Proof of Theorem lgamgulmlem3
Step | Hyp | Ref
| Expression |
1 | | lgamgulm.r |
. . . . . . . 8
   |
2 | | lgamgulm.u |
. . . . . . . 8
        
         |
3 | 1, 2 | lgamgulmlem1 24755 |
. . . . . . 7

      |
4 | | lgamgulm.a |
. . . . . . 7
   |
5 | 3, 4 | sseldd 3604 |
. . . . . 6
       |
6 | 5 | eldifad 3586 |
. . . . 5
   |
7 | | lgamgulm.n |
. . . . . . . . . 10
   |
8 | 7 | peano2nnd 11037 |
. . . . . . . . 9
     |
9 | 8 | nnrpd 11870 |
. . . . . . . 8
     |
10 | 7 | nnrpd 11870 |
. . . . . . . 8
   |
11 | 9, 10 | rpdivcld 11889 |
. . . . . . 7
       |
12 | 11 | relogcld 24369 |
. . . . . 6
           |
13 | 12 | recnd 10068 |
. . . . 5
           |
14 | 6, 13 | mulcld 10060 |
. . . 4
             |
15 | 7 | nncnd 11036 |
. . . . . . 7
   |
16 | 7 | nnne0d 11065 |
. . . . . . 7
   |
17 | 6, 15, 16 | divcld 10801 |
. . . . . 6
     |
18 | | 1cnd 10056 |
. . . . . 6
   |
19 | 17, 18 | addcld 10059 |
. . . . 5
       |
20 | 5, 7 | dmgmdivn0 24754 |
. . . . 5
       |
21 | 19, 20 | logcld 24317 |
. . . 4
           |
22 | 14, 21 | subcld 10392 |
. . 3
                       |
23 | 22 | abscld 14175 |
. 2
                           |
24 | 14, 17 | subcld 10392 |
. . . 4
                 |
25 | 24 | abscld 14175 |
. . 3
                     |
26 | 17, 21 | subcld 10392 |
. . . 4
               |
27 | 26 | abscld 14175 |
. . 3
                   |
28 | 25, 27 | readdcld 10069 |
. 2
                                       |
29 | 1 | nnred 11035 |
. . 3
   |
30 | | 2re 11090 |
. . . . . 6
 |
31 | 30 | a1i 11 |
. . . . 5
   |
32 | | 1red 10055 |
. . . . . 6
   |
33 | 29, 32 | readdcld 10069 |
. . . . 5
     |
34 | 31, 33 | remulcld 10070 |
. . . 4
  
    |
35 | 7 | nnsqcld 13029 |
. . . 4
       |
36 | 34, 35 | nndivred 11069 |
. . 3
             |
37 | 29, 36 | remulcld 10070 |
. 2
    
          |
38 | 14, 21, 17 | abs3difd 14199 |
. 2
                                                               |
39 | 7 | nnrecred 11066 |
. . . . . 6
     |
40 | 8 | nnrecred 11066 |
. . . . . 6
  
    |
41 | 39, 40 | resubcld 10458 |
. . . . 5
           |
42 | 29, 41 | remulcld 10070 |
. . . 4
             |
43 | 31, 29 | remulcld 10070 |
. . . . . . . . 9
     |
44 | 7 | nnred 11035 |
. . . . . . . . 9
   |
45 | 1 | nnrpd 11870 |
. . . . . . . . . . 11
   |
46 | 29, 45 | ltaddrpd 11905 |
. . . . . . . . . 10
     |
47 | 1 | nncnd 11036 |
. . . . . . . . . . 11
   |
48 | 47 | 2timesd 11275 |
. . . . . . . . . 10
       |
49 | 46, 48 | breqtrrd 4681 |
. . . . . . . . 9
     |
50 | | lgamgulm.l |
. . . . . . . . 9
  
  |
51 | 29, 43, 44, 49, 50 | ltletrd 10197 |
. . . . . . . 8
   |
52 | | difrp 11868 |
. . . . . . . . 9
 
       |
53 | 29, 44, 52 | syl2anc 693 |
. . . . . . . 8
       |
54 | 51, 53 | mpbid 222 |
. . . . . . 7
     |
55 | 54 | rprecred 11883 |
. . . . . 6
  
    |
56 | 55, 39 | resubcld 10458 |
. . . . 5
           |
57 | 29, 56 | remulcld 10070 |
. . . 4
    
        |
58 | 42, 57 | readdcld 10069 |
. . 3
                         |
59 | 6, 15, 16 | divrecd 10804 |
. . . . . . . . 9
         |
60 | 59 | oveq2d 6666 |
. . . . . . . 8
                          
      |
61 | 39 | recnd 10068 |
. . . . . . . . 9
     |
62 | 6, 13, 61 | subdid 10486 |
. . . . . . . 8
                          
      |
63 | 60, 62 | eqtr4d 2659 |
. . . . . . 7
                               |
64 | 63 | fveq2d 6195 |
. . . . . 6
                      
                |
65 | 13, 61 | subcld 10392 |
. . . . . . 7
               |
66 | 6, 65 | absmuld 14193 |
. . . . . 6
    
                                      |
67 | 64, 66 | eqtrd 2656 |
. . . . 5
                                           |
68 | 6 | abscld 14175 |
. . . . . 6
       |
69 | 65 | abscld 14175 |
. . . . . 6
                   |
70 | 6 | absge0d 14183 |
. . . . . 6

      |
71 | 65 | absge0d 14183 |
. . . . . 6

                  |
72 | | fveq2 6191 |
. . . . . . . . . . . 12
           |
73 | 72 | breq1d 4663 |
. . . . . . . . . . 11
     
       |
74 | | oveq1 6657 |
. . . . . . . . . . . . . 14
       |
75 | 74 | fveq2d 6195 |
. . . . . . . . . . . . 13
          
    |
76 | 75 | breq2d 4665 |
. . . . . . . . . . . 12
   
     
     
     |
77 | 76 | ralbidv 2986 |
. . . . . . . . . . 11
  
 
     
            |
78 | 73, 77 | anbi12d 747 |
. . . . . . . . . 10
      
         
                  |
79 | 78, 2 | elrab2 3366 |
. . . . . . . . 9

      
     
      |
80 | 79 | simprbi 480 |
. . . . . . . 8
     
      
     |
81 | 4, 80 | syl 17 |
. . . . . . 7
     
      
     |
82 | 81 | simpld 475 |
. . . . . 6
    
  |
83 | 9, 10 | relogdivd 24372 |
. . . . . . . . 9
                       |
84 | | logdifbnd 24720 |
. . . . . . . . . 10

                |
85 | 10, 84 | syl 17 |
. . . . . . . . 9
     
           |
86 | 83, 85 | eqbrtrd 4675 |
. . . . . . . 8
        
    |
87 | 12, 39, 86 | abssuble0d 14171 |
. . . . . . 7
                               |
88 | | logdiflbnd 24721 |
. . . . . . . . . 10

        
         |
89 | 10, 88 | syl 17 |
. . . . . . . . 9
  
 
              |
90 | 89, 83 | breqtrrd 4681 |
. . . . . . . 8
  
 
          |
91 | 40, 12, 39, 90 | lesub2dd 10644 |
. . . . . . 7
                 
     |
92 | 87, 91 | eqbrtrd 4675 |
. . . . . 6
                
          |
93 | 68, 29, 69, 41, 70, 71, 82, 92 | lemul12ad 10966 |
. . . . 5
                       
           |
94 | 67, 93 | eqbrtrd 4675 |
. . . 4
                               |
95 | 1, 2, 7, 4, 50 | lgamgulmlem2 24756 |
. . . 4
                             |
96 | 25, 27, 42, 57, 94, 95 | le2addd 10646 |
. . 3
                                    
 
                      |
97 | 15, 47 | subcld 10392 |
. . . . . . . 8
     |
98 | 15, 18 | addcld 10059 |
. . . . . . . 8
     |
99 | 29, 51 | gtned 10172 |
. . . . . . . . 9
   |
100 | 15, 47, 99 | subne0d 10401 |
. . . . . . . 8
     |
101 | 8 | nnne0d 11065 |
. . . . . . . 8
     |
102 | 97, 98, 100, 101 | subrecd 10856 |
. . . . . . 7
                           |
103 | 15, 18, 47 | pnncand 10431 |
. . . . . . . . 9
    
      |
104 | 18, 47 | addcomd 10238 |
. . . . . . . . 9
       |
105 | 103, 104 | eqtrd 2656 |
. . . . . . . 8
    
      |
106 | 105 | oveq1d 6665 |
. . . . . . 7
     
                     |
107 | 102, 106 | eqtr2d 2657 |
. . . . . 6
                       |
108 | 107 | oveq2d 6666 |
. . . . 5
                    
      |
109 | 98, 101 | reccld 10794 |
. . . . . . . 8
  
    |
110 | 97, 100 | reccld 10794 |
. . . . . . . 8
  
    |
111 | 61, 109, 110 | npncan3d 10428 |
. . . . . . 7
      
     
                  |
112 | 111 | eqcomd 2628 |
. . . . . 6
                               |
113 | 112 | oveq2d 6666 |
. . . . 5
    
                              |
114 | 41 | recnd 10068 |
. . . . . 6
           |
115 | 56 | recnd 10068 |
. . . . . 6
           |
116 | 47, 114, 115 | adddid 10064 |
. . . . 5
                                             |
117 | 108, 113,
116 | 3eqtrd 2660 |
. . . 4
                                     |
118 | 54, 9 | rpmulcld 11888 |
. . . . . 6
    
    |
119 | 33, 118 | rerpdivcld 11903 |
. . . . 5
             |
120 | 45 | rpge0d 11876 |
. . . . 5

  |
121 | | 2z 11409 |
. . . . . . . . . 10
 |
122 | 121 | a1i 11 |
. . . . . . . . 9
   |
123 | 10, 122 | rpexpcld 13032 |
. . . . . . . 8
       |
124 | 123 | rphalfcld 11884 |
. . . . . . 7
         |
125 | | 0le1 10551 |
. . . . . . . . 9
 |
126 | 125 | a1i 11 |
. . . . . . . 8

  |
127 | 29, 32, 120, 126 | addge0d 10603 |
. . . . . . 7

    |
128 | 15 | sqvald 13005 |
. . . . . . . . . 10
         |
129 | 128 | oveq1d 6665 |
. . . . . . . . 9
             |
130 | 31 | recnd 10068 |
. . . . . . . . . 10
   |
131 | | 2ne0 11113 |
. . . . . . . . . . 11
 |
132 | 131 | a1i 11 |
. . . . . . . . . 10
   |
133 | 15, 15, 130, 132 | div23d 10838 |
. . . . . . . . 9
           |
134 | 129, 133 | eqtrd 2656 |
. . . . . . . 8
             |
135 | 44 | rehalfcld 11279 |
. . . . . . . . 9
     |
136 | 44, 29 | resubcld 10458 |
. . . . . . . . 9
     |
137 | 44, 32 | readdcld 10069 |
. . . . . . . . 9
     |
138 | | 2rp 11837 |
. . . . . . . . . . 11
 |
139 | 138 | a1i 11 |
. . . . . . . . . 10
   |
140 | 10 | rpge0d 11876 |
. . . . . . . . . 10

  |
141 | 44, 139, 140 | divge0d 11912 |
. . . . . . . . 9

    |
142 | 29, 44, 139 | lemuldiv2d 11922 |
. . . . . . . . . . . 12
         |
143 | 50, 142 | mpbid 222 |
. . . . . . . . . . 11

    |
144 | 15 | 2halvesd 11278 |
. . . . . . . . . . . 12
         |
145 | 135 | recnd 10068 |
. . . . . . . . . . . . 13
     |
146 | 15, 145, 145 | subaddd 10410 |
. . . . . . . . . . . 12
   
             |
147 | 144, 146 | mpbird 247 |
. . . . . . . . . . 11
         |
148 | 143, 147 | breqtrrd 4681 |
. . . . . . . . . 10

      |
149 | 29, 44, 135, 148 | lesubd 10631 |
. . . . . . . . 9
  
    |
150 | 44 | lep1d 10955 |
. . . . . . . . 9

    |
151 | 135, 136,
44, 137, 141, 140, 149, 150 | lemul12ad 10966 |
. . . . . . . 8
    
 
      |
152 | 134, 151 | eqbrtrd 4675 |
. . . . . . 7
      
 
      |
153 | 124, 118,
33, 127, 152 | lediv2ad 11894 |
. . . . . 6
          
 
          |
154 | 1 | peano2nnd 11037 |
. . . . . . . . 9
     |
155 | 154 | nncnd 11036 |
. . . . . . . 8
     |
156 | 35 | nncnd 11036 |
. . . . . . . 8
       |
157 | 35 | nnne0d 11065 |
. . . . . . . 8
       |
158 | 155, 156,
130, 157, 132 | divdiv2d 10833 |
. . . . . . 7
                       |
159 | 155, 130 | mulcomd 10061 |
. . . . . . . 8
           |
160 | 159 | oveq1d 6665 |
. . . . . . 7
                       |
161 | 158, 160 | eqtr2d 2657 |
. . . . . 6
                       |
162 | 153, 161 | breqtrrd 4681 |
. . . . 5
          
            |
163 | 119, 36, 29, 120, 162 | lemul2ad 10964 |
. . . 4
            
              |
164 | 117, 163 | eqbrtrrd 4677 |
. . 3
                      
              |
165 | 28, 58, 37, 96, 164 | letrd 10194 |
. 2
                                    
              |
166 | 23, 28, 37, 38, 165 | letrd 10194 |
1
                            
          |