MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6 Structured version   Visualization version   Unicode version

Theorem pntrlog2bndlem6 25272
Description: Lemma for pntrlog2bnd 25273. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntrlog2bnd.t  |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
pntrlog2bndlem5.1  |-  ( ph  ->  B  e.  RR+ )
pntrlog2bndlem5.2  |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  B )
pntrlog2bndlem6.1  |-  ( ph  ->  A  e.  RR )
pntrlog2bndlem6.2  |-  ( ph  ->  1  <_  A )
Assertion
Ref Expression
pntrlog2bndlem6  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
Distinct variable groups:    i, a, n, x, y, A    B, n, x, y    ph, n, x    S, n, x, y    R, n, x, y    T, n
Allowed substitution hints:    ph( y, i, a)    B( i, a)    R( i, a)    S( i, a)    T( x, y, i, a)

Proof of Theorem pntrlog2bndlem6
StepHypRef Expression
1 elioore 12205 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 1rp 11836 . . . . . . . . . . . . 13  |-  1  e.  RR+
43a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
5 1red 10055 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
6 eliooord 12233 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
76adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
87simpld 475 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
95, 2, 8ltled 10185 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
102, 4, 9rpgecld 11911 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
11 pntrlog2bnd.r . . . . . . . . . . . . 13  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
1211pntrf 25252 . . . . . . . . . . . 12  |-  R : RR+
--> RR
1312ffvelrni 6358 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1410, 13syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  RR )
1514recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( R `  x )  e.  CC )
1615abscld 14175 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( abs `  ( R `  x ) )  e.  RR )
1710relogcld 24369 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
1816, 17remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  RR )
19 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
2019a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR )
212, 8rplogcld 24375 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
2220, 21rerpdivcld 11903 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
23 fzfid 12772 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2410adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
25 elfznn 12370 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2625adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2726nnrpd 11870 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2824, 27rpdivcld 11889 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2912ffvelrni 6358 . . . . . . . . . . . . 13  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3130recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3231abscld 14175 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
3327relogcld 24369 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
3432, 33remulcld 10070 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3523, 34fsumrecl 14465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3622, 35remulcld 10070 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
3718, 36resubcld 10458 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  RR )
3837recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  e.  CC )
39 fzfid 12772 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) )  e.  Fin )
40 ssun2 3777 . . . . . . . . . . 11  |-  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) )
41 pntsval.1 . . . . . . . . . . . 12  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
42 pntrlog2bnd.t . . . . . . . . . . . 12  |-  T  =  ( a  e.  RR  |->  if ( a  e.  RR+ ,  ( a  x.  ( log `  a ) ) ,  0 ) )
43 pntrlog2bndlem5.1 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
44 pntrlog2bndlem5.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y ) )  <_  B )
45 pntrlog2bndlem6.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
46 pntrlog2bndlem6.2 . . . . . . . . . . . 12  |-  ( ph  ->  1  <_  A )
4741, 11, 42, 43, 44, 45, 46pntrlog2bndlem6a 25271 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  =  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ) )
4840, 47syl5sseqr 3654 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
4948sselda 3603 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
5049, 34syldan 487 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
5139, 50fsumrecl 14465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
5222, 51remulcld 10070 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  RR )
5352recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  CC )
542recnd 10068 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
5510rpne0d 11877 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
5638, 53, 54, 55divdird 10839 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )
5718recnd 10068 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  CC )
5836recnd 10068 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  e.  CC )
5957, 58, 53subsubd 10420 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )  =  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
6022recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
6135recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
6251recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
6360, 61, 62subdid 10486 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
643a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  RR+ )
6545, 64, 46rpgecld 11911 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR+ )
6665adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  A  e.  RR+ )
672, 66rerpdivcld 11903 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  /  A )  e.  RR )
68 reflcl 12597 . . . . . . . . . . . . . . 15  |-  ( ( x  /  A )  e.  RR  ->  ( |_ `  ( x  /  A ) )  e.  RR )
6967, 68syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( |_ `  ( x  /  A ) )  e.  RR )
7069ltp1d 10954 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( |_ `  ( x  /  A ) )  < 
( ( |_ `  ( x  /  A
) )  +  1 ) )
71 fzdisj 12368 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( x  /  A ) )  <  ( ( |_
`  ( x  /  A ) )  +  1 )  ->  (
( 1 ... ( |_ `  ( x  /  A ) ) )  i^i  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
7270, 71syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 1 ... ( |_ `  ( x  /  A ) ) )  i^i  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
7334recnd 10068 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
7472, 47, 23, 73fsumsplit 14471 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
7574oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  =  ( ( sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
76 fzfid 12772 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  ( x  /  A
) ) )  e. 
Fin )
77 ssun1 3776 . . . . . . . . . . . . . . . 16  |-  ( 1 ... ( |_ `  ( x  /  A
) ) )  C_  ( ( 1 ... ( |_ `  (
x  /  A ) ) )  u.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) )
7877, 47syl5sseqr 3654 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  ( x  /  A
) ) )  C_  ( 1 ... ( |_ `  x ) ) )
7978sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
8079, 34syldan 487 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
8176, 80fsumrecl 14465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
8281recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  CC )
8382, 62pncand 10393 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  +  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
8475, 83eqtrd 2656 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  ( x  /  A
) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )
8584oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  -  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
8663, 85eqtr3d 2658 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )
8786oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )  =  ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
8859, 87eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
8988oveq1d 6665 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
9056, 89eqtr3d 2658 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) )  =  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )
9190mpteq2dva 4744 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) ) )
9237, 10rerpdivcld 11903 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  e.  RR )
9352, 10rerpdivcld 11903 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  e.  RR )
9441, 11, 42, 43, 44pntrlog2bndlem5 25270 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
95 ioossre 12235 . . . . 5  |-  ( 1 (,) +oo )  C_  RR
9695a1i 11 . . . 4  |-  ( ph  ->  ( 1 (,) +oo )  C_  RR )
97 1red 10055 . . . 4  |-  ( ph  ->  1  e.  RR )
9819a1i 11 . . . . 5  |-  ( ph  ->  2  e.  RR )
9943rpred 11872 . . . . . 6  |-  ( ph  ->  B  e.  RR )
10065relogcld 24369 . . . . . . 7  |-  ( ph  ->  ( log `  A
)  e.  RR )
101100, 97readdcld 10069 . . . . . 6  |-  ( ph  ->  ( ( log `  A
)  +  1 )  e.  RR )
10299, 101remulcld 10070 . . . . 5  |-  ( ph  ->  ( B  x.  (
( log `  A
)  +  1 ) )  e.  RR )
10398, 102remulcld 10070 . . . 4  |-  ( ph  ->  ( 2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
10451, 21rerpdivcld 11903 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
10599adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  RR )
10666relogcld 24369 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  A )  e.  RR )
107106, 5readdcld 10069 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  RR )
108105, 107remulcld 10070 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( ( log `  A )  +  1 ) )  e.  RR )
1092, 108remulcld 10070 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
110 2rp 11837 . . . . . . . . . 10  |-  2  e.  RR+
111110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR+ )
112111rpge0d 11876 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  2 )
113105, 2remulcld 10070 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  x )  e.  RR )
11449, 25syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  NN )
115114nnrecred 11066 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
11639, 115fsumrecl 14465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
117113, 116remulcld 10070 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  e.  RR )
11821adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR+ )
11950, 118rerpdivcld 11903 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  e.  RR )
120105adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  B  e.  RR )
1212adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  RR )
122120, 121remulcld 10070 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  x )  e.  RR )
123122, 115remulcld 10070 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  x.  ( 1  /  n
) )  e.  RR )
12449, 32syldan 487 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
125121, 114nndivred 11069 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
126120, 125remulcld 10070 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  ( x  /  n
) )  e.  RR )
12749, 27syldan 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
128127relogcld 24369 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
12910adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
130129relogcld 24369 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  x )  e.  RR )
13149, 31syldan 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
132131absge0d 14183 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
133 elfzle2 12345 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) )  ->  n  <_  ( |_ `  x
) )
134133adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  <_  ( |_ `  x ) )
135114nnzd 11481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
136 flge 12606 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  n  e.  ZZ )  ->  ( n  <_  x  <->  n  <_  ( |_ `  x ) ) )
137121, 135, 136syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( n  <_  x  <->  n  <_  ( |_
`  x ) ) )
138134, 137mpbird 247 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  <_  x )
139127, 129logled 24373 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( n  <_  x  <->  ( log `  n
)  <_  ( log `  x ) ) )
140138, 139mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( log `  n )  <_  ( log `  x ) )
141128, 130, 124, 132, 140lemul2ad 10964 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  x
) ) )
14250, 124, 118ledivmul2d 11926 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( abs `  ( R `  ( x  /  n ) ) )  <-> 
( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  x
) ) ) )
143141, 142mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( abs `  ( R `  ( x  /  n ) ) ) )
144125recnd 10068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  CC )
14549, 28syldan 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
146145rpne0d 11877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( x  /  n )  =/=  0
)
147131, 144, 146absdivd 14194 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( abs `  (
x  /  n ) ) ) )
14810rpge0d 11876 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  x )
149148adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  x )
150121, 127, 149divge0d 11912 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  0  <_  ( x  /  n ) )
151125, 150absidd 14161 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( x  /  n
) )  =  ( x  /  n ) )
152151oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  / 
( abs `  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) ) )
153147, 152eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) ) )
15444ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  A. y  e.  RR+  ( abs `  (
( R `  y
)  /  y ) )  <_  B )
155 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  ( R `  y )  =  ( R `  ( x  /  n
) ) )
156 id 22 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( x  /  n )  ->  y  =  ( x  /  n ) )
157155, 156oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( x  /  n )  ->  (
( R `  y
)  /  y )  =  ( ( R `
 ( x  /  n ) )  / 
( x  /  n
) ) )
158157fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  /  n )  ->  ( abs `  ( ( R `
 y )  / 
y ) )  =  ( abs `  (
( R `  (
x  /  n ) )  /  ( x  /  n ) ) ) )
159158breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  /  n )  ->  (
( abs `  (
( R `  y
)  /  y ) )  <_  B  <->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  <_  B
) )
160159rspcv 3305 . . . . . . . . . . . . . . . 16  |-  ( ( x  /  n )  e.  RR+  ->  ( A. y  e.  RR+  ( abs `  ( ( R `  y )  /  y
) )  <_  B  ->  ( abs `  (
( R `  (
x  /  n ) )  /  ( x  /  n ) ) )  <_  B )
)
161145, 154, 160sylc 65 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  /  (
x  /  n ) ) )  <_  B
)
162153, 161eqbrtrrd 4677 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  / 
( x  /  n
) )  <_  B
)
163124, 120, 145ledivmul2d 11926 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  /  ( x  /  n ) )  <_  B 
<->  ( abs `  ( R `  ( x  /  n ) ) )  <_  ( B  x.  ( x  /  n
) ) ) )
164162, 163mpbid 222 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  <_  ( B  x.  ( x  /  n ) ) )
165119, 124, 126, 143, 164letrd 10194 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( B  x.  ( x  /  n
) ) )
166120recnd 10068 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  B  e.  CC )
16754adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  x  e.  CC )
168114nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  CC )
169114nnne0d 11065 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  n  =/=  0 )
170166, 167, 168, 169divassd 10836 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  /  n )  =  ( B  x.  ( x  /  n ) ) )
171166, 167mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  x )  e.  CC )
172171, 168, 169divrecd 10804 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( B  x.  x )  /  n )  =  ( ( B  x.  x
)  x.  ( 1  /  n ) ) )
173170, 172eqtr3d 2658 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( B  x.  ( x  /  n
) )  =  ( ( B  x.  x
)  x.  ( 1  /  n ) ) )
174165, 173breqtrd 4679 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( ( B  x.  x )  x.  ( 1  /  n
) ) )
17539, 119, 123, 174fsumle 14531 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  /  ( log `  x
) )  <_  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( B  x.  x )  x.  (
1  /  n ) ) )
17617recnd 10068 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
17749, 73syldan 487 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
17821rpne0d 11877 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
17939, 176, 177, 178fsumdivc 14518 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  x.  ( log `  n ) )  /  ( log `  x
) ) )
180105recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  CC )
181180, 54mulcld 10060 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  x )  e.  CC )
182115recnd 10068 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
18339, 181, 182fsummulc2 14516 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( B  x.  x )  x.  ( 1  /  n ) ) )
184175, 179, 1833brtr4d 4685 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( ( B  x.  x )  x. 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) ) )
18543adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  B  e.  RR+ )
186185rpge0d 11876 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  B )
187105, 2, 186, 148mulge0d 10604 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  0  <_  ( B  x.  x
) )
18826nnrecred 11066 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
18923, 188fsumrecl 14465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  e.  RR )
19017, 106resubcld 10458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  -  ( log `  A ) )  e.  RR )
19117, 5readdcld 10069 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  +  1 )  e.  RR )
19279, 188syldan 487 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( 1  /  n )  e.  RR )
19376, 192fsumrecl 14465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  RR )
194 harmonicubnd 24736 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  <_  ( ( log `  x )  +  1 ) )
1952, 9, 194syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  <_  ( ( log `  x )  +  1 ) )
19610, 66relogdivd 24372 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  ( x  /  A ) )  =  ( ( log `  x
)  -  ( log `  A ) ) )
19710, 66rpdivcld 11889 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  /  A )  e.  RR+ )
198 harmoniclbnd 24735 . . . . . . . . . . . . . . 15  |-  ( ( x  /  A )  e.  RR+  ->  ( log `  ( x  /  A
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
) )
199197, 198syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  ( x  /  A ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( 1  /  n ) )
200196, 199eqbrtrrd 4677 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  x
)  -  ( log `  A ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A
) ) ) ( 1  /  n ) )
201189, 190, 191, 193, 195, 200le2subd 10647 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  <_  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) ) )
20226nncnd 11036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
20326nnne0d 11065 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
204202, 203reccld 10794 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
20572, 47, 23, 204fsumsplit 14471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n )  + 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) ) )
206205oveq1d 6665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n ) ) )
20779, 25syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  n  e.  NN )
208207nnrecred 11066 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) )  ->  ( 1  /  n )  e.  RR )
20976, 208fsumrecl 14465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  RR )
210209recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( x  /  A ) ) ) ( 1  /  n
)  e.  CC )
211116recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  e.  CC )
212210, 211pncan2d 10394 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  (
x  /  A ) ) ) ( 1  /  n ) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( 1  /  n
) )
213206, 212eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( 1  /  n ) )
214 1cnd 10056 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  CC )
215106recnd 10068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  A )  e.  CC )
216176, 214, 215pnncand 10431 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) )  =  ( 1  +  ( log `  A
) ) )
217214, 215addcomd 10238 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  +  ( log `  A ) )  =  ( ( log `  A
)  +  1 ) )
218216, 217eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( log `  x
)  +  1 )  -  ( ( log `  x )  -  ( log `  A ) ) )  =  ( ( log `  A )  +  1 ) )
219201, 213, 2183brtr3d 4684 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 ) )
220116, 107, 113, 187, 219lemul2ad 10964 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  <_  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) ) )
221107recnd 10068 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  CC )
222180, 54, 221mulassd 10063 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) )  =  ( B  x.  ( x  x.  (
( log `  A
)  +  1 ) ) ) )
223180, 54, 221mul12d 10245 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( x  x.  ( ( log `  A
)  +  1 ) ) )  =  ( x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
224222, 223eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  ( ( log `  A )  +  1 ) )  =  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) )
225220, 224breqtrd 4679 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( B  x.  x
)  x.  sum_ n  e.  ( ( ( |_
`  ( x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( 1  /  n
) )  <_  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
226104, 117, 109, 184, 225letrd 10194 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) )  <_  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) )
227104, 109, 20, 112, 226lemul2ad 10964 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) ) )  <_  ( 2  x.  ( x  x.  ( B  x.  (
( log `  A
)  +  1 ) ) ) ) )
228 2cnd 11093 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
229228, 176, 62, 178div32d 10824 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  =  ( 2  x.  ( sum_ n  e.  ( ( ( |_ `  (
x  /  A ) )  +  1 ) ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) )  /  ( log `  x ) ) ) )
230215, 214addcld 10059 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( log `  A
)  +  1 )  e.  CC )
231180, 230mulcld 10060 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  ( B  x.  ( ( log `  A )  +  1 ) )  e.  CC )
23254, 228, 231mul12d 10245 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
x  x.  ( 2  x.  ( B  x.  ( ( log `  A
)  +  1 ) ) ) )  =  ( 2  x.  (
x  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) )
233227, 229, 2323brtr4d 4685 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  <_ 
( x  x.  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) )
234103adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  e.  RR )
23552, 234, 10ledivmuld 11925 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) )  <->  ( (
2  /  ( log `  x ) )  x. 
sum_ n  e.  (
( ( |_ `  ( x  /  A
) )  +  1 ) ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  <_ 
( x  x.  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) ) ) )
236233, 235mpbird 247 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
237236adantrr 753 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 1 (,) +oo )  /\  1  <_  x
) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x )  <_  (
2  x.  ( B  x.  ( ( log `  A )  +  1 ) ) ) )
23896, 93, 97, 103, 237ello1d 14254 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) )  e. 
<_O(1) )
23992, 93, 94, 238lo1add 14357 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( ( ( |_ `  ( x  /  A ) )  +  1 ) ... ( |_ `  x
) ) ( ( abs `  ( R `
 ( x  /  n ) ) )  x.  ( log `  n
) ) )  /  x ) ) )  e.  <_O(1) )
24091, 239eqeltrrd 2702 1  |-  ( ph  ->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( x  /  A ) ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x ) )  e.  <_O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   ZZcz 11377   RR+crp 11832   (,)cioo 12175   ...cfz 12326   |_cfl 12591   abscabs 13974   <_O(1)clo1 14218   sum_csu 14416   logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827
This theorem is referenced by:  pntrlog2bnd  25273
  Copyright terms: Public domain W3C validator