e.  RR )
dvfsum.md  |-  ( ph  ->  M  <_  ( D  +  1 ) )
dvfsum.t  |-  ( ph  ->  T  e.  RR )
dvfsum.a  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
dvfsum.b1  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
dvfsum.b2  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
dvfsum.b3  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
dvfsum.c  |-  ( x  =  k  ->  B  =  C )
dvfsum.u  |-  ( ph  ->  U  e.  RR* )
dvfsum.l  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
dvfsum.h  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
dvfsumlem1.1  |-  ( ph  ->  X  e.  S )
dvfsumlem1.2  |-  ( ph  ->  Y  e.  S )
dvfsumlem1.3  |-  ( ph  ->  D  <_  X )
dvfsumlem1.4  |-  ( ph  ->  X  <_  Y )
dvfsumlem1.5  |-  ( ph  ->  Y  <_  U )
dvfsumlem1.6  |-  ( ph  ->  Y  <_  ( ( |_ `  X )  +  1 ) )
Assertion
Ref Expression
dvfsumlem2  |-  ( ph  ->  ( ( H `  Y )  <_  ( H `  X )  /\  ( ( H `  X )  -  [_ X  /  x ]_ B
)  <_  ( ( H `  Y )  -  [_ Y  /  x ]_ B ) ) )
Distinct variable groups:    B, k    x, C    x, k, D    ph, k, x    S, k, x    k, M, x   
x, T    k, Y, x    x, Z    U, k, x    k, X, x
Allowed substitution hints:    A( x, k)    B( x)    C( k)    T( k)    H( x, k)    V( x, k)    Z( k)

Proof of Theorem dvfsumlem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . . . . 9  |-  S  =  ( T (,) +oo )
2 ioossre 12235 . . . . . . . . 9  |-  ( T (,) +oo )  C_  RR
31, 2eqsstri 3635 . . . . . . . 8  |-  S  C_  RR
4 dvfsumlem1.2 . . . . . . . 8  |-  ( ph  ->  Y  e.  S )
53, 4sseldi 3601 . . . . . . 7  |-  ( ph  ->  Y  e.  RR )
6 dvfsumlem1.1 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  S )
76, 1syl6eleq 2711 . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( T (,) +oo ) )
8 dvfsum.t . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  RR )
98rexrd 10089 . . . . . . . . . . 11  |-  ( ph  ->  T  e.  RR* )
10 elioopnf 12267 . . . . . . . . . . 11  |-  ( T  e.  RR*  ->  ( X  e.  ( T (,) +oo )  <->  ( X  e.  RR  /\  T  < 
X ) ) )
119, 10syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  ( T (,) +oo )  <->  ( X  e.  RR  /\  T  <  X ) ) )
127, 11mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  RR  /\  T  <  X ) )
1312simpld 475 . . . . . . . 8  |-  ( ph  ->  X  e.  RR )
14 reflcl 12597 . . . . . . . 8  |-  ( X  e.  RR  ->  ( |_ `  X )  e.  RR )
1513, 14syl 17 . . . . . . 7  |-  ( ph  ->  ( |_ `  X
)  e.  RR )
165, 15resubcld 10458 . . . . . 6  |-  ( ph  ->  ( Y  -  ( |_ `  X ) )  e.  RR )
1713rexrd 10089 . . . . . . . 8  |-  ( ph  ->  X  e.  RR* )
185rexrd 10089 . . . . . . . 8  |-  ( ph  ->  Y  e.  RR* )
19 dvfsumlem1.4 . . . . . . . 8  |-  ( ph  ->  X  <_  Y )
20 ubicc2 12289 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  Y  e.  ( X [,] Y
) )
2117, 18, 19, 20syl3anc 1326 . . . . . . 7  |-  ( ph  ->  Y  e.  ( X [,] Y ) )
22 pnfxr 10092 . . . . . . . . . . . . 13  |- +oo  e.  RR*
2322a1i 11 . . . . . . . . . . . 12  |-  ( ph  -> +oo  e.  RR* )
2412simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  T  <  X )
25 ltpnf 11954 . . . . . . . . . . . . 13  |-  ( Y  e.  RR  ->  Y  < +oo )
265, 25syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  Y  < +oo )
27 iccssioo 12242 . . . . . . . . . . . 12  |-  ( ( ( T  e.  RR*  /\ +oo  e.  RR* )  /\  ( T  <  X  /\  Y  < +oo ) )  -> 
( X [,] Y
)  C_  ( T (,) +oo ) )
289, 23, 24, 26, 27syl22anc 1327 . . . . . . . . . . 11  |-  ( ph  ->  ( X [,] Y
)  C_  ( T (,) +oo ) )
2928, 1syl6sseqr 3652 . . . . . . . . . 10  |-  ( ph  ->  ( X [,] Y
)  C_  S )
3029sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  y  e.  S )
313a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  S  C_  RR )
32 dvfsum.a . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
33 dvfsum.b1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
34 dvfsum.b3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
3531, 32, 33, 34dvmptrecl 23787 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR )
36 eqid 2622 . . . . . . . . . . . 12  |-  ( x  e.  S  |->  B )  =  ( x  e.  S  |->  B )
3735, 36fmptd 6385 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  S  |->  B ) : S --> RR )
38 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ y B
39 nfcsb1v 3549 . . . . . . . . . . . . 13  |-  F/_ x [_ y  /  x ]_ B
40 csbeq1a 3542 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
4138, 39, 40cbvmpt 4749 . . . . . . . . . . . 12  |-  ( x  e.  S  |->  B )  =  ( y  e.  S  |->  [_ y  /  x ]_ B )
4241fmpt 6381 . . . . . . . . . . 11  |-  ( A. y  e.  S  [_ y  /  x ]_ B  e.  RR  <->  ( x  e.  S  |->  B ) : S --> RR )
4337, 42sylibr 224 . . . . . . . . . 10  |-  ( ph  ->  A. y  e.  S  [_ y  /  x ]_ B  e.  RR )
4443r19.21bi 2932 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  S )  ->  [_ y  /  x ]_ B  e.  RR )
4530, 44syldan 487 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  [_ y  /  x ]_ B  e.  RR )
4645ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( X [,] Y )
[_ y  /  x ]_ B  e.  RR )
47 csbeq1 3536 . . . . . . . . 9  |-  ( y  =  Y  ->  [_ y  /  x ]_ B  = 
[_ Y  /  x ]_ B )
4847eleq1d 2686 . . . . . . . 8  |-  ( y  =  Y  ->  ( [_ y  /  x ]_ B  e.  RR  <->  [_ Y  /  x ]_ B  e.  RR )
)
4948rspcv 3305 . . . . . . 7  |-  ( Y  e.  ( X [,] Y )  ->  ( A. y  e.  ( X [,] Y ) [_ y  /  x ]_ B  e.  RR  ->  [_ Y  /  x ]_ B  e.  RR ) )
5021, 46, 49sylc 65 . . . . . 6  |-  ( ph  ->  [_ Y  /  x ]_ B  e.  RR )
5116, 50remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  RR )
52 eqid 2622 . . . . . . . . . . 11  |-  ( x  e.  S  |->  A )  =  ( x  e.  S  |->  A )
5332, 52fmptd 6385 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  S  |->  A ) : S --> RR )
54 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ y A
55 nfcsb1v 3549 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ A
56 csbeq1a 3542 . . . . . . . . . . . 12  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
5754, 55, 56cbvmpt 4749 . . . . . . . . . . 11  |-  ( x  e.  S  |->  A )  =  ( y  e.  S  |->  [_ y  /  x ]_ A )
5857fmpt 6381 . . . . . . . . . 10  |-  ( A. y  e.  S  [_ y  /  x ]_ A  e.  RR  <->  ( x  e.  S  |->  A ) : S --> RR )
5953, 58sylibr 224 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  S  [_ y  /  x ]_ A  e.  RR )
6059r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  y  e.  S )  ->  [_ y  /  x ]_ A  e.  RR )
6130, 60syldan 487 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  [_ y  /  x ]_ A  e.  RR )
6261ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. y  e.  ( X [,] Y )
[_ y  /  x ]_ A  e.  RR )
63 csbeq1 3536 . . . . . . . 8  |-  ( y  =  Y  ->  [_ y  /  x ]_ A  = 
[_ Y  /  x ]_ A )
6463eleq1d 2686 . . . . . . 7  |-  ( y  =  Y  ->  ( [_ y  /  x ]_ A  e.  RR  <->  [_ Y  /  x ]_ A  e.  RR )
)
6564rspcv 3305 . . . . . 6  |-  ( Y  e.  ( X [,] Y )  ->  ( A. y  e.  ( X [,] Y ) [_ y  /  x ]_ A  e.  RR  ->  [_ Y  /  x ]_ A  e.  RR ) )
6621, 62, 65sylc 65 . . . . 5  |-  ( ph  ->  [_ Y  /  x ]_ A  e.  RR )
6751, 66resubcld 10458 . . . 4  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  e.  RR )
6813, 15resubcld 10458 . . . . . 6  |-  ( ph  ->  ( X  -  ( |_ `  X ) )  e.  RR )
69 lbicc2 12288 . . . . . . . 8  |-  ( ( X  e.  RR*  /\  Y  e.  RR*  /\  X  <_  Y )  ->  X  e.  ( X [,] Y
) )
7017, 18, 19, 69syl3anc 1326 . . . . . . 7  |-  ( ph  ->  X  e.  ( X [,] Y ) )
71 csbeq1 3536 . . . . . . . . 9  |-  ( y  =  X  ->  [_ y  /  x ]_ B  = 
[_ X  /  x ]_ B )
7271eleq1d 2686 . . . . . . . 8  |-  ( y  =  X  ->  ( [_ y  /  x ]_ B  e.  RR  <->  [_ X  /  x ]_ B  e.  RR )
)
7372rspcv 3305 . . . . . . 7  |-  ( X  e.  ( X [,] Y )  ->  ( A. y  e.  ( X [,] Y ) [_ y  /  x ]_ B  e.  RR  ->  [_ X  /  x ]_ B  e.  RR ) )
7470, 46, 73sylc 65 . . . . . 6  |-  ( ph  ->  [_ X  /  x ]_ B  e.  RR )
7568, 74remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  e.  RR )
76 csbeq1 3536 . . . . . . . 8  |-  ( y  =  X  ->  [_ y  /  x ]_ A  = 
[_ X  /  x ]_ A )
7776eleq1d 2686 . . . . . . 7  |-  ( y  =  X  ->  ( [_ y  /  x ]_ A  e.  RR  <->  [_ X  /  x ]_ A  e.  RR )
)
7877rspcv 3305 . . . . . 6  |-  ( X  e.  ( X [,] Y )  ->  ( A. y  e.  ( X [,] Y ) [_ y  /  x ]_ A  e.  RR  ->  [_ X  /  x ]_ A  e.  RR ) )
7970, 62, 78sylc 65 . . . . 5  |-  ( ph  ->  [_ X  /  x ]_ A  e.  RR )
8075, 79resubcld 10458 . . . 4  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  e.  RR )
81 fzfid 12772 . . . . 5  |-  ( ph  ->  ( M ... ( |_ `  X ) )  e.  Fin )
82 dvfsum.b2 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
8382ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. x  e.  Z  B  e.  RR )
84 elfzuz 12338 . . . . . . 7  |-  ( k  e.  ( M ... ( |_ `  X ) )  ->  k  e.  ( ZZ>= `  M )
)
85 dvfsum.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
8684, 85syl6eleqr 2712 . . . . . 6  |-  ( k  e.  ( M ... ( |_ `  X ) )  ->  k  e.  Z )
87 dvfsum.c . . . . . . . 8  |-  ( x  =  k  ->  B  =  C )
8887eleq1d 2686 . . . . . . 7  |-  ( x  =  k  ->  ( B  e.  RR  <->  C  e.  RR ) )
8988rspccva 3308 . . . . . 6  |-  ( ( A. x  e.  Z  B  e.  RR  /\  k  e.  Z )  ->  C  e.  RR )
9083, 86, 89syl2an 494 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... ( |_
`  X ) ) )  ->  C  e.  RR )
9181, 90fsumrecl 14465 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( M ... ( |_
`  X ) ) C  e.  RR )
9268, 50remulcld 10070 . . . . . 6  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  RR )
9392, 79resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ X  /  x ]_ A
)  e.  RR )
945, 13resubcld 10458 . . . . . . . . 9  |-  ( ph  ->  ( Y  -  X
)  e.  RR )
9550, 94remulcld 10070 . . . . . . . 8  |-  ( ph  ->  ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
)  e.  RR )
9650recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  [_ Y  /  x ]_ B  e.  CC )
975recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  CC )
9813recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
9996, 97, 98subdid 10486 . . . . . . . . 9  |-  ( ph  ->  ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
)  =  ( (
[_ Y  /  x ]_ B  x.  Y
)  -  ( [_ Y  /  x ]_ B  x.  X ) ) )
100 eqid 2622 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
101100mulcn 22670 . . . . . . . . . . 11  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
10228, 2syl6ss 3615 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X [,] Y
)  C_  RR )
103 ax-resscn 9993 . . . . . . . . . . . . 13  |-  RR  C_  CC
104102, 103syl6ss 3615 . . . . . . . . . . . 12  |-  ( ph  ->  ( X [,] Y
)  C_  CC )
105103a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  RR  C_  CC )
106 cncfmptc 22714 . . . . . . . . . . . 12  |-  ( (
[_ Y  /  x ]_ B  e.  RR  /\  ( X [,] Y
)  C_  CC  /\  RR  C_  CC )  ->  (
y  e.  ( X [,] Y )  |->  [_ Y  /  x ]_ B
)  e.  ( ( X [,] Y )
-cn-> RR ) )
10750, 104, 105, 106syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  [_ Y  /  x ]_ B )  e.  ( ( X [,] Y
) -cn-> RR ) )
108 cncfmptid 22715 . . . . . . . . . . . 12  |-  ( ( ( X [,] Y
)  C_  RR  /\  RR  C_  CC )  ->  (
y  e.  ( X [,] Y )  |->  y )  e.  ( ( X [,] Y )
-cn-> RR ) )
109102, 103, 108sylancl 694 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  y )  e.  ( ( X [,] Y
) -cn-> RR ) )
110 remulcl 10021 . . . . . . . . . . 11  |-  ( (
[_ Y  /  x ]_ B  e.  RR  /\  y  e.  RR )  ->  ( [_ Y  /  x ]_ B  x.  y )  e.  RR )
111100, 101, 107, 109, 103, 110cncfmpt2ss 22718 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  ( [_ Y  /  x ]_ B  x.  y
) )  e.  ( ( X [,] Y
) -cn-> RR ) )
112 reelprrecn 10028 . . . . . . . . . . . . 13  |-  RR  e.  { RR ,  CC }
113112a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  RR  e.  { RR ,  CC } )
114 ioossicc 12259 . . . . . . . . . . . . . . 15  |-  ( X (,) Y )  C_  ( X [,] Y )
115114, 102syl5ss 3614 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X (,) Y
)  C_  RR )
116115sselda 3603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X (,) Y ) )  ->  y  e.  RR )
117116recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X (,) Y ) )  ->  y  e.  CC )
118 1cnd 10056 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X (,) Y ) )  ->  1  e.  CC )
119 simpr 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
120119recnd 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
121 1cnd 10056 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  CC )
122113dvmptid 23720 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
y  e.  RR  |->  y ) )  =  ( y  e.  RR  |->  1 ) )
123100tgioo2 22606 . . . . . . . . . . . . 13  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
124 iooretop 22569 . . . . . . . . . . . . . 14  |-  ( X (,) Y )  e.  ( topGen `  ran  (,) )
125124a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X (,) Y
)  e.  ( topGen ` 
ran  (,) ) )
126113, 120, 121, 122, 115, 123, 100, 125dvmptres 23726 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X (,) Y )  |->  y ) )  =  ( y  e.  ( X (,) Y )  |->  1 ) )
127113, 117, 118, 126, 96dvmptcmul 23727 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X (,) Y )  |->  (
[_ Y  /  x ]_ B  x.  y
) ) )  =  ( y  e.  ( X (,) Y ) 
|->  ( [_ Y  /  x ]_ B  x.  1 ) ) )
12896mulid1d 10057 . . . . . . . . . . . 12  |-  ( ph  ->  ( [_ Y  /  x ]_ B  x.  1 )  =  [_ Y  /  x ]_ B )
129128mpteq2dv 4745 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  ( X (,) Y ) 
|->  ( [_ Y  /  x ]_ B  x.  1 ) )  =  ( y  e.  ( X (,) Y )  |->  [_ Y  /  x ]_ B
) )
130127, 129eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X (,) Y )  |->  (
[_ Y  /  x ]_ B  x.  y
) ) )  =  ( y  e.  ( X (,) Y ) 
|->  [_ Y  /  x ]_ B ) )
13129resmptd 5452 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  S  |->  [_ y  /  x ]_ A )  |`  ( X [,] Y ) )  =  ( y  e.  ( X [,] Y
)  |->  [_ y  /  x ]_ A ) )
13232recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  CC )
133132, 52fmptd 6385 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  S  |->  A ) : S --> CC )
13434dmeqd 5326 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  S  |->  A ) )  =  dom  ( x  e.  S  |->  B ) )
13533ralrimiva 2966 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A. x  e.  S  B  e.  V )
136 dmmptg 5632 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  S  B  e.  V  ->  dom  (
x  e.  S  |->  B )  =  S )
137135, 136syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  ( x  e.  S  |->  B )  =  S )
138134, 137eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  ( RR  _D  ( x  e.  S  |->  A ) )  =  S )
139 dvcn 23684 . . . . . . . . . . . . . . . 16  |-  ( ( ( RR  C_  CC  /\  ( x  e.  S  |->  A ) : S --> CC  /\  S  C_  RR )  /\  dom  ( RR 
_D  ( x  e.  S  |->  A ) )  =  S )  -> 
( x  e.  S  |->  A )  e.  ( S -cn-> CC ) )
140105, 133, 31, 138, 139syl31anc 1329 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  S  |->  A )  e.  ( S -cn-> CC ) )
141 cncffvrn 22701 . . . . . . . . . . . . . . 15  |-  ( ( RR  C_  CC  /\  (
x  e.  S  |->  A )  e.  ( S
-cn-> CC ) )  -> 
( ( x  e.  S  |->  A )  e.  ( S -cn-> RR )  <-> 
( x  e.  S  |->  A ) : S --> RR ) )
142103, 140, 141sylancr 695 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  S  |->  A )  e.  ( S -cn-> RR )  <-> 
( x  e.  S  |->  A ) : S --> RR ) )
14353, 142mpbird 247 . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  S  |->  A )  e.  ( S -cn-> RR ) )
14457, 143syl5eqelr 2706 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  S  |-> 
[_ y  /  x ]_ A )  e.  ( S -cn-> RR ) )
145 rescncf 22700 . . . . . . . . . . . 12  |-  ( ( X [,] Y ) 
C_  S  ->  (
( y  e.  S  |-> 
[_ y  /  x ]_ A )  e.  ( S -cn-> RR )  ->  (
( y  e.  S  |-> 
[_ y  /  x ]_ A )  |`  ( X [,] Y ) )  e.  ( ( X [,] Y ) -cn-> RR ) ) )
14629, 144, 145sylc 65 . . . . . . . . . . 11  |-  ( ph  ->  ( ( y  e.  S  |->  [_ y  /  x ]_ A )  |`  ( X [,] Y ) )  e.  ( ( X [,] Y ) -cn-> RR ) )
147131, 146eqeltrrd 2702 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  [_ y  /  x ]_ A )  e.  ( ( X [,] Y
) -cn-> RR ) )
14860recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  S )  ->  [_ y  /  x ]_ A  e.  CC )
14957oveq2i 6661 . . . . . . . . . . . 12  |-  ( RR 
_D  ( x  e.  S  |->  A ) )  =  ( RR  _D  ( y  e.  S  |-> 
[_ y  /  x ]_ A ) )
15034, 149, 413eqtr3g 2679 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
y  e.  S  |->  [_ y  /  x ]_ A
) )  =  ( y  e.  S  |->  [_ y  /  x ]_ B
) )
151114, 29syl5ss 3614 . . . . . . . . . . 11  |-  ( ph  ->  ( X (,) Y
)  C_  S )
152113, 148, 44, 150, 151, 123, 100, 125dvmptres 23726 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X (,) Y )  |->  [_ y  /  x ]_ A
) )  =  ( y  e.  ( X (,) Y )  |->  [_ y  /  x ]_ B
) )
153114sseli 3599 . . . . . . . . . . 11  |-  ( y  e.  ( X (,) Y )  ->  y  e.  ( X [,] Y
) )
154 simpl 473 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  ph )
1554adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  Y  e.  S )
156 dvfsum.d . . . . . . . . . . . . . 14  |-  ( ph  ->  D  e.  RR )
157156adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  D  e.  RR )
15813adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  X  e.  RR )
159 elicc2 12238 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  RR  /\  Y  e.  RR )  ->  ( y  e.  ( X [,] Y )  <-> 
( y  e.  RR  /\  X  <_  y  /\  y  <_  Y ) ) )
16013, 5, 159syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  ( X [,] Y )  <-> 
( y  e.  RR  /\  X  <_  y  /\  y  <_  Y ) ) )
161160biimpa 501 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  ( y  e.  RR  /\  X  <_ 
y  /\  y  <_  Y ) )
162161simp1d 1073 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  y  e.  RR )
163 dvfsumlem1.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  D  <_  X )
164163adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  D  <_  X )
165161simp2d 1074 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  X  <_  y )
166157, 158, 162, 164, 165letrd 10194 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  D  <_  y )
167161simp3d 1075 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  y  <_  Y )
168 dvfsumlem1.5 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  <_  U )
169168adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  Y  <_  U )
170 simp2r 1088 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  S  /\  Y  e.  S )  /\  ( D  <_  y  /\  y  <_  Y  /\  Y  <_  U ) )  ->  Y  e.  S )
171 eleq1 2689 . . . . . . . . . . . . . . . . 17  |-  ( k  =  Y  ->  (
k  e.  S  <->  Y  e.  S ) )
172171anbi2d 740 . . . . . . . . . . . . . . . 16  |-  ( k  =  Y  ->  (
( y  e.  S  /\  k  e.  S
)  <->  ( y  e.  S  /\  Y  e.  S ) ) )
173 breq2 4657 . . . . . . . . . . . . . . . . 17  |-  ( k  =  Y  ->  (
y  <_  k  <->  y  <_  Y ) )
174 breq1 4656 . . . . . . . . . . . . . . . . 17  |-  ( k  =  Y  ->  (
k  <_  U  <->  Y  <_  U ) )
175173, 1743anbi23d 1402 . . . . . . . . . . . . . . . 16  |-  ( k  =  Y  ->  (
( D  <_  y  /\  y  <_  k  /\  k  <_  U )  <->  ( D  <_  y  /\  y  <_  Y  /\  Y  <_  U
) ) )
176172, 1753anbi23d 1402 . . . . . . . . . . . . . . 15  |-  ( k  =  Y  ->  (
( ph  /\  (
y  e.  S  /\  k  e.  S )  /\  ( D  <_  y  /\  y  <_  k  /\  k  <_  U ) )  <-> 
( ph  /\  (
y  e.  S  /\  Y  e.  S )  /\  ( D  <_  y  /\  y  <_  Y  /\  Y  <_  U ) ) ) )
177 vex 3203 . . . . . . . . . . . . . . . . . 18  |-  k  e. 
_V
178177, 87csbie 3559 . . . . . . . . . . . . . . . . 17  |-  [_ k  /  x ]_ B  =  C
179 csbeq1 3536 . . . . . . . . . . . . . . . . 17  |-  ( k  =  Y  ->  [_ k  /  x ]_ B  = 
[_ Y  /  x ]_ B )
180178, 179syl5eqr 2670 . . . . . . . . . . . . . . . 16  |-  ( k  =  Y  ->  C  =  [_ Y  /  x ]_ B )
181180breq1d 4663 . . . . . . . . . . . . . . 15  |-  ( k  =  Y  ->  ( C  <_  [_ y  /  x ]_ B  <->  [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B ) )
182176, 181imbi12d 334 . . . . . . . . . . . . . 14  |-  ( k  =  Y  ->  (
( ( ph  /\  ( y  e.  S  /\  k  e.  S
)  /\  ( D  <_  y  /\  y  <_ 
k  /\  k  <_  U ) )  ->  C  <_  [_ y  /  x ]_ B )  <->  ( ( ph  /\  ( y  e.  S  /\  Y  e.  S )  /\  ( D  <_  y  /\  y  <_  Y  /\  Y  <_  U ) )  ->  [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B ) ) )
183 nfv 1843 . . . . . . . . . . . . . . . 16  |-  F/ x
( ph  /\  (
y  e.  S  /\  k  e.  S )  /\  ( D  <_  y  /\  y  <_  k  /\  k  <_  U ) )
184 nfcv 2764 . . . . . . . . . . . . . . . . 17  |-  F/_ x C
185 nfcv 2764 . . . . . . . . . . . . . . . . 17  |-  F/_ x  <_
186184, 185, 39nfbr 4699 . . . . . . . . . . . . . . . 16  |-  F/ x  C  <_  [_ y  /  x ]_ B
187183, 186nfim 1825 . . . . . . . . . . . . . . 15  |-  F/ x
( ( ph  /\  ( y  e.  S  /\  k  e.  S
)  /\  ( D  <_  y  /\  y  <_ 
k  /\  k  <_  U ) )  ->  C  <_  [_ y  /  x ]_ B )
188 eleq1 2689 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  e.  S  <->  y  e.  S ) )
189188anbi1d 741 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( x  e.  S  /\  k  e.  S
)  <->  ( y  e.  S  /\  k  e.  S ) ) )
190 breq2 4657 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( D  <_  x  <->  D  <_  y ) )
191 breq1 4656 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  <_  k  <->  y  <_  k ) )
192190, 1913anbi12d 1400 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( D  <_  x  /\  x  <_  k  /\  k  <_  U )  <->  ( D  <_  y  /\  y  <_ 
k  /\  k  <_  U ) ) )
193189, 1923anbi23d 1402 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( ph  /\  (
x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  <-> 
( ph  /\  (
y  e.  S  /\  k  e.  S )  /\  ( D  <_  y  /\  y  <_  k  /\  k  <_  U ) ) ) )
19440breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  ( C  <_  B  <->  C  <_  [_ y  /  x ]_ B ) )
195193, 194imbi12d 334 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
( ( ph  /\  ( x  e.  S  /\  k  e.  S
)  /\  ( D  <_  x  /\  x  <_ 
k  /\  k  <_  U ) )  ->  C  <_  B )  <->  ( ( ph  /\  ( y  e.  S  /\  k  e.  S )  /\  ( D  <_  y  /\  y  <_  k  /\  k  <_  U ) )  ->  C  <_  [_ y  /  x ]_ B ) ) )
196 dvfsum.l . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  ->  C  <_  B )
197187, 195, 196chvar 2262 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  S  /\  k  e.  S )  /\  ( D  <_  y  /\  y  <_  k  /\  k  <_  U ) )  ->  C  <_  [_ y  /  x ]_ B )
198182, 197vtoclg 3266 . . . . . . . . . . . . 13  |-  ( Y  e.  S  ->  (
( ph  /\  (
y  e.  S  /\  Y  e.  S )  /\  ( D  <_  y  /\  y  <_  Y  /\  Y  <_  U ) )  ->  [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B ) )
199170, 198mpcom 38 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  S  /\  Y  e.  S )  /\  ( D  <_  y  /\  y  <_  Y  /\  Y  <_  U ) )  ->  [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B )
200154, 30, 155, 166, 167, 169, 199syl123anc 1343 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B )
201153, 200sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( X (,) Y ) )  ->  [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B )
202 oveq2 6658 . . . . . . . . . 10  |-  ( y  =  X  ->  ( [_ Y  /  x ]_ B  x.  y
)  =  ( [_ Y  /  x ]_ B  x.  X ) )
203 oveq2 6658 . . . . . . . . . 10  |-  ( y  =  Y  ->  ( [_ Y  /  x ]_ B  x.  y
)  =  ( [_ Y  /  x ]_ B  x.  Y ) )
20413, 5, 111, 130, 147, 152, 201, 70, 21, 19, 202, 76, 203, 63dvle 23770 . . . . . . . . 9  |-  ( ph  ->  ( ( [_ Y  /  x ]_ B  x.  Y )  -  ( [_ Y  /  x ]_ B  x.  X
) )  <_  ( [_ Y  /  x ]_ A  -  [_ X  /  x ]_ A ) )
20599, 204eqbrtrd 4675 . . . . . . . 8  |-  ( ph  ->  ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
)  <_  ( [_ Y  /  x ]_ A  -  [_ X  /  x ]_ A ) )
20695, 66, 79, 205lesubd 10631 . . . . . . 7  |-  ( ph  ->  [_ X  /  x ]_ A  <_  ( [_ Y  /  x ]_ A  -  ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) ) ) )
20792recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  CC )
20851recnd 10068 . . . . . . . . 9  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  e.  CC )
20966recnd 10068 . . . . . . . . 9  |-  ( ph  ->  [_ Y  /  x ]_ A  e.  CC )
210207, 208, 209subsubd 10420 . . . . . . . 8  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )  =  ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  +  [_ Y  /  x ]_ A ) )
211208, 207negsubdi2d 10408 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  =  ( ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) ) )
21215recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( |_ `  X
)  e.  CC )
21397, 98, 212nnncan2d 10427 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  -  ( X  -  ( |_ `  X ) ) )  =  ( Y  -  X ) )
214213oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  -  ( X  -  ( |_ `  X ) ) )  x.  [_ Y  /  x ]_ B )  =  ( ( Y  -  X )  x. 
[_ Y  /  x ]_ B ) )
21516recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  -  ( |_ `  X ) )  e.  CC )
21668recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  -  ( |_ `  X ) )  e.  CC )
217215, 216, 96subdird 10487 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  -  ( X  -  ( |_ `  X ) ) )  x.  [_ Y  /  x ]_ B )  =  ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) ) )
21894recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  -  X
)  e.  CC )
219218, 96mulcomd 10061 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  -  X )  x.  [_ Y  /  x ]_ B
)  =  ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) ) )
220214, 217, 2193eqtr3d 2664 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  =  ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) ) )
221220negeqd 10275 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  =  -u ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
) )
222211, 221eqtr3d 2658 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  =  -u ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) ) )
223222oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  +  [_ Y  /  x ]_ A )  =  ( -u ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
)  +  [_ Y  /  x ]_ A ) )
22495recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
)  e.  CC )
225224, 209negsubdid 10407 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) )  -  [_ Y  /  x ]_ A
)  =  ( -u ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
)  +  [_ Y  /  x ]_ A ) )
226223, 225eqtr4d 2659 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B ) )  +  [_ Y  /  x ]_ A )  =  -u ( ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) )  -  [_ Y  /  x ]_ A
) )
227224, 209negsubdi2d 10408 . . . . . . . 8  |-  ( ph  -> 
-u ( ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) )  -  [_ Y  /  x ]_ A
)  =  ( [_ Y  /  x ]_ A  -  ( [_ Y  /  x ]_ B  x.  ( Y  -  X
) ) ) )
228210, 226, 2273eqtrd 2660 . . . . . . 7  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )  =  ( [_ Y  /  x ]_ A  -  ( [_ Y  /  x ]_ B  x.  ( Y  -  X )
) ) )
229206, 228breqtrrd 4681 . . . . . 6  |-  ( ph  ->  [_ X  /  x ]_ A  <_  ( ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
) ) )
23079, 92, 67, 229lesubd 10631 . . . . 5  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  <_  ( (
( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ X  /  x ]_ A ) )
231 flle 12600 . . . . . . . . 9  |-  ( X  e.  RR  ->  ( |_ `  X )  <_  X )
23213, 231syl 17 . . . . . . . 8  |-  ( ph  ->  ( |_ `  X
)  <_  X )
23313, 15subge0d 10617 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  ( X  -  ( |_ `  X ) )  <->  ( |_ `  X )  <_  X
) )
234232, 233mpbird 247 . . . . . . 7  |-  ( ph  ->  0  <_  ( X  -  ( |_ `  X ) ) )
235200ralrimiva 2966 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( X [,] Y )
[_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B )
23671breq2d 4665 . . . . . . . . 9  |-  ( y  =  X  ->  ( [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B  <->  [_ Y  /  x ]_ B  <_  [_ X  /  x ]_ B ) )
237236rspcv 3305 . . . . . . . 8  |-  ( X  e.  ( X [,] Y )  ->  ( A. y  e.  ( X [,] Y ) [_ Y  /  x ]_ B  <_  [_ y  /  x ]_ B  ->  [_ Y  /  x ]_ B  <_  [_ X  /  x ]_ B ) )
23870, 235, 237sylc 65 . . . . . . 7  |-  ( ph  ->  [_ Y  /  x ]_ B  <_  [_ X  /  x ]_ B )
23950, 74, 68, 234, 238lemul2ad 10964 . . . . . 6  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  <_  ( ( X  -  ( |_ `  X ) )  x. 
[_ X  /  x ]_ B ) )
24092, 75, 79, 239lesub1dd 10643 . . . . 5  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ X  /  x ]_ A
)  <_  ( (
( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A ) )
24167, 93, 80, 230, 240letrd 10194 . . . 4  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  <_  ( (
( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A ) )
24267, 80, 91, 241leadd1dd 10641 . . 3  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  <_  ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C ) )
243 dvfsum.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
244 dvfsum.md . . . 4  |-  ( ph  ->  M  <_  ( D  +  1 ) )
245 dvfsum.u . . . 4  |-  ( ph  ->  U  e.  RR* )
246 dvfsum.h . . . 4  |-  H  =  ( x  e.  S  |->  ( ( ( x  -  ( |_ `  x ) )  x.  B )  +  (
sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) ) )
247 dvfsumlem1.6 . . . 4  |-  ( ph  ->  Y  <_  ( ( |_ `  X )  +  1 ) )
2481, 85, 243, 156, 244, 8, 32, 33, 82, 34, 87, 245, 196, 246, 6, 4, 163, 19, 168, 247dvfsumlem1 23789 . . 3  |-  ( ph  ->  ( H `  Y
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  + 
sum_ k  e.  ( M ... ( |_
`  X ) ) C ) )
24913leidd 10594 . . . 4  |-  ( ph  ->  X  <_  X )
25017, 18, 245, 19, 168xrletrd 11993 . . . 4  |-  ( ph  ->  X  <_  U )
251 fllep1 12602 . . . . 5  |-  ( X  e.  RR  ->  X  <_  ( ( |_ `  X )  +  1 ) )
25213, 251syl 17 . . . 4  |-  ( ph  ->  X  <_  ( ( |_ `  X )  +  1 ) )
2531, 85, 243, 156, 244, 8, 32, 33, 82, 34, 87, 245, 196, 246, 6, 6, 163, 249, 250, 252dvfsumlem1 23789 . . 3  |-  ( ph  ->  ( H `  X
)  =  ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  + 
sum_ k  e.  ( M ... ( |_
`  X ) ) C ) )
254242, 248, 2533brtr4d 4685 . 2  |-  ( ph  ->  ( H `  Y
)  <_  ( H `  X ) )
25580, 74resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  -  [_ X  /  x ]_ B
)  e.  RR )
25667, 50resubcld 10458 . . . . 5  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  -  [_ Y  /  x ]_ B
)  e.  RR )
257 peano2rem 10348 . . . . . . . . . . 11  |-  ( ( X  -  ( |_
`  X ) )  e.  RR  ->  (
( X  -  ( |_ `  X ) )  -  1 )  e.  RR )
25868, 257syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  -  1 )  e.  RR )
259258, 74remulcld 10070 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  e.  RR )
260259, 79resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  e.  RR )
261 peano2rem 10348 . . . . . . . . . . 11  |-  ( ( Y  -  ( |_
`  X ) )  e.  RR  ->  (
( Y  -  ( |_ `  X ) )  -  1 )  e.  RR )
26216, 261syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  -  1 )  e.  RR )
263262, 74remulcld 10070 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  e.  RR )
264263, 66resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  e.  RR )
265262, 50remulcld 10070 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  e.  RR )
266265, 66resubcld 10458 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  e.  RR )
267259recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  e.  CC )
268263recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  e.  CC )
269267, 268subcld 10392 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) )  e.  CC )
270269, 209addcomd 10238 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( ( X  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) )  +  [_ Y  /  x ]_ A )  =  ( [_ Y  /  x ]_ A  +  ( ( ( ( X  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  ( ( ( Y  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B ) ) ) )
271267, 268, 209subsubd 10420 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  [_ Y  /  x ]_ A ) )  =  ( ( ( ( ( X  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  ( ( ( Y  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B ) )  + 
[_ Y  /  x ]_ A ) )
272209, 268, 267subsub2d 10421 . . . . . . . . . . . 12  |-  ( ph  ->  ( [_ Y  /  x ]_ A  -  (
( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  ( ( ( X  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B ) ) )  =  ( [_ Y  /  x ]_ A  +  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) ) ) )
273270, 271, 2723eqtr4d 2666 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  [_ Y  /  x ]_ A ) )  =  ( [_ Y  /  x ]_ A  -  ( ( ( ( Y  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( X  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) ) ) )
274 1cnd 10056 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  CC )
275215, 216, 274nnncan2d 10427 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  -  (
( X  -  ( |_ `  X ) )  -  1 ) )  =  ( ( Y  -  ( |_ `  X ) )  -  ( X  -  ( |_ `  X ) ) ) )
276275, 213eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  -  (
( X  -  ( |_ `  X ) )  -  1 ) )  =  ( Y  -  X ) )
277276oveq1d 6665 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  -  ( ( X  -  ( |_ `  X ) )  -  1 ) )  x.  [_ X  /  x ]_ B )  =  ( ( Y  -  X )  x. 
[_ X  /  x ]_ B ) )
278262recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  -  1 )  e.  CC )
279258recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  -  1 )  e.  CC )
28074recnd 10068 . . . . . . . . . . . . . 14  |-  ( ph  ->  [_ X  /  x ]_ B  e.  CC )
281278, 279, 280subdird 10487 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  -  ( ( X  -  ( |_ `  X ) )  -  1 ) )  x.  [_ X  /  x ]_ B )  =  ( ( ( ( Y  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( X  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) ) )
282218, 280mulcomd 10061 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  -  X )  x.  [_ X  /  x ]_ B
)  =  ( [_ X  /  x ]_ B  x.  ( Y  -  X
) ) )
283277, 281, 2823eqtr3d 2664 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( X  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) )  =  ( [_ X  /  x ]_ B  x.  ( Y  -  X
) ) )
284283oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( [_ Y  /  x ]_ A  -  (
( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  ( ( ( X  -  ( |_ `  X ) )  -  1 )  x. 
[_ X  /  x ]_ B ) ) )  =  ( [_ Y  /  x ]_ A  -  ( [_ X  /  x ]_ B  x.  ( Y  -  X )
) ) )
285273, 284eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  [_ Y  /  x ]_ A ) )  =  ( [_ Y  /  x ]_ A  -  ( [_ X  /  x ]_ B  x.  ( Y  -  X
) ) ) )
28674, 94remulcld 10070 . . . . . . . . . . 11  |-  ( ph  ->  ( [_ X  /  x ]_ B  x.  ( Y  -  X )
)  e.  RR )
287 cncfmptc 22714 . . . . . . . . . . . . . . 15  |-  ( (
[_ X  /  x ]_ B  e.  RR  /\  ( X [,] Y
)  C_  CC  /\  RR  C_  CC )  ->  (
y  e.  ( X [,] Y )  |->  [_ X  /  x ]_ B
)  e.  ( ( X [,] Y )
-cn-> RR ) )
28874, 104, 105, 287syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  [_ X  /  x ]_ B )  e.  ( ( X [,] Y
) -cn-> RR ) )
289 remulcl 10021 . . . . . . . . . . . . . 14  |-  ( (
[_ X  /  x ]_ B  e.  RR  /\  y  e.  RR )  ->  ( [_ X  /  x ]_ B  x.  y )  e.  RR )
290100, 101, 288, 109, 103, 289cncfmpt2ss 22718 . . . . . . . . . . . . 13  |-  ( ph  ->  ( y  e.  ( X [,] Y ) 
|->  ( [_ X  /  x ]_ B  x.  y
) )  e.  ( ( X [,] Y
) -cn-> RR ) )
291113, 117, 118, 126, 280dvmptcmul 23727 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X (,) Y )  |->  (
[_ X  /  x ]_ B  x.  y
) ) )  =  ( y  e.  ( X (,) Y ) 
|->  ( [_ X  /  x ]_ B  x.  1 ) ) )
292280mulid1d 10057 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( [_ X  /  x ]_ B  x.  1 )  =  [_ X  /  x ]_ B )
293292mpteq2dv 4745 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( y  e.  ( X (,) Y ) 
|->  ( [_ X  /  x ]_ B  x.  1 ) )  =  ( y  e.  ( X (,) Y )  |->  [_ X  /  x ]_ B
) )
294291, 293eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR  _D  (
y  e.  ( X (,) Y )  |->  (
[_ X  /  x ]_ B  x.  y
) ) )  =  ( y  e.  ( X (,) Y ) 
|->  [_ X  /  x ]_ B ) )
2956adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  X  e.  S )
296162rexrd 10089 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  y  e.  RR* )
29718adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  Y  e.  RR* )
298245adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  U  e.  RR* )
299296, 297, 298, 167, 169xrletrd 11993 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  y  <_  U )
300 vex 3203 . . . . . . . . . . . . . . . 16  |-  y  e. 
_V
301 eleq1 2689 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  y  ->  (
k  e.  S  <->  y  e.  S ) )
302301anbi2d 740 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  y  ->  (
( X  e.  S  /\  k  e.  S
)  <->  ( X  e.  S  /\  y  e.  S ) ) )
303 breq2 4657 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  y  ->  ( X  <_  k  <->  X  <_  y ) )
304 breq1 4656 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  y  ->  (
k  <_  U  <->  y  <_  U ) )
305303, 3043anbi23d 1402 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  y  ->  (
( D  <_  X  /\  X  <_  k  /\  k  <_  U )  <->  ( D  <_  X  /\  X  <_ 
y  /\  y  <_  U ) ) )
306302, 3053anbi23d 1402 . . . . . . . . . . . . . . . . 17  |-  ( k  =  y  ->  (
( ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) )  <-> 
( ph  /\  ( X  e.  S  /\  y  e.  S )  /\  ( D  <_  X  /\  X  <_  y  /\  y  <_  U ) ) ) )
307 csbeq1 3536 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  y  ->  [_ k  /  x ]_ B  = 
[_ y  /  x ]_ B )
308178, 307syl5eqr 2670 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  y  ->  C  =  [_ y  /  x ]_ B )
309308breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( k  =  y  ->  ( C  <_  [_ X  /  x ]_ B  <->  [_ y  /  x ]_ B  <_  [_ X  /  x ]_ B ) )
310306, 309imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( k  =  y  ->  (
( ( ph  /\  ( X  e.  S  /\  k  e.  S
)  /\  ( D  <_  X  /\  X  <_ 
k  /\  k  <_  U ) )  ->  C  <_  [_ X  /  x ]_ B )  <->  ( ( ph  /\  ( X  e.  S  /\  y  e.  S )  /\  ( D  <_  X  /\  X  <_  y  /\  y  <_  U ) )  ->  [_ y  /  x ]_ B  <_  [_ X  /  x ]_ B ) ) )
311 simp2l 1087 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) )  ->  X  e.  S )
312 nfv 1843 . . . . . . . . . . . . . . . . . . 19  |-  F/ x
( ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) )
313 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x [_ X  /  x ]_ B
314184, 185, 313nfbr 4699 . . . . . . . . . . . . . . . . . . 19  |-  F/ x  C  <_  [_ X  /  x ]_ B
315312, 314nfim 1825 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( ( ph  /\  ( X  e.  S  /\  k  e.  S
)  /\  ( D  <_  X  /\  X  <_ 
k  /\  k  <_  U ) )  ->  C  <_  [_ X  /  x ]_ B )
316 eleq1 2689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  X  ->  (
x  e.  S  <->  X  e.  S ) )
317316anbi1d 741 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  X  ->  (
( x  e.  S  /\  k  e.  S
)  <->  ( X  e.  S  /\  k  e.  S ) ) )
318 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  X  ->  ( D  <_  x  <->  D  <_  X ) )
319 breq1 4656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  X  ->  (
x  <_  k  <->  X  <_  k ) )
320318, 3193anbi12d 1400 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  X  ->  (
( D  <_  x  /\  x  <_  k  /\  k  <_  U )  <->  ( D  <_  X  /\  X  <_ 
k  /\  k  <_  U ) ) )
321317, 3203anbi23d 1402 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  X  ->  (
( ph  /\  (
x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k  /\  k  <_  U ) )  <-> 
( ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) ) ) )
322 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  X  ->  B  =  [_ X  /  x ]_ B )
323322breq2d 4665 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  X  ->  ( C  <_  B  <->  C  <_  [_ X  /  x ]_ B ) )
324321, 323imbi12d 334 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  X  ->  (
( ( ph  /\  ( x  e.  S  /\  k  e.  S
)  /\  ( D  <_  x  /\  x  <_ 
k  /\  k  <_  U ) )  ->  C  <_  B )  <->  ( ( ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) )  ->  C  <_  [_ X  /  x ]_ B ) ) )
325315, 324, 196vtoclg1f 3265 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  S  ->  (
( ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) )  ->  C  <_  [_ X  /  x ]_ B ) )
326311, 325mpcom 38 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( X  e.  S  /\  k  e.  S )  /\  ( D  <_  X  /\  X  <_  k  /\  k  <_  U ) )  ->  C  <_  [_ X  /  x ]_ B )
327300, 310, 326vtocl 3259 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( X  e.  S  /\  y  e.  S )  /\  ( D  <_  X  /\  X  <_  y  /\  y  <_  U ) )  ->  [_ y  /  x ]_ B  <_  [_ X  /  x ]_ B )
328154, 295, 30, 164, 165, 299, 327syl123anc 1343 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  ( X [,] Y ) )  ->  [_ y  /  x ]_ B  <_  [_ X  /  x ]_ B )
329153, 328sylan2 491 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  ( X (,) Y ) )  ->  [_ y  /  x ]_ B  <_  [_ X  /  x ]_ B )
330 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  X  ->  ( [_ X  /  x ]_ B  x.  y
)  =  ( [_ X  /  x ]_ B  x.  X ) )
331 oveq2 6658 . . . . . . . . . . . . 13  |-  ( y  =  Y  ->  ( [_ X  /  x ]_ B  x.  y
)  =  ( [_ X  /  x ]_ B  x.  Y ) )
33213, 5, 147, 152, 290, 294, 329, 70, 21, 19, 76, 330, 63, 331dvle 23770 . . . . . . . . . . . 12  |-  ( ph  ->  ( [_ Y  /  x ]_ A  -  [_ X  /  x ]_ A
)  <_  ( ( [_ X  /  x ]_ B  x.  Y
)  -  ( [_ X  /  x ]_ B  x.  X ) ) )
333280, 97, 98subdid 10486 . . . . . . . . . . . 12  |-  ( ph  ->  ( [_ X  /  x ]_ B  x.  ( Y  -  X )
)  =  ( (
[_ X  /  x ]_ B  x.  Y
)  -  ( [_ X  /  x ]_ B  x.  X ) ) )
334332, 333breqtrrd 4681 . . . . . . . . . . 11  |-  ( ph  ->  ( [_ Y  /  x ]_ A  -  [_ X  /  x ]_ A
)  <_  ( [_ X  /  x ]_ B  x.  ( Y  -  X
) ) )
33566, 79, 286, 334subled 10630 . . . . . . . . . 10  |-  ( ph  ->  ( [_ Y  /  x ]_ A  -  ( [_ X  /  x ]_ B  x.  ( Y  -  X )
) )  <_  [_ X  /  x ]_ A )
336285, 335eqbrtrd 4675 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  (
( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  -  [_ Y  /  x ]_ A ) )  <_  [_ X  /  x ]_ A )
337259, 264, 79, 336subled 10630 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  <_  ( (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
338262renegcld 10457 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( ( Y  -  ( |_ `  X ) )  - 
1 )  e.  RR )
339 1red 10055 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  1  e.  RR )
3405, 15, 339lesubadd2d 10626 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  <_  1  <->  Y  <_  ( ( |_ `  X
)  +  1 ) ) )
341247, 340mpbird 247 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Y  -  ( |_ `  X ) )  <_  1 )
34216, 339suble0d 10618 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  <_  0  <->  ( Y  -  ( |_
`  X ) )  <_  1 ) )
343341, 342mpbird 247 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Y  -  ( |_ `  X ) )  -  1 )  <_  0 )
344262le0neg1d 10599 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  <_  0  <->  0  <_  -u ( ( Y  -  ( |_ `  X ) )  - 
1 ) ) )
345343, 344mpbid 222 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  -u ( ( Y  -  ( |_
`  X ) )  -  1 ) )
34650, 74, 338, 345, 238lemul2ad 10964 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B )  <_  ( -u ( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) )
347278, 96mulneg1d 10483 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B )  =  -u ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
) )
348278, 280mulneg1d 10483 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  =  -u ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
) )
349346, 347, 3483brtr3d 4684 . . . . . . . . . 10  |-  ( ph  -> 
-u ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B )  <_  -u (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) )
350263, 265lenegd 10606 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  <_  (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ Y  /  x ]_ B )  <->  -u ( ( ( Y  -  ( |_ `  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B )  <_  -u (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ X  /  x ]_ B ) ) )
351349, 350mpbird 247 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  <_  ( (
( Y  -  ( |_ `  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B ) )
352263, 265, 66, 351lesub1dd 10643 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  <_  ( (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
353260, 264, 266, 337, 352letrd 10194 . . . . . . 7  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  <_  ( (
( ( Y  -  ( |_ `  X ) )  -  1 )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
354216, 274, 280subdird 10487 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  =  ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  ( 1  x.  [_ X  /  x ]_ B
) ) )
355280mulid2d 10058 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  [_ X  /  x ]_ B
)  =  [_ X  /  x ]_ B )
356355oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ X  /  x ]_ B )  -  (
1  x.  [_ X  /  x ]_ B ) )  =  ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ B ) )
357354, 356eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  - 
1 )  x.  [_ X  /  x ]_ B
)  =  ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ B ) )
358357oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  -  1 )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  =  ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A ) )
359215, 274, 96subdird 10487 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  ( 1  x.  [_ Y  /  x ]_ B
) ) )
36096mulid2d 10058 . . . . . . . . . 10  |-  ( ph  ->  ( 1  x.  [_ Y  /  x ]_ B
)  =  [_ Y  /  x ]_ B )
361360oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  (
1  x.  [_ Y  /  x ]_ B ) )  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
362359, 361eqtrd 2656 . . . . . . . 8  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  - 
1 )  x.  [_ Y  /  x ]_ B
)  =  ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B ) )
363362oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  -  1 )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
364353, 358, 3633brtr3d 4684 . . . . . 6  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  <_  ( (
( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
36575recnd 10068 . . . . . . 7  |-  ( ph  ->  ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  e.  CC )
36679recnd 10068 . . . . . . 7  |-  ( ph  ->  [_ X  /  x ]_ A  e.  CC )
367365, 366, 280sub32d 10424 . . . . . 6  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  -  [_ X  /  x ]_ B
)  =  ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A ) )
368208, 209, 96sub32d 10424 . . . . . 6  |-  ( ph  ->  ( ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  -  [_ Y  /  x ]_ B
)  =  ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A ) )
369364, 367, 3683brtr4d 4685 . . . . 5  |-  ( ph  ->  ( ( ( ( X  -  ( |_
`  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  -  [_ X  /  x ]_ B
)  <_  ( (
( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  -  [_ Y  /  x ]_ B ) )
370255, 256, 91, 369leadd1dd 10641 . . . 4  |-  ( ph  ->  ( ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  -  [_ X  /  x ]_ B
)  +  sum_ k  e.  ( M ... ( |_ `  X ) ) C )  <_  (
( ( ( ( Y  -  ( |_
`  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  -  [_ Y  /  x ]_ B
)  +  sum_ k  e.  ( M ... ( |_ `  X ) ) C ) )
37180recnd 10068 . . . . 5  |-  ( ph  ->  ( ( ( X  -  ( |_ `  X ) )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  e.  CC )
37291recnd 10068 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( M ... ( |_
`  X ) ) C  e.  CC )
373371, 372, 280addsubd 10413 . . . 4  |-  ( ph  ->  ( ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  -  [_ X  /  x ]_ B )  =  ( ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  -  [_ X  /  x ]_ B
)  +  sum_ k  e.  ( M ... ( |_ `  X ) ) C ) )
37467recnd 10068 . . . . 5  |-  ( ph  ->  ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  e.  CC )
375374, 372, 96addsubd 10413 . . . 4  |-  ( ph  ->  ( ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  -  [_ Y  /  x ]_ B )  =  ( ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  -  [_ Y  /  x ]_ B
)  +  sum_ k  e.  ( M ... ( |_ `  X ) ) C ) )
376370, 373, 3753brtr4d 4685 . . 3  |-  ( ph  ->  ( ( ( ( ( X  -  ( |_ `  X ) )  x.  [_ X  /  x ]_ B )  -  [_ X  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  -  [_ X  /  x ]_ B )  <_ 
( ( ( ( ( Y  -  ( |_ `  X ) )  x.  [_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A )  +  sum_ k  e.  ( M ... ( |_ `  X
) ) C )  -  [_ Y  /  x ]_ B ) )
377253oveq1d 6665 . . 3  |-  ( ph  ->  ( ( H `  X )  -  [_ X  /  x ]_ B
)  =  ( ( ( ( ( X  -  ( |_ `  X ) )  x. 
[_ X  /  x ]_ B )  -  [_ X  /  x ]_ A
)  +  sum_ k  e.  ( M ... ( |_ `  X ) ) C )  -  [_ X  /  x ]_ B
) )
378248oveq1d 6665 . . 3  |-  ( ph  ->  ( ( H `  Y )  -  [_ Y  /  x ]_ B
)  =  ( ( ( ( ( Y  -  ( |_ `  X ) )  x. 
[_ Y  /  x ]_ B )  -  [_ Y  /  x ]_ A
)  +  sum_ k  e.  ( M ... ( |_ `  X ) ) C )  -  [_ Y  /  x ]_ B
) )
379376, 377, 3783brtr4d 4685 . 2  |-  ( ph  ->  ( ( H `  X )  -  [_ X  /  x ]_ B
)  <_  ( ( H `  Y )  -  [_ Y  /  x ]_ B ) )
380254, 379jca 554 1  |-  ( ph  ->  ( ( H `  Y )  <_  ( H `  X )  /\  ( ( H `  X )  -  [_ X  /  x ]_ B
)  <_  ( ( H `  Y )  -  [_ Y  /  x ]_ B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   [_csb 3533    C_ wss 3574   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   [,]cicc 12178   ...cfz 12326   |_cfl 12591   sum_csu 14416   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   -cn->ccncf 22679    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvfsumlem3  23791
  Copyright terms: Public domain W3C validator