Proof of Theorem lgamgulmlem3
| Step | Hyp | Ref
| Expression |
| 1 | | lgamgulm.r |
. . . . . . . 8
   |
| 2 | | lgamgulm.u |
. . . . . . . 8
        
         |
| 3 | 1, 2 | lgamgulmlem1 24755 |
. . . . . . 7

      |
| 4 | | lgamgulm.a |
. . . . . . 7
   |
| 5 | 3, 4 | sseldd 3604 |
. . . . . 6
       |
| 6 | 5 | eldifad 3586 |
. . . . 5
   |
| 7 | | lgamgulm.n |
. . . . . . . . . 10
   |
| 8 | 7 | peano2nnd 11037 |
. . . . . . . . 9
     |
| 9 | 8 | nnrpd 11870 |
. . . . . . . 8
     |
| 10 | 7 | nnrpd 11870 |
. . . . . . . 8
   |
| 11 | 9, 10 | rpdivcld 11889 |
. . . . . . 7
       |
| 12 | 11 | relogcld 24369 |
. . . . . 6
           |
| 13 | 12 | recnd 10068 |
. . . . 5
           |
| 14 | 6, 13 | mulcld 10060 |
. . . 4
             |
| 15 | 7 | nncnd 11036 |
. . . . . . 7
   |
| 16 | 7 | nnne0d 11065 |
. . . . . . 7
   |
| 17 | 6, 15, 16 | divcld 10801 |
. . . . . 6
     |
| 18 | | 1cnd 10056 |
. . . . . 6
   |
| 19 | 17, 18 | addcld 10059 |
. . . . 5
       |
| 20 | 5, 7 | dmgmdivn0 24754 |
. . . . 5
       |
| 21 | 19, 20 | logcld 24317 |
. . . 4
           |
| 22 | 14, 21 | subcld 10392 |
. . 3
                       |
| 23 | 22 | abscld 14175 |
. 2
                           |
| 24 | 14, 17 | subcld 10392 |
. . . 4
                 |
| 25 | 24 | abscld 14175 |
. . 3
                     |
| 26 | 17, 21 | subcld 10392 |
. . . 4
               |
| 27 | 26 | abscld 14175 |
. . 3
                   |
| 28 | 25, 27 | readdcld 10069 |
. 2
                                       |
| 29 | 1 | nnred 11035 |
. . 3
   |
| 30 | | 2re 11090 |
. . . . . 6
 |
| 31 | 30 | a1i 11 |
. . . . 5
   |
| 32 | | 1red 10055 |
. . . . . 6
   |
| 33 | 29, 32 | readdcld 10069 |
. . . . 5
     |
| 34 | 31, 33 | remulcld 10070 |
. . . 4
  
    |
| 35 | 7 | nnsqcld 13029 |
. . . 4
       |
| 36 | 34, 35 | nndivred 11069 |
. . 3
             |
| 37 | 29, 36 | remulcld 10070 |
. 2
    
          |
| 38 | 14, 21, 17 | abs3difd 14199 |
. 2
                                                               |
| 39 | 7 | nnrecred 11066 |
. . . . . 6
     |
| 40 | 8 | nnrecred 11066 |
. . . . . 6
  
    |
| 41 | 39, 40 | resubcld 10458 |
. . . . 5
           |
| 42 | 29, 41 | remulcld 10070 |
. . . 4
             |
| 43 | 31, 29 | remulcld 10070 |
. . . . . . . . 9
     |
| 44 | 7 | nnred 11035 |
. . . . . . . . 9
   |
| 45 | 1 | nnrpd 11870 |
. . . . . . . . . . 11
   |
| 46 | 29, 45 | ltaddrpd 11905 |
. . . . . . . . . 10
     |
| 47 | 1 | nncnd 11036 |
. . . . . . . . . . 11
   |
| 48 | 47 | 2timesd 11275 |
. . . . . . . . . 10
       |
| 49 | 46, 48 | breqtrrd 4681 |
. . . . . . . . 9
     |
| 50 | | lgamgulm.l |
. . . . . . . . 9
  
  |
| 51 | 29, 43, 44, 49, 50 | ltletrd 10197 |
. . . . . . . 8
   |
| 52 | | difrp 11868 |
. . . . . . . . 9
 
       |
| 53 | 29, 44, 52 | syl2anc 693 |
. . . . . . . 8
       |
| 54 | 51, 53 | mpbid 222 |
. . . . . . 7
     |
| 55 | 54 | rprecred 11883 |
. . . . . 6
  
    |
| 56 | 55, 39 | resubcld 10458 |
. . . . 5
           |
| 57 | 29, 56 | remulcld 10070 |
. . . 4
    
        |
| 58 | 42, 57 | readdcld 10069 |
. . 3
                         |
| 59 | 6, 15, 16 | divrecd 10804 |
. . . . . . . . 9
         |
| 60 | 59 | oveq2d 6666 |
. . . . . . . 8
                          
      |
| 61 | 39 | recnd 10068 |
. . . . . . . . 9
     |
| 62 | 6, 13, 61 | subdid 10486 |
. . . . . . . 8
                          
      |
| 63 | 60, 62 | eqtr4d 2659 |
. . . . . . 7
                               |
| 64 | 63 | fveq2d 6195 |
. . . . . 6
                      
                |
| 65 | 13, 61 | subcld 10392 |
. . . . . . 7
               |
| 66 | 6, 65 | absmuld 14193 |
. . . . . 6
    
                                      |
| 67 | 64, 66 | eqtrd 2656 |
. . . . 5
                                           |
| 68 | 6 | abscld 14175 |
. . . . . 6
       |
| 69 | 65 | abscld 14175 |
. . . . . 6
                   |
| 70 | 6 | absge0d 14183 |
. . . . . 6

      |
| 71 | 65 | absge0d 14183 |
. . . . . 6

                  |
| 72 | | fveq2 6191 |
. . . . . . . . . . . 12
           |
| 73 | 72 | breq1d 4663 |
. . . . . . . . . . 11
     
       |
| 74 | | oveq1 6657 |
. . . . . . . . . . . . . 14
       |
| 75 | 74 | fveq2d 6195 |
. . . . . . . . . . . . 13
          
    |
| 76 | 75 | breq2d 4665 |
. . . . . . . . . . . 12
   
     
     
     |
| 77 | 76 | ralbidv 2986 |
. . . . . . . . . . 11
  
 
     
            |
| 78 | 73, 77 | anbi12d 747 |
. . . . . . . . . 10
      
         
                  |
| 79 | 78, 2 | elrab2 3366 |
. . . . . . . . 9

      
     
      |
| 80 | 79 | simprbi 480 |
. . . . . . . 8
     
      
     |
| 81 | 4, 80 | syl 17 |
. . . . . . 7
     
      
     |
| 82 | 81 | simpld 475 |
. . . . . 6
    
  |
| 83 | 9, 10 | relogdivd 24372 |
. . . . . . . . 9
                       |
| 84 | | logdifbnd 24720 |
. . . . . . . . . 10

                |
| 85 | 10, 84 | syl 17 |
. . . . . . . . 9
     
           |
| 86 | 83, 85 | eqbrtrd 4675 |
. . . . . . . 8
        
    |
| 87 | 12, 39, 86 | abssuble0d 14171 |
. . . . . . 7
                               |
| 88 | | logdiflbnd 24721 |
. . . . . . . . . 10

        
         |
| 89 | 10, 88 | syl 17 |
. . . . . . . . 9
  
 
              |
| 90 | 89, 83 | breqtrrd 4681 |
. . . . . . . 8
  
 
          |
| 91 | 40, 12, 39, 90 | lesub2dd 10644 |
. . . . . . 7
                 
     |
| 92 | 87, 91 | eqbrtrd 4675 |
. . . . . 6
                
          |
| 93 | 68, 29, 69, 41, 70, 71, 82, 92 | lemul12ad 10966 |
. . . . 5
                       
           |
| 94 | 67, 93 | eqbrtrd 4675 |
. . . 4
                               |
| 95 | 1, 2, 7, 4, 50 | lgamgulmlem2 24756 |
. . . 4
                             |
| 96 | 25, 27, 42, 57, 94, 95 | le2addd 10646 |
. . 3
                                    
 
                      |
| 97 | 15, 47 | subcld 10392 |
. . . . . . . 8
     |
| 98 | 15, 18 | addcld 10059 |
. . . . . . . 8
     |
| 99 | 29, 51 | gtned 10172 |
. . . . . . . . 9
   |
| 100 | 15, 47, 99 | subne0d 10401 |
. . . . . . . 8
     |
| 101 | 8 | nnne0d 11065 |
. . . . . . . 8
     |
| 102 | 97, 98, 100, 101 | subrecd 10856 |
. . . . . . 7
                           |
| 103 | 15, 18, 47 | pnncand 10431 |
. . . . . . . . 9
    
      |
| 104 | 18, 47 | addcomd 10238 |
. . . . . . . . 9
       |
| 105 | 103, 104 | eqtrd 2656 |
. . . . . . . 8
    
      |
| 106 | 105 | oveq1d 6665 |
. . . . . . 7
     
                     |
| 107 | 102, 106 | eqtr2d 2657 |
. . . . . 6
                       |
| 108 | 107 | oveq2d 6666 |
. . . . 5
                    
      |
| 109 | 98, 101 | reccld 10794 |
. . . . . . . 8
  
    |
| 110 | 97, 100 | reccld 10794 |
. . . . . . . 8
  
    |
| 111 | 61, 109, 110 | npncan3d 10428 |
. . . . . . 7
      
     
                  |
| 112 | 111 | eqcomd 2628 |
. . . . . 6
                               |
| 113 | 112 | oveq2d 6666 |
. . . . 5
    
                              |
| 114 | 41 | recnd 10068 |
. . . . . 6
           |
| 115 | 56 | recnd 10068 |
. . . . . 6
           |
| 116 | 47, 114, 115 | adddid 10064 |
. . . . 5
                                             |
| 117 | 108, 113,
116 | 3eqtrd 2660 |
. . . 4
                                     |
| 118 | 54, 9 | rpmulcld 11888 |
. . . . . 6
    
    |
| 119 | 33, 118 | rerpdivcld 11903 |
. . . . 5
             |
| 120 | 45 | rpge0d 11876 |
. . . . 5

  |
| 121 | | 2z 11409 |
. . . . . . . . . 10
 |
| 122 | 121 | a1i 11 |
. . . . . . . . 9
   |
| 123 | 10, 122 | rpexpcld 13032 |
. . . . . . . 8
       |
| 124 | 123 | rphalfcld 11884 |
. . . . . . 7
         |
| 125 | | 0le1 10551 |
. . . . . . . . 9
 |
| 126 | 125 | a1i 11 |
. . . . . . . 8

  |
| 127 | 29, 32, 120, 126 | addge0d 10603 |
. . . . . . 7

    |
| 128 | 15 | sqvald 13005 |
. . . . . . . . . 10
         |
| 129 | 128 | oveq1d 6665 |
. . . . . . . . 9
             |
| 130 | 31 | recnd 10068 |
. . . . . . . . . 10
   |
| 131 | | 2ne0 11113 |
. . . . . . . . . . 11
 |
| 132 | 131 | a1i 11 |
. . . . . . . . . 10
   |
| 133 | 15, 15, 130, 132 | div23d 10838 |
. . . . . . . . 9
           |
| 134 | 129, 133 | eqtrd 2656 |
. . . . . . . 8
             |
| 135 | 44 | rehalfcld 11279 |
. . . . . . . . 9
     |
| 136 | 44, 29 | resubcld 10458 |
. . . . . . . . 9
     |
| 137 | 44, 32 | readdcld 10069 |
. . . . . . . . 9
     |
| 138 | | 2rp 11837 |
. . . . . . . . . . 11
 |
| 139 | 138 | a1i 11 |
. . . . . . . . . 10
   |
| 140 | 10 | rpge0d 11876 |
. . . . . . . . . 10

  |
| 141 | 44, 139, 140 | divge0d 11912 |
. . . . . . . . 9

    |
| 142 | 29, 44, 139 | lemuldiv2d 11922 |
. . . . . . . . . . . 12
         |
| 143 | 50, 142 | mpbid 222 |
. . . . . . . . . . 11

    |
| 144 | 15 | 2halvesd 11278 |
. . . . . . . . . . . 12
         |
| 145 | 135 | recnd 10068 |
. . . . . . . . . . . . 13
     |
| 146 | 15, 145, 145 | subaddd 10410 |
. . . . . . . . . . . 12
   
             |
| 147 | 144, 146 | mpbird 247 |
. . . . . . . . . . 11
         |
| 148 | 143, 147 | breqtrrd 4681 |
. . . . . . . . . 10

      |
| 149 | 29, 44, 135, 148 | lesubd 10631 |
. . . . . . . . 9
  
    |
| 150 | 44 | lep1d 10955 |
. . . . . . . . 9

    |
| 151 | 135, 136,
44, 137, 141, 140, 149, 150 | lemul12ad 10966 |
. . . . . . . 8
    
 
      |
| 152 | 134, 151 | eqbrtrd 4675 |
. . . . . . 7
      
 
      |
| 153 | 124, 118,
33, 127, 152 | lediv2ad 11894 |
. . . . . 6
          
 
          |
| 154 | 1 | peano2nnd 11037 |
. . . . . . . . 9
     |
| 155 | 154 | nncnd 11036 |
. . . . . . . 8
     |
| 156 | 35 | nncnd 11036 |
. . . . . . . 8
       |
| 157 | 35 | nnne0d 11065 |
. . . . . . . 8
       |
| 158 | 155, 156,
130, 157, 132 | divdiv2d 10833 |
. . . . . . 7
                       |
| 159 | 155, 130 | mulcomd 10061 |
. . . . . . . 8
           |
| 160 | 159 | oveq1d 6665 |
. . . . . . 7
                       |
| 161 | 158, 160 | eqtr2d 2657 |
. . . . . 6
                       |
| 162 | 153, 161 | breqtrrd 4681 |
. . . . 5
          
            |
| 163 | 119, 36, 29, 120, 162 | lemul2ad 10964 |
. . . 4
            
              |
| 164 | 117, 163 | eqbrtrrd 4677 |
. . 3
                      
              |
| 165 | 28, 58, 37, 96, 164 | letrd 10194 |
. 2
                                    
              |
| 166 | 23, 28, 37, 38, 165 | letrd 10194 |
1
                            
          |