MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Structured version   Visualization version   Unicode version

Theorem chpchtsum 24944
Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^c  ( 1  / 
k ) ) ) )
Distinct variable group:    A, k

Proof of Theorem chpchtsum
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
2 inss2 3834 . . . . . . . . . 10  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
3 simpr 477 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
42, 3sseldi 3601 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
5 prmnn 15388 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
64, 5syl 17 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
76nnrpd 11870 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
87relogcld 24369 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
98recnd 10068 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
10 fsumconst 14522 . . . . 5  |-  ( ( ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin  /\  ( log `  p
)  e.  CC )  ->  sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  ( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
111, 9, 10syl2anc 693 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
)  =  ( (
# `  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
12 simpl 473 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
13 1red 10055 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
146nnred 11035 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
15 prmuz2 15408 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
164, 15syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
17 eluz2b2 11761 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1817simprbi 480 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
1916, 18syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
20 inss1 3833 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
2120, 3sseldi 3601 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
22 0re 10040 . . . . . . . . . . . . . 14  |-  0  e.  RR
23 elicc2 12238 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2422, 12, 23sylancr 695 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2521, 24mpbid 222 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
2625simp3d 1075 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
2713, 14, 12, 19, 26ltletrd 10197 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  A )
2812, 27rplogcld 24375 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR+ )
2914, 19rplogcld 24375 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
3028, 29rpdivcld 11889 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR+ )
3130rpred 11872 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
3230rpge0d 11876 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( ( log `  A )  / 
( log `  p
) ) )
33 flge0nn0 12621 . . . . . . 7  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  0  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
3431, 32, 33syl2anc 693 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
35 hashfz1 13134 . . . . . 6  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3634, 35syl 17 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3736oveq1d 6665 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) )  =  ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  x.  ( log `  p ) ) )
3831flcld 12599 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
3938zcnd 11483 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  CC )
4039, 9mulcomd 10061 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  x.  ( log `  p
) )  =  ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
4111, 37, 403eqtrrd 2661 . . 3  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
) )
4241sumeq2dv 14433 . 2  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
43 chpval2 24943 . 2  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
44 simpl 473 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
45 0red 10041 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  e.  RR )
46 1red 10055 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  RR )
47 0lt1 10550 . . . . . . . . 9  |-  0  <  1
4847a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  1
)
49 elfzuz2 12346 . . . . . . . . 9  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  1 )
)
50 eluzle 11700 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  <_  ( |_ `  A ) )
5150adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  ( |_ `  A
) )
52 simpl 473 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  A  e.  RR )
53 1z 11407 . . . . . . . . . . 11  |-  1  e.  ZZ
54 flge 12606 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  e.  ZZ )  ->  ( 1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5552, 53, 54sylancl 694 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  (
1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5651, 55mpbird 247 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  A )
5749, 56sylan2 491 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  <_  A
)
5845, 46, 44, 48, 57ltletrd 10197 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  A
)
5945, 44, 58ltled 10185 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  A
)
60 elfznn 12370 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  k  e.  NN )
6160adantl 482 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  k  e.  NN )
6261nnrecred 11066 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  / 
k )  e.  RR )
6344, 59, 62recxpcld 24469 . . . . 5  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  ^c  ( 1  / 
k ) )  e.  RR )
64 chtval 24836 . . . . 5  |-  ( ( A  ^c  ( 1  /  k ) )  e.  RR  ->  (
theta `  ( A  ^c  ( 1  / 
k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
6563, 64syl 17 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( theta `  ( A  ^c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^c 
( 1  /  k
) ) )  i^i 
Prime ) ( log `  p
) )
6665sumeq2dv 14433 . . 3  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^c  ( 1  /  k ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) )
sum_ p  e.  (
( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
67 ppifi 24832 . . . 4  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
68 fzfid 12772 . . . 4  |-  ( A  e.  RR  ->  (
1 ... ( |_ `  A ) )  e. 
Fin )
692sseli 3599 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e. 
Prime )
70 elfznn 12370 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
7169, 70anim12i 590 . . . . . . 7  |-  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  -> 
( p  e.  Prime  /\  k  e.  NN ) )
7271a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
p  e.  Prime  /\  k  e.  NN ) ) )
73 0red 10041 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
742a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  C_  Prime )
7574sselda 3603 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
7675, 5syl 17 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
7776nnred 11035 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
7876nngt0d 11064 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
7973, 77, 12, 78, 26ltletrd 10197 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
8079ex 450 . . . . . . 7  |-  ( A  e.  RR  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  0  <  A ) )
8180adantrd 484 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  0  <  A ) )
8272, 81jcad 555 . . . . 5  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( p  e.  Prime  /\  k  e.  NN )  /\  0  <  A
) ) )
83 inss2 3834 . . . . . . . . 9  |-  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )  C_ 
Prime
8483sseli 3599 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  i^i  Prime )  ->  p  e.  Prime )
8560, 84anim12ci 591 . . . . . . 7  |-  ( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) )
8685a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) ) )
8758ex 450 . . . . . . 7  |-  ( A  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  -> 
0  <  A )
)
8887adantrd 484 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  0  <  A ) )
8986, 88jcad 555 . . . . 5  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  0  <  A ) ) )
90 elin 3796 . . . . . . . . 9  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) )
91 simprll 802 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  Prime )
9291biantrud 528 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) ) )
93 0red 10041 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  e.  RR )
94 simpl 473 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR )
9591, 5syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN )
9695nnred 11035 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR )
9795nnnn0d 11351 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN0 )
9897nn0ge0d 11354 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  p )
99 df-3an 1039 . . . . . . . . . . . . 13  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  A )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) )
10023, 99syl6bb 276 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) ) )
101100baibd 948 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
p  <_  A )
)
10293, 94, 96, 98, 101syl22anc 1327 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  p  <_  A ) )
10392, 102bitr3d 270 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] A )  /\  p  e.  Prime )  <-> 
p  <_  A )
)
10490, 103syl5bb 272 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  <->  p  <_  A ) )
105 simprr 796 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <  A )
10694, 105elrpd 11869 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR+ )
107106relogcld 24369 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  A )  e.  RR )
10891, 15syl 17 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  ( ZZ>= `  2 )
)
109108, 18syl 17 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <  p )
11096, 109rplogcld 24375 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  p )  e.  RR+ )
111107, 110rerpdivcld 11903 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
112 simprlr 803 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN )
113112nnzd 11481 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ZZ )
114 flge 12606 . . . . . . . . . 10  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  k  e.  ZZ )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
115111, 113, 114syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
116112nnnn0d 11351 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN0 )
11795, 116nnexpcld 13030 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  NN )
118117nnrpd 11870 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR+ )
119118, 106logled 24373 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( log `  ( p ^ k
) )  <_  ( log `  A ) ) )
12095nnrpd 11870 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR+ )
121 relogexp 24342 . . . . . . . . . . . 12  |-  ( ( p  e.  RR+  /\  k  e.  ZZ )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
122120, 113, 121syl2anc 693 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
123122breq1d 4663 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  (
p ^ k ) )  <_  ( log `  A )  <->  ( k  x.  ( log `  p
) )  <_  ( log `  A ) ) )
124112nnred 11035 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR )
125124, 107, 110lemuldivd 11921 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  x.  ( log `  p ) )  <_  ( log `  A
)  <->  k  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
126119, 123, 1253bitrd 294 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  k  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
127 nnuz 11723 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
128112, 127syl6eleq 2711 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ( ZZ>= `  1 )
)
129111flcld 12599 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )
130 elfz5 12334 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
131128, 129, 130syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
132115, 126, 1313bitr4rd 301 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  ( p ^
k )  <_  A
) )
133104, 132anbi12d 747 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
13494flcld 12599 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  A )  e.  ZZ )
135 elfz5 12334 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ZZ )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
136128, 134, 135syl2anc 693 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
137 flge 12606 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  ZZ )  ->  ( k  <_  A  <->  k  <_  ( |_ `  A ) ) )
13894, 113, 137syl2anc 693 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  A  <->  k  <_  ( |_ `  A ) ) )
139136, 138bitr4d 271 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  A ) )
140 elin 3796 . . . . . . . . . 10  |-  ( p  e.  ( ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  i^i  Prime )  <->  ( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) )
14191biantrud 528 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  <-> 
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) ) )
142106rpge0d 11876 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  A )
143112nnrecred 11066 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
1  /  k )  e.  RR )
14494, 142, 143recxpcld 24469 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  ( 1  /  k ) )  e.  RR )
145 elicc2 12238 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( A  ^c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^c  ( 1  /  k ) ) ) ) )
146 df-3an 1039 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^c 
( 1  /  k
) ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^c  ( 1  / 
k ) ) ) )
147145, 146syl6bb 276 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( A  ^c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  <->  ( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^c 
( 1  /  k
) ) ) ) )
148147baibd 948 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR  /\  ( A  ^c 
( 1  /  k
) )  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  <->  p  <_  ( A  ^c  ( 1  /  k ) ) ) )
14993, 144, 96, 98, 148syl22anc 1327 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  <-> 
p  <_  ( A  ^c  ( 1  /  k ) ) ) )
150141, 149bitr3d 270 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  p  <_  ( A  ^c  ( 1  /  k ) ) ) )
15194, 142, 143cxpge0d 24470 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  ( A  ^c 
( 1  /  k
) ) )
152112nnrpd 11870 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR+ )
15396, 98, 144, 151, 152cxple2d 24473 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  <_  ( A  ^c  ( 1  /  k ) )  <-> 
( p  ^c 
k )  <_  (
( A  ^c 
( 1  /  k
) )  ^c 
k ) ) )
15495nncnd 11036 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  CC )
155 cxpexp 24414 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  k  e.  NN0 )  -> 
( p  ^c 
k )  =  ( p ^ k ) )
156154, 116, 155syl2anc 693 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  ^c  k )  =  ( p ^ k ) )
157112nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  CC )
158112nnne0d 11065 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  =/=  0 )
159157, 158recid2d 10797 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( 1  /  k
)  x.  k )  =  1 )
160159oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  ( ( 1  /  k )  x.  k ) )  =  ( A  ^c  1 ) )
161106, 143, 157cxpmuld 24480 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  ( ( 1  /  k )  x.  k ) )  =  ( ( A  ^c  ( 1  /  k ) )  ^c  k ) )
16294recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  CC )
163162cxp1d 24452 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^c  1 )  =  A )
164160, 161, 1633eqtr3d 2664 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( A  ^c 
( 1  /  k
) )  ^c 
k )  =  A )
165156, 164breq12d 4666 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  ^c 
k )  <_  (
( A  ^c 
( 1  /  k
) )  ^c 
k )  <->  ( p ^ k )  <_  A ) )
166150, 153, 1653bitrd 294 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  ( p ^
k )  <_  A
) )
167140, 166syl5bb 272 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )  <->  ( p ^ k )  <_  A ) )
168139, 167anbi12d 747 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
)  <->  ( k  <_  A  /\  ( p ^
k )  <_  A
) ) )
169117nnred 11035 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR )
170 bernneq3 12992 . . . . . . . . . . . 12  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  k  e.  NN0 )  ->  k  <  ( p ^ k
) )
171108, 116, 170syl2anc 693 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <  ( p ^ k
) )
172124, 169, 171ltled 10185 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <_  ( p ^ k
) )
173 letr 10131 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( k  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  k  <_  A ) )
174124, 169, 94, 173syl3anc 1326 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  k  <_  A ) )
175172, 174mpand 711 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  k  <_  A ) )
176175pm4.71rd 667 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( k  <_  A  /\  ( p ^ k )  <_  A ) ) )
177154exp1d 13003 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  =  p )
17895nnge1d 11063 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <_  p )
17996, 178, 128leexp2ad 13041 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  <_  ( p ^
k ) )
180177, 179eqbrtrrd 4677 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  <_  ( p ^ k
) )
181 letr 10131 . . . . . . . . . . 11  |-  ( ( p  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( p  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  p  <_  A ) )
18296, 169, 94, 181syl3anc 1326 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  p  <_  A ) )
183180, 182mpand 711 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  p  <_  A ) )
184183pm4.71rd 667 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
185168, 176, 1843bitr2rd 297 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  A  /\  ( p ^ k
)  <_  A )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
186133, 185bitrd 268 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
187186ex 450 . . . . 5  |-  ( A  e.  RR  ->  (
( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
)  ->  ( (
p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) ) )
18882, 89, 187pm5.21ndd 369 . . . 4  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
1899adantrr 753 . . . 4  |-  ( ( A  e.  RR  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  CC )
19067, 68, 1, 188, 189fsumcom2 14505 . . 3  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ p  e.  ( ( 0 [,] ( A  ^c  ( 1  / 
k ) ) )  i^i  Prime ) ( log `  p ) )
19166, 190eqtr4d 2659 . 2  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
19242, 43, 1913eqtr4d 2666 1  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^c  ( 1  / 
k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   [,]cicc 12178   ...cfz 12326   |_cfl 12591   ^cexp 12860   #chash 13117   sum_csu 14416   Primecprime 15385   logclog 24301    ^c ccxp 24302   thetaccht 24817  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-vma 24824  df-chp 24825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator