MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem1 Structured version   Visualization version   Unicode version

Theorem pntrlog2bndlem1 25266
Description: The sum of selberg3r 25258 and selberg4r 25259. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrlog2bndlem1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_O(1)
Distinct variable groups:    i, a, n, x    S, n, x    R, n, x
Allowed substitution hints:    R( i, a)    S( i, a)

Proof of Theorem pntrlog2bndlem1
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 10055 . . 3  |-  ( T. 
->  1  e.  RR )
2 pntrlog2bnd.r . . . . 5  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
32selberg34r 25260 . . . 4  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  O(1)
4 elioore 12205 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
54adantl 482 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
6 1rp 11836 . . . . . . . . . . . 12  |-  1  e.  RR+
76a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
8 1red 10055 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
9 eliooord 12233 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
109adantl 482 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
1110simpld 475 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
128, 5, 11ltled 10185 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
135, 7, 12rpgecld 11911 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
142pntrf 25252 . . . . . . . . . . 11  |-  R : RR+
--> RR
1514ffvelrni 6358 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1613, 15syl 17 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  RR )
1713relogcld 24369 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
1816, 17remulcld 10070 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  RR )
19 fzfid 12772 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2013adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
21 elfznn 12370 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2221adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2322nnrpd 11870 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2420, 23rpdivcld 11889 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2514ffvelrni 6358 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
2624, 25syl 17 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
27 fzfid 12772 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
28 dvdsssfz1 15040 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
2922, 28syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
30 ssfi 8180 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
3127, 29, 30syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
32 ssrab2 3687 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  n }  C_  NN
33 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  m  e.  { y  e.  NN  | 
y  ||  n }
)
3432, 33sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  m  e.  NN )
35 vmacl 24844 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
3634, 35syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  (Λ `  m
)  e.  RR )
37 dvdsdivcl 15038 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  m )  e.  { y  e.  NN  |  y  ||  n } )
3822, 37sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  ( n  /  m )  e.  {
y  e.  NN  | 
y  ||  n }
)
3932, 38sseldi 3601 . . . . . . . . . . . . . . 15  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  ( n  /  m )  e.  NN )
40 vmacl 24844 . . . . . . . . . . . . . . 15  |-  ( ( n  /  m )  e.  NN  ->  (Λ `  ( n  /  m
) )  e.  RR )
4139, 40syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  (Λ `  (
n  /  m ) )  e.  RR )
4236, 41remulcld 10070 . . . . . . . . . . . . 13  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  e.  RR )
4331, 42fsumrecl 14465 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  RR )
44 vmacl 24844 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
4522, 44syl 17 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
4623relogcld 24369 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
4745, 46remulcld 10070 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  RR )
4843, 47resubcld 10458 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) )  e.  RR )
4926, 48remulcld 10070 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
5019, 49fsumrecl 14465 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
515, 11rplogcld 24375 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
5250, 51rerpdivcld 11903 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) )  e.  RR )
5318, 52resubcld 10458 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  RR )
5453, 13rerpdivcld 11903 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x )  e.  RR )
5554recnd 10068 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x )  e.  CC )
5655lo1o12 14264 . . . 4  |-  ( T. 
->  ( ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  O(1)  <->  ( x  e.  ( 1 (,) +oo )  |->  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )  e.  <_O(1) ) )
573, 56mpbii 223 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )  e.  <_O(1) )
5855abscld 14175 . . 3  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  RR )
5916recnd 10068 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  CC )
6059abscld 14175 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( R `  x ) )  e.  RR )
6160, 17remulcld 10070 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  RR )
6226recnd 10068 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
6362abscld 14175 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
6422nnred 11035 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
65 pntsval.1 . . . . . . . . . . . 12  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
6665pntsf 25262 . . . . . . . . . . 11  |-  S : RR
--> RR
6766ffvelrni 6358 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( S `  n )  e.  RR )
6864, 67syl 17 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  RR )
69 1red 10055 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7064, 69resubcld 10458 . . . . . . . . . 10  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  RR )
7166ffvelrni 6358 . . . . . . . . . 10  |-  ( ( n  -  1 )  e.  RR  ->  ( S `  ( n  -  1 ) )  e.  RR )
7270, 71syl 17 . . . . . . . . 9  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  e.  RR )
7368, 72resubcld 10458 . . . . . . . 8  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  e.  RR )
7463, 73remulcld 10070 . . . . . . 7  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( ( S `  n )  -  ( S `  ( n  -  1 ) ) ) )  e.  RR )
7519, 74fsumrecl 14465 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  e.  RR )
7675, 51rerpdivcld 11903 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) )  e.  RR )
7761, 76resubcld 10458 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  e.  RR )
7877, 13rerpdivcld 11903 . . 3  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  e.  RR )
7917recnd 10068 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
8059, 79mulcld 10060 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  CC )
8150recnd 10068 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  CC )
8251rpne0d 11877 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
8381, 79, 82divcld 10801 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) )  e.  CC )
8480, 83subcld 10392 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  CC )
8584abscld 14175 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( ( R `  x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  e.  RR )
8681abscld 14175 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  e.  RR )
8786, 51rerpdivcld 11903 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) )  e.  RR )
8861, 87resubcld 10458 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )  e.  RR )
8949recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  CC )
9089abscld 14175 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  e.  RR )
9119, 90fsumrecl 14465 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) )  e.  RR )
9219, 89fsumabs 14533 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) ) )
9348recnd 10068 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) )  e.  CC )
9462, 93absmuld 14193 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( abs `  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) ) )
9593abscld 14175 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
9662absge0d 14183 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
9743recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  CC )
9847recnd 10068 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
9997, 98abs2dif2d 14197 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  <_  ( ( abs `  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  +  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )
10072recnd 10068 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  e.  CC )
10197, 98addcld 10059 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  e.  CC )
102100, 101pncan2d 10394 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  (
n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  -  ( S `
 ( n  - 
1 ) ) )  =  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
103 elfzuz 12338 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ( ZZ>= `  1 )
)
104103adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ( ZZ>= `  1 )
)
105 elfznn 12370 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
106105adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  k  e.  NN )
107 vmacl 24844 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  (Λ `  k )  e.  RR )
109106nnrpd 11870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  k  e.  RR+ )
110109relogcld 24369 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  ( log `  k )  e.  RR )
111108, 110remulcld 10070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  (
(Λ `  k )  x.  ( log `  k
) )  e.  RR )
112 fzfid 12772 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  (
1 ... k )  e. 
Fin )
113 dvdsssfz1 15040 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
114106, 113syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
115 ssfi 8180 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
116112, 114, 115syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
117 ssrab2 3687 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { y  e.  NN  |  y 
||  k }  C_  NN
118 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  m  e.  { y  e.  NN  | 
y  ||  k }
)
119117, 118sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  m  e.  NN )
120119, 35syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (Λ `  m
)  e.  RR )
121 dvdsdivcl 15038 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( k  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (
k  /  m )  e.  { y  e.  NN  |  y  ||  k } )
122106, 121sylan 488 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( k  /  m )  e.  {
y  e.  NN  | 
y  ||  k }
)
123117, 122sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( k  /  m )  e.  NN )
124 vmacl 24844 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  /  m )  e.  NN  ->  (Λ `  ( k  /  m
) )  e.  RR )
125123, 124syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (Λ `  (
k  /  m ) )  e.  RR )
126120, 125remulcld 10070 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( T. 
/\  x  e.  ( 1 (,) +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) )  e.  RR )
127116, 126fsumrecl 14465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m
)  x.  (Λ `  (
k  /  m ) ) )  e.  RR )
128111, 127readdcld 10069 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  (
( (Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  e.  RR )
129128recnd 10068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  k  e.  ( 1 ... n
) )  ->  (
( (Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  e.  CC )
130 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  (Λ `  k )  =  (Λ `  n ) )
131 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  ( log `  k )  =  ( log `  n
) )
132130, 131oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  n )  x.  ( log `  n
) ) )
133 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  n  ->  (
y  ||  k  <->  y  ||  n ) )
134133rabbidv 3189 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  { y  e.  NN  |  y 
||  k }  =  { y  e.  NN  |  y  ||  n }
)
135 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  n  ->  (
k  /  m )  =  ( n  /  m ) )
136135fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  n  ->  (Λ `  ( k  /  m
) )  =  (Λ `  ( n  /  m
) ) )
137136oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  n  ->  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
n  /  m ) ) ) )
138137adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  =  n  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
n  /  m ) ) ) )
139134, 138sumeq12rdv 14438 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m
)  x.  (Λ `  (
k  /  m ) ) )  =  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )
140132, 139oveq12d 6668 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
( (Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
141104, 129, 140fsumm1 14480 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... n
) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  ( sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  +  ( ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) ) )
14265pntsval2 25265 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... ( |_
`  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
14364, 142syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... ( |_ `  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
14422nnzd 11481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
145 flid 12609 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ZZ  ->  ( |_ `  n )  =  n )
146144, 145syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  n )  =  n )
147146oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  n ) )  =  ( 1 ... n
) )
148147sumeq1d 14431 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  sum_ k  e.  ( 1 ... n
) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
149143, 148eqtrd 2656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... n ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15065pntsval2 25265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  -  1 )  e.  RR  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( |_
`  ( n  - 
1 ) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15170, 150syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( n  -  1
) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
152 1zzd 11408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  ZZ )
153144, 152zsubcld 11487 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  ZZ )
154 flid 12609 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  -  1 )  e.  ZZ  ->  ( |_ `  ( n  - 
1 ) )  =  ( n  -  1 ) )
155153, 154syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( n  -  1 ) )  =  ( n  -  1 ) )
156155oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( n  -  1
) ) )  =  ( 1 ... (
n  -  1 ) ) )
157156sumeq1d 14431 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( n  - 
1 ) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  sum_ k  e.  ( 1 ... (
n  -  1 ) ) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
158151, 157eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15997, 98addcomd 10238 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
160158, 159oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  ( n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  =  ( sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  +  ( ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) ) )
161141, 149, 1603eqtr4d 2666 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  ( ( S `  (
n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )
162161oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  =  ( ( ( S `
 ( n  - 
1 ) )  +  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  -  ( S `
 ( n  - 
1 ) ) ) )
163 vmage0 24847 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  0  <_  (Λ `  m )
)
16434, 163syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  0  <_  (Λ `  m ) )
165 vmage0 24847 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  m )  e.  NN  ->  0  <_  (Λ `  ( n  /  m ) ) )
16639, 165syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  0  <_  (Λ `  ( n  /  m
) ) )
16736, 41, 164, 166mulge0d 10604 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  /\  m  e. 
{ y  e.  NN  |  y  ||  n }
)  ->  0  <_  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
16831, 42, 167fsumge0 14527 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  sum_
m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
16943, 168absidd 14161 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  =  sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
170 vmage0 24847 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
17122, 170syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
17222nnge1d 11063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
17364, 172logge0d 24376 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  n ) )
17445, 46, 171, 173mulge0d 10604 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( log `  n
) ) )
17547, 174absidd 14161 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( (Λ `  n
)  x.  ( log `  n ) ) )
176169, 175oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  +  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  =  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
177102, 162, 1763eqtr4d 2666 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  =  ( ( abs `  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )  +  ( abs `  (
(Λ `  n )  x.  ( log `  n
) ) ) ) )
17899, 177breqtrrd 4681 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  <_  ( ( S `  n )  -  ( S `  ( n  -  1
) ) ) )
17995, 73, 63, 96, 178lemul2ad 10964 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( abs `  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18094, 179eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18119, 90, 74, 180fsumle 14531 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18286, 91, 75, 92, 181letrd 10194 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18386, 75, 51, 182lediv1dd 11930 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )
18487, 76, 61, 183lesub2dd 10644 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  <_  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) ) )
18559, 79absmuld 14193 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( R `
 x )  x.  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( abs `  ( log `  x
) ) ) )
1865, 12logge0d 24376 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( log `  x
) )
18717, 186absidd 14161 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( log `  x
) )  =  ( log `  x ) )
188187oveq2d 6666 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( abs `  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( log `  x ) ) )
189185, 188eqtrd 2656 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( R `
 x )  x.  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( log `  x ) ) )
19081, 79, 82absdivd 14194 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) ) )
191187oveq2d 6666 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )
192190, 191eqtrd 2656 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )
193189, 192oveq12d 6668 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  (
( R `  x
)  x.  ( log `  x ) ) )  -  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  =  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) ) )
19480, 83abs2difd 14196 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  (
( R `  x
)  x.  ( log `  x ) ) )  -  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  <_  ( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) ) )
195193, 194eqbrtrrd 4677 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )  <_  ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) ) )
19677, 88, 85, 184, 195letrd 10194 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  <_  ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) ) )
19777, 85, 13, 196lediv1dd 11930 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  x ) )
19853recnd 10068 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  CC )
1995recnd 10068 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
20013rpne0d 11877 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
201198, 199, 200absdivd 14194 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  =  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  ( abs `  x
) ) )
20213rpge0d 11876 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  x )
2035, 202absidd 14161 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  x )  =  x )
204203oveq2d 6666 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) )  /  ( abs `  x ) )  =  ( ( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) )  /  x ) )
205201, 204eqtrd 2656 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  =  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  x ) )
206197, 205breqtrrd 4681 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )
207206adantrr 753 . . 3  |-  ( ( T.  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x ) )  -> 
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )
2081, 57, 58, 78, 207lo1le 14382 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_O(1) )
209208trud 1493 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   {crab 2916    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   (,)cioo 12175   ...cfz 12326   |_cfl 12591   abscabs 13974   O(1)co1 14217   <_O(1)clo1 14218   sum_csu 14416    || cdvds 14983   logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827
This theorem is referenced by:  pntrlog2bndlem4  25269
  Copyright terms: Public domain W3C validator