Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem4 Structured version   Visualization version   Unicode version

Theorem wallispilem4 40285
Description:  F maps to explicit expression for the ratio of two consecutive values of  I. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem4.1  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
wallispilem4.2  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  z ) ^ n
)  _d z )
wallispilem4.3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
wallispilem4.4  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
Assertion
Ref Expression
wallispilem4  |-  G  =  H
Distinct variable groups:    z, n    z, F
Allowed substitution hints:    F( k, n)    G( z, k, n)    H( z, k, n)    I( z,
k, n)

Proof of Theorem wallispilem4
Dummy variables  x  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7  |-  ( x  =  1  ->  (
2  x.  x )  =  ( 2  x.  1 ) )
21fveq2d 6195 . . . . . 6  |-  ( x  =  1  ->  (
I `  ( 2  x.  x ) )  =  ( I `  (
2  x.  1 ) ) )
31oveq1d 6665 . . . . . . 7  |-  ( x  =  1  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  1 )  +  1 ) )
43fveq2d 6195 . . . . . 6  |-  ( x  =  1  ->  (
I `  ( (
2  x.  x )  +  1 ) )  =  ( I `  ( ( 2  x.  1 )  +  1 ) ) )
52, 4oveq12d 6668 . . . . 5  |-  ( x  =  1  ->  (
( I `  (
2  x.  x ) )  /  ( I `
 ( ( 2  x.  x )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  1 ) )  / 
( I `  (
( 2  x.  1 )  +  1 ) ) ) )
6 fveq2 6191 . . . . . . 7  |-  ( x  =  1  ->  (  seq 1 (  x.  ,  F ) `  x
)  =  (  seq 1 (  x.  ,  F ) `  1
) )
76oveq2d 6666 . . . . . 6  |-  ( x  =  1  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  x
) )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  1
) ) )
87oveq2d 6666 . . . . 5  |-  ( x  =  1  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  x )
) )  =  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  1 )
) ) )
95, 8eqeq12d 2637 . . . 4  |-  ( x  =  1  ->  (
( ( I `  ( 2  x.  x
) )  /  (
I `  ( (
2  x.  x )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  x ) ) )  <-> 
( ( I `  ( 2  x.  1 ) )  /  (
I `  ( (
2  x.  1 )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) ` 
1 ) ) ) ) )
10 oveq2 6658 . . . . . . 7  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
1110fveq2d 6195 . . . . . 6  |-  ( x  =  y  ->  (
I `  ( 2  x.  x ) )  =  ( I `  (
2  x.  y ) ) )
1210oveq1d 6665 . . . . . . 7  |-  ( x  =  y  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
1312fveq2d 6195 . . . . . 6  |-  ( x  =  y  ->  (
I `  ( (
2  x.  x )  +  1 ) )  =  ( I `  ( ( 2  x.  y )  +  1 ) ) )
1411, 13oveq12d 6668 . . . . 5  |-  ( x  =  y  ->  (
( I `  (
2  x.  x ) )  /  ( I `
 ( ( 2  x.  x )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  y ) )  / 
( I `  (
( 2  x.  y
)  +  1 ) ) ) )
15 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  (  seq 1 (  x.  ,  F ) `  x
)  =  (  seq 1 (  x.  ,  F ) `  y
) )
1615oveq2d 6666 . . . . . 6  |-  ( x  =  y  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  x
) )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )
1716oveq2d 6666 . . . . 5  |-  ( x  =  y  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  x )
) )  =  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  y )
) ) )
1814, 17eqeq12d 2637 . . . 4  |-  ( x  =  y  ->  (
( ( I `  ( 2  x.  x
) )  /  (
I `  ( (
2  x.  x )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  x ) ) )  <-> 
( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) ) )
19 oveq2 6658 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
2  x.  x )  =  ( 2  x.  ( y  +  1 ) ) )
2019fveq2d 6195 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
I `  ( 2  x.  x ) )  =  ( I `  (
2  x.  ( y  +  1 ) ) ) )
2119oveq1d 6665 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  ( y  +  1 ) )  +  1 ) )
2221fveq2d 6195 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
I `  ( (
2  x.  x )  +  1 ) )  =  ( I `  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )
2320, 22oveq12d 6668 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( I `  (
2  x.  x ) )  /  ( I `
 ( ( 2  x.  x )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  ( y  +  1 ) ) )  / 
( I `  (
( 2  x.  (
y  +  1 ) )  +  1 ) ) ) )
24 fveq2 6191 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (  seq 1 (  x.  ,  F ) `  x
)  =  (  seq 1 (  x.  ,  F ) `  (
y  +  1 ) ) )
2524oveq2d 6666 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  x
) )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  (
y  +  1 ) ) ) )
2625oveq2d 6666 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  x )
) )  =  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  ( y  +  1 ) ) ) ) )
2723, 26eqeq12d 2637 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( ( I `  ( 2  x.  x
) )  /  (
I `  ( (
2  x.  x )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  x ) ) )  <-> 
( ( I `  ( 2  x.  (
y  +  1 ) ) )  /  (
I `  ( (
2  x.  ( y  +  1 ) )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  ( y  +  1 ) ) ) ) ) )
28 oveq2 6658 . . . . . . 7  |-  ( x  =  n  ->  (
2  x.  x )  =  ( 2  x.  n ) )
2928fveq2d 6195 . . . . . 6  |-  ( x  =  n  ->  (
I `  ( 2  x.  x ) )  =  ( I `  (
2  x.  n ) ) )
3028oveq1d 6665 . . . . . . 7  |-  ( x  =  n  ->  (
( 2  x.  x
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
3130fveq2d 6195 . . . . . 6  |-  ( x  =  n  ->  (
I `  ( (
2  x.  x )  +  1 ) )  =  ( I `  ( ( 2  x.  n )  +  1 ) ) )
3229, 31oveq12d 6668 . . . . 5  |-  ( x  =  n  ->  (
( I `  (
2  x.  x ) )  /  ( I `
 ( ( 2  x.  x )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  n ) )  / 
( I `  (
( 2  x.  n
)  +  1 ) ) ) )
33 fveq2 6191 . . . . . . 7  |-  ( x  =  n  ->  (  seq 1 (  x.  ,  F ) `  x
)  =  (  seq 1 (  x.  ,  F ) `  n
) )
3433oveq2d 6666 . . . . . 6  |-  ( x  =  n  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  x
) )  =  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) )
3534oveq2d 6666 . . . . 5  |-  ( x  =  n  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  x )
) )  =  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  n )
) ) )
3632, 35eqeq12d 2637 . . . 4  |-  ( x  =  n  ->  (
( ( I `  ( 2  x.  x
) )  /  (
I `  ( (
2  x.  x )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  x ) ) )  <-> 
( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  n ) ) ) ) )
37 2t1e2 11176 . . . . . . 7  |-  ( 2  x.  1 )  =  2
3837fveq2i 6194 . . . . . 6  |-  ( I `
 ( 2  x.  1 ) )  =  ( I `  2
)
3937oveq1i 6660 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
40 2p1e3 11151 . . . . . . . 8  |-  ( 2  +  1 )  =  3
4139, 40eqtri 2644 . . . . . . 7  |-  ( ( 2  x.  1 )  +  1 )  =  3
4241fveq2i 6194 . . . . . 6  |-  ( I `
 ( ( 2  x.  1 )  +  1 ) )  =  ( I `  3
)
4338, 42oveq12i 6662 . . . . 5  |-  ( ( I `  ( 2  x.  1 ) )  /  ( I `  ( ( 2  x.  1 )  +  1 ) ) )  =  ( ( I ` 
2 )  /  (
I `  3 )
)
44 2z 11409 . . . . . . . . 9  |-  2  e.  ZZ
45 uzid 11702 . . . . . . . . 9  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
4644, 45ax-mp 5 . . . . . . . 8  |-  2  e.  ( ZZ>= `  2 )
47 wallispilem4.2 . . . . . . . . . 10  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  z ) ^ n
)  _d z )
4847wallispilem2 40283 . . . . . . . . 9  |-  ( ( I `  0 )  =  pi  /\  (
I `  1 )  =  2  /\  (
2  e.  ( ZZ>= ` 
2 )  ->  (
I `  2 )  =  ( ( ( 2  -  1 )  /  2 )  x.  ( I `  (
2  -  2 ) ) ) ) )
4948simp3i 1072 . . . . . . . 8  |-  ( 2  e.  ( ZZ>= `  2
)  ->  ( I `  2 )  =  ( ( ( 2  -  1 )  / 
2 )  x.  (
I `  ( 2  -  2 ) ) ) )
5046, 49ax-mp 5 . . . . . . 7  |-  ( I `
 2 )  =  ( ( ( 2  -  1 )  / 
2 )  x.  (
I `  ( 2  -  2 ) ) )
51 2m1e1 11135 . . . . . . . . 9  |-  ( 2  -  1 )  =  1
5251oveq1i 6660 . . . . . . . 8  |-  ( ( 2  -  1 )  /  2 )  =  ( 1  /  2
)
53 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
5453subidi 10352 . . . . . . . . . 10  |-  ( 2  -  2 )  =  0
5554fveq2i 6194 . . . . . . . . 9  |-  ( I `
 ( 2  -  2 ) )  =  ( I `  0
)
5648simp1i 1070 . . . . . . . . 9  |-  ( I `
 0 )  =  pi
5755, 56eqtri 2644 . . . . . . . 8  |-  ( I `
 ( 2  -  2 ) )  =  pi
5852, 57oveq12i 6662 . . . . . . 7  |-  ( ( ( 2  -  1 )  /  2 )  x.  ( I `  ( 2  -  2 ) ) )  =  ( ( 1  / 
2 )  x.  pi )
59 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
60 2cnne0 11242 . . . . . . . . 9  |-  ( 2  e.  CC  /\  2  =/=  0 )
61 picn 24211 . . . . . . . . 9  |-  pi  e.  CC
62 div32 10705 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  pi  e.  CC )  ->  ( ( 1  /  2 )  x.  pi )  =  ( 1  x.  ( pi 
/  2 ) ) )
6359, 60, 61, 62mp3an 1424 . . . . . . . 8  |-  ( ( 1  /  2 )  x.  pi )  =  ( 1  x.  (
pi  /  2 ) )
64 2ne0 11113 . . . . . . . . . 10  |-  2  =/=  0
6561, 53, 64divcli 10767 . . . . . . . . 9  |-  ( pi 
/  2 )  e.  CC
6665mulid2i 10043 . . . . . . . 8  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
6763, 66eqtri 2644 . . . . . . 7  |-  ( ( 1  /  2 )  x.  pi )  =  ( pi  /  2
)
6850, 58, 673eqtri 2648 . . . . . 6  |-  ( I `
 2 )  =  ( pi  /  2
)
69 3z 11410 . . . . . . . . 9  |-  3  e.  ZZ
70 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
71 3re 11094 . . . . . . . . . 10  |-  3  e.  RR
72 2lt3 11195 . . . . . . . . . 10  |-  2  <  3
7370, 71, 72ltleii 10160 . . . . . . . . 9  |-  2  <_  3
74 eluz2 11693 . . . . . . . . 9  |-  ( 3  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  3  e.  ZZ  /\  2  <_ 
3 ) )
7544, 69, 73, 74mpbir3an 1244 . . . . . . . 8  |-  3  e.  ( ZZ>= `  2 )
7647wallispilem2 40283 . . . . . . . . 9  |-  ( ( I `  0 )  =  pi  /\  (
I `  1 )  =  2  /\  (
3  e.  ( ZZ>= ` 
2 )  ->  (
I `  3 )  =  ( ( ( 3  -  1 )  /  3 )  x.  ( I `  (
3  -  2 ) ) ) ) )
7776simp3i 1072 . . . . . . . 8  |-  ( 3  e.  ( ZZ>= `  2
)  ->  ( I `  3 )  =  ( ( ( 3  -  1 )  / 
3 )  x.  (
I `  ( 3  -  2 ) ) ) )
7875, 77ax-mp 5 . . . . . . 7  |-  ( I `
 3 )  =  ( ( ( 3  -  1 )  / 
3 )  x.  (
I `  ( 3  -  2 ) ) )
79 3m1e2 11137 . . . . . . . . . 10  |-  ( 3  -  1 )  =  2
8079eqcomi 2631 . . . . . . . . 9  |-  2  =  ( 3  -  1 )
8180oveq1i 6660 . . . . . . . 8  |-  ( 2  /  3 )  =  ( ( 3  -  1 )  /  3
)
82 3cn 11095 . . . . . . . . . . 11  |-  3  e.  CC
8382, 53, 59, 40subaddrii 10370 . . . . . . . . . 10  |-  ( 3  -  2 )  =  1
8483fveq2i 6194 . . . . . . . . 9  |-  ( I `
 ( 3  -  2 ) )  =  ( I `  1
)
8548simp2i 1071 . . . . . . . . 9  |-  ( I `
 1 )  =  2
8684, 85eqtr2i 2645 . . . . . . . 8  |-  2  =  ( I `  ( 3  -  2 ) )
8781, 86oveq12i 6662 . . . . . . 7  |-  ( ( 2  /  3 )  x.  2 )  =  ( ( ( 3  -  1 )  / 
3 )  x.  (
I `  ( 3  -  2 ) ) )
88 3ne0 11115 . . . . . . . . 9  |-  3  =/=  0
8953, 82, 88divcli 10767 . . . . . . . 8  |-  ( 2  /  3 )  e.  CC
9089, 53mulcomi 10046 . . . . . . 7  |-  ( ( 2  /  3 )  x.  2 )  =  ( 2  x.  (
2  /  3 ) )
9178, 87, 903eqtr2i 2650 . . . . . 6  |-  ( I `
 3 )  =  ( 2  x.  (
2  /  3 ) )
9268, 91oveq12i 6662 . . . . 5  |-  ( ( I `  2 )  /  ( I ` 
3 ) )  =  ( ( pi  / 
2 )  /  (
2  x.  ( 2  /  3 ) ) )
93 1z 11407 . . . . . . . . 9  |-  1  e.  ZZ
94 seq1 12814 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  (  seq 1 (  x.  ,  F ) `  1
)  =  ( F `
 1 ) )
9593, 94ax-mp 5 . . . . . . . 8  |-  (  seq 1 (  x.  ,  F ) `  1
)  =  ( F `
 1 )
96 1nn 11031 . . . . . . . . 9  |-  1  e.  NN
97 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
2  x.  k )  =  ( 2  x.  1 ) )
9897, 37syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
2  x.  k )  =  2 )
9997oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  1 )  - 
1 ) )
10037oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  1 )  -  1 )  =  ( 2  -  1 )
101100, 51eqtri 2644 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  -  1 )  =  1
10299, 101syl6eq 2672 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( 2  x.  k
)  -  1 )  =  1 )
10398, 102oveq12d 6668 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  =  ( 2  / 
1 ) )
10453div1i 10753 . . . . . . . . . . . 12  |-  ( 2  /  1 )  =  2
105103, 104syl6eq 2672 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  =  2 )
10698oveq1d 6665 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( 2  x.  k
)  +  1 )  =  ( 2  +  1 ) )
107106, 40syl6eq 2672 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
( 2  x.  k
)  +  1 )  =  3 )
10898, 107oveq12d 6668 . . . . . . . . . . 11  |-  ( k  =  1  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  =  ( 2  / 
3 ) )
109105, 108oveq12d 6668 . . . . . . . . . 10  |-  ( k  =  1  ->  (
( ( 2  x.  k )  /  (
( 2  x.  k
)  -  1 ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( 2  x.  ( 2  /  3
) ) )
110 wallispilem4.1 . . . . . . . . . 10  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
111 ovex 6678 . . . . . . . . . 10  |-  ( 2  x.  ( 2  / 
3 ) )  e. 
_V
112109, 110, 111fvmpt 6282 . . . . . . . . 9  |-  ( 1  e.  NN  ->  ( F `  1 )  =  ( 2  x.  ( 2  /  3
) ) )
11396, 112ax-mp 5 . . . . . . . 8  |-  ( F `
 1 )  =  ( 2  x.  (
2  /  3 ) )
11495, 113eqtr2i 2645 . . . . . . 7  |-  ( 2  x.  ( 2  / 
3 ) )  =  (  seq 1 (  x.  ,  F ) `
 1 )
115114oveq2i 6661 . . . . . 6  |-  ( ( pi  /  2 )  /  ( 2  x.  ( 2  /  3
) ) )  =  ( ( pi  / 
2 )  /  (  seq 1 (  x.  ,  F ) `  1
) )
11653, 89mulcli 10045 . . . . . . . . 9  |-  ( 2  x.  ( 2  / 
3 ) )  e.  CC
117113, 116eqeltri 2697 . . . . . . . 8  |-  ( F `
 1 )  e.  CC
11895, 117eqeltri 2697 . . . . . . 7  |-  (  seq 1 (  x.  ,  F ) `  1
)  e.  CC
11953, 82, 64, 88divne0i 10773 . . . . . . . . 9  |-  ( 2  /  3 )  =/=  0
12053, 89, 64, 119mulne0i 10670 . . . . . . . 8  |-  ( 2  x.  ( 2  / 
3 ) )  =/=  0
121114, 120eqnetrri 2865 . . . . . . 7  |-  (  seq 1 (  x.  ,  F ) `  1
)  =/=  0
12265, 118, 121divreci 10770 . . . . . 6  |-  ( ( pi  /  2 )  /  (  seq 1
(  x.  ,  F
) `  1 )
)  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) ` 
1 ) ) )
123115, 122eqtri 2644 . . . . 5  |-  ( ( pi  /  2 )  /  ( 2  x.  ( 2  /  3
) ) )  =  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  1
) ) )
12443, 92, 1233eqtri 2648 . . . 4  |-  ( ( I `  ( 2  x.  1 ) )  /  ( I `  ( ( 2  x.  1 )  +  1 ) ) )  =  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  1
) ) )
125 oveq2 6658 . . . . . . 7  |-  ( ( ( I `  (
2  x.  y ) )  /  ( I `
 ( ( 2  x.  y )  +  1 ) ) )  =  ( ( pi 
/  2 )  x.  ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  -> 
( ( ( ( ( 2  x.  y
)  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  / 
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  3 ) ) )  x.  (
( I `  (
2  x.  y ) )  /  ( I `
 ( ( 2  x.  y )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  (
2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( pi 
/  2 )  x.  ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) ) ) ) )
126125adantl 482 . . . . . 6  |-  ( ( y  e.  NN  /\  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) )  ->  ( (
( ( ( 2  x.  y )  +  1 )  /  (
2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `
 ( 2  x.  y ) )  / 
( I `  (
( 2  x.  y
)  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  y
)  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  / 
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  3 ) ) )  x.  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  y )
) ) ) )
127 2cnd 11093 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  2  e.  CC )
128 nncn 11028 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  CC )
12959a1i 11 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  1  e.  CC )
130127, 128, 129adddid 10064 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =  ( ( 2  x.  y )  +  ( 2  x.  1 ) ) )
131127mulid1d 10057 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
2  x.  1 )  =  2 )
132131oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( 2  x.  1 ) )  =  ( ( 2  x.  y )  +  2 ) )
133130, 132eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =  ( ( 2  x.  y )  +  2 ) )
134133oveq1d 6665 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  =  ( ( ( 2  x.  y )  +  2 )  - 
1 ) )
135127, 128mulcld 10060 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  CC )
136135, 127, 129addsubassd 10412 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  2 )  -  1 )  =  ( ( 2  x.  y )  +  ( 2  -  1 ) ) )
13751a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  -  1 )  =  1 )
138137oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( 2  -  1 ) )  =  ( ( 2  x.  y )  +  1 ) )
139134, 136, 1383eqtrd 2660 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  =  ( ( 2  x.  y )  +  1 ) )
140139oveq1d 6665 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  -  1 )  /  ( 2  x.  ( y  +  1 ) ) )  =  ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) ) )
141140oveq1d 6665 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  ( y  +  1 ) )  - 
1 )  /  (
2  x.  ( y  +  1 ) ) )  x.  ( I `
 ( 2  x.  y ) ) )  =  ( ( ( ( 2  x.  y
)  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  x.  ( I `  (
2  x.  y ) ) ) )
14279a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
3  -  1 )  =  2 )
143142oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( 3  -  1 ) )  =  ( ( 2  x.  y )  +  2 ) )
14482a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  3  e.  CC )
145135, 144, 129addsubassd 10412 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  3 )  -  1 )  =  ( ( 2  x.  y )  +  ( 3  -  1 ) ) )
146143, 145, 1333eqtr4d 2666 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  3 )  -  1 )  =  ( 2  x.  ( y  +  1 ) ) )
147146oveq1d 6665 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  y )  +  3 )  -  1 )  /  ( ( 2  x.  y )  +  3 ) )  =  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )
148147oveq1d 6665 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( ( ( 2  x.  y )  +  3 )  - 
1 )  /  (
( 2  x.  y
)  +  3 ) )  x.  ( I `
 ( ( ( 2  x.  y )  +  3 )  - 
2 ) ) )  =  ( ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) )  x.  ( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) ) ) )
149141, 148oveq12d 6668 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( ( ( 2  x.  ( y  +  1 ) )  -  1 )  / 
( 2  x.  (
y  +  1 ) ) )  x.  (
I `  ( 2  x.  y ) ) )  /  ( ( ( ( ( 2  x.  y )  +  3 )  -  1 )  /  ( ( 2  x.  y )  +  3 ) )  x.  ( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) ) ) )  =  ( ( ( ( ( 2  x.  y
)  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  x.  ( I `  (
2  x.  y ) ) )  /  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  3 ) )  x.  ( I `
 ( ( ( 2  x.  y )  +  3 )  - 
2 ) ) ) ) )
15044a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  2  e.  ZZ )
151 nnz 11399 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  ZZ )
152151peano2zd 11485 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  ZZ )
153150, 152zmulcld 11488 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  e.  ZZ )
15470a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  2  e.  RR )
155 nnre 11027 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  RR )
156 1red 10055 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  1  e.  RR )
157155, 156readdcld 10069 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  RR )
158 0le2 11111 . . . . . . . . . . . . . . 15  |-  0  <_  2
159158a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <_  2 )
160 nnnn0 11299 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  NN0 )
161160nn0ge0d 11354 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  0  <_  y )
162156, 155addge02d 10616 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
0  <_  y  <->  1  <_  ( y  +  1 ) ) )
163161, 162mpbid 222 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  1  <_  ( y  +  1 ) )
164154, 157, 159, 163lemulge11d 10961 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  2  <_  ( 2  x.  (
y  +  1 ) ) )
16544eluz1i 11695 . . . . . . . . . . . . 13  |-  ( ( 2  x.  ( y  +  1 ) )  e.  ( ZZ>= `  2
)  <->  ( ( 2  x.  ( y  +  1 ) )  e.  ZZ  /\  2  <_ 
( 2  x.  (
y  +  1 ) ) ) )
166153, 164, 165sylanbrc 698 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  e.  ( ZZ>= `  2
) )
16747, 166itgsinexp 40170 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
I `  ( 2  x.  ( y  +  1 ) ) )  =  ( ( ( ( 2  x.  ( y  +  1 ) )  -  1 )  / 
( 2  x.  (
y  +  1 ) ) )  x.  (
I `  ( (
2  x.  ( y  +  1 ) )  -  2 ) ) ) )
168133oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  2 )  =  ( ( ( 2  x.  y )  +  2 )  - 
2 ) )
169135, 127pncand 10393 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  2 )  -  2 )  =  ( 2  x.  y ) )
170168, 169eqtrd 2656 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  2 )  =  ( 2  x.  y ) )
171170fveq2d 6195 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
I `  ( (
2  x.  ( y  +  1 ) )  -  2 ) )  =  ( I `  ( 2  x.  y
) ) )
172171oveq2d 6666 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  ( y  +  1 ) )  - 
1 )  /  (
2  x.  ( y  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  ( y  +  1 ) )  - 
2 ) ) )  =  ( ( ( ( 2  x.  (
y  +  1 ) )  -  1 )  /  ( 2  x.  ( y  +  1 ) ) )  x.  ( I `  (
2  x.  y ) ) ) )
173167, 172eqtrd 2656 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
I `  ( 2  x.  ( y  +  1 ) ) )  =  ( ( ( ( 2  x.  ( y  +  1 ) )  -  1 )  / 
( 2  x.  (
y  +  1 ) ) )  x.  (
I `  ( 2  x.  y ) ) ) )
174133oveq1d 6665 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  +  1 )  =  ( ( ( 2  x.  y )  +  2 )  +  1 ) )
175135, 127, 129addassd 10062 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  2 )  +  1 )  =  ( ( 2  x.  y )  +  ( 2  +  1 ) ) )
17640a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  +  1 )  =  3 )
177176oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( 2  +  1 ) )  =  ( ( 2  x.  y )  +  3 ) )
178174, 175, 1773eqtrd 2660 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  +  1 )  =  ( ( 2  x.  y )  +  3 ) )
179178fveq2d 6195 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
I `  ( (
2  x.  ( y  +  1 ) )  +  1 ) )  =  ( I `  ( ( 2  x.  y )  +  3 ) ) )
180150, 151zmulcld 11488 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  ZZ )
18169a1i 11 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  3  e.  ZZ )
182180, 181zaddcld 11486 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  3 )  e.  ZZ )
183154, 155remulcld 10070 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  RR )
18471a1i 11 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  3  e.  RR )
185183, 184readdcld 10069 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  3 )  e.  RR )
186 nnge1 11046 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  1  <_  y )
187154, 155, 159, 186lemulge11d 10961 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  2  <_  ( 2  x.  y
) )
188 0re 10040 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
189 3pos 11114 . . . . . . . . . . . . . . . 16  |-  0  <  3
190188, 71, 189ltleii 10160 . . . . . . . . . . . . . . 15  |-  0  <_  3
191183, 184addge01d 10615 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
0  <_  3  <->  ( 2  x.  y )  <_ 
( ( 2  x.  y )  +  3 ) ) )
192190, 191mpbii 223 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  y )  <_  ( ( 2  x.  y )  +  3 ) )
193154, 183, 185, 187, 192letrd 10194 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  2  <_  ( ( 2  x.  y )  +  3 ) )
19444eluz1i 11695 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  y
)  +  3 )  e.  ( ZZ>= `  2
)  <->  ( ( ( 2  x.  y )  +  3 )  e.  ZZ  /\  2  <_ 
( ( 2  x.  y )  +  3 ) ) )
195182, 193, 194sylanbrc 698 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  3 )  e.  ( ZZ>= `  2
) )
19647, 195itgsinexp 40170 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
I `  ( (
2  x.  y )  +  3 ) )  =  ( ( ( ( ( 2  x.  y )  +  3 )  -  1 )  /  ( ( 2  x.  y )  +  3 ) )  x.  ( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) ) ) )
197179, 196eqtrd 2656 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
I `  ( (
2  x.  ( y  +  1 ) )  +  1 ) )  =  ( ( ( ( ( 2  x.  y )  +  3 )  -  1 )  /  ( ( 2  x.  y )  +  3 ) )  x.  ( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) ) ) )
198173, 197oveq12d 6668 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( I `  (
2  x.  ( y  +  1 ) ) )  /  ( I `
 ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )  =  ( ( ( ( ( 2  x.  ( y  +  1 ) )  -  1 )  /  ( 2  x.  ( y  +  1 ) ) )  x.  ( I `  ( 2  x.  y
) ) )  / 
( ( ( ( ( 2  x.  y
)  +  3 )  -  1 )  / 
( ( 2  x.  y )  +  3 ) )  x.  (
I `  ( (
( 2  x.  y
)  +  3 )  -  2 ) ) ) ) )
199135, 129addcld 10059 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  1 )  e.  CC )
200128, 129addcld 10059 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  CC )
201127, 200mulcld 10060 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  e.  CC )
20264a1i 11 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  2  =/=  0 )
203 peano2nn 11032 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
204203nnne0d 11065 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  +  1 )  =/=  0 )
205127, 200, 202, 204mulne0d 10679 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =/=  0 )
206199, 201, 205divcld 10801 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  e.  CC )
207 2nn0 11309 . . . . . . . . . . . . 13  |-  2  e.  NN0
208207a1i 11 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  2  e.  NN0 )
209208, 160nn0mulcld 11356 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  NN0 )
21047wallispilem3 40284 . . . . . . . . . . . 12  |-  ( ( 2  x.  y )  e.  NN0  ->  ( I `
 ( 2  x.  y ) )  e.  RR+ )
211210rpcnd 11874 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  NN0  ->  ( I `
 ( 2  x.  y ) )  e.  CC )
212209, 211syl 17 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
I `  ( 2  x.  y ) )  e.  CC )
213135, 144addcld 10059 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  3 )  e.  CC )
214 0red 10041 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  e.  RR )
215 2pos 11112 . . . . . . . . . . . . . . . 16  |-  0  <  2
216215a1i 11 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  0  <  2 )
217 nngt0 11049 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  0  <  y )
218154, 155, 216, 217mulgt0d 10192 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <  ( 2  x.  y
) )
219184, 189jctir 561 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
3  e.  RR  /\  0  <  3 ) )
220 elrp 11834 . . . . . . . . . . . . . . . 16  |-  ( 3  e.  RR+  <->  ( 3  e.  RR  /\  0  <  3 ) )
221219, 220sylibr 224 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  3  e.  RR+ )
222183, 221ltaddrpd 11905 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
2  x.  y )  <  ( ( 2  x.  y )  +  3 ) )
223214, 183, 185, 218, 222lttrd 10198 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  0  <  ( ( 2  x.  y )  +  3 ) )
224223gt0ne0d 10592 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  3 )  =/=  0 )
225201, 213, 224divcld 10801 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) )  e.  CC )
226201, 213, 205, 224divne0d 10817 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) )  =/=  0 )
227182, 150zsubcld 11487 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  3 )  -  2 )  e.  ZZ )
228185, 154subge0d 10617 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
0  <_  ( (
( 2  x.  y
)  +  3 )  -  2 )  <->  2  <_  ( ( 2  x.  y
)  +  3 ) ) )
229193, 228mpbird 247 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  0  <_  ( ( ( 2  x.  y )  +  3 )  -  2 ) )
230 elnn0z 11390 . . . . . . . . . . . . . 14  |-  ( ( ( ( 2  x.  y )  +  3 )  -  2 )  e.  NN0  <->  ( ( ( ( 2  x.  y
)  +  3 )  -  2 )  e.  ZZ  /\  0  <_ 
( ( ( 2  x.  y )  +  3 )  -  2 ) ) )
231227, 229, 230sylanbrc 698 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  3 )  -  2 )  e.  NN0 )
23247wallispilem3 40284 . . . . . . . . . . . . 13  |-  ( ( ( ( 2  x.  y )  +  3 )  -  2 )  e.  NN0  ->  ( I `
 ( ( ( 2  x.  y )  +  3 )  - 
2 ) )  e.  RR+ )
233231, 232syl 17 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
I `  ( (
( 2  x.  y
)  +  3 )  -  2 ) )  e.  RR+ )
234233rpcnne0d 11881 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) )  e.  CC  /\  ( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) )  =/=  0 ) )
235225, 226, 234jca31 557 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) )  e.  CC  /\  ( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  3 ) )  =/=  0 )  /\  ( ( I `
 ( ( ( 2  x.  y )  +  3 )  - 
2 ) )  e.  CC  /\  ( I `
 ( ( ( 2  x.  y )  +  3 )  - 
2 ) )  =/=  0 ) ) )
236 divmuldiv 10725 . . . . . . . . . 10  |-  ( ( ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  e.  CC  /\  ( I `  (
2  x.  y ) )  e.  CC )  /\  ( ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) )  e.  CC  /\  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) )  =/=  0 )  /\  ( ( I `  ( ( ( 2  x.  y )  +  3 )  -  2 ) )  e.  CC  /\  ( I `  (
( ( 2  x.  y )  +  3 )  -  2 ) )  =/=  0 ) ) )  ->  (
( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y ) )  /  ( I `  ( ( ( 2  x.  y )  +  3 )  -  2 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  x.  ( I `  ( 2  x.  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) )  x.  (
I `  ( (
( 2  x.  y
)  +  3 )  -  2 ) ) ) ) )
237206, 212, 235, 236syl21anc 1325 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y ) )  /  ( I `  ( ( ( 2  x.  y )  +  3 )  -  2 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  x.  ( I `  ( 2  x.  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) )  x.  (
I `  ( (
( 2  x.  y
)  +  3 )  -  2 ) ) ) ) )
238149, 198, 2373eqtr4d 2666 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( I `  (
2  x.  ( y  +  1 ) ) )  /  ( I `
 ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
( 2  x.  y
)  +  3 )  -  2 ) ) ) ) )
239135, 144, 127addsubassd 10412 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  3 )  -  2 )  =  ( ( 2  x.  y )  +  ( 3  -  2 ) ) )
24083a1i 11 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
3  -  2 )  =  1 )
241240oveq2d 6666 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  ( 3  -  2 ) )  =  ( ( 2  x.  y )  +  1 ) )
242239, 241eqtrd 2656 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  3 )  -  2 )  =  ( ( 2  x.  y )  +  1 ) )
243242fveq2d 6195 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
I `  ( (
( 2  x.  y
)  +  3 )  -  2 ) )  =  ( I `  ( ( 2  x.  y )  +  1 ) ) )
244243oveq2d 6666 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( I `  (
2  x.  y ) )  /  ( I `
 ( ( ( 2  x.  y )  +  3 )  - 
2 ) ) )  =  ( ( I `
 ( 2  x.  y ) )  / 
( I `  (
( 2  x.  y
)  +  1 ) ) ) )
245244oveq2d 6666 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y ) )  /  ( I `  ( ( ( 2  x.  y )  +  3 )  -  2 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) ) ) )
246238, 245eqtrd 2656 . . . . . . 7  |-  ( y  e.  NN  ->  (
( I `  (
2  x.  ( y  +  1 ) ) )  /  ( I `
 ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) ) ) )
247246adantr 481 . . . . . 6  |-  ( ( y  e.  NN  /\  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) )  ->  ( (
I `  ( 2  x.  ( y  +  1 ) ) )  / 
( I `  (
( 2  x.  (
y  +  1 ) )  +  1 ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( I `  ( 2  x.  y ) )  /  ( I `  ( ( 2  x.  y )  +  1 ) ) ) ) )
248 elnnuz 11724 . . . . . . . . . . . . 13  |-  ( y  e.  NN  <->  y  e.  ( ZZ>= `  1 )
)
249248biimpi 206 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ( ZZ>= `  1 )
)
250 seqp1 12816 . . . . . . . . . . . 12  |-  ( y  e.  ( ZZ>= `  1
)  ->  (  seq 1 (  x.  ,  F ) `  (
y  +  1 ) )  =  ( (  seq 1 (  x.  ,  F ) `  y )  x.  ( F `  ( y  +  1 ) ) ) )
251249, 250syl 17 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  (
y  +  1 ) )  =  ( (  seq 1 (  x.  ,  F ) `  y )  x.  ( F `  ( y  +  1 ) ) ) )
252110a1i 11 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) ) )
253 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( y  +  1 )  ->  (
2  x.  k )  =  ( 2  x.  ( y  +  1 ) ) )
254253oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) )
255253, 254oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  =  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  ( y  +  1 ) )  -  1 ) ) )
256253oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  ( y  +  1 ) )  +  1 ) )
257253, 256oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( k  =  ( y  +  1 )  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )
258255, 257oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( k  =  ( y  +  1 )  ->  (
( ( 2  x.  k )  /  (
( 2  x.  k
)  -  1 ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  +  1 ) ) ) )
259258adantl 482 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  k  =  ( y  +  1 ) )  ->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) )  =  ( ( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) )
260154, 157remulcld 10070 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  e.  RR )
261260, 156resubcld 10458 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  e.  RR )
262 1lt2 11194 . . . . . . . . . . . . . . . . . . 19  |-  1  <  2
263262a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  1  <  2 )
264 nnrp 11842 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  e.  RR+ )
265156, 264ltaddrp2d 11906 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  NN  ->  1  <  ( y  +  1 ) )
266154, 157, 263, 265mulgt1d 10960 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  1  <  ( 2  x.  (
y  +  1 ) ) )
267156, 266gtned 10172 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  =/=  1 )
268201, 129, 267subne0d 10401 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  -  1 )  =/=  0 )
269260, 261, 268redivcld 10853 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  e.  RR )
270178, 185eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  +  1 )  e.  RR )
271178, 224eqnetrd 2861 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  +  1 )  =/=  0 )
272260, 270, 271redivcld 10853 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) )  e.  RR )
273269, 272remulcld 10070 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )  e.  RR )
274252, 259, 203, 273fvmptd 6288 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  ( F `  ( y  +  1 ) )  =  ( ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  - 
1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  +  1 ) ) ) )
275274oveq2d 6666 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
(  seq 1 (  x.  ,  F ) `  y )  x.  ( F `  ( y  +  1 ) ) )  =  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) )
276251, 275eqtrd 2656 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  (
y  +  1 ) )  =  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) )
277276oveq2d 6666 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  (
y  +  1 ) ) )  =  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) ) )
278277oveq2d 6666 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  ( y  +  1 ) ) ) )  =  ( ( pi  /  2
)  x.  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) ) ) )
279139oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  =  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) ) )
280178oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) )  =  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )
281279, 280oveq12d 6668 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) )  =  ( ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  3 ) ) ) )
282281oveq2d 6666 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
(  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) )  =  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) )
283282oveq2d 6666 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
1  /  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  (
y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) )  =  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) ) )
284283oveq2d 6666 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) ) )  =  ( ( pi  /  2
)  x.  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) ) ) ) ) )
285 elfznn 12370 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( 1 ... y )  ->  w  e.  NN )
286285adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN  /\  w  e.  ( 1 ... y ) )  ->  w  e.  NN )
287110a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  NN  ->  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) ) )
288 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  w  ->  (
2  x.  k )  =  ( 2  x.  w ) )
289288oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  w  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  w )  - 
1 ) )
290288, 289oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  w  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  =  ( ( 2  x.  w )  / 
( ( 2  x.  w )  -  1 ) ) )
291288oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  w  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  w )  +  1 ) )
292288, 291oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  w  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  w )  / 
( ( 2  x.  w )  +  1 ) ) )
293290, 292oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  w  ->  (
( ( 2  x.  k )  /  (
( 2  x.  k
)  -  1 ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  w )  /  ( ( 2  x.  w )  - 
1 ) )  x.  ( ( 2  x.  w )  /  (
( 2  x.  w
)  +  1 ) ) ) )
294293adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  NN  /\  k  =  w )  ->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  w
)  /  ( ( 2  x.  w )  -  1 ) )  x.  ( ( 2  x.  w )  / 
( ( 2  x.  w )  +  1 ) ) ) )
295 id 22 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  NN  ->  w  e.  NN )
296 2rp 11837 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  RR+
297296a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  NN  ->  2  e.  RR+ )
298 nnrp 11842 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  NN  ->  w  e.  RR+ )
299297, 298rpmulcld 11888 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  NN  ->  (
2  x.  w )  e.  RR+ )
30070a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  NN  ->  2  e.  RR )
301 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  NN  ->  w  e.  RR )
302300, 301remulcld 10070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  NN  ->  (
2  x.  w )  e.  RR )
303 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  NN  ->  1  e.  RR )
304302, 303resubcld 10458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  NN  ->  (
( 2  x.  w
)  -  1 )  e.  RR )
305 nnge1 11046 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  NN  ->  1  <_  w )
306 nncn 11028 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  e.  NN  ->  w  e.  CC )
307306mulid2d 10058 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  NN  ->  (
1  x.  w )  =  w )
308303, 300, 298ltmul1d 11913 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  e.  NN  ->  (
1  <  2  <->  ( 1  x.  w )  < 
( 2  x.  w
) ) )
309262, 308mpbii 223 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  NN  ->  (
1  x.  w )  <  ( 2  x.  w ) )
310307, 309eqbrtrrd 4677 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  NN  ->  w  <  ( 2  x.  w
) )
311303, 301, 302, 305, 310lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  NN  ->  1  <  ( 2  x.  w
) )
312303, 302posdifd 10614 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  NN  ->  (
1  <  ( 2  x.  w )  <->  0  <  ( ( 2  x.  w
)  -  1 ) ) )
313311, 312mpbid 222 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  NN  ->  0  <  ( ( 2  x.  w )  -  1 ) )
314304, 313elrpd 11869 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  NN  ->  (
( 2  x.  w
)  -  1 )  e.  RR+ )
315299, 314rpdivcld 11889 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  NN  ->  (
( 2  x.  w
)  /  ( ( 2  x.  w )  -  1 ) )  e.  RR+ )
316158a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  NN  ->  0  <_  2 )
317298rpge0d 11876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  NN  ->  0  <_  w )
318300, 301, 316, 317mulge0d 10604 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  NN  ->  0  <_  ( 2  x.  w
) )
319302, 318ge0p1rpd 11902 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  NN  ->  (
( 2  x.  w
)  +  1 )  e.  RR+ )
320299, 319rpdivcld 11889 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  NN  ->  (
( 2  x.  w
)  /  ( ( 2  x.  w )  +  1 ) )  e.  RR+ )
321315, 320rpmulcld 11888 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  NN  ->  (
( ( 2  x.  w )  /  (
( 2  x.  w
)  -  1 ) )  x.  ( ( 2  x.  w )  /  ( ( 2  x.  w )  +  1 ) ) )  e.  RR+ )
322287, 294, 295, 321fvmptd 6288 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  NN  ->  ( F `  w )  =  ( ( ( 2  x.  w )  /  ( ( 2  x.  w )  - 
1 ) )  x.  ( ( 2  x.  w )  /  (
( 2  x.  w
)  +  1 ) ) ) )
323322, 321eqeltrd 2701 . . . . . . . . . . . . . . . 16  |-  ( w  e.  NN  ->  ( F `  w )  e.  RR+ )
324286, 323syl 17 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN  /\  w  e.  ( 1 ... y ) )  ->  ( F `  w )  e.  RR+ )
325 rpmulcl 11855 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR+  /\  z  e.  RR+ )  ->  (
w  x.  z )  e.  RR+ )
326325adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  NN  /\  ( w  e.  RR+  /\  z  e.  RR+ ) )  -> 
( w  x.  z
)  e.  RR+ )
327249, 324, 326seqcl 12821 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  y
)  e.  RR+ )
328327rpcnne0d 11881 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
(  seq 1 (  x.  ,  F ) `  y )  e.  CC  /\  (  seq 1 (  x.  ,  F ) `
 y )  =/=  0 ) )
329296a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  2  e.  RR+ )
330155, 161ge0p1rpd 11902 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  RR+ )
331329, 330rpmulcld 11888 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
2  x.  ( y  +  1 ) )  e.  RR+ )
332154, 155, 159, 161mulge0d 10604 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  0  <_  ( 2  x.  y
) )
333183, 332ge0p1rpd 11902 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  1 )  e.  RR+ )
334331, 333rpdivcld 11889 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  e.  RR+ )
335329, 264rpmulcld 11888 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  (
2  x.  y )  e.  RR+ )
336335, 221rpaddcld 11887 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  3 )  e.  RR+ )
337331, 336rpdivcld 11889 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) )  e.  RR+ )
338334, 337rpmulcld 11888 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  e.  RR+ )
339338rpcnne0d 11881 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  e.  CC  /\  ( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  =/=  0 ) )
340 divdiv1 10736 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( (  seq 1
(  x.  ,  F
) `  y )  e.  CC  /\  (  seq 1 (  x.  ,  F ) `  y
)  =/=  0 )  /\  ( ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )  e.  CC  /\  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )  =/=  0 ) )  -> 
( ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) ) )
341129, 328, 339, 340syl3anc 1326 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( 1  /  (  seq 1 (  x.  ,  F ) `  y
) )  /  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) ) ) ) )
342341eqcomd 2628 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
1  /  ( (  seq 1 (  x.  ,  F ) `  y )  x.  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) )  =  ( ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) )  /  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) )
343342oveq2d 6666 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) ) ) ) )  =  ( ( pi  /  2
)  x.  ( ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) )  /  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) ) )
34465a1i 11 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
pi  /  2 )  e.  CC )
345327rpcnd 11874 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  y
)  e.  CC )
346327rpne0d 11877 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  y
)  =/=  0 )
347345, 346reccld 10794 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) )  e.  CC )
348338rpcnd 11874 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  e.  CC )
349338rpne0d 11877 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  =/=  0 )
350344, 347, 348, 349divassd 10836 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( ( pi  /  2
)  x.  ( ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) )  /  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) ) )
351139, 268eqnetrrd 2862 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  y
)  +  1 )  =/=  0 )
352201, 199, 201, 213, 351, 224divmuldivd 10842 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  =  ( ( ( 2  x.  ( y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) )  / 
( ( ( 2  x.  y )  +  1 )  x.  (
( 2  x.  y
)  +  3 ) ) ) )
353352oveq2d 6666 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  x.  ( 2  x.  (
y  +  1 ) ) )  /  (
( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) ) ) ) )
354344, 347mulcld 10060 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  y )
) )  e.  CC )
355201, 201mulcld 10060 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) )  e.  CC )
356199, 213mulcld 10060 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) )  e.  CC )
357201, 201, 205, 205mulne0d 10679 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( 2  x.  (
y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) )  =/=  0 )
358199, 213, 351, 224mulne0d 10679 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) )  =/=  0 )
359354, 355, 356, 357, 358divdiv2d 10833 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  x.  ( 2  x.  (
y  +  1 ) ) )  /  (
( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( ( ( ( pi 
/  2 )  x.  ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( 2  x.  y )  +  1 )  x.  (
( 2  x.  y
)  +  3 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) ) )
360354, 356, 355, 357divassd 10836 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( ( pi 
/  2 )  x.  ( 1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( 2  x.  y )  +  1 )  x.  (
( 2  x.  y
)  +  3 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) )  =  ( ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  y )
) )  x.  (
( ( ( 2  x.  y )  +  1 )  x.  (
( 2  x.  y
)  +  3 ) )  /  ( ( 2  x.  ( y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) ) ) )
361359, 360eqtrd 2656 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  x.  ( 2  x.  (
y  +  1 ) ) )  /  (
( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) )  /  (
( 2  x.  (
y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) ) ) )
362199, 201, 201, 213, 205, 224, 205divdivdivd 10848 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  y )  +  1 )  /  (
2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  =  ( ( ( ( 2  x.  y
)  +  1 )  x.  ( ( 2  x.  y )  +  3 ) )  / 
( ( 2  x.  ( y  +  1 ) )  x.  (
2  x.  ( y  +  1 ) ) ) ) )
363362eqcomd 2628 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  y )  +  1 )  x.  (
( 2  x.  y
)  +  3 ) )  /  ( ( 2  x.  ( y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) )  =  ( ( ( ( 2  x.  y
)  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  / 
( ( 2  x.  ( y  +  1 ) )  /  (
( 2  x.  y
)  +  3 ) ) ) )
364363oveq2d 6666 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( ( 2  x.  y )  +  1 )  x.  ( ( 2  x.  y )  +  3 ) )  /  (
( 2  x.  (
y  +  1 ) )  x.  ( 2  x.  ( y  +  1 ) ) ) ) )  =  ( ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) )
365353, 361, 3643eqtrd 2660 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  / 
( ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  1 ) )  x.  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) )
366343, 350, 3653eqtr2d 2662 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) ) ) ) )  =  ( ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) ) )
36761a1i 11 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  pi  e.  CC )
368367halfcld 11277 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
pi  /  2 )  e.  CC )
369368, 347mulcld 10060 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  y )
) )  e.  CC )
370206, 225, 226divcld 10801 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( ( ( 2  x.  y )  +  1 )  /  (
2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  e.  CC )
371369, 370mulcomd 10061 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) )  x.  ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) ) )
372284, 366, 3713eqtrd 2660 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  ( (  seq 1 (  x.  ,  F ) `  y
)  x.  ( ( ( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  ( y  +  1 ) )  -  1 ) )  x.  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  ( y  +  1 ) )  +  1 ) ) ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) ) )
373278, 372eqtrd 2656 . . . . . . 7  |-  ( y  e.  NN  ->  (
( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  ( y  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  / 
( 2  x.  (
y  +  1 ) ) )  /  (
( 2  x.  (
y  +  1 ) )  /  ( ( 2  x.  y )  +  3 ) ) )  x.  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) ) )
374373adantr 481 . . . . . 6  |-  ( ( y  e.  NN  /\  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) )  ->  ( (
pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  ( y  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  y )  +  1 )  /  ( 2  x.  ( y  +  1 ) ) )  /  ( ( 2  x.  ( y  +  1 ) )  / 
( ( 2  x.  y )  +  3 ) ) )  x.  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  y
) ) ) ) )
375126, 247, 3743eqtr4d 2666 . . . . 5  |-  ( ( y  e.  NN  /\  ( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) ) )  ->  ( (
I `  ( 2  x.  ( y  +  1 ) ) )  / 
( I `  (
( 2  x.  (
y  +  1 ) )  +  1 ) ) )  =  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  ( y  +  1 ) ) ) ) )
376375ex 450 . . . 4  |-  ( y  e.  NN  ->  (
( ( I `  ( 2  x.  y
) )  /  (
I `  ( (
2  x.  y )  +  1 ) ) )  =  ( ( pi  /  2 )  x.  ( 1  / 
(  seq 1 (  x.  ,  F ) `  y ) ) )  ->  ( ( I `
 ( 2  x.  ( y  +  1 ) ) )  / 
( I `  (
( 2  x.  (
y  +  1 ) )  +  1 ) ) )  =  ( ( pi  /  2
)  x.  ( 1  /  (  seq 1
(  x.  ,  F
) `  ( y  +  1 ) ) ) ) ) )
3779, 18, 27, 36, 124, 376nnind 11038 . . 3  |-  ( n  e.  NN  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  =  ( ( pi 
/  2 )  x.  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
378377mpteq2ia 4740 . 2  |-  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n ) )  /  ( I `  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( ( pi 
/  2 )  x.  ( 1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
379 wallispilem4.3 . 2  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
380 wallispilem4.4 . 2  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq 1 (  x.  ,  F ) `  n
) ) ) )
381378, 379, 3803eqtr4i 2654 1  |-  G  =  H
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   ...cfz 12326    seqcseq 12801   ^cexp 12860   sincsin 14794   picpi 14797   S.citg 23387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  wallispilem5  40286
  Copyright terms: Public domain W3C validator