Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem47 Structured version   Visualization version   Unicode version

Theorem etransclem47 40498
Description:  _e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem47.q  |-  ( ph  ->  Q  e.  ( (Poly `  ZZ )  \  {
0p } ) )
etransclem47.qe0  |-  ( ph  ->  ( Q `  _e )  =  0 )
etransclem47.a  |-  A  =  (coeff `  Q )
etransclem47.a0  |-  ( ph  ->  ( A `  0
)  =/=  0 )
etransclem47.m  |-  M  =  (deg `  Q )
etransclem47.p  |-  ( ph  ->  P  e.  Prime )
etransclem47.ap  |-  ( ph  ->  ( abs `  ( A `  0 )
)  <  P )
etransclem47.mp  |-  ( ph  ->  ( ! `  M
)  <  P )
etransclem47.9  |-  ( ph  ->  ( sum_ j  e.  ( 0 ... M ) ( ( abs `  (
( A `  j
)  x.  ( _e 
^c  j ) ) )  x.  ( M  x.  ( M ^ ( M  + 
1 ) ) ) )  x.  ( ( ( M ^ ( M  +  1 ) ) ^ ( P  -  1 ) )  /  ( ! `  ( P  -  1
) ) ) )  <  1 )
etransclem47.f  |-  F  =  ( x  e.  RR  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
etransclem47.l  |-  L  = 
sum_ j  e.  ( 0 ... M ) ( ( ( A `
 j )  x.  ( _e  ^c 
j ) )  x.  S. ( 0 (,) j ) ( ( _e  ^c  -u x )  x.  ( F `  x )
)  _d x )
etransclem47.k  |-  K  =  ( L  /  ( ! `  ( P  -  1 ) ) )
Assertion
Ref Expression
etransclem47  |-  ( ph  ->  E. k  e.  ZZ  ( k  =/=  0  /\  ( abs `  k
)  <  1 ) )
Distinct variable groups:    x, k    A, j, k    j, F, k, x    k, K   
j, M, k, x    P, j, k, x    Q, j    ph, j, k, x
Allowed substitution hints:    A( x)    Q( x, k)    K( x, j)    L( x, j, k)

Proof of Theorem etransclem47
Dummy variables  i 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem47.k . . . . 5  |-  K  =  ( L  /  ( ! `  ( P  -  1 ) ) )
21a1i 11 . . . 4  |-  ( ph  ->  K  =  ( L  /  ( ! `  ( P  -  1
) ) ) )
3 etransclem47.q . . . . 5  |-  ( ph  ->  Q  e.  ( (Poly `  ZZ )  \  {
0p } ) )
4 etransclem47.qe0 . . . . 5  |-  ( ph  ->  ( Q `  _e )  =  0 )
5 etransclem47.a . . . . 5  |-  A  =  (coeff `  Q )
6 etransclem47.m . . . . 5  |-  M  =  (deg `  Q )
7 ssid 3624 . . . . . 6  |-  RR  C_  RR
87a1i 11 . . . . 5  |-  ( ph  ->  RR  C_  RR )
9 reelprrecn 10028 . . . . . 6  |-  RR  e.  { RR ,  CC }
109a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  { RR ,  CC } )
11 reopn 39501 . . . . . . 7  |-  RR  e.  ( topGen `  ran  (,) )
12 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1312tgioo2 22606 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
1411, 13eleqtri 2699 . . . . . 6  |-  RR  e.  ( ( TopOpen ` fld )t  RR )
1514a1i 11 . . . . 5  |-  ( ph  ->  RR  e.  ( (
TopOpen ` fld )t  RR ) )
16 etransclem47.p . . . . . 6  |-  ( ph  ->  P  e.  Prime )
17 prmnn 15388 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
1816, 17syl 17 . . . . 5  |-  ( ph  ->  P  e.  NN )
19 etransclem47.f . . . . 5  |-  F  =  ( x  e.  RR  |->  ( ( x ^
( P  -  1 ) )  x.  prod_ j  e.  ( 1 ... M ) ( ( x  -  j ) ^ P ) ) )
20 etransclem47.l . . . . 5  |-  L  = 
sum_ j  e.  ( 0 ... M ) ( ( ( A `
 j )  x.  ( _e  ^c 
j ) )  x.  S. ( 0 (,) j ) ( ( _e  ^c  -u x )  x.  ( F `  x )
)  _d x )
21 eqid 2622 . . . . 5  |-  ( ( M  x.  P )  +  ( P  - 
1 ) )  =  ( ( M  x.  P )  +  ( P  -  1 ) )
22 fveq2 6191 . . . . . . 7  |-  ( y  =  x  ->  (
( ( RR  Dn F ) `  i ) `  y
)  =  ( ( ( RR  Dn
F ) `  i
) `  x )
)
2322sumeq2ad 14434 . . . . . 6  |-  ( y  =  x  ->  sum_ i  e.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `
 y )  = 
sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  - 
1 ) ) ) ( ( ( RR  Dn F ) `
 i ) `  x ) )
2423cbvmptv 4750 . . . . 5  |-  ( y  e.  RR  |->  sum_ i  e.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `
 y ) )  =  ( x  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  - 
1 ) ) ) ( ( ( RR  Dn F ) `
 i ) `  x ) )
25 negeq 10273 . . . . . . . . 9  |-  ( z  =  x  ->  -u z  =  -u x )
2625oveq2d 6666 . . . . . . . 8  |-  ( z  =  x  ->  (
_e  ^c  -u z
)  =  ( _e 
^c  -u x
) )
27 fveq2 6191 . . . . . . . 8  |-  ( z  =  x  ->  (
( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  z
)  =  ( ( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  x
) )
2826, 27oveq12d 6668 . . . . . . 7  |-  ( z  =  x  ->  (
( _e  ^c  -u z )  x.  (
( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  z
) )  =  ( ( _e  ^c  -u x )  x.  (
( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  x
) ) )
2928negeqd 10275 . . . . . 6  |-  ( z  =  x  ->  -u (
( _e  ^c  -u z )  x.  (
( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  z
) )  =  -u ( ( _e  ^c  -u x )  x.  ( ( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  - 
1 ) ) ) ( ( ( RR  Dn F ) `
 i ) `  y ) ) `  x ) ) )
3029cbvmptv 4750 . . . . 5  |-  ( z  e.  ( 0 [,] j )  |->  -u (
( _e  ^c  -u z )  x.  (
( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  z
) ) )  =  ( x  e.  ( 0 [,] j ) 
|->  -u ( ( _e 
^c  -u x
)  x.  ( ( y  e.  RR  |->  sum_ i  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ( ( ( RR  Dn F ) `  i ) `  y
) ) `  x
) ) )
313, 4, 5, 6, 8, 10, 15, 18, 19, 20, 21, 24, 30etransclem46 40497 . . . 4  |-  ( ph  ->  ( L  /  ( ! `  ( P  -  1 ) ) )  =  ( -u sum_ k  e.  ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1 ) ) ) )
32 fzfid 12772 . . . . . . . 8  |-  ( ph  ->  ( 0 ... M
)  e.  Fin )
33 fzfid 12772 . . . . . . . 8  |-  ( ph  ->  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) )  e.  Fin )
34 xpfi 8231 . . . . . . . 8  |-  ( ( ( 0 ... M
)  e.  Fin  /\  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) )  e.  Fin )  ->  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  e.  Fin )
3532, 33, 34syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) )  e.  Fin )
363eldifad 3586 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  (Poly `  ZZ ) )
37 0zd 11389 . . . . . . . . . . . 12  |-  ( ph  ->  0  e.  ZZ )
385coef2 23987 . . . . . . . . . . . 12  |-  ( ( Q  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  A : NN0 --> ZZ )
3936, 37, 38syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  A : NN0 --> ZZ )
4039adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  A : NN0
--> ZZ )
41 xp1st 7198 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 1st `  k )  e.  ( 0 ... M
) )
42 elfznn0 12433 . . . . . . . . . . . 12  |-  ( ( 1st `  k )  e.  ( 0 ... M )  ->  ( 1st `  k )  e. 
NN0 )
4341, 42syl 17 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 1st `  k )  e. 
NN0 )
4443adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 1st `  k )  e.  NN0 )
4540, 44ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( A `  ( 1st `  k
) )  e.  ZZ )
4645zcnd 11483 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( A `  ( 1st `  k
) )  e.  CC )
479a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  RR  e.  { RR ,  CC }
)
4814a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  RR  e.  ( ( TopOpen ` fld )t  RR ) )
4918adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  P  e.  NN )
50 dgrcl 23989 . . . . . . . . . . . . 13  |-  ( Q  e.  (Poly `  ZZ )  ->  (deg `  Q
)  e.  NN0 )
5136, 50syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  Q )  e.  NN0 )
526, 51syl5eqel 2705 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN0 )
5352adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  M  e.  NN0 )
54 xp2nd 7199 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 2nd `  k )  e.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )
55 elfznn0 12433 . . . . . . . . . . . 12  |-  ( ( 2nd `  k )  e.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) )  ->  ( 2nd `  k )  e. 
NN0 )
5654, 55syl 17 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) )  ->  ( 2nd `  k )  e. 
NN0 )
5756adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 2nd `  k )  e.  NN0 )
5847, 48, 49, 53, 19, 57etransclem33 40484 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( ( RR  Dn F ) `
 ( 2nd `  k
) ) : RR --> CC )
5944nn0red 11352 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( 1st `  k )  e.  RR )
6058, 59ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( (
( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) )  e.  CC )
6146, 60mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) )  ->  ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) ) )  e.  CC )
6235, 61fsumcl 14464 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  e.  CC )
63 nnm1nn0 11334 . . . . . . . . 9  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
6418, 63syl 17 . . . . . . . 8  |-  ( ph  ->  ( P  -  1 )  e.  NN0 )
6564faccld 13071 . . . . . . 7  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  NN )
6665nncnd 11036 . . . . . 6  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  e.  CC )
6765nnne0d 11065 . . . . . 6  |-  ( ph  ->  ( ! `  ( P  -  1 ) )  =/=  0 )
6862, 66, 67divnegd 10814 . . . . 5  |-  ( ph  -> 
-u ( sum_ k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =  (
-u sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) ) )
6968eqcomd 2628 . . . 4  |-  ( ph  ->  ( -u sum_ k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =  -u ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) ) )
702, 31, 693eqtrd 2660 . . 3  |-  ( ph  ->  K  =  -u ( sum_ k  e.  ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1 ) ) ) )
71 eqid 2622 . . . . 5  |-  ( sum_ k  e.  ( (
0 ... M )  X.  ( 0 ... (
( M  x.  P
)  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `
 ( 2nd `  k
) ) `  ( 1st `  k ) ) )  /  ( ! `
 ( P  - 
1 ) ) )  =  ( sum_ k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )
7218, 52, 19, 39, 71etransclem45 40496 . . . 4  |-  ( ph  ->  ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ )
7372znegcld 11484 . . 3  |-  ( ph  -> 
-u ( sum_ k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  e.  ZZ )
7470, 73eqeltrd 2701 . 2  |-  ( ph  ->  K  e.  ZZ )
751, 31syl5eq 2668 . . 3  |-  ( ph  ->  K  =  ( -u sum_ k  e.  ( ( 0 ... M )  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn F ) `  ( 2nd `  k ) ) `  ( 1st `  k ) ) )  /  ( ! `  ( P  -  1 ) ) ) )
7662, 66, 67divcld 10801 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  e.  CC )
77 etransclem47.a0 . . . . . 6  |-  ( ph  ->  ( A `  0
)  =/=  0 )
78 etransclem47.ap . . . . . 6  |-  ( ph  ->  ( abs `  ( A `  0 )
)  <  P )
79 etransclem47.mp . . . . . 6  |-  ( ph  ->  ( ! `  M
)  <  P )
8039, 77, 52, 16, 78, 79, 19, 71etransclem44 40495 . . . . 5  |-  ( ph  ->  ( sum_ k  e.  ( ( 0 ... M
)  X.  ( 0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =/=  0
)
8176, 80negne0d 10390 . . . 4  |-  ( ph  -> 
-u ( sum_ k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =/=  0
)
8269, 81eqnetrd 2861 . . 3  |-  ( ph  ->  ( -u sum_ k  e.  ( ( 0 ... M )  X.  (
0 ... ( ( M  x.  P )  +  ( P  -  1 ) ) ) ) ( ( A `  ( 1st `  k ) )  x.  ( ( ( RR  Dn
F ) `  ( 2nd `  k ) ) `
 ( 1st `  k
) ) )  / 
( ! `  ( P  -  1 ) ) )  =/=  0
)
8375, 82eqnetrd 2861 . 2  |-  ( ph  ->  K  =/=  0 )
84 eldifsni 4320 . . . . . 6  |-  ( Q  e.  ( (Poly `  ZZ )  \  { 0p } )  ->  Q  =/=  0p )
853, 84syl 17 . . . . 5  |-  ( ph  ->  Q  =/=  0p )
86 ere 14819 . . . . . . 7  |-  _e  e.  RR
8786recni 10052 . . . . . 6  |-  _e  e.  CC
8887a1i 11 . . . . 5  |-  ( ph  ->  _e  e.  CC )
89 dgrnznn 24003 . . . . 5  |-  ( ( ( Q  e.  (Poly `  ZZ )  /\  Q  =/=  0p )  /\  ( _e  e.  CC  /\  ( Q `  _e )  =  0 ) )  ->  (deg `  Q
)  e.  NN )
9036, 85, 88, 4, 89syl22anc 1327 . . . 4  |-  ( ph  ->  (deg `  Q )  e.  NN )
916, 90syl5eqel 2705 . . 3  |-  ( ph  ->  M  e.  NN )
92 etransclem47.9 . . 3  |-  ( ph  ->  ( sum_ j  e.  ( 0 ... M ) ( ( abs `  (
( A `  j
)  x.  ( _e 
^c  j ) ) )  x.  ( M  x.  ( M ^ ( M  + 
1 ) ) ) )  x.  ( ( ( M ^ ( M  +  1 ) ) ^ ( P  -  1 ) )  /  ( ! `  ( P  -  1
) ) ) )  <  1 )
9339, 20, 1, 18, 91, 19, 92etransclem23 40474 . 2  |-  ( ph  ->  ( abs `  K
)  <  1 )
94 neeq1 2856 . . . 4  |-  ( k  =  K  ->  (
k  =/=  0  <->  K  =/=  0 ) )
95 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( abs `  k )  =  ( abs `  K
) )
9695breq1d 4663 . . . 4  |-  ( k  =  K  ->  (
( abs `  k
)  <  1  <->  ( abs `  K )  <  1
) )
9794, 96anbi12d 747 . . 3  |-  ( k  =  K  ->  (
( k  =/=  0  /\  ( abs `  k
)  <  1 )  <-> 
( K  =/=  0  /\  ( abs `  K
)  <  1 ) ) )
9897rspcev 3309 . 2  |-  ( ( K  e.  ZZ  /\  ( K  =/=  0  /\  ( abs `  K
)  <  1 ) )  ->  E. k  e.  ZZ  ( k  =/=  0  /\  ( abs `  k )  <  1
) )
9974, 83, 93, 98syl12anc 1324 1  |-  ( ph  ->  E. k  e.  ZZ  ( k  =/=  0  /\  ( abs `  k
)  <  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   -ucneg 10267    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   (,)cioo 12175   [,]cicc 12178   ...cfz 12326   ^cexp 12860   !cfa 13060   abscabs 13974   sum_csu 14416   prod_cprod 14635   _eceu 14793   Primecprime 15385   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   S.citg 23387   0pc0p 23436    Dncdvn 23628  Polycply 23940  coeffccoe 23942  degcdgr 23943    ^c ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631  df-dvn 23632  df-ply 23944  df-coe 23946  df-dgr 23947  df-log 24303  df-cxp 24304
This theorem is referenced by:  etransclem48  40499
  Copyright terms: Public domain W3C validator