MPE Home Metamath Proof Explorer This is the GIF version.
Change to Unicode version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3 wff 
-.  ph
wi 4 wff  ( ph  ->  ps )
ax-mp 5 |- 
ph   &    |-  ( ph  ->  ps )   =>    |- 
ps
ax-1 6 |-  ( ph  ->  ( ps  ->  ph ) )
ax-2 7 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
ax-3 8 |-  ( ( -.  ph  ->  -.  ps )  -> 
( ps  ->  ph )
)
wb 196 wff  ( ph  <->  ps )
df-bi 197 |- 
-.  ( ( (
ph 
<->  ps )  ->  -.  ( ( ph  ->  ps )  ->  -.  ( ps  ->  ph ) ) )  ->  -.  ( -.  ( ( ph  ->  ps )  ->  -.  ( ps  ->  ph ) )  -> 
( ph  <->  ps ) ) )
wo 383 wff  ( ph  \/  ps )
wa 384 wff  ( ph  /\  ps )
df-or 385 |-  ( ( ph  \/  ps )  <->  ( -.  ph  ->  ps ) )
df-an 386 |-  ( ( ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) )
wif 1012 wff if-
( ph ,  ps ,  ch )
df-ifp 1013 |-  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) ) )
w3o 1036 wff  ( ph  \/  ps  \/  ch )
w3a 1037 wff  ( ph  /\  ps  /\ 
ch )
df-3or 1038 |-  ( ( ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/ 
ch ) )
df-3an 1039 |-  ( ( ph  /\  ps  /\  ch )  <->  ( ( ph  /\  ps )  /\  ch ) )
wnan 1447 wff  ( ph  -/\  ps )
df-nan 1448 |-  ( ( ph  -/\  ps )  <->  -.  ( ph  /\  ps ) )
wxo 1464 wff  ( ph  \/_  ps )
df-xor 1465 |-  ( ( ph  \/_  ps ) 
<->  -.  ( ph  <->  ps )
)
wal 1481 wff  A. x ph
cv 1482 class  x
wceq 1483 wff 
A  =  B
wtru 1484 wff T.
df-tru 1486 |-  ( T.  <->  ( A. x  x  =  x  ->  A. x  x  =  x ) )
wfal 1488 wff F.
df-fal 1489 |-  ( F.  <->  -. T.  )
whad 1532 wff hadd
( ph ,  ps ,  ch )
df-had 1533 |-  (hadd ( ph ,  ps ,  ch )  <->  ( ( ph  \/_  ps )  \/_  ch ) )
wcad 1545 wff cadd
( ph ,  ps ,  ch )
df-cad 1546 |-  (cadd ( ph ,  ps ,  ch )  <->  ( ( ph  /\  ps )  \/  ( ch  /\  ( ph  \/_  ps ) ) ) )
wex 1704 wff 
E. x ph
df-ex 1705 |-  ( E. x ph  <->  -.  A. x  -.  ph )
wnf 1708 wff 
F/ x ph
wnfOLD 1709 wff 
F/ x ph
df-nf 1710 |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
df-nfOLD 1721 |-  ( F/ x ph  <->  A. x ( ph  ->  A. x ph ) )
ax-gen 1722 |- 
ph   =>    |- 
A. x ph
ax-4 1737 |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
ax-5 1839 |-  ( ph  ->  A. x ph )
wsb 1880 wff 
[ y  /  x ] ph
df-sb 1881 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph ) ) )
ax-6 1888 |-  -.  A. x  -.  x  =  y
ax-7 1935 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
wcel 1990 wff 
A  e.  B
ax-8 1992 |-  ( x  =  y  ->  ( x  e.  z  ->  y  e.  z ) )
ax-9 1999 |-  ( x  =  y  ->  ( z  e.  x  ->  z  e.  y ) )
ax-10 2019 |-  ( -.  A. x ph  ->  A. x  -.  A. x ph )
ax-11 2034 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-12 2047 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
ax-13 2246 |-  ( -.  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
weu 2470 wff 
E! x ph
wmo 2471 wff 
E* x ph
df-eu 2474 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
df-mo 2475 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
ax-ext 2602 |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
cab 2608 class  { x  |  ph }
df-clab 2609 |-  ( x  e.  {
y  |  ph }  <->  [ x  /  y ]
ph )
df-cleq 2615 |-  ( A. x ( x  e.  y  <->  x  e.  z )  ->  y  =  z )   =>    |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
df-clel 2618 |-  ( A  e.  B  <->  E. x ( x  =  A  /\  x  e.  B ) )
wnfc 2751 wff  F/_ x A
df-nfc 2753 |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
wne 2794 wff 
A  =/=  B
df-ne 2795 |-  ( A  =/=  B  <->  -.  A  =  B )
wnel 2897 wff 
A  e/  B
df-nel 2898 |-  ( A  e/  B  <->  -.  A  e.  B )
wral 2912 wff  A. x  e.  A  ph
wrex 2913 wff 
E. x  e.  A  ph
wreu 2914 wff 
E! x  e.  A  ph
wrmo 2915 wff 
E* x  e.  A  ph
crab 2916 class  { x  e.  A  |  ph }
df-ral 2917 |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
df-rex 2918 |-  ( E. x  e.  A  ph  <->  E. x
( x  e.  A  /\  ph ) )
df-reu 2919 |-  ( E! x  e.  A  ph  <->  E! x
( x  e.  A  /\  ph ) )
df-rmo 2920 |-  ( E* x  e.  A  ph  <->  E* x
( x  e.  A  /\  ph ) )
df-rab 2921 |- 
{ x  e.  A  |  ph }  =  {
x  |  ( x  e.  A  /\  ph ) }
cvv 3200 class  _V
df-v 3202 |-  _V  =  { x  |  x  =  x }
wcdeq 3418 wff CondEq ( x  =  y  ->  ph )
df-cdeq 3419 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph )
)
wsbc 3435 wff  [. A  /  x ]. ph
df-sbc 3436 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph }
)
csb 3533 class  [_ A  /  x ]_ B
df-csb 3534 |- 
[_ A  /  x ]_ B  =  {
y  |  [. A  /  x ]. y  e.  B }
cdif 3571 class  ( A  \  B )
cun 3572 class  ( A  u.  B )
cin 3573 class  ( A  i^i  B )
wss 3574 wff 
A  C_  B
wpss 3575 wff 
A  C.  B
df-dif 3577 |-  ( A  \  B
)  =  { x  |  ( x  e.  A  /\  -.  x  e.  B ) }
df-un 3579 |-  ( A  u.  B
)  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
df-in 3581 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B
) }
df-ss 3588 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
df-pss 3590 |-  ( A  C.  B  <->  ( A  C_  B  /\  A  =/=  B ) )
csymdif 3843 class 
( A  /_\  B )
df-symdif 3844 |-  ( A  /_\  B )  =  ( ( A 
\  B )  u.  ( B  \  A
) )
c0 3915 class  (/)
df-nul 3916 |-  (/)  =  ( _V  \  _V )
cif 4086 class  if ( ph ,  A ,  B )
df-if 4087 |-  if ( ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
cpw 4158 class  ~P A
df-pw 4160 |-  ~P A  =  {
x  |  x  C_  A }
csn 4177 class  { A }
df-sn 4178 |-  { A }  =  {
x  |  x  =  A }
cpr 4179 class  { A ,  B }
df-pr 4180 |-  { A ,  B }  =  ( { A }  u.  { B } )
ctp 4181 class  { A ,  B ,  C }
df-tp 4182 |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
cop 4183 class  <. A ,  B >.
df-op 4184 |-  <. A ,  B >.  =  { x  |  ( A  e.  _V  /\  B  e.  _V  /\  x  e.  { { A } ,  { A ,  B } } ) }
cotp 4185 class  <. A ,  B ,  C >.
df-ot 4186 |-  <. A ,  B ,  C >.  =  <. <. A ,  B >. ,  C >.
cuni 4436 class  U. A
df-uni 4437 |- 
U. A  =  {
x  |  E. y
( x  e.  y  /\  y  e.  A
) }
cint 4475 class  |^| A
df-int 4476 |- 
|^| A  =  {
x  |  A. y
( y  e.  A  ->  x  e.  y ) }
ciun 4520 class  U_ x  e.  A  B
ciin 4521 class  |^|_
x  e.  A  B
df-iun 4522 |- 
U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
df-iin 4523 |- 
|^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
wdisj 4620 wff Disj  x  e.  A  B
df-disj 4621 |-  (Disj  x  e.  A  B 
<-> 
A. y E* x  e.  A  y  e.  B )
wbr 4653 wff 
A R B
df-br 4654 |-  ( A R B  <->  <. A ,  B >.  e.  R )
copab 4712 class  {
<. x ,  y >.  |  ph }
df-opab 4713 |- 
{ <. x ,  y
>.  |  ph }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
cmpt 4729 class  ( x  e.  A  |->  B )
df-mpt 4730 |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
wtr 4752 wff 
Tr  A
df-tr 4753 |-  ( Tr  A  <->  U. A  C_  A )
ax-rep 4771 |-  ( A. w E. y A. z ( A. y ph  ->  z  =  y )  ->  E. y A. z ( z  e.  y  <->  E. w ( w  e.  x  /\  A. y ph ) ) )
ax-sep 4781 |- 
E. y A. x
( x  e.  y  <-> 
( x  e.  z  /\  ph ) )
ax-nul 4789 |- 
E. x A. y  -.  y  e.  x
ax-pow 4843 |- 
E. y A. z
( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
ax-pr 4906 |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
cid 5023 class  _I
df-id 5024 |-  _I  =  { <. x ,  y >.  |  x  =  y }
cep 5028 class  _E
df-eprel 5029 |-  _E  =  { <. x ,  y >.  |  x  e.  y }
wpo 5033 wff 
R  Po  A
wor 5034 wff 
R  Or  A
df-po 5035 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
df-so 5036 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  (
x R y  \/  x  =  y  \/  y R x ) ) )
wfr 5070 wff 
R  Fr  A
wse 5071 wff 
R Se  A
wwe 5072 wff 
R  We  A
df-fr 5073 |-  ( R  Fr  A  <->  A. x ( ( x 
C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
df-se 5074 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
df-we 5075 |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A )
)
cxp 5112 class  ( A  X.  B )
ccnv 5113 class  `' A
cdm 5114 class  dom 
A
crn 5115 class  ran 
A
cres 5116 class  ( A  |`  B )
cima 5117 class  ( A " B )
ccom 5118 class  ( A  o.  B )
wrel 5119 wff 
Rel  A
df-xp 5120 |-  ( A  X.  B
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
df-rel 5121 |-  ( Rel  A  <->  A  C_  ( _V  X.  _V ) )
df-cnv 5122 |-  `' A  =  { <. x ,  y >.  |  y A x }
df-co 5123 |-  ( A  o.  B
)  =  { <. x ,  y >.  |  E. z ( x B z  /\  z A y ) }
df-dm 5124 |-  dom  A  =  { x  |  E. y  x A y }
df-rn 5125 |-  ran  A  =  dom  `' A
df-res 5126 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
)
df-ima 5127 |-  ( A " B
)  =  ran  ( A  |`  B )
cpred 5679 class  Pred ( R ,  A ,  X )
df-pred 5680 |- 
Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
word 5722 wff 
Ord  A
con0 5723 class  On
wlim 5724 wff 
Lim  A
csuc 5725 class  suc 
A
df-ord 5726 |-  ( Ord  A  <->  ( Tr  A  /\  _E  We  A
) )
df-on 5727 |-  On  =  { x  |  Ord  x }
df-lim 5728 |-  ( Lim  A  <->  ( Ord  A  /\  A  =/=  (/)  /\  A  =  U. A ) )
df-suc 5729 |- 
suc  A  =  ( A  u.  { A } )
cio 5849 class  ( iota x ph )
df-iota 5851 |-  ( iota x ph )  =  U. { y  |  { x  | 
ph }  =  {
y } }
wfun 5882 wff 
Fun  A
wfn 5883 wff 
A  Fn  B
wf 5884 wff 
F : A --> B
wf1 5885 wff 
F : A -1-1-> B
wfo 5886 wff 
F : A -onto-> B
wf1o 5887 wff 
F : A -1-1-onto-> B
cfv 5888 class  ( F `  A )
wiso 5889 wff 
H  Isom  R ,  S  ( A ,  B )
df-fun 5890 |-  ( Fun  A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
df-fn 5891 |-  ( A  Fn  B  <->  ( Fun  A  /\  dom  A  =  B ) )
df-f 5892 |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
df-f1 5893 |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
df-fo 5894 |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
df-f1o 5895 |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B
) )
df-fv 5896 |-  ( F `  A )  =  ( iota x A F x )
df-isom 5897 |-  ( H  Isom  R ,  S  ( A ,  B )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) ) )
crio 6610 class  (
iota_ x  e.  A  ph )
df-riota 6611 |-  ( iota_ x  e.  A  ph )  =  ( iota
x ( x  e.  A  /\  ph )
)
co 6650 class  ( A F B )
coprab 6651 class  { <. <. x ,  y
>. ,  z >.  | 
ph }
cmpt2 6652 class  ( x  e.  A , 
y  e.  B  |->  C )
df-ov 6653 |-  ( A F B )  =  ( F `  <. A ,  B >. )
df-oprab 6654 |- 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) }
df-mpt2 6655 |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
cof 6895 class  oF R
cofr 6896 class  oR R
df-of 6897 |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
df-ofr 6898 |-  oR R  =  { <. f ,  g
>.  |  A. x  e.  ( dom  f  i^i 
dom  g ) ( f `  x ) R ( g `  x ) }
crpss 6936 class [ C.]
df-rpss 6937 |- [ C.]  =  { <. x ,  y >.  |  x 
C.  y }
ax-un 6949 |-  E. y A. z ( E. w ( z  e.  w  /\  w  e.  x )  ->  z  e.  y )
com 7065 class  om
df-om 7066 |-  om  =  { x  e.  On  |  A. y
( Lim  y  ->  x  e.  y ) }
c1st 7166 class  1st
c2nd 7167 class  2nd
df-1st 7168 |- 
1st  =  ( x  e.  _V  |->  U. dom  { x } )
df-2nd 7169 |- 
2nd  =  ( x  e.  _V  |->  U. ran  { x } )
csupp 7295 class supp
df-supp 7296 |- supp 
=  ( x  e. 
_V ,  z  e. 
_V  |->  { i  e. 
dom  x  |  ( x " { i } )  =/=  {
z } } )
ctpos 7351 class tpos  F
df-tpos 7352 |- tpos  F  =  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
ccur 7391 class curry  A
cunc 7392 class uncurry  A
df-cur 7393 |- curry  F  =  ( x  e.  dom  dom  F  |->  {
<. y ,  z >.  |  <. x ,  y
>. F z } )
df-unc 7394 |- uncurry  F  =  { <. <. x ,  y >. ,  z
>.  |  y ( F `  x )
z }
cund 7398 class  Undef
df-undef 7399 |- 
Undef  =  ( s  e.  _V  |->  ~P U. s )
cwrecs 7406 class wrecs ( R ,  A ,  F )
df-wrecs 7407 |- wrecs
( R ,  A ,  F )  =  U. { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x
)  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred ( R ,  A ,  y )
) ) ) }
wsmo 7442 wff 
Smo  A
df-smo 7443 |-  ( Smo  A  <->  ( A : dom  A --> On  /\  Ord  dom  A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  -> 
( A `  x
)  e.  ( A `
 y ) ) ) )
crecs 7467 class recs ( F )
df-recs 7468 |- recs
( F )  = wrecs (  _E  ,  On ,  F )
crdg 7505 class  rec ( F ,  I
)
df-rdg 7506 |- 
rec ( F ,  I )  = recs (
( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) )
cseqom 7542 class seq𝜔 ( F ,  I )
df-seqom 7543 |- seq𝜔 ( F ,  I )  =  ( rec (
( i  e.  om ,  v  e.  _V  |->  <. suc  i ,  ( i F v )
>. ) ,  <. (/) ,  (  _I  `  I )
>. ) " om )
c1o 7553 class  1o
c2o 7554 class  2o
c3o 7555 class  3o
c4o 7556 class  4o
coa 7557 class  +o
comu 7558 class  .o
coe 7559 class  ^o
df-1o 7560 |-  1o  =  suc  (/)
df-2o 7561 |-  2o  =  suc  1o
df-3o 7562 |-  3o  =  suc  2o
df-4o 7563 |-  4o  =  suc  3o
df-oadd 7564 |- 
+o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  suc  z ) ,  x ) `  y
) )
df-omul 7565 |- 
.o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
df-oexp 7566 |- 
^o  =  ( x  e.  On ,  y  e.  On  |->  if ( x  =  (/) ,  ( 1o  \  y ) ,  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
) )
wer 7739 wff 
R  Er  A
cec 7740 class  [ A ] R
cqs 7741 class  ( A /. R )
df-er 7742 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R )
)  C_  R )
)
df-ec 7744 |-  [ A ] R  =  ( R " { A } )
df-qs 7748 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
cmap 7857 class  ^m
cpm 7858 class  ^pm
df-map 7859 |- 
^m  =  ( x  e.  _V ,  y  e.  _V  |->  { f  |  f : y --> x } )
df-pm 7860 |-  ^pm  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  e. 
~P ( y  X.  x )  |  Fun  f } )
cixp 7908 class  X_ x  e.  A  B
df-ixp 7909 |-  X_ x  e.  A  B  =  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) }
cen 7952 class  ~~
cdom 7953 class  ~<_
csdm 7954 class  ~<
cfn 7955 class  Fin
df-en 7956 |-  ~~  =  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
df-dom 7957 |-  ~<_  =  { <. x ,  y >.  |  E. f  f : x
-1-1-> y }
df-sdom 7958 |- 
~<  =  (  ~<_  \  ~~  )
df-fin 7959 |- 
Fin  =  { x  |  E. y  e.  om  x  ~~  y }
cfsupp 8275 class finSupp
df-fsupp 8276 |- finSupp  =  { <. r ,  z
>.  |  ( Fun  r  /\  ( r supp  z
)  e.  Fin ) }
cfi 8316 class  fi
df-fi 8317 |-  fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin ) z  =  |^| y } )
csup 8346 class  sup ( A ,  B ,  R )
cinf 8347 class inf ( A ,  B ,  R )
df-sup 8348 |- 
sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
df-inf 8349 |- inf ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
coi 8414 class OrdIso ( R ,  A )
df-oi 8415 |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )
char 8461 class har
cwdom 8462 class  ~<_*
df-har 8463 |- har 
=  ( x  e. 
_V  |->  { y  e.  On  |  y  ~<_  x } )
df-wdom 8464 |-  ~<_*  =  { <. x ,  y
>.  |  ( x  =  (/)  \/  E. z 
z : y -onto-> x ) }
ax-reg 8497 |-  ( E. y  y  e.  x  ->  E. y
( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x )
) )
ax-inf 8535 |- 
E. y ( x  e.  y  /\  A. z ( z  e.  y  ->  E. w
( z  e.  w  /\  w  e.  y
) ) )
ax-inf2 8538 |- 
E. x ( E. y ( y  e.  x  /\  A. z  -.  z  e.  y
)  /\  A. y
( y  e.  x  ->  E. z ( z  e.  x  /\  A. w ( w  e.  z  <->  ( w  e.  y  \/  w  =  y ) ) ) ) )
ccnf 8558 class CNF
df-cnf 8559 |- CNF 
=  ( x  e.  On ,  y  e.  On  |->  ( f  e. 
{ g  e.  ( x  ^m  y )  |  g finSupp  (/) }  |->  [_OrdIso (  _E  ,  ( f supp  (/) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( x  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
ctc 8612 class  TC
df-tc 8613 |-  TC  =  ( x  e.  _V  |->  |^| { y  |  ( x  C_  y  /\  Tr  y ) } )
cr1 8625 class  R1
crnk 8626 class  rank
df-r1 8627 |-  R1  =  rec (
( x  e.  _V  |->  ~P x ) ,  (/) )
df-rank 8628 |- 
rank  =  ( x  e.  _V  |->  |^| { y  e.  On  |  x  e.  ( R1 `  suc  y ) } )
ccrd 8761 class  card
cale 8762 class  aleph
ccf 8763 class  cf
wacn 8764 class AC  A
df-card 8765 |- 
card  =  ( x  e.  _V  |->  |^| { y  e.  On  |  y  ~~  x } )
df-aleph 8766 |-  aleph  =  rec (har ,  om )
df-cf 8767 |-  cf  =  ( x  e.  On  |->  |^| { y  |  E. z ( y  =  ( card `  z
)  /\  ( z  C_  x  /\  A. v  e.  x  E. u  e.  z  v  C_  u ) ) } )
df-acn 8768 |- AC  A  =  { x  |  ( A  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) ) }
wac 8938 wff CHOICE
df-ac 8939 |-  (CHOICE  <->  A. x E. f ( f  C_  x  /\  f  Fn  dom  x ) )
ccda 8989 class  +c
df-cda 8990 |- 
+c  =  ( x  e.  _V ,  y  e.  _V  |->  ( ( x  X.  { (/) } )  u.  ( y  X.  { 1o }
) ) )
cfin1a 9100 class FinIa
cfin2 9101 class FinII
cfin4 9102 class FinIV
cfin3 9103 class FinIII
cfin5 9104 class FinV
cfin6 9105 class FinVI
cfin7 9106 class FinVII
df-fin1a 9107 |- FinIa  =  { x  |  A. y  e.  ~P  x
( y  e.  Fin  \/  ( x  \  y
)  e.  Fin ) }
df-fin2 9108 |- FinII  =  { x  |  A. y  e.  ~P  ~P x
( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) }
df-fin4 9109 |- FinIV  =  { x  |  -.  E. y ( y  C.  x  /\  y  ~~  x
) }
df-fin3 9110 |- FinIII  =  { x  |  ~P x  e. FinIV }
df-fin5 9111 |- FinV  =  { x  |  ( x  =  (/)  \/  x  ~<  ( x  +c  x
) ) }
df-fin6 9112 |- FinVI  =  { x  |  ( x  ~<  2o  \/  x  ~<  ( x  X.  x ) ) }
df-fin7 9113 |- FinVII  =  { x  |  -.  E. y  e.  ( On 
\  om ) x 
~~  y }
ax-cc 9257 |-  ( x  ~~  om  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z ) )
ax-dc 9268 |-  ( ( E. y E. z  y x
z  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)
ax-ac 9281 |-  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
ax-ac2 9285 |- 
E. y A. z E. v A. u ( ( y  e.  x  /\  ( z  e.  y  ->  ( ( v  e.  x  /\  -.  y  =  v )  /\  z  e.  v
) ) )  \/  ( -.  y  e.  x  /\  ( z  e.  x  ->  (
( v  e.  z  /\  v  e.  y )  /\  ( ( u  e.  z  /\  u  e.  y )  ->  u  =  v ) ) ) ) )
cgch 9442 class GCH
df-gch 9443 |- GCH 
=  ( Fin  u.  { x  |  A. y  -.  ( x  ~<  y  /\  y  ~<  ~P x
) } )
cwina 9504 class  InaccW
cina 9505 class  Inacc
df-wina 9506 |- 
InaccW  =  {
x  |  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z
) }
df-ina 9507 |- 
Inacc  =  { x  |  ( x  =/=  (/)  /\  ( cf `  x
)  =  x  /\  A. y  e.  x  ~P y  ~<  x ) }
cwun 9522 class WUni
cwunm 9523 class wUniCl
df-wun 9524 |- WUni 
=  { u  |  ( Tr  u  /\  u  =/=  (/)  /\  A. x  e.  u  ( U. x  e.  u  /\  ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u ) ) }
df-wunc 9525 |- wUniCl  =  ( x  e. 
_V  |->  |^| { u  e. WUni  |  x  C_  u }
)
ctsk 9570 class  Tarski
df-tsk 9571 |- 
Tarski  =  { y  |  ( A. z  e.  y  ( ~P z  C_  y  /\  E. w  e.  y  ~P z  C_  w )  /\  A. z  e.  ~P  y
( z  ~~  y  \/  z  e.  y
) ) }
cgru 9612 class  Univ
df-gru 9613 |- 
Univ  =  { u  |  ( Tr  u  /\  A. x  e.  u  ( ~P x  e.  u  /\  A. y  e.  u  { x ,  y }  e.  u  /\  A. y  e.  ( u  ^m  x ) U. ran  y  e.  u
) ) }
ax-groth 9645 |- 
E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. v
( v  C_  z  ->  v  e.  w ) )  /\  A. z
( z  C_  y  ->  ( z  ~~  y  \/  z  e.  y
) ) )
ctskm 9659 class  tarskiMap
df-tskm 9660 |-  tarskiMap 
=  ( x  e. 
_V  |->  |^| { y  e. 
Tarski  |  x  e.  y } )
cnpi 9666 class  N.
cpli 9667 class  +N
cmi 9668 class  .N
clti 9669 class  <N
cplpq 9670 class  +pQ
cmpq 9671 class  .pQ
cltpq 9672 class  <pQ
ceq 9673 class  ~Q
cnq 9674 class  Q.
c1q 9675 class  1Q
cerq 9676 class  /Q
cplq 9677 class  +Q
cmq 9678 class  .Q
crq 9679 class  *Q
cltq 9680 class  <Q
cnp 9681 class  P.
c1p 9682 class  1P
cpp 9683 class  +P.
cmp 9684 class  .P.
cltp 9685 class  <P
cer 9686 class  ~R
cnr 9687 class  R.
c0r 9688 class  0R
c1r 9689 class  1R
cm1r 9690 class  -1R
cplr 9691 class  +R
cmr 9692 class  .R
cltr 9693 class  <R
df-ni 9694 |-  N.  =  ( om  \  { (/) } )
df-pli 9695 |- 
+N  =  (  +o  |`  ( N.  X.  N. ) )
df-mi 9696 |-  .N  =  (  .o  |`  ( N.  X.  N. ) )
df-lti 9697 |- 
<N  =  (  _E  i^i  ( N.  X.  N. ) )
df-plpq 9730 |- 
+pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( ( 1st `  x )  .N  ( 2nd `  y
) )  +N  (
( 1st `  y
)  .N  ( 2nd `  x ) ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-mpq 9731 |- 
.pQ  =  ( x  e.  ( N.  X.  N. ) ,  y  e.  ( N.  X.  N. )  |->  <. ( ( 1st `  x )  .N  ( 1st `  y ) ) ,  ( ( 2nd `  x )  .N  ( 2nd `  y ) )
>. )
df-ltpq 9732 |- 
<pQ  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  ( ( 1st `  x )  .N  ( 2nd `  y ) ) 
<N  ( ( 1st `  y
)  .N  ( 2nd `  x ) ) ) }
df-enq 9733 |- 
~Q  =  { <. x ,  y >.  |  ( ( x  e.  ( N.  X.  N. )  /\  y  e.  ( N.  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .N  u
)  =  ( w  .N  v ) ) ) }
df-nq 9734 |-  Q.  =  { x  e.  ( N.  X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) ) }
df-erq 9735 |- 
/Q  =  (  ~Q  i^i  ( ( N.  X.  N. )  X.  Q. )
)
df-plq 9736 |- 
+Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) )
df-mq 9737 |-  .Q  =  ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) )
df-1nq 9738 |-  1Q  =  <. 1o ,  1o >.
df-rq 9739 |-  *Q  =  ( `'  .Q  " { 1Q } )
df-ltnq 9740 |- 
<Q  =  (  <pQ  i^i  ( Q.  X.  Q. ) )
df-np 9803 |-  P.  =  { x  |  ( ( (/)  C.  x  /\  x  C.  Q. )  /\  A. y  e.  x  ( A. z ( z  <Q 
y  ->  z  e.  x )  /\  E. z  e.  x  y  <Q  z ) ) }
df-1p 9804 |-  1P  =  { x  |  x  <Q  1Q }
df-plp 9805 |- 
+P.  =  ( x  e.  P. ,  y  e.  P.  |->  { w  |  E. v  e.  x  E. u  e.  y  w  =  ( v  +Q  u ) } )
df-mp 9806 |-  .P.  =  ( x  e. 
P. ,  y  e. 
P.  |->  { w  |  E. v  e.  x  E. u  e.  y  w  =  ( v  .Q  u ) } )
df-ltp 9807 |- 
<P  =  { <. x ,  y >.  |  ( ( x  e.  P.  /\  y  e.  P. )  /\  x  C.  y ) }
df-enr 9877 |- 
~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
df-nr 9878 |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
df-plr 9879 |- 
+R  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
w  +P.  u ) ,  ( v  +P.  f ) >. ]  ~R  ) ) }
df-mr 9880 |-  .R  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ]  ~R  /\  y  =  [ <. u ,  f
>. ]  ~R  )  /\  z  =  [ <. (
( w  .P.  u
)  +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  (
v  .P.  u )
) >. ]  ~R  )
) }
df-ltr 9881 |- 
<R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
df-0r 9882 |-  0R  =  [ <. 1P ,  1P >. ]  ~R
df-1r 9883 |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
df-m1r 9884 |- 
-1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
cc 9934 class  CC
cr 9935 class  RR
cc0 9936 class  0
c1 9937 class  1
ci 9938 class  _i
caddc 9939 class  +
cltrr 9940 class  <RR
cmul 9941 class  x.
df-c 9942 |-  CC  =  ( R.  X.  R. )
df-0 9943 |-  0  =  <. 0R ,  0R >.
df-1 9944 |-  1  =  <. 1R ,  0R >.
df-i 9945 |-  _i  =  <. 0R ,  1R >.
df-r 9946 |-  RR  =  ( R.  X.  { 0R } )
df-add 9947 |-  +  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
df-mul 9948 |-  x.  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
df-lt 9949 |-  <RR  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
ax-cnex 9992 |-  CC  e.  _V
ax-resscn 9993 |-  RR  C_  CC
ax-1cn 9994 |-  1  e.  CC
ax-icn 9995 |-  _i  e.  CC
ax-addcl 9996 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
ax-addrcl 9997 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
ax-mulcl 9998 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
ax-mulrcl 9999 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
ax-mulcom 10000 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
ax-addass 10001 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
ax-mulass 10002 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
ax-distr 10003 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
ax-i2m1 10004 |-  ( ( _i  x.  _i )  +  1
)  =  0
ax-1ne0 10005 |-  1  =/=  0
ax-1rid 10006 |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
ax-rnegex 10007 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x
)  =  0 )
ax-rrecex 10008 |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x )  =  1 )
ax-cnre 10009 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) ) )
ax-pre-lttri 10010 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  -.  ( A  =  B  \/  B  <RR  A ) ) )
ax-pre-lttrn 10011 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <RR  B  /\  B  <RR  C )  ->  A  <RR  C ) )
ax-pre-ltadd 10012 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A )  <RR  ( C  +  B
) ) )
ax-pre-mulgt0 10013 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <RR  A  /\  0  <RR  B )  -> 
0  <RR  ( A  x.  B ) ) )
ax-pre-sup 10014 |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <RR  x )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
ax-addf 10015 |-  +  : ( CC 
X.  CC ) --> CC
ax-mulf 10016 |-  x.  : ( CC 
X.  CC ) --> CC
cpnf 10071 class +oo
cmnf 10072 class -oo
cxr 10073 class  RR*
clt 10074 class  <
cle 10075 class  <_
df-pnf 10076 |- +oo  =  ~P U. CC
df-mnf 10077 |- -oo  =  ~P +oo
df-xr 10078 |-  RR*  =  ( RR  u.  { +oo , -oo }
)
df-ltxr 10079 |- 
<  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
df-le 10080 |-  <_  =  ( ( RR*  X. 
RR* )  \  `'  <  )
cmin 10266 class  -
cneg 10267 class  -u A
df-sub 10268 |- 
-  =  ( x  e.  CC ,  y  e.  CC  |->  ( iota_ z  e.  CC  ( y  +  z )  =  x ) )
df-neg 10269 |-  -u A  =  (
0  -  A )
cdiv 10684 class  /
df-div 10685 |- 
/  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } ) 
|->  ( iota_ z  e.  CC  ( y  x.  z
)  =  x ) )
cn 11020 class  NN
df-nn 11021 |-  NN  =  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  1 ) " om )
c2 11070 class  2
c3 11071 class  3
c4 11072 class  4
c5 11073 class  5
c6 11074 class  6
c7 11075 class  7
c8 11076 class  8
c9 11077 class  9
c10 11078 class  10
df-2 11079 |-  2  =  ( 1  +  1 )
df-3 11080 |-  3  =  ( 2  +  1 )
df-4 11081 |-  4  =  ( 3  +  1 )
df-5 11082 |-  5  =  ( 4  +  1 )
df-6 11083 |-  6  =  ( 5  +  1 )
df-7 11084 |-  7  =  ( 6  +  1 )
df-8 11085 |-  8  =  ( 7  +  1 )
df-9 11086 |-  9  =  ( 8  +  1 )
df-10OLD 11087 |-  10  =  ( 9  +  1 )
cn0 11292 class  NN0
df-n0 11293 |-  NN0  =  ( NN  u.  { 0 } )
cxnn0 11363 class NN0*
df-xnn0 11364 |- NN0* 
=  ( NN0  u.  { +oo } )
cz 11377 class  ZZ
df-z 11378 |-  ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
cdc 11493 class ; A B
df-dec 11494 |- ; A B  =  ( ( ( 9  +  1 )  x.  A )  +  B )
cuz 11687 class  ZZ>=
df-uz 11688 |-  ZZ>=  =  ( j  e.  ZZ  |->  { k  e.  ZZ  |  j  <_ 
k } )
cq 11788 class  QQ
df-q 11789 |-  QQ  =  (  /  " ( ZZ  X.  NN ) )
crp 11832 class  RR+
df-rp 11833 |-  RR+  =  { x  e.  RR  |  0  < 
x }
cxne 11943 class  -e A
cxad 11944 class  +e
cxmu 11945 class  xe
df-xneg 11946 |-  -e A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A
) )
df-xadd 11947 |-  +e  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  = +oo ,  if ( y  = -oo ,  0 , +oo ) ,  if (
x  = -oo ,  if ( y  = +oo ,  0 , -oo ) ,  if (
y  = +oo , +oo ,  if ( y  = -oo , -oo ,  ( x  +  y ) ) ) ) ) )
df-xmul 11948 |-  xe  =  ( x  e.  RR* ,  y  e.  RR*  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 ,  if ( ( ( ( 0  <  y  /\  x  = +oo )  \/  ( y  <  0  /\  x  = -oo ) )  \/  ( ( 0  < 
x  /\  y  = +oo )  \/  (
x  <  0  /\  y  = -oo )
) ) , +oo ,  if ( ( ( ( 0  <  y  /\  x  = -oo )  \/  ( y  <  0  /\  x  = +oo ) )  \/  ( ( 0  < 
x  /\  y  = -oo )  \/  (
x  <  0  /\  y  = +oo )
) ) , -oo ,  ( x  x.  y ) ) ) ) )
cioo 12175 class  (,)
cioc 12176 class  (,]
cico 12177 class  [,)
cicc 12178 class  [,]
df-ioo 12179 |- 
(,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  < 
y ) } )
df-ioc 12180 |- 
(,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <  z  /\  z  <_ 
y ) } )
df-ico 12181 |- 
[,)  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  < 
y ) } )
df-icc 12182 |- 
[,]  =  ( x  e.  RR* ,  y  e. 
RR*  |->  { z  e. 
RR*  |  ( x  <_  z  /\  z  <_ 
y ) } )
cfz 12326 class  ...
df-fz 12327 |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
cfzo 12465 class ..^
df-fzo 12466 |- ..^ 
=  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  -  1
) ) )
cfl 12591 class  |_
cceil 12592 class
df-fl 12593 |-  |_  =  ( x  e.  RR  |->  ( iota_ y  e.  ZZ  ( y  <_  x  /\  x  <  (
y  +  1 ) ) ) )
df-ceil 12594 |- =  ( x  e.  RR  |->  -u ( |_ `  -u x ) )
cmo 12668 class  mod
df-mod 12669 |- 
mod  =  ( x  e.  RR ,  y  e.  RR+  |->  ( x  -  ( y  x.  ( |_ `  (
x  /  y ) ) ) ) )
cseq 12801 class  seq M (  .+  ,  F )
df-seq 12802 |- 
seq M (  .+  ,  F )  =  ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) " om )
cexp 12860 class  ^
df-exp 12861 |- 
^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { x }
) ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ) `  -u y ) ) ) ) )
cfa 13060 class  !
df-fac 13061 |-  !  =  ( {
<. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
cbc 13089 class  _C
df-bc 13090 |-  _C  =  ( n  e.  NN0 ,  k  e.  ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n
)  /  ( ( ! `  ( n  -  k ) )  x.  ( ! `  k ) ) ) ,  0 ) )
chash 13117 class  #
df-hash 13118 |-  #  =  ( (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )  o.  card )  u.  ( ( _V  \  Fin )  X. 
{ +oo } ) )
cword 13291 class Word  S
clsw 13292 class lastS
cconcat 13293 class ++
cs1 13294 class  <" A ">
csubstr 13295 class substr
csplice 13296 class splice
creverse 13297 class reverse
creps 13298 class repeatS
df-word 13299 |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
df-lsw 13300 |- lastS  =  ( w  e. 
_V  |->  ( w `  ( ( # `  w
)  -  1 ) ) )
df-concat 13301 |- ++ 
=  ( s  e. 
_V ,  t  e. 
_V  |->  ( x  e.  ( 0..^ ( (
# `  s )  +  ( # `  t
) ) )  |->  if ( x  e.  ( 0..^ ( # `  s
) ) ,  ( s `  x ) ,  ( t `  ( x  -  ( # `
 s ) ) ) ) ) )
df-s1 13302 |-  <" A ">  =  { <. 0 ,  (  _I  `  A )
>. }
df-substr 13303 |- substr  =  ( s  e. 
_V ,  b  e.  ( ZZ  X.  ZZ )  |->  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) ) )
df-splice 13304 |- splice  =  ( s  e. 
_V ,  b  e. 
_V  |->  ( ( ( s substr  <. 0 ,  ( 1st `  ( 1st `  b ) ) >.
) ++  ( 2nd `  b
) ) ++  ( s substr  <. ( 2nd `  ( 1st `  b ) ) ,  ( # `  s
) >. ) ) )
df-reverse 13305 |- reverse  =  ( s  e. 
_V  |->  ( x  e.  ( 0..^ ( # `  s ) )  |->  ( s `  ( ( ( # `  s
)  -  1 )  -  x ) ) ) )
df-reps 13306 |- repeatS  =  ( s  e. 
_V ,  n  e. 
NN0  |->  ( x  e.  ( 0..^ n ) 
|->  s ) )
ccsh 13534 class cyclShift
df-csh 13535 |- cyclShift  =  ( w  e. 
{ f  |  E. l  e.  NN0  f  Fn  ( 0..^ l ) } ,  n  e.  ZZ  |->  if ( w  =  (/) ,  (/) ,  ( ( w substr  <. (
n  mod  ( # `  w
) ) ,  (
# `  w ) >. ) ++  ( w substr  <. 0 ,  ( n  mod  ( # `  w ) ) >. ) ) ) )
cs2 13586 class  <" A B ">
cs3 13587 class  <" A B C ">
cs4 13588 class  <" A B C D ">
cs5 13589 class  <" A B C D E ">
cs6 13590 class  <" A B C D E F ">
cs7 13591 class  <" A B C D E F G ">
cs8 13592 class  <" A B C D E F G H ">
df-s2 13593 |-  <" A B ">  =  ( <" A "> ++  <" B "> )
df-s3 13594 |-  <" A B C ">  =  (
<" A B "> ++  <" C "> )
df-s4 13595 |-  <" A B C D ">  =  ( <" A B C "> ++  <" D "> )
df-s5 13596 |-  <" A B C D E ">  =  ( <" A B C D "> ++  <" E "> )
df-s6 13597 |-  <" A B C D E F ">  =  ( <" A B C D E "> ++  <" F "> )
df-s7 13598 |-  <" A B C D E F G ">  =  (
<" A B C D E F "> ++  <" G "> )
df-s8 13599 |-  <" A B C D E F G H ">  =  ( <" A B C D E F G "> ++  <" H "> )
ctcl 13724 class  t+
crtcl 13725 class  t*
df-trcl 13726 |-  t+  =  ( x  e.  _V  |->  |^|
{ z  |  ( x  C_  z  /\  ( z  o.  z
)  C_  z ) } )
df-rtrcl 13727 |-  t*  =  ( x  e.  _V  |->  |^|
{ z  |  ( (  _I  |`  ( dom  x  u.  ran  x
) )  C_  z  /\  x  C_  z  /\  ( z  o.  z
)  C_  z ) } )
crelexp 13760 class ^r
df-relexp 13761 |- ^r  =  ( r  e.  _V ,  n  e.  NN0  |->  if ( n  =  0 ,  (  _I  |`  ( dom  r  u.  ran  r ) ) ,  (  seq 1 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  r ) ) `  n
) ) )
crtrcl 13795 class 
t*rec
df-rtrclrec 13796 |-  t*rec  =  ( r  e.  _V  |->  U_ n  e.  NN0  ( r ^r  n ) )
cshi 13806 class  shift
df-shft 13807 |- 
shift  =  ( f  e.  _V ,  x  e.  CC  |->  { <. y ,  z >.  |  ( y  e.  CC  /\  ( y  -  x
) f z ) } )
csgn 13826 class sgn
df-sgn 13827 |- sgn 
=  ( x  e. 
RR*  |->  if ( x  =  0 ,  0 ,  if ( x  <  0 ,  -u
1 ,  1 ) ) )
ccj 13836 class  *
cre 13837 class  Re
cim 13838 class  Im
df-cj 13839 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e.  RR ) ) )
df-re 13840 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `  x ) )  / 
2 ) )
df-im 13841 |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
csqrt 13973 class  sqr
cabs 13974 class  abs
df-sqrt 13975 |- 
sqr  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( y ^ 2 )  =  x  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
df-abs 13976 |- 
abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  (
* `  x )
) ) )
clsp 14201 class  limsup
df-limsup 14202 |- 
limsup  =  ( x  e. 
_V  |-> inf ( ran  (
k  e.  RR  |->  sup ( ( ( x
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
cli 14215 class  ~~>
crli 14216 class  ~~> r
co1 14217 class  O(1)
clo1 14218 class  <_O(1)
df-clim 14219 |-  ~~>  =  { <. f ,  y
>.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
df-rlim 14220 |-  ~~> r  =  { <. f ,  x >.  |  (
( f  e.  ( CC  ^pm  RR )  /\  x  e.  CC )  /\  A. y  e.  RR+  E. z  e.  RR  A. w  e.  dom  f
( z  <_  w  ->  ( abs `  (
( f `  w
)  -  x ) )  <  y ) ) }
df-o1 14221 |-  O(1)  =  { f  e.  ( CC  ^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( abs `  ( f `  y
) )  <_  m }
df-lo1 14222 |- 
<_O(1)  =  { f  e.  ( RR  ^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( f `
 y )  <_  m }
csu 14416 class  sum_ k  e.  A  B
df-sum 14417 |- 
sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
cprod 14635 class  prod_
k  e.  A  B
df-prod 14636 |- 
prod_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
cfallfac 14735 class FallFac
crisefac 14736 class RiseFac
df-risefac 14737 |- RiseFac  =  ( x  e.  CC ,  n  e. 
NN0  |->  prod_ k  e.  ( 0 ... ( n  -  1 ) ) ( x  +  k ) )
df-fallfac 14738 |- FallFac  =  ( x  e.  CC ,  n  e. 
NN0  |->  prod_ k  e.  ( 0 ... ( n  -  1 ) ) ( x  -  k
) )
cbp 14777 class BernPoly
df-bpoly 14778 |- BernPoly  =  ( m  e. 
NN0 ,  x  e.  CC  |->  (wrecs (  <  ,  NN0 ,  ( g  e. 
_V  |->  [_ ( # `  dom  g )  /  n ]_ ( ( x ^
n )  -  sum_ k  e.  dom  g ( ( n  _C  k
)  x.  ( ( g `  k )  /  ( ( n  -  k )  +  1 ) ) ) ) ) ) `  m ) )
ce 14792 class  exp
ceu 14793 class  _e
csin 14794 class  sin
ccos 14795 class  cos
ctan 14796 class  tan
cpi 14797 class  pi
df-ef 14798 |-  exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
k )  /  ( ! `  k )
) )
df-e 14799 |-  _e  =  ( exp `  1 )
df-sin 14800 |- 
sin  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  -  ( exp `  ( -u _i  x.  x ) ) )  /  ( 2  x.  _i ) ) )
df-cos 14801 |- 
cos  =  ( x  e.  CC  |->  ( ( ( exp `  (
_i  x.  x )
)  +  ( exp `  ( -u _i  x.  x ) ) )  /  2 ) )
df-tan 14802 |- 
tan  =  ( x  e.  ( `' cos " ( CC  \  {
0 } ) ) 
|->  ( ( sin `  x
)  /  ( cos `  x ) ) )
df-pi 14803 |-  pi  = inf ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  <  )
cdvds 14983 class  ||
df-dvds 14984 |- 
||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
cbits 15141 class bits
csad 15142 class sadd
csmu 15143 class smul
df-bits 15144 |- bits 
=  ( n  e.  ZZ  |->  { m  e. 
NN0  |  -.  2  ||  ( |_ `  (
n  /  ( 2 ^ m ) ) ) } )
df-sad 15173 |- sadd 
=  ( x  e. 
~P NN0 ,  y  e. 
~P NN0  |->  { k  e.  NN0  | hadd (
k  e.  x ,  k  e.  y ,  (/)  e.  (  seq 0
( ( c  e.  2o ,  m  e. 
NN0  |->  if (cadd ( m  e.  x ,  m  e.  y ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e. 
NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `
 k ) ) } )
df-smu 15198 |- smul 
=  ( x  e. 
~P NN0 ,  y  e. 
~P NN0  |->  { k  e.  NN0  |  k  e.  (  seq 0
( ( p  e. 
~P NN0 ,  m  e. 
NN0  |->  ( p sadd  {
n  e.  NN0  | 
( m  e.  x  /\  ( n  -  m
)  e.  y ) } ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  -  1 ) ) ) ) `  (
k  +  1 ) ) } )
cgcd 15216 class  gcd
df-gcd 15217 |- 
gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
clcm 15301 class lcm
clcmf 15302 class lcm
df-lcm 15303 |- lcm 
=  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
df-lcmf 15304 |- lcm  =  ( z  e. 
~P ZZ  |->  if ( 0  e.  z ,  0 , inf ( { n  e.  NN  |  A. m  e.  z  m  ||  n } ,  RR ,  <  ) ) )
cprime 15385 class  Prime
df-prm 15386 |- 
Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
cnumer 15441 class numer
cdenom 15442 class denom
df-numer 15443 |- numer  =  ( y  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
df-denom 15444 |- denom  =  ( y  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  y  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
codz 15468 class  odZ
cphi 15469 class  phi
df-odz 15470 |-  odZ  =  ( n  e.  NN  |->  ( x  e.  { x  e.  ZZ  |  ( x  gcd  n )  =  1 }  |-> inf ( { m  e.  NN  |  n  ||  ( ( x ^ m )  - 
1 ) } ,  RR ,  <  ) ) )
df-phi 15471 |- 
phi  =  ( n  e.  NN  |->  ( # `  { x  e.  ( 1 ... n )  |  ( x  gcd  n )  =  1 } ) )
cpc 15541 class  pCnt
df-pc 15542 |-  pCnt 
=  ( p  e. 
Prime ,  r  e.  QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e.  NN  (
r  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n )  ||  y } ,  RR ,  <  ) ) ) ) ) )
cgz 15633 class  ZZ[_i]
df-gz 15634 |-  ZZ[_i]  =  { x  e.  CC  |  ( ( Re
`  x )  e.  ZZ  /\  ( Im
`  x )  e.  ZZ ) }
cvdwa 15669 class AP
cvdwm 15670 class MonoAP
cvdwp 15671 class PolyAP
df-vdwap 15672 |- AP 
=  ( k  e. 
NN0  |->  ( a  e.  NN ,  d  e.  NN  |->  ran  ( m  e.  ( 0 ... (
k  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) ) ) )
df-vdwmc 15673 |- MonoAP  =  { <. k ,  f
>.  |  E. c
( ran  (AP `  k
)  i^i  ~P ( `' f " {
c } ) )  =/=  (/) }
df-vdwpc 15674 |- PolyAP  =  { <. <. m ,  k
>. ,  f >.  |  E. a  e.  NN  E. d  e.  ( NN 
^m  ( 1 ... m ) ) ( A. i  e.  ( 1 ... m ) ( ( a  +  ( d `  i
) ) (AP `  k ) ( d `
 i ) ) 
C_  ( `' f
" { ( f `
 ( a  +  ( d `  i
) ) ) } )  /\  ( # `  ran  ( i  e.  ( 1 ... m
)  |->  ( f `  ( a  +  ( d `  i ) ) ) ) )  =  m ) }
cram 15703 class Ramsey
df-ram 15705 |- Ramsey  =  ( m  e. 
NN0 ,  r  e.  _V  |-> inf ( { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( dom  r  ^m  { y  e.  ~P s  |  ( # `  y
)  =  m }
) E. c  e. 
dom  r E. x  e.  ~P  s ( ( r `  c )  <_  ( # `  x
)  /\  A. y  e.  ~P  x ( (
# `  y )  =  m  ->  ( f `
 y )  =  c ) ) ) } ,  RR* ,  <  ) )
cprmo 15735 class #p
df-prmo 15736 |- #p  =  ( n  e.  NN0  |->  prod_ k  e.  ( 1 ... n ) if ( k  e.  Prime ,  k ,  1 ) )
cstr 15853 class Struct
cnx 15854 class  ndx
csts 15855 class sSet
cslot 15856 class Slot  A
cbs 15857 class  Base
cress 15858 classs
df-struct 15859 |- Struct  =  { <. f ,  x >.  |  ( x  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( f 
\  { (/) } )  /\  dom  f  C_  ( ... `  x ) ) }
df-ndx 15860 |- 
ndx  =  (  _I  |`  NN )
df-slot 15861 |- Slot  A  =  ( x  e.  _V  |->  ( x `  A ) )
df-base 15863 |- 
Base  = Slot  1
df-sets 15864 |- sSet 
=  ( s  e. 
_V ,  e  e. 
_V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u.  { e } ) )
df-ress 15865 |-s  =  ( w  e.  _V ,  x  e.  _V  |->  if ( ( Base `  w
)  C_  x ,  w ,  ( w sSet  <.
( Base `  ndx ) ,  ( x  i^i  ( Base `  w ) )
>. ) ) )
cplusg 15941 class  +g
cmulr 15942 class  .r
cstv 15943 class  *r
csca 15944 class Scalar
cvsca 15945 class  .s
cip 15946 class  .i
cts 15947 class TopSet
cple 15948 class  le
coc 15949 class  oc
cds 15950 class  dist
cunif 15951 class  UnifSet
chom 15952 class  Hom
cco 15953 class comp
df-plusg 15954 |- 
+g  = Slot  2
df-mulr 15955 |- 
.r  = Slot  3
df-starv 15956 |-  *r  = Slot  4
df-sca 15957 |- Scalar  = Slot  5
df-vsca 15958 |-  .s  = Slot  6
df-ip 15959 |-  .i  = Slot  8
df-tset 15960 |- TopSet  = Slot  9
df-ple 15961 |- 
le  = Slot ; 1 0
df-ocomp 15963 |-  oc  = Slot ; 1 1
df-ds 15964 |-  dist 
= Slot ; 1 2
df-unif 15965 |- 
UnifSet  = Slot ; 1 3
df-hom 15966 |- 
Hom  = Slot ; 1 4
df-cco 15967 |- comp 
= Slot ; 1 5
crest 16081 classt
ctopn 16082 class  TopOpen
df-rest 16083 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j 
|->  ( y  i^i  x
) ) )
df-topn 16084 |-  TopOpen  =  ( w  e. 
_V  |->  ( (TopSet `  w )t  ( Base `  w
) ) )
ctg 16098 class  topGen
cpt 16099 class  Xt_
c0g 16100 class  0g
cgsu 16101 class  gsumg
df-0g 16102 |-  0g  =  ( g  e.  _V  |->  ( iota e
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) ) ) )
df-gsum 16103 |- 
gsumg  =  ( w  e. 
_V ,  f  e. 
_V  |->  [_ { x  e.  ( Base `  w
)  |  A. y  e.  ( Base `  w
) ( ( x ( +g  `  w
) y )  =  y  /\  ( y ( +g  `  w
) x )  =  y ) }  / 
o ]_ if ( ran  f  C_  o , 
( 0g `  w
) ,  if ( dom  f  e.  ran  ...
,  ( iota x E. m E. n  e.  ( ZZ>= `  m )
( dom  f  =  ( m ... n
)  /\  x  =  (  seq m ( ( +g  `  w ) ,  f ) `  n ) ) ) ,  ( iota x E. g [. ( `' f " ( _V 
\  o ) )  /  y ]. (
g : ( 1 ... ( # `  y
) ) -1-1-onto-> y  /\  x  =  (  seq 1
( ( +g  `  w
) ,  ( f  o.  g ) ) `
 ( # `  y
) ) ) ) ) ) )
df-topgen 16104 |- 
topGen  =  ( x  e. 
_V  |->  { y  |  y  C_  U. (
x  i^i  ~P y
) } )
df-pt 16105 |-  Xt_  =  ( f  e. 
_V  |->  ( topGen `  {
x  |  E. g
( ( g  Fn 
dom  f  /\  A. y  e.  dom  f ( g `  y )  e.  ( f `  y )  /\  E. z  e.  Fin  A. y  e.  ( dom  f  \ 
z ) ( g `
 y )  = 
U. ( f `  y ) )  /\  x  =  X_ y  e. 
dom  f ( g `
 y ) ) } ) )
cprds 16106 class  X_s
cpws 16107 class  ^s
df-prds 16108 |-  X_s  =  ( s  e. 
_V ,  r  e. 
_V  |->  [_ X_ x  e.  dom  r ( Base `  (
r `  x )
)  /  v ]_ [_ ( f  e.  v ,  g  e.  v 
|->  X_ x  e.  dom  r ( ( f `
 x ) ( Hom  `  ( r `  x ) ) ( g `  x ) ) )  /  h ]_ ( ( { <. (
Base `  ndx ) ,  v >. ,  <. ( +g  `  ndx ) ,  ( f  e.  v ,  g  e.  v 
|->  ( x  e.  dom  r  |->  ( ( f `
 x ) ( +g  `  ( r `
 x ) ) ( g `  x
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( ( f `  x ) ( .r
`  ( r `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  s
>. ,  <. ( .s
`  ndx ) ,  ( f  e.  ( Base `  s ) ,  g  e.  v  |->  ( x  e.  dom  r  |->  ( f ( .s `  ( r `  x
) ) ( g `
 x ) ) ) ) >. ,  <. ( .i `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  ( s  gsumg  ( x  e.  dom  r  |->  ( ( f `  x
) ( .i `  ( r `  x
) ) ( g `
 x ) ) ) ) ) >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  r )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  dom  r ( f `  x ) ( le `  (
r `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  v ,  g  e.  v  |->  sup ( ( ran  (
x  e.  dom  r  |->  ( ( f `  x ) ( dist `  ( r `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. ( Hom  `  ndx ) ,  h >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( v  X.  v ) ,  c  e.  v  |->  ( d  e.  ( c h ( 2nd `  a
) ) ,  e  e.  ( h `  a )  |->  ( x  e.  dom  r  |->  ( ( d `  x
) ( <. (
( 1st `  a
) `  x ) ,  ( ( 2nd `  a ) `  x
) >. (comp `  (
r `  x )
) ( c `  x ) ) ( e `  x ) ) ) ) )
>. } ) ) )
df-pws 16110 |- 
^s  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( (Scalar `  r ) X_s ( i  X.  {
r } ) ) )
cordt 16159 class ordTop
cxrs 16160 class  RR*s
df-ordt 16161 |- ordTop  =  ( r  e. 
_V  |->  ( topGen `  ( fi `  ( { dom  r }  u.  ran  ( ( x  e. 
dom  r  |->  { y  e.  dom  r  |  -.  y r x } )  u.  (
x  e.  dom  r  |->  { y  e.  dom  r  |  -.  x
r y } ) ) ) ) ) )
df-xrs 16162 |- 
RR*s  =  ( { <. ( Base `  ndx ) ,  RR* >. ,  <. ( +g  `  ndx ) ,  +e >. ,  <. ( .r `  ndx ) ,  xe >. }  u.  {
<. (TopSet `  ndx ) ,  (ordTop `  <_  ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( x  e.  RR* ,  y  e.  RR*  |->  if ( x  <_  y , 
( y +e  -e x ) ,  ( x +e  -e y ) ) ) >. } )
cqtop 16163 class qTop
cimas 16164 class  "s
cqus 16165 class  /.s
cxps 16166 class  X.s
df-qtop 16167 |- qTop 
=  ( j  e. 
_V ,  f  e. 
_V  |->  { s  e. 
~P ( f " U. j )  |  ( ( `' f "
s )  i^i  U. j )  e.  j } )
df-imas 16168 |-  "s  =  ( f  e. 
_V ,  r  e. 
_V  |->  [_ ( Base `  r
)  /  v ]_ ( ( { <. (
Base `  ndx ) ,  ran  f >. ,  <. ( +g  `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( +g  `  r ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( f `  ( p ( .r
`  r ) q ) ) >. } >. }  u.  { <. (Scalar ` 
ndx ) ,  (Scalar `  r ) >. ,  <. ( .s `  ndx ) ,  U_ q  e.  v  ( p  e.  (
Base `  (Scalar `  r
) ) ,  x  e.  { ( f `  q ) }  |->  ( f `  ( p ( .s `  r
) q ) ) ) >. ,  <. ( .i `  ndx ) , 
U_ p  e.  v 
U_ q  e.  v  { <. <. ( f `  p ) ,  ( f `  q )
>. ,  ( p
( .i `  r
) q ) >. } >. } )  u. 
{ <. (TopSet `  ndx ) ,  ( ( TopOpen
`  r ) qTop  f
) >. ,  <. ( le `  ndx ) ,  ( ( f  o.  ( le `  r
) )  o.  `' f ) >. ,  <. (
dist `  ndx ) ,  ( x  e.  ran  f ,  y  e.  ran  f  |-> inf ( U_ n  e.  NN  ran  ( g  e.  {
h  e.  ( ( v  X.  v )  ^m  ( 1 ... n ) )  |  ( ( f `  ( 1st `  ( h `
 1 ) ) )  =  x  /\  ( f `  ( 2nd `  ( h `  n ) ) )  =  y  /\  A. i  e.  ( 1 ... ( n  - 
1 ) ) ( f `  ( 2nd `  ( h `  i
) ) )  =  ( f `  ( 1st `  ( h `  ( i  +  1 ) ) ) ) ) }  |->  ( RR*s  gsumg  ( ( dist `  r
)  o.  g ) ) ) ,  RR* ,  <  ) ) >. } ) )
df-qus 16169 |- 
/.s 
=  ( r  e. 
_V ,  e  e. 
_V  |->  ( ( x  e.  ( Base `  r
)  |->  [ x ]
e )  "s  r )
)
df-xps 16170 |- 
X.s 
=  ( r  e. 
_V ,  s  e. 
_V  |->  ( `' ( x  e.  ( Base `  r ) ,  y  e.  ( Base `  s
)  |->  `' ( { x }  +c  {
y } ) ) 
"s  ( (Scalar `  r
) X_s `' ( { r }  +c  { s } ) ) ) )
cmre 16242 class Moore
cmrc 16243 class mrCls
cmri 16244 class mrInd
cacs 16245 class ACS
df-mre 16246 |- Moore  =  ( x  e. 
_V  |->  { c  e. 
~P ~P x  |  ( x  e.  c  /\  A. s  e. 
~P  c ( s  =/=  (/)  ->  |^| s  e.  c ) ) } )
df-mrc 16247 |- mrCls  =  ( c  e. 
U. ran Moore  |->  ( x  e.  ~P U. c  |->  |^|
{ s  e.  c  |  x  C_  s } ) )
df-mri 16248 |- mrInd  =  ( c  e. 
U. ran Moore  |->  { s  e.  ~P U. c  | 
A. x  e.  s  -.  x  e.  ( (mrCls `  c ) `  ( s  \  {
x } ) ) } )
df-acs 16249 |- ACS 
=  ( x  e. 
_V  |->  { c  e.  (Moore `  x )  |  E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
ccat 16325 class  Cat
ccid 16326 class  Id
chomf 16327 class  Hom f
ccomf 16328 class compf
df-cat 16329 |- 
Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. ( Hom  `  c
)  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
df-cid 16330 |-  Id  =  ( c  e.  Cat  |->  [_ ( Base `  c )  / 
b ]_ [_ ( Hom  `  c )  /  h ]_ [_ (comp `  c
)  /  o ]_ ( x  e.  b  |->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) ) )
df-homf 16331 |- 
Hom f  =  ( c  e. 
_V  |->  ( x  e.  ( Base `  c
) ,  y  e.  ( Base `  c
)  |->  ( x ( Hom  `  c )
y ) ) )
df-comf 16332 |- compf  =  ( c  e.  _V  |->  ( x  e.  (
( Base `  c )  X.  ( Base `  c
) ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( ( 2nd `  x
) ( Hom  `  c
) y ) ,  f  e.  ( ( Hom  `  c ) `  x )  |->  ( g ( x (comp `  c ) y ) f ) ) ) )
coppc 16371 class oppCat
df-oppc 16372 |- oppCat  =  ( f  e. 
_V  |->  ( ( f sSet  <. ( Hom  `  ndx ) , tpos  ( Hom  `  f ) >. ) sSet  <.
(comp `  ndx ) ,  ( u  e.  ( ( Base `  f
)  X.  ( Base `  f ) ) ,  z  e.  ( Base `  f )  |-> tpos  ( <.
z ,  ( 2nd `  u ) >. (comp `  f ) ( 1st `  u ) ) )
>. ) )
cmon 16388 class Mono
cepi 16389 class Epi
df-mon 16390 |- Mono 
=  ( c  e. 
Cat  |->  [_ ( Base `  c
)  /  b ]_ [_ ( Hom  `  c
)  /  h ]_ ( x  e.  b ,  y  e.  b  |->  { f  e.  ( x h y )  |  A. z  e.  b  Fun  `' ( g  e.  ( z h x )  |->  ( f ( <. z ,  x >. (comp `  c
) y ) g ) ) } ) )
df-epi 16391 |- Epi 
=  ( c  e. 
Cat  |-> tpos  (Mono `  (oppCat `  c
) ) )
csect 16404 class Sect
cinv 16405 class Inv
ciso 16406 class  Iso
df-sect 16407 |- Sect 
=  ( c  e. 
Cat  |->  ( x  e.  ( Base `  c
) ,  y  e.  ( Base `  c
)  |->  { <. f ,  g >.  |  [. ( Hom  `  c )  /  h ]. ( ( f  e.  ( x h y )  /\  g  e.  ( y
h x ) )  /\  ( g (
<. x ,  y >.
(comp `  c )
x ) f )  =  ( ( Id
`  c ) `  x ) ) } ) )
df-inv 16408 |- Inv 
=  ( c  e. 
Cat  |->  ( x  e.  ( Base `  c
) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) ) )
df-iso 16409 |- 
Iso  =  ( c  e.  Cat  |->  ( ( x  e.  _V  |->  dom  x )  o.  (Inv `  c ) ) )
ccic 16455 class  ~=c𝑐
df-cic 16456 |- 
~=c𝑐  =  ( c  e. 
Cat  |->  ( (  Iso  `  c ) supp  (/) ) )
cssc 16467 class  C_cat
cresc 16468 class  |`cat
csubc 16469 class Subcat
df-ssc 16470 |-  C_cat 
=  { <. h ,  j >.  |  E. t ( j  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t h  e.  X_ x  e.  (
s  X.  s ) ~P ( j `  x ) ) }
df-resc 16471 |-  |`cat 
=  ( c  e. 
_V ,  h  e. 
_V  |->  ( ( cs  dom 
dom  h ) sSet  <. ( Hom  `  ndx ) ,  h >. ) )
df-subc 16472 |- Subcat  =  ( c  e. 
Cat  |->  { h  |  ( h  C_cat  ( Hom f  `  c )  /\  [. dom  dom  h  /  s ]. A. x  e.  s 
( ( ( Id
`  c ) `  x )  e.  ( x h x )  /\  A. y  e.  s  A. z  e.  s  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( g (
<. x ,  y >.
(comp `  c )
z ) f )  e.  ( x h z ) ) ) } )
cfunc 16514 class  Func
cidfu 16515 class idfunc
ccofu 16516 class  o.func
cresf 16517 class  |`f
df-func 16518 |- 
Func  =  ( t  e.  Cat ,  u  e. 
Cat  |->  { <. f ,  g >.  |  [. ( Base `  t )  /  b ]. (
f : b --> (
Base `  u )  /\  g  e.  X_ z  e.  ( b  X.  b
) ( ( ( f `  ( 1st `  z ) ) ( Hom  `  u )
( f `  ( 2nd `  z ) ) )  ^m  ( ( Hom  `  t ) `  z ) )  /\  A. x  e.  b  ( ( ( x g x ) `  (
( Id `  t
) `  x )
)  =  ( ( Id `  u ) `
 ( f `  x ) )  /\  A. y  e.  b  A. z  e.  b  A. m  e.  ( x
( Hom  `  t ) y ) A. n  e.  ( y ( Hom  `  t ) z ) ( ( x g z ) `  (
n ( <. x ,  y >. (comp `  t ) z ) m ) )  =  ( ( ( y g z ) `  n ) ( <.
( f `  x
) ,  ( f `
 y ) >.
(comp `  u )
( f `  z
) ) ( ( x g y ) `
 m ) ) ) ) } )
df-idfu 16519 |- idfunc  =  ( t  e.  Cat  |->  [_ ( Base `  t
)  /  b ]_ <. (  _I  |`  b
) ,  ( z  e.  ( b  X.  b )  |->  (  _I  |`  ( ( Hom  `  t
) `  z )
) ) >. )
df-cofu 16520 |-  o.func  =  ( g  e. 
_V ,  f  e. 
_V  |->  <. ( ( 1st `  g )  o.  ( 1st `  f ) ) ,  ( x  e. 
dom  dom  ( 2nd `  f
) ,  y  e. 
dom  dom  ( 2nd `  f
)  |->  ( ( ( ( 1st `  f
) `  x )
( 2nd `  g
) ( ( 1st `  f ) `  y
) )  o.  (
x ( 2nd `  f
) y ) ) ) >. )
df-resf 16521 |-  |`f  =  ( f  e. 
_V ,  h  e. 
_V  |->  <. ( ( 1st `  f )  |`  dom  dom  h ) ,  ( x  e.  dom  h  |->  ( ( ( 2nd `  f ) `  x
)  |`  ( h `  x ) ) )
>. )
cful 16562 class Full
cfth 16563 class Faith
df-full 16564 |- Full 
=  ( c  e. 
Cat ,  d  e.  Cat  |->  { <. f ,  g >.  |  ( f ( c  Func  d ) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) ) } )
df-fth 16565 |- Faith  =  ( c  e. 
Cat ,  d  e.  Cat  |->  { <. f ,  g >.  |  ( f ( c  Func  d ) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) } )
cnat 16601 class Nat
cfuc 16602 class FuncCat
df-nat 16603 |- Nat 
=  ( t  e. 
Cat ,  u  e.  Cat  |->  ( f  e.  ( t  Func  u
) ,  g  e.  ( t  Func  u
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) ( Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
( Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) } ) )
df-fuc 16604 |- FuncCat  =  ( t  e. 
Cat ,  u  e.  Cat  |->  { <. ( Base `  ndx ) ,  ( t  Func  u
) >. ,  <. ( Hom  `  ndx ) ,  ( t Nat  u )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( t 
Func  u )  X.  (
t  Func  u )
) ,  h  e.  ( t  Func  u
)  |->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( t Nat  u
) h ) ,  a  e.  ( f ( t Nat  u ) g )  |->  ( x  e.  ( Base `  t
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  u
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
cinito 16638 class InitO
ctermo 16639 class TermO
czeroo 16640 class ZeroO
df-inito 16641 |- InitO  =  ( c  e. 
Cat  |->  { a  e.  ( Base `  c
)  |  A. b  e.  ( Base `  c
) E! h  h  e.  ( a ( Hom  `  c )
b ) } )
df-termo 16642 |- TermO  =  ( c  e. 
Cat  |->  { a  e.  ( Base `  c
)  |  A. b  e.  ( Base `  c
) E! h  h  e.  ( b ( Hom  `  c )
a ) } )
df-zeroo 16643 |- ZeroO  =  ( c  e. 
Cat  |->  ( (InitO `  c )  i^i  (TermO `  c ) ) )
cdoma 16670 class domA
ccoda 16671 class coda
carw 16672 class Nat
choma 16673 class Homa
df-doma 16674 |- domA  =  ( 1st  o.  1st )
df-coda 16675 |- coda  =  ( 2nd  o.  1st )
df-homa 16676 |- Homa  =  ( c  e.  Cat  |->  ( x  e.  (
( Base `  c )  X.  ( Base `  c
) )  |->  ( { x }  X.  (
( Hom  `  c ) `
 x ) ) ) )
df-arw 16677 |- Nat 
=  ( c  e. 
Cat  |->  U. ran  (Homa `  c
) )
cida 16703 class Ida
ccoa 16704 class compa
df-ida 16705 |- Ida  =  ( c  e.  Cat  |->  ( x  e.  ( Base `  c )  |->  <.
x ,  x ,  ( ( Id `  c ) `  x
) >. ) )
df-coa 16706 |- compa  =  ( c  e.  Cat  |->  ( g  e.  (Nat
`  c ) ,  f  e.  { h  e.  (Nat `  c )  |  (coda
`  h )  =  (domA `  g ) }  |->  <.
(domA `  f ) ,  (coda `  g ) ,  ( ( 2nd `  g
) ( <. (domA `  f ) ,  (domA `  g ) >. (comp `  c ) (coda `  g
) ) ( 2nd `  f ) ) >.
) )
csetc 16725 class  SetCat
df-setc 16726 |- 
SetCat  =  ( u  e. 
_V  |->  { <. ( Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( y  ^m  x
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( z  ^m  ( 2nd `  v
) ) ,  f  e.  ( ( 2nd `  v )  ^m  ( 1st `  v ) ) 
|->  ( g  o.  f
) ) ) >. } )
ccatc 16744 class CatCat
df-catc 16745 |- CatCat  =  ( u  e. 
_V  |->  [_ ( u  i^i 
Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. } )
cestrc 16762 class ExtStrCat
df-estrc 16763 |- ExtStrCat  =  ( u  e. 
_V  |->  { <. ( Base `  ndx ) ,  u >. ,  <. ( Hom  `  ndx ) ,  ( x  e.  u ,  y  e.  u  |->  ( ( Base `  y
)  ^m  ( Base `  x ) ) )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( u  X.  u ) ,  z  e.  u  |->  ( g  e.  ( ( Base `  z )  ^m  ( Base `  ( 2nd `  v
) ) ) ,  f  e.  ( (
Base `  ( 2nd `  v ) )  ^m  ( Base `  ( 1st `  v ) ) ) 
|->  ( g  o.  f
) ) ) >. } )
cxpc 16808 class  X.c
c1stf 16809 class  1stF
c2ndf 16810 class  2ndF
cprf 16811 class ⟨,⟩F
df-xpc 16812 |- 
X.c 
=  ( r  e. 
_V ,  s  e. 
_V  |->  [_ ( ( Base `  r )  X.  ( Base `  s ) )  /  b ]_ [_ (
u  e.  b ,  v  e.  b  |->  ( ( ( 1st `  u
) ( Hom  `  r
) ( 1st `  v
) )  X.  (
( 2nd `  u
) ( Hom  `  s
) ( 2nd `  v
) ) ) )  /  h ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  h >. , 
<. (comp `  ndx ) ,  ( x  e.  ( b  X.  b ) ,  y  e.  b 
|->  ( g  e.  ( ( 2nd `  x
) h y ) ,  f  e.  ( h `  x ) 
|->  <. ( ( 1st `  g ) ( <.
( 1st `  ( 1st `  x ) ) ,  ( 1st `  ( 2nd `  x ) )
>. (comp `  r )
( 1st `  y
) ) ( 1st `  f ) ) ,  ( ( 2nd `  g
) ( <. ( 2nd `  ( 1st `  x
) ) ,  ( 2nd `  ( 2nd `  x ) ) >.
(comp `  s )
( 2nd `  y
) ) ( 2nd `  f ) ) >.
) ) >. } )
df-1stf 16813 |- 
1stF 
=  ( r  e. 
Cat ,  s  e.  Cat  |->  [_ ( ( Base `  r )  X.  ( Base `  s ) )  /  b ]_ <. ( 1st  |`  b ) ,  ( x  e.  b ,  y  e.  b  |->  ( 1st  |`  (
x ( Hom  `  (
r  X.c  s ) ) y ) ) ) >.
)
df-2ndf 16814 |- 
2ndF 
=  ( r  e. 
Cat ,  s  e.  Cat  |->  [_ ( ( Base `  r )  X.  ( Base `  s ) )  /  b ]_ <. ( 2nd  |`  b ) ,  ( x  e.  b ,  y  e.  b  |->  ( 2nd  |`  (
x ( Hom  `  (
r  X.c  s ) ) y ) ) ) >.
)
df-prf 16815 |- ⟨,⟩F  =  ( f  e.  _V , 
g  e.  _V  |->  [_ dom  ( 1st `  f
)  /  b ]_ <. ( x  e.  b 
|->  <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
) ,  ( x  e.  b ,  y  e.  b  |->  ( h  e.  dom  ( x ( 2nd `  f
) y )  |->  <.
( ( x ( 2nd `  f ) y ) `  h
) ,  ( ( x ( 2nd `  g
) y ) `  h ) >. )
) >. )
cevlf 16849 class evalF
ccurf 16850 class curryF
cuncf 16851 class uncurryF
cdiag 16852 class Δfunc
df-evlf 16853 |- evalF  =  ( c  e.  Cat ,  d  e.  Cat  |->  <.
( f  e.  ( c  Func  d ) ,  x  e.  ( Base `  c )  |->  ( ( 1st `  f
) `  x )
) ,  ( x  e.  ( ( c 
Func  d )  X.  ( Base `  c
) ) ,  y  e.  ( ( c 
Func  d )  X.  ( Base `  c
) )  |->  [_ ( 1st `  x )  /  m ]_ [_ ( 1st `  y )  /  n ]_ ( a  e.  ( m ( c Nat  d
) n ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c
) ( 2nd `  y
) )  |->  ( ( a `  ( 2nd `  y ) ) (
<. ( ( 1st `  m
) `  ( 2nd `  x ) ) ,  ( ( 1st `  m
) `  ( 2nd `  y ) ) >.
(comp `  d )
( ( 1st `  n
) `  ( 2nd `  y ) ) ) ( ( ( 2nd `  x ) ( 2nd `  m ) ( 2nd `  y ) ) `  g ) ) ) ) >. )
df-curf 16854 |- curryF  =  ( e  e.  _V ,  f  e.  _V  |->  [_ ( 1st `  e
)  /  c ]_ [_ ( 2nd `  e
)  /  d ]_ <. ( x  e.  (
Base `  c )  |-> 
<. ( y  e.  (
Base `  d )  |->  ( x ( 1st `  f ) y ) ) ,  ( y  e.  ( Base `  d
) ,  z  e.  ( Base `  d
)  |->  ( g  e.  ( y ( Hom  `  d ) z ) 
|->  ( ( ( Id
`  c ) `  x ) ( <.
x ,  y >.
( 2nd `  f
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( g  e.  ( x ( Hom  `  c ) y ) 
|->  ( z  e.  (
Base `  d )  |->  ( g ( <.
x ,  z >.
( 2nd `  f
) <. y ,  z
>. ) ( ( Id
`  d ) `  z ) ) ) ) ) >. )
df-uncf 16855 |- uncurryF  =  ( c  e.  _V ,  f  e.  _V  |->  ( ( ( c `
 1 ) evalF  ( c `
 2 ) )  o.func  ( ( f  o.func  ( ( c `  0
)  1stF  ( c `  1
) ) ) ⟨,⟩F  ( ( c ` 
0 )  2ndF  ( c `  1 ) ) ) ) )
df-diag 16856 |- Δfunc  =  ( c  e.  Cat ,  d  e.  Cat  |->  (
<. c ,  d >. curryF  ( c  1stF  d ) ) )
chof 16888 class HomF
cyon 16889 class Yon
df-hof 16890 |- HomF  =  ( c  e.  Cat  |->  <. ( Hom f  `  c ) , 
[_ ( Base `  c
)  /  b ]_ ( x  e.  (
b  X.  b ) ,  y  e.  ( b  X.  b ) 
|->  ( f  e.  ( ( 1st `  y
) ( Hom  `  c
) ( 1st `  x
) ) ,  g  e.  ( ( 2nd `  x ) ( Hom  `  c ) ( 2nd `  y ) )  |->  ( h  e.  ( ( Hom  `  c ) `  x )  |->  ( ( g ( x (comp `  c ) ( 2nd `  y ) ) h ) ( <. ( 1st `  y ) ,  ( 1st `  x
) >. (comp `  c
) ( 2nd `  y
) ) f ) ) ) ) >.
)
df-yon 16891 |- Yon 
=  ( c  e. 
Cat  |->  ( <. c ,  (oppCat `  c ) >. curryF  (HomF `  (oppCat `  c ) ) ) )
cpreset 16926 class  Preset
cdrs 16927 class Dirset
df-preset 16928 |- 
Preset  =  { f  | 
[. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) }
df-drs 16929 |- Dirset  =  { f  e.  Preset  | 
[. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. ( b  =/=  (/)  /\  A. x  e.  b  A. y  e.  b  E. z  e.  b  (
x r z  /\  y r z ) ) }
cpo 16940 class  Poset
cplt 16941 class  lt
club 16942 class  lub
cglb 16943 class  glb
cjn 16944 class  join
cmee 16945 class  meet
df-poset 16946 |- 
Poset  =  { f  |  E. b E. r
( b  =  (
Base `  f )  /\  r  =  ( le `  f )  /\  A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x r x  /\  ( ( x r y  /\  y r x )  ->  x  =  y )  /\  ( ( x r y  /\  y r z )  ->  x
r z ) ) ) }
df-plt 16958 |- 
lt  =  ( p  e.  _V  |->  ( ( le `  p ) 
\  _I  ) )
df-lub 16974 |- 
lub  =  ( p  e.  _V  |->  ( ( s  e.  ~P ( Base `  p )  |->  (
iota_ x  e.  ( Base `  p ) ( A. y  e.  s  y ( le `  p ) x  /\  A. z  e.  ( Base `  p ) ( A. y  e.  s  y
( le `  p
) z  ->  x
( le `  p
) z ) ) ) )  |`  { s  |  E! x  e.  ( Base `  p
) ( A. y  e.  s  y ( le `  p ) x  /\  A. z  e.  ( Base `  p
) ( A. y  e.  s  y ( le `  p ) z  ->  x ( le
`  p ) z ) ) } ) )
df-glb 16975 |- 
glb  =  ( p  e.  _V  |->  ( ( s  e.  ~P ( Base `  p )  |->  (
iota_ x  e.  ( Base `  p ) ( A. y  e.  s  x ( le `  p ) y  /\  A. z  e.  ( Base `  p ) ( A. y  e.  s  z
( le `  p
) y  ->  z
( le `  p
) x ) ) ) )  |`  { s  |  E! x  e.  ( Base `  p
) ( A. y  e.  s  x ( le `  p ) y  /\  A. z  e.  ( Base `  p
) ( A. y  e.  s  z ( le `  p ) y  ->  z ( le
`  p ) x ) ) } ) )
df-join 16976 |- 
join  =  ( p  e.  _V  |->  { <. <. x ,  y >. ,  z
>.  |  { x ,  y }  ( lub `  p ) z } )
df-meet 16977 |- 
meet  =  ( p  e.  _V  |->  { <. <. x ,  y >. ,  z
>.  |  { x ,  y }  ( glb `  p ) z } )
ctos 17033 class Toset
df-toset 17034 |- Toset  =  { f  e.  Poset  | 
[. ( Base `  f
)  /  b ]. [. ( le `  f
)  /  r ]. A. x  e.  b  A. y  e.  b 
( x r y  \/  y r x ) }
cp0 17037 class  0.
cp1 17038 class  1.
df-p0 17039 |-  0.  =  ( p  e. 
_V  |->  ( ( glb `  p ) `  ( Base `  p ) ) )
df-p1 17040 |-  1.  =  ( p  e. 
_V  |->  ( ( lub `  p ) `  ( Base `  p ) ) )
clat 17045 class  Lat
df-lat 17046 |- 
Lat  =  { p  e.  Poset  |  ( dom  ( join `  p
)  =  ( (
Base `  p )  X.  ( Base `  p
) )  /\  dom  ( meet `  p )  =  ( ( Base `  p )  X.  ( Base `  p ) ) ) }
ccla 17107 class  CLat
df-clat 17108 |- 
CLat  =  { p  e.  Poset  |  ( dom  ( lub `  p
)  =  ~P ( Base `  p )  /\  dom  ( glb `  p
)  =  ~P ( Base `  p ) ) }
codu 17128 class ODual
df-odu 17129 |- ODual  =  ( w  e. 
_V  |->  ( w sSet  <. ( le `  ndx ) ,  `' ( le `  w ) >. )
)
cipo 17151 class toInc
df-ipo 17152 |- toInc  =  ( f  e. 
_V  |->  [_ { <. x ,  y >.  |  ( { x ,  y }  C_  f  /\  x  C_  y ) }  /  o ]_ ( { <. ( Base `  ndx ) ,  f >. , 
<. (TopSet `  ndx ) ,  (ordTop `  o ) >. }  u.  { <. ( le `  ndx ) ,  o >. ,  <. ( oc `  ndx ) ,  ( x  e.  f  |->  U. { y  e.  f  |  ( y  i^i  x )  =  (/) } ) >. } ) )
cdlat 17191 class DLat
df-dlat 17192 |- DLat 
=  { k  e. 
Lat  |  [. ( Base `  k )  /  b ]. [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) }
cps 17198 class  PosetRel
ctsr 17199 class  TosetRel
df-ps 17200 |-  PosetRel  =  { r  |  ( Rel  r  /\  (
r  o.  r ) 
C_  r  /\  (
r  i^i  `' r
)  =  (  _I  |`  U. U. r ) ) }
df-tsr 17201 |-  TosetRel  =  { r  e.  PosetRel 
|  ( dom  r  X.  dom  r )  C_  ( r  u.  `' r ) }
cdir 17228 class  DirRel
ctail 17229 class  tail
df-dir 17230 |- 
DirRel  =  { r  |  ( ( Rel  r  /\  (  _I  |`  U. U. r )  C_  r
)  /\  ( (
r  o.  r ) 
C_  r  /\  ( U. U. r  X.  U. U. r )  C_  ( `' r  o.  r
) ) ) }
df-tail 17231 |- 
tail  =  ( r  e.  DirRel  |->  ( x  e. 
U. U. r  |->  ( r
" { x }
) ) )
cplusf 17239 class  +f
cmgm 17240 class Mgm
df-plusf 17241 |-  +f  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) y ) ) )
df-mgm 17242 |- Mgm 
=  { g  | 
[. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b 
( x o y )  e.  b }
csgrp 17283 class SGrp
df-sgrp 17284 |- SGrp 
=  { g  e. Mgm 
|  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cmnd 17294 class  Mnd
df-mnd 17295 |- 
Mnd  =  { g  e. SGrp  |  [. ( Base `  g )  / 
b ]. [. ( +g  `  g )  /  p ]. E. e  e.  b 
A. x  e.  b  ( ( e p x )  =  x  /\  ( x p e )  =  x ) }
cmhm 17333 class MndHom
csubmnd 17334 class SubMnd
df-mhm 17335 |- MndHom  =  ( s  e. 
Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
)  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s
) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) )  /\  ( f `  ( 0g `  s ) )  =  ( 0g `  t ) ) } )
df-submnd 17336 |- SubMnd  =  ( s  e. 
Mnd  |->  { t  e. 
~P ( Base `  s
)  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  (
x ( +g  `  s
) y )  e.  t ) } )
cfrmd 17384 class freeMnd
cvrmd 17385 class varFMnd
df-frmd 17386 |- freeMnd  =  ( i  e. 
_V  |->  { <. ( Base `  ndx ) , Word  i >. ,  <. ( +g  `  ndx ) ,  ( ++  |`  (Word  i  X. Word 
i ) ) >. } )
df-vrmd 17387 |- varFMnd  =  ( i  e.  _V  |->  ( j  e.  i 
|->  <" j "> ) )
cgrp 17422 class  Grp
cminusg 17423 class  invg
csg 17424 class  -g
df-grp 17425 |- 
Grp  =  { g  e.  Mnd  |  A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g
) ( m ( +g  `  g ) a )  =  ( 0g `  g ) }
df-minusg 17426 |- 
invg  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g )  |->  ( iota_ w  e.  ( Base `  g
) ( w ( +g  `  g ) x )  =  ( 0g `  g ) ) ) )
df-sbg 17427 |- 
-g  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( +g  `  g ) ( ( invg `  g ) `  y
) ) ) )
cmg 17540 class .g
df-mulg 17541 |- .g  =  ( g  e.  _V  |->  ( n  e.  ZZ ,  x  e.  ( Base `  g )  |->  if ( n  =  0 ,  ( 0g `  g ) ,  [_  seq 1 ( ( +g  `  g ) ,  ( NN  X.  { x } ) )  / 
s ]_ if ( 0  <  n ,  ( s `  n ) ,  ( ( invg `  g ) `
 ( s `  -u n ) ) ) ) ) )
csubg 17588 class SubGrp
cnsg 17589 class NrmSGrp
cqg 17590 class ~QG
df-subg 17591 |- SubGrp  =  ( w  e. 
Grp  |->  { s  e. 
~P ( Base `  w
)  |  ( ws  s )  e.  Grp }
)
df-nsg 17592 |- NrmSGrp  =  ( w  e. 
Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w
)  /  b ]. [. ( +g  `  w
)  /  p ]. A. x  e.  b  A. y  e.  b 
( ( x p y )  e.  s  <-> 
( y p x )  e.  s ) } )
df-eqg 17593 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  r
)  /\  ( (
( invg `  r ) `  x
) ( +g  `  r
) y )  e.  i ) } )
cghm 17657 class  GrpHom
df-ghm 17658 |- 
GrpHom  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  | 
[. ( Base `  s
)  /  w ]. ( g : w --> ( Base `  t
)  /\  A. x  e.  w  A. y  e.  w  ( g `  ( x ( +g  `  s ) y ) )  =  ( ( g `  x ) ( +g  `  t
) ( g `  y ) ) ) } )
cgim 17699 class GrpIso
cgic 17700 class  ~=g𝑔
df-gim 17701 |- GrpIso  =  ( s  e. 
Grp ,  t  e.  Grp  |->  { g  e.  ( s  GrpHom  t )  |  g : (
Base `  s ) -1-1-onto-> ( Base `  t ) } )
df-gic 17702 |- 
~=g𝑔  =  ( `' GrpIso  " ( _V  \  1o ) )
cga 17722 class  GrpAct
df-ga 17723 |-  GrpAct  =  ( g  e. 
Grp ,  s  e.  _V  |->  [_ ( Base `  g
)  /  b ]_ { m  e.  (
s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) } )
ccntz 17748 class Cntz
ccntr 17749 class Cntr
df-cntz 17750 |- Cntz 
=  ( m  e. 
_V  |->  ( s  e. 
~P ( Base `  m
)  |->  { x  e.  ( Base `  m
)  |  A. y  e.  s  ( x
( +g  `  m ) y )  =  ( y ( +g  `  m
) x ) } ) )
df-cntr 17751 |- Cntr 
=  ( m  e. 
_V  |->  ( (Cntz `  m ) `  ( Base `  m ) ) )
coppg 17775 class oppg
df-oppg 17776 |- oppg  =  ( w  e.  _V  |->  ( w sSet  <. ( +g  ` 
ndx ) , tpos  ( +g  `  w ) >.
) )
csymg 17797 class  SymGrp
df-symg 17798 |- 
SymGrp  =  ( x  e. 
_V  |->  [_ { h  |  h : x -1-1-onto-> x }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( f  o.  g ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( x  X.  { ~P x } ) )
>. } )
cpmtr 17861 class pmTrsp
df-pmtr 17862 |- pmTrsp  =  ( d  e. 
_V  |->  ( p  e. 
{ y  e.  ~P d  |  y  ~~  2o }  |->  ( z  e.  d  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
cpsgn 17909 class pmSgn
cevpm 17910 class pmEven
df-psgn 17911 |- pmSgn  =  ( d  e. 
_V  |->  ( x  e. 
{ p  e.  (
Base `  ( SymGrp `  d ) )  |  dom  ( p  \  _I  )  e.  Fin } 
|->  ( iota s E. w  e. Word  ran  (pmTrsp `  d ) ( x  =  ( ( SymGrp `  d )  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) ) )
df-evpm 17912 |- pmEven  =  ( d  e. 
_V  |->  ( `' (pmSgn `  d ) " {
1 } ) )
cod 17944 class  od
cgex 17945 class gEx
cpgp 17946 class pGrp
cslw 17947 class pSyl
df-od 17948 |-  od  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g
)  |->  [_ { n  e.  NN  |  ( n (.g `  g ) x )  =  ( 0g
`  g ) }  /  i ]_ if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) ) ) )
df-gex 17949 |- gEx 
=  ( g  e. 
_V  |->  [_ { n  e.  NN  |  A. x  e.  ( Base `  g
) ( n (.g `  g ) x )  =  ( 0g `  g ) }  / 
i ]_ if ( i  =  (/) ,  0 , inf ( i ,  RR ,  <  ) ) )
df-pgp 17950 |- pGrp 
=  { <. p ,  g >.  |  ( ( p  e.  Prime  /\  g  e.  Grp )  /\  A. x  e.  (
Base `  g ) E. n  e.  NN0  ( ( od `  g ) `  x
)  =  ( p ^ n ) ) }
df-slw 17951 |- pSyl 
=  ( p  e. 
Prime ,  g  e.  Grp  |->  { h  e.  (SubGrp `  g )  |  A. k  e.  (SubGrp `  g ) ( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k ) } )
clsm 18049 class  LSSum
cpj1 18050 class  proj1
df-lsm 18051 |- 
LSSum  =  ( w  e.  _V  |->  ( t  e. 
~P ( Base `  w
) ,  u  e. 
~P ( Base `  w
)  |->  ran  ( x  e.  t ,  y  e.  u  |->  ( x ( +g  `  w ) y ) ) ) )
df-pj1 18052 |- 
proj1  =  (
w  e.  _V  |->  ( t  e.  ~P ( Base `  w ) ,  u  e.  ~P ( Base `  w )  |->  ( z  e.  ( t ( LSSum `  w )
u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x ( +g  `  w ) y ) ) ) ) )
cefg 18119 class ~FG
cfrgp 18120 class freeGrp
cvrgp 18121 class varFGrp
df-efg 18122 |- ~FG  =  ( i  e.  _V  |->  |^|
{ r  |  ( r  Er Word  ( i  X.  2o )  /\  A. x  e. Word  ( i  X.  2o ) A. n  e.  ( 0 ... ( # `
 x ) ) A. y  e.  i 
A. z  e.  2o  x r ( x splice  <. n ,  n , 
<" <. y ,  z
>. <. y ,  ( 1o  \  z )
>. "> >. )
) } )
df-frgp 18123 |- freeGrp  =  ( i  e. 
_V  |->  ( (freeMnd `  (
i  X.  2o ) )  /.s  ( ~FG  `  i ) ) )
df-vrgp 18124 |- varFGrp  =  ( i  e.  _V  |->  ( j  e.  i 
|->  [ <" <. j ,  (/) >. "> ] ( ~FG  `  i ) ) )
ccmn 18193 class CMnd
cabl 18194 class  Abel
df-cmn 18195 |- CMnd 
=  { g  e. 
Mnd  |  A. a  e.  ( Base `  g
) A. b  e.  ( Base `  g
) ( a ( +g  `  g ) b )  =  ( b ( +g  `  g
) a ) }
df-abl 18196 |- 
Abel  =  ( Grp  i^i CMnd
)
ccyg 18279 class CycGrp
df-cyg 18280 |- CycGrp  =  { g  e.  Grp  |  E. x  e.  (
Base `  g ) ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
) }
cdprd 18392 class DProd
cdpj 18393 class dProj
df-dprd 18394 |- DProd  =  ( g  e. 
Grp ,  s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. x  e.  dom  h ( A. y  e.  ( dom  h  \  {
x } ) ( h `  x ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  x )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { x } ) ) ) )  =  { ( 0g `  g ) } ) ) } 
|->  ran  ( f  e. 
{ h  e.  X_ x  e.  dom  s ( s `  x )  |  h finSupp  ( 0g `  g ) }  |->  ( g  gsumg  f ) ) )
df-dpj 18395 |- dProj  =  ( g  e. 
Grp ,  s  e.  ( dom DProd  " { g } )  |->  ( i  e. 
dom  s  |->  ( ( s `  i ) ( proj1 `  g ) ( g DProd 
( s  |`  ( dom  s  \  { i } ) ) ) ) ) )
cmgp 18489 class mulGrp
df-mgp 18490 |- mulGrp  =  ( w  e. 
_V  |->  ( w sSet  <. ( +g  `  ndx ) ,  ( .r `  w ) >. )
)
cur 18501 class  1r
df-ur 18502 |-  1r  =  ( 0g  o. mulGrp )
csrg 18505 class SRing
df-srg 18506 |- SRing  =  { f  e. CMnd  | 
( (mulGrp `  f
)  e.  Mnd  /\  [. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. [. ( 0g `  f
)  /  n ]. A. x  e.  r 
( A. y  e.  r  A. z  e.  r  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) )  /\  (
( n t x )  =  n  /\  ( x t n )  =  n ) ) ) }
crg 18547 class  Ring
ccrg 18548 class  CRing
df-ring 18549 |- 
Ring  =  { f  e.  Grp  |  ( (mulGrp `  f )  e.  Mnd  /\ 
[. ( Base `  f
)  /  r ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  r  A. y  e.  r  A. z  e.  r 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
df-cring 18550 |- 
CRing  =  { f  e.  Ring  |  (mulGrp `  f )  e. CMnd }
coppr 18622 class oppr
df-oppr 18623 |- oppr  =  ( f  e.  _V  |->  ( f sSet  <. ( .r
`  ndx ) , tpos  ( .r `  f ) >.
) )
cdsr 18638 class  ||r
cui 18639 class Unit
cir 18640 class Irred
df-dvdsr 18641 |- 
||r 
=  ( w  e. 
_V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  w )  /\  E. z  e.  ( Base `  w ) ( z ( .r `  w
) x )  =  y ) } )
df-unit 18642 |- Unit 
=  ( w  e. 
_V  |->  ( `' ( ( ||r `
 w )  i^i  ( ||r `
 (oppr
`  w ) ) ) " { ( 1r `  w ) } ) )
df-irred 18643 |- Irred  =  ( w  e. 
_V  |->  [_ ( ( Base `  w )  \  (Unit `  w ) )  / 
b ]_ { z  e.  b  |  A. x  e.  b  A. y  e.  b  ( x
( .r `  w
) y )  =/=  z } )
cinvr 18671 class  invr
df-invr 18672 |- 
invr  =  ( r  e.  _V  |->  ( invg `  ( (mulGrp `  r
)s  (Unit `  r )
) ) )
cdvr 18682 class /r
df-dvr 18683 |- /r  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r ) ,  y  e.  (Unit `  r )  |->  ( x ( .r `  r
) ( ( invr `  r ) `  y
) ) ) )
crh 18712 class RingHom
crs 18713 class RingIso
cric 18714 class  ~=r
df-rnghom 18715 |- RingHom  =  ( r  e. 
Ring ,  s  e.  Ring  |-> 
[_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
df-rngiso 18716 |- RingIso  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RingHom  s )  |  `' f  e.  ( s RingHom  r ) } )
df-ric 18718 |- 
~=r  =  ( `' RingIso  " ( _V  \  1o ) )
cdr 18747 class  DivRing
cfield 18748 class Field
df-drng 18749 |-  DivRing  =  { r  e. 
Ring  |  (Unit `  r
)  =  ( (
Base `  r )  \  { ( 0g `  r ) } ) }
df-field 18750 |- Field  =  ( DivRing  i^i  CRing )
csubrg 18776 class SubRing
crgspn 18777 class RingSpan
df-subrg 18778 |- SubRing  =  ( w  e. 
Ring  |->  { s  e. 
~P ( Base `  w
)  |  ( ( ws  s )  e.  Ring  /\  ( 1r `  w
)  e.  s ) } )
df-rgspn 18779 |- RingSpan  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  (SubRing `  w )  |  s  C_  t } ) )
cabv 18816 class AbsVal
df-abv 18817 |- AbsVal  =  ( r  e. 
Ring  |->  { f  e.  ( ( 0 [,) +oo )  ^m  ( Base `  r ) )  |  A. x  e.  ( Base `  r
) ( ( ( f `  x )  =  0  <->  x  =  ( 0g `  r ) )  /\  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x )  x.  (
f `  y )
)  /\  ( f `  ( x ( +g  `  r ) y ) )  <_  ( (
f `  x )  +  ( f `  y ) ) ) ) } )
cstf 18843 class  *rf
csr 18844 class  *Ring
df-staf 18845 |-  *rf  =  ( f  e.  _V  |->  ( x  e.  ( Base `  f )  |->  ( ( *r `  f ) `  x
) ) )
df-srng 18846 |-  *Ring  =  { f  | 
[. ( *rf `  f )  /  i ]. (
i  e.  ( f RingHom 
(oppr `  f ) )  /\  i  =  `' i
) }
clmod 18863 class  LMod
cscaf 18864 class  .sf
df-lmod 18865 |- 
LMod  =  { g  e.  Grp  |  [. ( Base `  g )  / 
v ]. [. ( +g  `  g )  /  a ]. [. (Scalar `  g
)  /  f ]. [. ( .s `  g
)  /  s ]. [. ( Base `  f
)  /  k ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. ( f  e.  Ring  /\ 
A. q  e.  k 
A. r  e.  k 
A. x  e.  v 
A. w  e.  v  ( ( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  (
( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  ( ( 1r `  f ) s w )  =  w ) ) ) }
df-scaf 18866 |-  .sf  =  ( g  e.  _V  |->  ( x  e.  ( Base `  (Scalar `  g )
) ,  y  e.  ( Base `  g
)  |->  ( x ( .s `  g ) y ) ) )
clss 18932 class  LSubSp
df-lss 18933 |- 
LSubSp  =  ( w  e. 
_V  |->  { s  e.  ( ~P ( Base `  w )  \  { (/)
} )  |  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s } )
clspn 18971 class  LSpan
df-lsp 18972 |- 
LSpan  =  ( w  e.  _V  |->  ( s  e. 
~P ( Base `  w
)  |->  |^| { t  e.  ( LSubSp `  w )  |  s  C_  t } ) )
clmhm 19019 class LMHom
clmim 19020 class LMIso
clmic 19021 class  ~=ph𝑚
df-lmhm 19022 |- LMHom  =  ( s  e. 
LMod ,  t  e.  LMod  |->  { f  e.  ( s  GrpHom  t )  | 
[. (Scalar `  s )  /  w ]. ( (Scalar `  t )  =  w  /\  A. x  e.  ( Base `  w
) A. y  e.  ( Base `  s
) ( f `  ( x ( .s
`  s ) y ) )  =  ( x ( .s `  t ) ( f `
 y ) ) ) } )
df-lmim 19023 |- LMIso  =  ( s  e. 
LMod ,  t  e.  LMod  |->  { g  e.  ( s LMHom  t )  |  g : ( Base `  s ) -1-1-onto-> ( Base `  t
) } )
df-lmic 19024 |- 
~=ph𝑚  =  ( `' LMIso  " ( _V  \  1o ) )
clbs 19074 class LBasis
df-lbs 19075 |- LBasis  =  ( w  e. 
_V  |->  { b  e. 
~P ( Base `  w
)  |  [. ( LSpan `  w )  /  n ]. [. (Scalar `  w )  /  s ]. ( ( n `  b )  =  (
Base `  w )  /\  A. x  e.  b 
A. y  e.  ( ( Base `  s
)  \  { ( 0g `  s ) } )  -.  ( y ( .s `  w
) x )  e.  ( n `  (
b  \  { x } ) ) ) } )
clvec 19102 class  LVec
df-lvec 19103 |- 
LVec  =  { f  e.  LMod  |  (Scalar `  f )  e.  DivRing }
csra 19168 class subringAlg
crglmod 19169 class ringLMod
clidl 19170 class LIdeal
crsp 19171 class RSpan
df-sra 19172 |- subringAlg  =  ( w  e. 
_V  |->  ( s  e. 
~P ( Base `  w
)  |->  ( ( ( w sSet  <. (Scalar `  ndx ) ,  ( ws  s
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  w
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  w
) >. ) ) )
df-rgmod 19173 |- ringLMod  =  ( w  e. 
_V  |->  ( (subringAlg  `  w
) `  ( Base `  w ) ) )
df-lidl 19174 |- LIdeal  =  ( LSubSp  o. ringLMod )
df-rsp 19175 |- RSpan  =  ( LSpan  o. ringLMod )
c2idl 19231 class 2Ideal
df-2idl 19232 |- 2Ideal  =  ( r  e. 
_V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr
`  r ) ) ) )
clpidl 19241 class LPIdeal
clpir 19242 class LPIR
df-lpidl 19243 |- LPIdeal  =  ( w  e. 
Ring  |->  U_ g  e.  (
Base `  w ) { ( (RSpan `  w ) `  {
g } ) } )
df-lpir 19244 |- LPIR 
=  { w  e. 
Ring  |  (LIdeal `  w
)  =  (LPIdeal `  w
) }
cnzr 19257 class NzRing
df-nzr 19258 |- NzRing  =  { r  e.  Ring  |  ( 1r `  r
)  =/=  ( 0g
`  r ) }
crlreg 19279 class RLReg
cdomn 19280 class Domn
cidom 19281 class IDomn
cpid 19282 class PID
df-rlreg 19283 |- RLReg  =  ( r  e. 
_V  |->  { x  e.  ( Base `  r
)  |  A. y  e.  ( Base `  r
) ( ( x ( .r `  r
) y )  =  ( 0g `  r
)  ->  y  =  ( 0g `  r ) ) } )
df-domn 19284 |- Domn 
=  { r  e. NzRing  |  [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
df-idom 19285 |- IDomn  =  ( CRing  i^i Domn )
df-pid 19286 |- PID 
=  (IDomn  i^i LPIR )
casa 19309 class AssAlg
casp 19310 class AlgSpan
cascl 19311 class algSc
df-assa 19312 |- AssAlg  =  { w  e.  (
LMod  i^i  Ring )  |  [. (Scalar `  w )  / 
f ]. ( f  e. 
CRing  /\  A. r  e.  ( Base `  f
) A. x  e.  ( Base `  w
) A. y  e.  ( Base `  w
) [. ( .s `  w )  /  s ]. [. ( .r `  w )  /  t ]. ( ( ( r s x ) t y )  =  ( r s ( x t y ) )  /\  ( x t ( r s y ) )  =  ( r s ( x t y ) ) ) ) }
df-asp 19313 |- AlgSpan  =  ( w  e. AssAlg  |->  ( s  e.  ~P ( Base `  w )  |-> 
|^| { t  e.  ( (SubRing `  w )  i^i  ( LSubSp `  w )
)  |  s  C_  t } ) )
df-ascl 19314 |- algSc  =  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) )  |->  ( x ( .s `  w ) ( 1r
`  w ) ) ) )
cmps 19351 class mPwSer
cmvr 19352 class mVar
cmpl 19353 class mPoly
cltb 19354 class  <bag
copws 19355 class ordPwSer
df-psr 19356 |- mPwSer  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  / 
d ]_ [_ ( (
Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r )  |`  ( b  X.  b
) ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
`  r ) ( g `  ( k  oF  -  x
) ) ) ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  r
>. ,  <. ( .s
`  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r
) f ) )
>. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
( TopOpen `  r ) } ) ) >. } ) )
df-mvr 19357 |- mVar 
=  ( i  e. 
_V ,  r  e. 
_V  |->  ( x  e.  i  |->  ( f  e. 
{ h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin } 
|->  if ( f  =  ( y  e.  i 
|->  if ( y  =  x ,  1 ,  0 ) ) ,  ( 1r `  r
) ,  ( 0g
`  r ) ) ) ) )
df-mpl 19358 |- mPoly  =  ( i  e. 
_V ,  r  e. 
_V  |->  [_ ( i mPwSer  r
)  /  w ]_ ( ws  { f  e.  (
Base `  w )  |  f finSupp  ( 0g `  r ) } ) )
df-ltbag 19359 |- 
<bag  =  ( r  e. 
_V ,  i  e. 
_V  |->  { <. x ,  y >.  |  ( { x ,  y }  C_  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  /\  E. z  e.  i  ( ( x `  z
)  <  ( y `  z )  /\  A. w  e.  i  (
z r w  -> 
( x `  w
)  =  ( y `
 w ) ) ) ) } )
df-opsr 19360 |- ordPwSer  =  ( i  e. 
_V ,  s  e. 
_V  |->  ( r  e. 
~P ( i  X.  i )  |->  [_ (
i mPwSer  s )  /  p ]_ ( p sSet  <. ( le `  ndx ) ,  { <. x ,  y
>.  |  ( {
x ,  y } 
C_  ( Base `  p
)  /\  ( [. { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  /  d ]. E. z  e.  d  (
( x `  z
) ( lt `  s ) ( y `
 z )  /\  A. w  e.  d  ( w ( r  <bag  i ) z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } >. ) ) )
ces 19504 class evalSub
cevl 19505 class eval
df-evls 19506 |- evalSub  =  ( i  e. 
_V ,  s  e. 
CRing  |->  [_ ( Base `  s
)  /  b ]_ ( r  e.  (SubRing `  s )  |->  [_ (
i mPoly  ( ss  r ) )  /  w ]_ ( iota_ f  e.  ( w RingHom  ( s  ^s  (
b  ^m  i )
) ) ( ( f  o.  (algSc `  w ) )  =  ( x  e.  r 
|->  ( ( b  ^m  i )  X.  {
x } ) )  /\  ( f  o.  ( i mVar  ( ss  r ) ) )  =  ( x  e.  i 
|->  ( g  e.  ( b  ^m  i ) 
|->  ( g `  x
) ) ) ) ) ) )
df-evl 19507 |- eval 
=  ( i  e. 
_V ,  r  e. 
_V  |->  ( ( i evalSub 
r ) `  ( Base `  r ) ) )
cmhp 19537 class mHomP
cpsd 19538 class mPSDer
cslv 19539 class selectVars
cai 19540 class AlgInd
df-mhp 19541 |- mHomP  =  ( i  e. 
_V ,  r  e. 
_V  |->  ( n  e. 
NN0  |->  { f  e.  ( Base `  (
i mPoly  r ) )  |  ( f supp  ( 0g `  r ) ) 
C_  { g  e. 
{ h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin }  |  sum_ j  e.  NN0  ( g `  j
)  =  n } } ) )
df-psd 19542 |- mPSDer  =  ( i  e. 
_V ,  r  e. 
_V  |->  ( x  e.  i  |->  ( f  e.  ( Base `  (
i mPwSer  r ) )  |->  ( k  e.  { h  e.  ( NN0  ^m  i
)  |  ( `' h " NN )  e.  Fin }  |->  ( ( ( k `  x )  +  1 ) (.g `  r ) ( f `  ( k  oF  +  ( y  e.  i  |->  if ( y  =  x ,  1 ,  0 ) ) ) ) ) ) ) ) )
df-selv 19543 |- selectVars  =  ( i  e. 
_V ,  r  e. 
_V  |->  ( j  e. 
~P i  |->  ( f  e.  ( i mPoly  r
)  |->  [_ ( ( i 
\  j ) mPoly  r
)  /  s ]_ [_ ( x  e.  (Scalar `  s )  |->  ( x ( .s `  s
) ( 1r `  s ) ) )  /  c ]_ (
( ( ( i evalSub 
s ) `  (
c  "s  r ) ) `  ( c  o.  f
) ) `  (
x  e.  i  |->  if ( x  e.  j ,  ( ( j mVar  ( ( i  \ 
j ) mPoly  r ) ) `  x ) ,  ( c  o.  ( ( ( i 
\  j ) mVar  r
) `  x )
) ) ) ) ) ) )
df-algind 19544 |- AlgInd  =  ( w  e. 
_V ,  k  e. 
~P ( Base `  w
)  |->  { v  e. 
~P ( Base `  w
)  |  Fun  `' ( f  e.  (
Base `  ( v mPoly  ( ws  k ) ) )  |->  ( ( ( ( v evalSub  w ) `
 k ) `  f ) `  (  _I  |`  v ) ) ) } )
cps1 19545 class PwSer1
cv1 19546 class var1
cpl1 19547 class Poly1
cco1 19548 class coe1
ctp1 19549 class toPoly1
df-psr1 19550 |- PwSer1  =  ( r  e.  _V  |->  ( ( 1o ordPwSer  r ) `
 (/) ) )
df-vr1 19551 |- var1  =  ( r  e.  _V  |->  ( ( 1o mVar  r
) `  (/) ) )
df-ply1 19552 |- Poly1  =  ( r  e.  _V  |->  ( (PwSer1 `  r )s  ( Base `  ( 1o mPoly  r )
) ) )
df-coe1 19553 |- coe1  =  ( f  e.  _V  |->  ( n  e.  NN0  |->  ( f `  ( 1o  X.  { n }
) ) ) )
df-toply1 19554 |- toPoly1  =  ( f  e.  _V  |->  ( n  e.  ( NN0  ^m  1o )  |->  ( f `  ( n `
 (/) ) ) ) )
ces1 19678 class evalSub1
ce1 19679 class eval1
df-evls1 19680 |- evalSub1  =  ( s  e.  _V ,  r  e.  ~P ( Base `  s )  |-> 
[_ ( Base `  s
)  /  b ]_ ( ( x  e.  ( b  ^m  (
b  ^m  1o )
)  |->  ( x  o.  ( y  e.  b 
|->  ( 1o  X.  {
y } ) ) ) )  o.  (
( 1o evalSub  s ) `  r ) ) )
df-evl1 19681 |- eval1  =  ( r  e.  _V  |->  [_ ( Base `  r
)  /  b ]_ ( ( x  e.  ( b  ^m  (
b  ^m  1o )
)  |->  ( x  o.  ( y  e.  b 
|->  ( 1o  X.  {
y } ) ) ) )  o.  ( 1o eval  r ) ) )
cpsmet 19730 class PsMet
cxmt 19731 class  *Met
cme 19732 class  Met
cbl 19733 class  ball
cfbas 19734 class  fBas
cfg 19735 class  filGen
cmopn 19736 class  MetOpen
cmetu 19737 class metUnif
df-psmet 19738 |- PsMet  =  ( x  e. 
_V  |->  { d  e.  ( RR*  ^m  (
x  X.  x ) )  |  A. y  e.  x  ( (
y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
y d z )  <_  ( ( w d y ) +e ( w d z ) ) ) } )
df-xmet 19739 |- 
*Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y ) +e ( w d z ) ) ) } )
df-met 19740 |- 
Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x
) )  |  A. y  e.  x  A. z  e.  x  (
( ( y d z )  =  0  <-> 
y  =  z )  /\  A. w  e.  x  ( y d z )  <_  (
( w d y )  +  ( w d z ) ) ) } )
df-bl 19741 |-  ball 
=  ( d  e. 
_V  |->  ( x  e. 
dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  <  z } ) )
df-mopn 19742 |-  MetOpen  =  ( d  e. 
U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
df-fbas 19743 |- 
fBas  =  ( w  e.  _V  |->  { x  e. 
~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
y  i^i  z )
)  =/=  (/) ) } )
df-fg 19744 |-  filGen  =  ( w  e. 
_V ,  x  e.  ( fBas `  w
)  |->  { y  e. 
~P w  |  ( x  i^i  ~P y
)  =/=  (/) } )
df-metu 19745 |- metUnif  =  ( d  e. 
U. ran PsMet  |->  ( ( dom  dom  d  X.  dom  dom  d ) filGen ran  (
a  e.  RR+  |->  ( `' d " ( 0 [,) a ) ) ) ) )
ccnfld 19746 classfld
df-cnfld 19747 |-fld  =  ( ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
zring 19818 classring
df-zring 19819 |-ring  =  (flds  ZZ )
czrh 19848 class  ZRHom
czlm 19849 class  ZMod
cchr 19850 class chr
czn 19851 class ℤ/n
df-zrh 19852 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
df-zlm 19853 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g ) >.
) )
df-chr 19854 |- chr 
=  ( g  e. 
_V  |->  ( ( od
`  g ) `  ( 1r `  g ) ) )
df-zn 19855 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
z  /.s  ( z ~QG  ( (RSpan `  z
) `  { n } ) ) )  /  s ]_ (
s sSet  <. ( le `  ndx ) ,  [_ (
( ZRHom `  s
)  |`  if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  / 
f ]_ ( ( f  o.  <_  )  o.  `' f ) >.
) )
crefld 19950 class RRfld
df-refld 19951 |- RRfld  =  (flds  RR )
cphl 19969 class  PreHil
cipf 19970 class  .if
df-phl 19971 |- 
PreHil  =  { g  e. 
LVec  |  [. ( Base `  g )  /  v ]. [. ( .i `  g )  /  h ]. [. (Scalar `  g
)  /  f ]. ( f  e.  *Ring  /\ 
A. x  e.  v  ( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f
) )  /\  (
( x h x )  =  ( 0g
`  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) ) ) }
df-ipf 19972 |-  .if  =  ( g  e.  _V  |->  ( x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( .i `  g ) y ) ) )
cocv 20004 class  ocv
ccss 20005 class  CSubSp
cthl 20006 class toHL
df-ocv 20007 |- 
ocv  =  ( h  e.  _V  |->  ( s  e.  ~P ( Base `  h )  |->  { x  e.  ( Base `  h
)  |  A. y  e.  s  ( x
( .i `  h
) y )  =  ( 0g `  (Scalar `  h ) ) } ) )
df-css 20008 |- 
CSubSp  =  ( h  e. 
_V  |->  { s  |  s  =  ( ( ocv `  h ) `
 ( ( ocv `  h ) `  s
) ) } )
df-thl 20009 |- toHL 
=  ( h  e. 
_V  |->  ( (toInc `  ( CSubSp `  h )
) sSet  <. ( oc `  ndx ) ,  ( ocv `  h ) >. )
)
cpj 20044 class  proj
chs 20045 class  Hil
cobs 20046 class OBasis
df-pj 20047 |-  proj 
=  ( h  e. 
_V  |->  ( ( x  e.  ( LSubSp `  h
)  |->  ( x (
proj1 `  h
) ( ( ocv `  h ) `  x
) ) )  i^i  ( _V  X.  (
( Base `  h )  ^m  ( Base `  h
) ) ) ) )
df-hil 20048 |- 
Hil  =  { h  e.  PreHil  |  dom  ( proj `  h )  =  ( CSubSp `  h ) }
df-obs 20049 |- OBasis  =  ( h  e. 
PreHil  |->  { b  e. 
~P ( Base `  h
)  |  ( A. x  e.  b  A. y  e.  b  (
x ( .i `  h ) y )  =  if ( x  =  y ,  ( 1r `  (Scalar `  h ) ) ,  ( 0g `  (Scalar `  h ) ) )  /\  ( ( ocv `  h ) `  b
)  =  { ( 0g `  h ) } ) } )
cdsmm 20075 class  (+)m
df-dsmm 20076 |- 
(+)m  =  ( s  e. 
_V ,  r  e. 
_V  |->  ( ( s
X_s r )s  { f  e.  X_ x  e.  dom  r (
Base `  ( r `  x ) )  |  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  e.  Fin } ) )
cfrlm 20090 class freeLMod
df-frlm 20091 |- freeLMod  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( r  (+)m  (
i  X.  { (ringLMod `  r ) } ) ) )
cuvc 20121 class unitVec
df-uvc 20122 |- unitVec  =  ( r  e. 
_V ,  i  e. 
_V  |->  ( j  e.  i  |->  ( k  e.  i  |->  if ( k  =  j ,  ( 1r `  r ) ,  ( 0g `  r ) ) ) ) )
clindf 20143 class LIndF
clinds 20144 class LIndS
df-lindf 20145 |- LIndF  =  { <. f ,  w >.  |  ( f : dom  f --> ( Base `  w )  /\  [. (Scalar `  w )  /  s ]. A. x  e.  dom  f A. k  e.  ( ( Base `  s
)  \  { ( 0g `  s ) } )  -.  ( k ( .s `  w
) ( f `  x ) )  e.  ( ( LSpan `  w
) `  ( f " ( dom  f  \  { x } ) ) ) ) }
df-linds 20146 |- LIndS  =  ( w  e. 
_V  |->  { s  e. 
~P ( Base `  w
)  |  (  _I  |`  s ) LIndF  w }
)
cmmul 20189 class maMul
df-mamu 20190 |- maMul  =  ( r  e. 
_V ,  o  e. 
_V  |->  [_ ( 1st `  ( 1st `  o ) )  /  m ]_ [_ ( 2nd `  ( 1st `  o
) )  /  n ]_ [_ ( 2nd `  o
)  /  p ]_ ( x  e.  (
( Base `  r )  ^m  ( m  X.  n
) ) ,  y  e.  ( ( Base `  r )  ^m  (
n  X.  p ) )  |->  ( i  e.  m ,  k  e.  p  |->  ( r  gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r `  r
) ( j y k ) ) ) ) ) ) )
cmat 20213 class Mat
df-mat 20214 |- Mat 
=  ( n  e. 
Fin ,  r  e.  _V  |->  ( ( r freeLMod  ( n  X.  n
) ) sSet  <. ( .r `  ndx ) ,  ( r maMul  <. n ,  n ,  n >. )
>. ) )
cdmat 20294 class DMat
cscmat 20295 class ScMat
df-dmat 20296 |- DMat 
=  ( n  e. 
Fin ,  r  e.  _V  |->  { m  e.  ( Base `  (
n Mat  r ) )  |  A. i  e.  n  A. j  e.  n  ( i  =/=  j  ->  ( i
m j )  =  ( 0g `  r
) ) } )
df-scmat 20297 |- ScMat  =  ( n  e. 
Fin ,  r  e.  _V  |->  [_ ( n Mat  r
)  /  a ]_ { m  e.  ( Base `  a )  |  E. c  e.  (
Base `  r )
m  =  ( c ( .s `  a
) ( 1r `  a ) ) } )
cmvmul 20346 class maVecMul
df-mvmul 20347 |- maVecMul  =  ( r  e. 
_V ,  o  e. 
_V  |->  [_ ( 1st `  o
)  /  m ]_ [_ ( 2nd `  o
)  /  n ]_ ( x  e.  (
( Base `  r )  ^m  ( m  X.  n
) ) ,  y  e.  ( ( Base `  r )  ^m  n
)  |->  ( i  e.  m  |->  ( r  gsumg  ( j  e.  n  |->  ( ( i x j ) ( .r `  r
) ( y `  j ) ) ) ) ) ) )
cmarrep 20362 class matRRep
cmatrepV 20363 class matRepV
df-marrep 20364 |- matRRep  =  ( n  e. 
_V ,  r  e. 
_V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) ,  s  e.  (
Base `  r )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) ) ) ) ) )
df-marepv 20365 |- matRepV  =  ( n  e. 
_V ,  r  e. 
_V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) ,  v  e.  ( ( Base `  r
)  ^m  n )  |->  ( k  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( j  =  k ,  ( v `
 i ) ,  ( i m j ) ) ) ) ) )
csubma 20382 class subMat
df-subma 20383 |- subMat  =  ( n  e. 
_V ,  r  e. 
_V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) 
|->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  ( n  \  { k } ) ,  j  e.  ( n  \  { l } ) 
|->  ( i m j ) ) ) ) )
cmdat 20390 class maDet
df-mdet 20391 |- maDet  =  ( n  e. 
_V ,  r  e. 
_V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) 
|->  ( r  gsumg  ( p  e.  (
Base `  ( SymGrp `  n ) )  |->  ( ( ( ( ZRHom `  r )  o.  (pmSgn `  n ) ) `  p ) ( .r
`  r ) ( (mulGrp `  r )  gsumg  ( x  e.  n  |->  ( ( p `  x
) m x ) ) ) ) ) ) ) )
cmadu 20438 class maAdju
cminmar1 20439 class minMatR1
df-madu 20440 |- maAdju  =  ( n  e. 
_V ,  r  e. 
_V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) 
|->  ( i  e.  n ,  j  e.  n  |->  ( ( n maDet  r
) `  ( k  e.  n ,  l  e.  n  |->  if ( k  =  j ,  if ( l  =  i ,  ( 1r `  r ) ,  ( 0g `  r ) ) ,  ( k m l ) ) ) ) ) ) )
df-minmar1 20441 |- minMatR1  =  ( n  e. 
_V ,  r  e. 
_V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) 
|->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  ( 1r `  r
) ,  ( 0g
`  r ) ) ,  ( i m j ) ) ) ) ) )
ccpmat 20508 class ConstPolyMat
cmat2pmat 20509 class matToPolyMat
ccpmat2mat 20510 class cPolyMatToMat
df-cpmat 20511 |- ConstPolyMat  =  ( n  e.  Fin ,  r  e.  _V  |->  { m  e.  ( Base `  ( n Mat  (Poly1 `  r
) ) )  | 
A. i  e.  n  A. j  e.  n  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  r ) } )
df-mat2pmat 20512 |- matToPolyMat  =  ( n  e.  Fin ,  r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) )  |->  ( x  e.  n ,  y  e.  n  |->  ( (algSc `  (Poly1 `  r ) ) `  ( x m y ) ) ) ) )
df-cpmat2mat 20513 |- cPolyMatToMat  =  ( n  e.  Fin ,  r  e.  _V  |->  ( m  e.  ( n ConstPolyMat  r )  |->  ( x  e.  n ,  y  e.  n  |->  ( (coe1 `  ( x m y ) ) `  0
) ) ) )
cdecpmat 20567 class decompPMat
df-decpmat 20568 |- decompPMat  =  ( m  e. 
_V ,  k  e. 
NN0  |->  ( i  e. 
dom  dom  m ,  j  e.  dom  dom  m  |->  ( (coe1 `  ( i m j ) ) `  k ) ) )
cpm2mp 20597 class pMatToMatPoly
df-pm2mp 20598 |- pMatToMatPoly  =  ( n  e.  Fin ,  r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  (Poly1 `  r
) ) )  |->  [_ ( n Mat  r )  /  a ]_ [_ (Poly1 `  a )  /  q ]_ ( q  gsumg  ( k  e.  NN0  |->  ( ( m decompPMat  k ) ( .s `  q
) ( k (.g `  (mulGrp `  q )
) (var1 `  a ) ) ) ) ) ) )
cchpmat 20631 class CharPlyMat
df-chpmat 20632 |- CharPlyMat  =  ( n  e. 
Fin ,  r  e.  _V  |->  ( m  e.  ( Base `  (
n Mat  r ) ) 
|->  ( ( n maDet  (Poly1 `  r ) ) `  ( ( (var1 `  r
) ( .s `  ( n Mat  (Poly1 `  r
) ) ) ( 1r `  ( n Mat  (Poly1 `  r ) ) ) ) ( -g `  ( n Mat  (Poly1 `  r
) ) ) ( ( n matToPolyMat  r ) `  m ) ) ) ) )
ctop 20698 class  Top
df-top 20699 |- 
Top  =  { x  |  ( A. y  e.  ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x
) }
ctopon 20715 class TopOn
df-topon 20716 |- TopOn  =  ( b  e. 
_V  |->  { j  e. 
Top  |  b  =  U. j } )
ctps 20736 class  TopSp
df-topsp 20737 |- 
TopSp  =  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) }
ctb 20749 class  TopBases
df-bases 20750 |-  TopBases  =  { x  | 
A. y  e.  x  A. z  e.  x  ( y  i^i  z
)  C_  U. (
x  i^i  ~P (
y  i^i  z )
) }
ccld 20820 class  Clsd
cnt 20821 class  int
ccl 20822 class  cls
df-cld 20823 |- 
Clsd  =  ( j  e.  Top  |->  { x  e. 
~P U. j  |  ( U. j  \  x
)  e.  j } )
df-ntr 20824 |- 
int  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
U. ( j  i^i 
~P x ) ) )
df-cls 20825 |- 
cls  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |-> 
|^| { y  e.  (
Clsd `  j )  |  x  C_  y } ) )
cnei 20901 class  nei
df-nei 20902 |- 
nei  =  ( j  e.  Top  |->  ( x  e.  ~P U. j  |->  { y  e.  ~P U. j  |  E. g  e.  j  ( x  C_  g  /\  g  C_  y ) } ) )
clp 20938 class  limPt
cperf 20939 class Perf
df-lp 20940 |-  limPt  =  ( j  e. 
Top  |->  ( x  e. 
~P U. j  |->  { y  |  y  e.  ( ( cls `  j
) `  ( x  \  { y } ) ) } ) )
df-perf 20941 |- Perf 
=  { j  e. 
Top  |  ( ( limPt `  j ) `  U. j )  =  U. j }
ccn 21028 class  Cn
ccnp 21029 class  CnP
clm 21030 class  ~~> t
df-cn 21031 |-  Cn  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j } )
df-cnp 21032 |- 
CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) )
df-lm 21033 |-  ~~> t  =  ( j  e. 
Top  |->  { <. f ,  x >.  |  (
f  e.  ( U. j  ^pm  CC )  /\  x  e.  U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y
) : y --> u ) ) } )
ct0 21110 class  Kol2
ct1 21111 class  Fre
cha 21112 class  Haus
creg 21113 class  Reg
cnrm 21114 class  Nrm
ccnrm 21115 class CNrm
cpnrm 21116 class PNrm
df-t0 21117 |-  Kol2 
=  { j  e. 
Top  |  A. x  e.  U. j A. y  e.  U. j ( A. o  e.  j  (
x  e.  o  <->  y  e.  o )  ->  x  =  y ) }
df-t1 21118 |-  Fre  =  { x  e. 
Top  |  A. a  e.  U. x { a }  e.  ( Clsd `  x ) }
df-haus 21119 |- 
Haus  =  { j  e.  Top  |  A. x  e.  U. j A. y  e.  U. j ( x  =/=  y  ->  E. n  e.  j  E. m  e.  j  ( x  e.  n  /\  y  e.  m  /\  (
n  i^i  m )  =  (/) ) ) }
df-reg 21120 |- 
Reg  =  { j  e.  Top  |  A. x  e.  j  A. y  e.  x  E. z  e.  j  (
y  e.  z  /\  ( ( cls `  j
) `  z )  C_  x ) }
df-nrm 21121 |- 
Nrm  =  { j  e.  Top  |  A. x  e.  j  A. y  e.  ( ( Clsd `  j )  i^i 
~P x ) E. z  e.  j  ( y  C_  z  /\  ( ( cls `  j
) `  z )  C_  x ) }
df-cnrm 21122 |- CNrm 
=  { j  e. 
Top  |  A. x  e.  ~P  U. j ( jt  x )  e.  Nrm }
df-pnrm 21123 |- PNrm 
=  { j  e. 
Nrm  |  ( Clsd `  j )  C_  ran  ( f  e.  ( j  ^m  NN ) 
|->  |^| ran  f ) }
ccmp 21189 class  Comp
df-cmp 21190 |- 
Comp  =  { x  e.  Top  |  A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. x  =  U. z ) }
cconn 21214 class Conn
df-conn 21215 |- Conn 
=  { j  e. 
Top  |  ( j  i^i  ( Clsd `  j
) )  =  { (/)
,  U. j } }
c1stc 21240 class  1stc
c2ndc 21241 class  2ndc
df-1stc 21242 |- 
1stc  =  { j  e.  Top  |  A. x  e.  U. j E. y  e.  ~P  j ( y  ~<_  om  /\  A. z  e.  j  ( x  e.  z  ->  x  e. 
U. ( y  i^i 
~P z ) ) ) }
df-2ndc 21243 |- 
2ndc  =  { j  |  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  j ) }
clly 21267 class Locally  A
cnlly 21268 class 𝑛Locally  A
df-lly 21269 |- Locally  A  =  { j  e.  Top  |  A. x  e.  j  A. y  e.  x  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) }
df-nlly 21270 |- 𝑛Locally  A  =  { j  e. 
Top  |  A. x  e.  j  A. y  e.  x  E. u  e.  ( ( ( nei `  j ) `  {
y } )  i^i 
~P x ) ( jt  u )  e.  A }
cref 21305 class  Ref
cptfin 21306 class  PtFin
clocfin 21307 class  LocFin
df-ref 21308 |- 
Ref  =  { <. x ,  y >.  |  ( U. y  =  U. x  /\  A. z  e.  x  E. w  e.  y  z  C_  w
) }
df-ptfin 21309 |- 
PtFin  =  { x  |  A. y  e.  U. x { z  e.  x  |  y  e.  z }  e.  Fin }
df-locfin 21310 |- 
LocFin  =  ( x  e. 
Top  |->  { y  |  ( U. x  = 
U. y  /\  A. p  e.  U. x E. n  e.  x  ( p  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
ckgen 21336 class 𝑘Gen
df-kgen 21337 |- 𝑘Gen  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  A. k  e.  ~P  U. j ( ( jt  k )  e. 
Comp  ->  ( x  i^i  k )  e.  ( jt  k ) ) } )
ctx 21363 class  tX
cxko 21364 class  ^ko
df-tx 21365 |-  tX  =  ( r  e. 
_V ,  s  e. 
_V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) ) ) )
df-xko 21366 |- 
^ko  =  ( s  e.  Top ,  r  e.  Top  |->  (
topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P U. r  |  ( rt  x
)  e.  Comp } , 
v  e.  s  |->  { f  e.  ( r  Cn  s )  |  ( f " k
)  C_  v }
) ) ) )
ckq 21496 class KQ
df-kq 21497 |- KQ  =  ( j  e.  Top  |->  ( j qTop  ( x  e.  U. j  |->  { y  e.  j  |  x  e.  y } ) ) )
chmeo 21556 class  Homeo
chmph 21557 class  ~=
df-hmeo 21558 |- 
Homeo  =  ( j  e.  Top ,  k  e. 
Top  |->  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) } )
df-hmph 21559 |- 
~=  =  ( `'
Homeo " ( _V  \  1o ) )
cfil 21649 class  Fil
df-fil 21650 |- 
Fil  =  ( z  e.  _V  |->  { f  e.  ( fBas `  z
)  |  A. x  e.  ~P  z ( ( f  i^i  ~P x
)  =/=  (/)  ->  x  e.  f ) } )
cufil 21703 class  UFil
cufl 21704 class UFL
df-ufil 21705 |- 
UFil  =  ( g  e.  _V  |->  { f  e.  ( Fil `  g
)  |  A. x  e.  ~P  g ( x  e.  f  \/  (
g  \  x )  e.  f ) } )
df-ufl 21706 |- UFL 
=  { x  | 
A. f  e.  ( Fil `  x ) E. g  e.  (
UFil `  x )
f  C_  g }
cfm 21737 class  FilMap
cflim 21738 class  fLim
cflf 21739 class  fLimf
cfcls 21740 class  fClus
cfcf 21741 class  fClusf
df-fm 21742 |-  FilMap  =  ( x  e. 
_V ,  f  e. 
_V  |->  ( y  e.  ( fBas `  dom  f )  |->  ( x
filGen ran  ( t  e.  y  |->  ( f "
t ) ) ) ) )
df-flim 21743 |- 
fLim  =  ( j  e.  Top ,  f  e. 
U. ran  Fil  |->  { x  e.  U. j  |  ( ( ( nei `  j
) `  { x } )  C_  f  /\  f  C_  ~P U. j ) } )
df-flf 21744 |- 
fLimf  =  ( x  e.  Top ,  y  e. 
U. ran  Fil  |->  ( f  e.  ( U. x  ^m  U. y )  |->  ( x  fLim  ( ( U. x  FilMap  f ) `
 y ) ) ) )
df-fcls 21745 |- 
fClus  =  ( j  e.  Top ,  f  e. 
U. ran  Fil  |->  if ( U. j  =  U. f ,  |^|_ x  e.  f  ( ( cls `  j ) `  x
) ,  (/) ) )
df-fcf 21746 |- 
fClusf  =  ( j  e. 
Top ,  f  e.  U.
ran  Fil  |->  ( g  e.  ( U. j  ^m  U. f )  |->  ( j 
fClus  ( ( U. j  FilMap  g ) `  f
) ) ) )
ccnext 21863 class CnExt
df-cnext 21864 |- CnExt  =  ( j  e. 
Top ,  k  e.  Top  |->  ( f  e.  ( U. k  ^pm  U. j )  |->  U_ x  e.  ( ( cls `  j
) `  dom  f ) ( { x }  X.  ( ( k  fLimf  ( ( ( nei `  j
) `  { x } )t  dom  f ) ) `
 f ) ) ) )
ctmd 21874 class TopMnd
ctgp 21875 class  TopGrp
df-tmd 21876 |- TopMnd  =  { f  e.  ( Mnd  i^i  TopSp )  | 
[. ( TopOpen `  f
)  /  j ]. ( +f `  f
)  e.  ( ( j  tX  j )  Cn  j ) }
df-tgp 21877 |- 
TopGrp  =  { f  e.  ( Grp  i^i TopMnd )  | 
[. ( TopOpen `  f
)  /  j ]. ( invg `  f
)  e.  ( j  Cn  j ) }
ctsu 21929 class tsums
df-tsms 21930 |- tsums  =  ( w  e. 
_V ,  f  e. 
_V  |->  [_ ( ~P dom  f  i^i  Fin )  / 
s ]_ ( ( (
TopOpen `  w )  fLimf  ( s filGen ran  ( z  e.  s  |->  { y  e.  s  |  z 
C_  y } ) ) ) `  (
y  e.  s  |->  ( w  gsumg  ( f  |`  y
) ) ) ) )
ctrg 21959 class  TopRing
ctdrg 21960 class TopDRing
ctlm 21961 class TopMod
ctvc 21962 class  TopVec
df-trg 21963 |-  TopRing  =  { r  e.  ( TopGrp  i^i  Ring )  |  (mulGrp `  r )  e. TopMnd }
df-tdrg 21964 |- TopDRing  =  { r  e.  (
TopRing  i^i  DivRing )  |  ( (mulGrp `  r )s  (Unit `  r ) )  e. 
TopGrp }
df-tlm 21965 |- TopMod  =  { w  e.  (TopMnd 
i^i  LMod )  |  ( (Scalar `  w )  e.  TopRing  /\  ( .sf `  w )  e.  ( ( ( TopOpen `  (Scalar `  w ) ) 
tX  ( TopOpen `  w
) )  Cn  ( TopOpen
`  w ) ) ) }
df-tvc 21966 |- 
TopVec  =  { w  e. TopMod  |  (Scalar `  w )  e. TopDRing }
cust 22003 class UnifOn
df-ust 22004 |- UnifOn  =  ( x  e. 
_V  |->  { u  |  ( u  C_  ~P ( x  X.  x
)  /\  ( x  X.  x )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
) ) } )
cutop 22034 class unifTop
df-utop 22035 |- unifTop  =  ( u  e. 
U. ran UnifOn  |->  { a  e.  ~P dom  U. u  |  A. x  e.  a  E. v  e.  u  ( v " {
x } )  C_  a } )
cuss 22057 class UnifSt
cusp 22058 class UnifSp
ctus 22059 class toUnifSp
df-uss 22060 |- UnifSt  =  ( f  e. 
_V  |->  ( ( UnifSet `  f )t  ( ( Base `  f )  X.  ( Base `  f ) ) ) )
df-usp 22061 |- UnifSp  =  { f  |  ( (UnifSt `  f )  e.  (UnifOn `  ( Base `  f ) )  /\  ( TopOpen `  f )  =  (unifTop `  (UnifSt `  f
) ) ) }
df-tus 22062 |- toUnifSp  =  ( u  e. 
U. ran UnifOn  |->  ( { <. ( Base `  ndx ) ,  dom  U. u >. ,  <. ( UnifSet `  ndx ) ,  u >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  u ) >. ) )
cucn 22079 class Cnu
df-ucn 22080 |- Cnu  =  ( u  e.  U. ran UnifOn ,  v  e.  U. ran UnifOn 
|->  { f  e.  ( dom  U. v  ^m  dom  U. u )  | 
A. s  e.  v  E. r  e.  u  A. x  e.  dom  U. u A. y  e. 
dom  U. u ( x r y  ->  (
f `  x )
s ( f `  y ) ) } )
ccfilu 22090 class CauFilu
df-cfilu 22091 |- CauFilu  =  ( u  e.  U. ran UnifOn 
|->  { f  e.  (
fBas `  dom  U. u
)  |  A. v  e.  u  E. a  e.  f  ( a  X.  a )  C_  v } )
ccusp 22101 class CUnifSp
df-cusp 22102 |- CUnifSp  =  { w  e. UnifSp  |  A. c  e.  ( Fil `  ( Base `  w
) ) ( c  e.  (CauFilu `  (UnifSt `  w
) )  ->  (
( TopOpen `  w )  fLim  c )  =/=  (/) ) }
cxme 22122 class  *MetSp
cmt 22123 class  MetSp
ctmt 22124 class toMetSp
df-xms 22125 |- 
*MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  (
MetOpen `  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) ) ) }
df-ms 22126 |-  MetSp  =  { f  e.  *MetSp  |  ( ( dist `  f )  |`  (
( Base `  f )  X.  ( Base `  f
) ) )  e.  ( Met `  ( Base `  f ) ) }
df-tms 22127 |- toMetSp  =  ( d  e. 
U. ran  *Met  |->  ( { <. ( Base `  ndx ) ,  dom  dom  d >. ,  <. ( dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
cnm 22381 class  norm
cngp 22382 class NrmGrp
ctng 22383 class toNrmGrp
cnrg 22384 class NrmRing
cnlm 22385 class NrmMod
cnvc 22386 class NrmVec
df-nm 22387 |-  norm 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  w
)  |->  ( x (
dist `  w )
( 0g `  w
) ) ) )
df-ngp 22388 |- NrmGrp  =  { g  e.  ( Grp  i^i  MetSp )  |  ( ( norm `  g
)  o.  ( -g `  g ) )  C_  ( dist `  g ) }
df-tng 22389 |- toNrmGrp  =  ( g  e. 
_V ,  f  e. 
_V  |->  ( ( g sSet  <. ( dist `  ndx ) ,  ( f  o.  ( -g `  g
) ) >. ) sSet  <.
(TopSet `  ndx ) ,  ( MetOpen `  ( f  o.  ( -g `  g
) ) ) >.
) )
df-nrg 22390 |- NrmRing  =  { w  e. NrmGrp  |  (
norm `  w )  e.  (AbsVal `  w ) }
df-nlm 22391 |- NrmMod  =  { w  e.  (NrmGrp 
i^i  LMod )  |  [. (Scalar `  w )  / 
f ]. ( f  e. NrmRing  /\  A. x  e.  (
Base `  f ) A. y  e.  ( Base `  w ) ( ( norm `  w
) `  ( x
( .s `  w
) y ) )  =  ( ( (
norm `  f ) `  x )  x.  (
( norm `  w ) `  y ) ) ) }
df-nvc 22392 |- NrmVec  =  (NrmMod  i^i  LVec )
cnmo 22509 class  normOp
cnghm 22510 class NGHom
cnmhm 22511 class NMHom
df-nmo 22512 |- 
normOp  =  ( s  e. NrmGrp ,  t  e. NrmGrp  |->  ( f  e.  ( s  GrpHom  t )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  ( Base `  s ) ( (
norm `  t ) `  ( f `  x
) )  <_  (
r  x.  ( (
norm `  s ) `  x ) ) } ,  RR* ,  <  )
) )
df-nghm 22513 |- NGHom  =  ( s  e. NrmGrp ,  t  e. NrmGrp  |->  ( `' ( s normOp t )
" RR ) )
df-nmhm 22514 |- NMHom  =  ( s  e. NrmMod ,  t  e. NrmMod  |->  ( ( s LMHom  t )  i^i  ( s NGHom  t ) ) )
cii 22678 class  II
ccncf 22679 class  -cn->
df-ii 22680 |-  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) )
df-cncf 22681 |- 
-cn->  =  ( a  e. 
~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a )  | 
A. x  e.  a 
A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  < 
d  ->  ( abs `  ( ( f `  x )  -  (
f `  y )
) )  <  e
) } )
chtpy 22766 class Htpy
cphtpy 22767 class  PHtpy
cphtpc 22768 class  ~=ph
df-htpy 22769 |- Htpy 
=  ( x  e. 
Top ,  y  e.  Top  |->  ( f  e.  ( x  Cn  y
) ,  g  e.  ( x  Cn  y
)  |->  { h  e.  ( ( x  tX  II )  Cn  y
)  |  A. s  e.  U. x ( ( s h 0 )  =  ( f `  s )  /\  (
s h 1 )  =  ( g `  s ) ) } ) )
df-phtpy 22770 |- 
PHtpy  =  ( x  e.  Top  |->  ( f  e.  ( II  Cn  x
) ,  g  e.  ( II  Cn  x
)  |->  { h  e.  ( f ( II Htpy 
x ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } ) )
df-phtpc 22791 |-  ~=ph  =  ( x  e. 
Top  |->  { <. f ,  g >.  |  ( { f ,  g }  C_  ( II  Cn  x )  /\  (
f ( PHtpy `  x
) g )  =/=  (/) ) } )
cpco 22800 class  *p
comi 22801 class  Om1
comn 22802 class  OmN
cpi1 22803 class  pi1
cpin 22804 class  piN
df-pco 22805 |- 
*p  =  ( j  e.  Top  |->  ( f  e.  ( II  Cn  j ) ,  g  e.  ( II  Cn  j )  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( f `  (
2  x.  x ) ) ,  ( g `
 ( ( 2  x.  x )  - 
1 ) ) ) ) ) )
df-om1 22806 |- 
Om1  =  ( j  e.  Top , 
y  e.  U. j  |->  { <. ( Base `  ndx ) ,  { f  e.  ( II  Cn  j
)  |  ( ( f `  0 )  =  y  /\  (
f `  1 )  =  y ) }
>. ,  <. ( +g  ` 
ndx ) ,  ( *p `  j )
>. ,  <. (TopSet `  ndx ) ,  ( j  ^ko  II ) >. } )
df-omn 22807 |- 
OmN  =  ( j  e.  Top , 
y  e.  U. j  |->  seq 0 ( ( ( x  e.  _V ,  p  e.  _V  |->  <. ( ( TopOpen `  ( 1st `  x ) ) 
Om1  ( 2nd `  x ) ) ,  ( ( 0 [,] 1 )  X.  {
( 2nd `  x
) } ) >.
)  o.  1st ) ,  <. { <. ( Base `  ndx ) , 
U. j >. ,  <. (TopSet `  ndx ) ,  j
>. } ,  y >.
) )
df-pi1 22808 |-  pi1  =  ( j  e.  Top , 
y  e.  U. j  |->  ( ( j  Om1  y )  /.s  (  ~=ph  `  j ) ) )
df-pin 22809 |-  piN  =  ( j  e.  Top ,  p  e.  U. j  |->  ( n  e.  NN0  |->  ( ( 1st `  (
( j  OmN 
p ) `  n
) )  /.s  if (
n  =  0 ,  { <. x ,  y
>.  |  E. f  e.  ( II  Cn  j
) ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) } , 
(  ~=ph  `  ( TopOpen `  ( 1st `  ( ( j 
OmN  p ) `
 ( n  - 
1 ) ) ) ) ) ) ) ) )
cclm 22862 class CMod
df-clm 22863 |- CMod 
=  { w  e. 
LMod  |  [. (Scalar `  w )  /  f ]. [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  k  e.  (SubRing ` fld ) ) }
ccvs 22923 class CVec
df-cvs 22924 |- CVec 
=  (CMod  i^i  LVec )
ccph 22966 class  CPreHil
ctch 22967 class toCHil
df-cph 22968 |-  CPreHil  =  { w  e.  ( PreHil  i^i NrmMod )  |  [. (Scalar `  w )  / 
f ]. [. ( Base `  f )  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,) +oo ) ) )  C_  k  /\  ( norm `  w )  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) ) }
df-tch 22969 |- toCHil  =  ( w  e. 
_V  |->  ( w toNrmGrp  (
x  e.  ( Base `  w )  |->  ( sqr `  ( x ( .i
`  w ) x ) ) ) ) )
ccfil 23050 class CauFil
cca 23051 class  Cau
cms 23052 class  CMet
df-cfil 23053 |- CauFil  =  ( d  e. 
U. ran  *Met  |->  { f  e.  ( Fil `  dom  dom  d )  |  A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
) } )
df-cau 23054 |- 
Cau  =  ( d  e.  U. ran  *Met  |->  { f  e.  ( dom  dom  d  ^pm  CC )  |  A. x  e.  RR+  E. j  e.  ZZ  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( f `  j ) ( ball `  d
) x ) } )
df-cmet 23055 |- 
CMet  =  ( x  e.  _V  |->  { d  e.  ( Met `  x
)  |  A. f  e.  (CauFil `  d )
( ( MetOpen `  d
)  fLim  f )  =/=  (/) } )
ccms 23129 class CMetSp
cbn 23130 class Ban
chl 23131 class  CHil
df-cms 23132 |- CMetSp  =  { w  e.  MetSp  | 
[. ( Base `  w
)  /  b ]. ( ( dist `  w
)  |`  ( b  X.  b ) )  e.  ( CMet `  b
) }
df-bn 23133 |- Ban  =  { w  e.  (NrmVec 
i^i CMetSp )  |  (Scalar `  w )  e. CMetSp }
df-hl 23134 |-  CHil 
=  (Ban  i^i  CPreHil )
crrx 23171 class ℝ^
cehl 23172 class 𝔼hil
df-rrx 23173 |- ℝ^  =  ( i  e. 
_V  |->  (toCHil `  (RRfld freeLMod  i ) ) )
df-ehl 23174 |- 𝔼hil  =  ( n  e.  NN0  |->  (ℝ^ `  ( 1 ... n ) ) )
covol 23231 class  vol*
cvol 23232 class  vol
df-ovol 23233 |- 
vol*  =  (
x  e.  ~P RR  |-> inf ( { y  e.  RR*  |  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( x  C_  U. ran  ( (,)  o.  f )  /\  y  =  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  ) ) } ,  RR* ,  <  ) )
df-vol 23234 |- 
vol  =  ( vol*  |`  { x  | 
A. y  e.  ( `' vol* " RR ) ( vol* `  y )  =  ( ( vol* `  ( y  i^i  x
) )  +  ( vol* `  (
y  \  x )
) ) } )
cmbf 23383 class MblFn
citg1 23384 class  S.1
citg2 23385 class  S.2
cibl 23386 class  L^1
citg 23387 class  S. A B  _d x
df-mbf 23388 |- MblFn  =  { f  e.  ( CC  ^pm  RR )  |  A. x  e.  ran  (,) ( ( `' ( Re  o.  f )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  f
) " x )  e.  dom  vol ) }
df-itg1 23389 |- 
S.1  =  ( f  e.  { g  e. MblFn  |  ( g : RR --> RR  /\  ran  g  e.  Fin  /\  ( vol `  ( `' g
" ( RR  \  { 0 } ) ) )  e.  RR ) }  |->  sum_ x  e.  ( ran  f  \  { 0 } ) ( x  x.  ( vol `  ( `' f
" { x }
) ) ) )
df-itg2 23390 |- 
S.2  =  ( f  e.  ( ( 0 [,] +oo )  ^m  RR )  |->  sup ( { x  |  E. g  e.  dom  S.1 (
g  oR  <_ 
f  /\  x  =  ( S.1 `  g ) ) } ,  RR* ,  <  ) )
df-ibl 23391 |-  L^1  =  {
f  e. MblFn  |  A. k  e.  ( 0 ... 3 ) ( S.2 `  ( x  e.  RR  |->  [_ (
Re `  ( (
f `  x )  /  ( _i ^
k ) ) )  /  y ]_ if ( ( x  e. 
dom  f  /\  0  <_  y ) ,  y ,  0 ) ) )  e.  RR }
df-itg 23392 |-  S. A B  _d x  =  sum_ k  e.  ( 0 ... 3
) ( ( _i
^ k )  x.  ( S.2 `  (
x  e.  RR  |->  [_ ( Re `  ( B  /  ( _i ^
k ) ) )  /  y ]_ if ( ( x  e.  A  /\  0  <_ 
y ) ,  y ,  0 ) ) ) )
c0p 23436 class  0p
df-0p 23437 |-  0p  =  ( CC  X.  { 0 } )
cdit 23610 class  S__
[ A  ->  B ] C  _d x
df-ditg 23611 |-  S__ [ A  ->  B ] C  _d x  =  if ( A  <_  B ,  S. ( A (,) B ) C  _d x , 
-u S. ( B (,) A ) C  _d x )
climc 23626 class lim CC
cdv 23627 class  _D
cdvn 23628 class  Dn
ccpn 23629 class  C^n
df-limc 23630 |- lim
CC  =  ( f  e.  ( CC  ^pm  CC ) ,  x  e.  CC  |->  { y  | 
[. ( TopOpen ` fld )  /  j ]. ( z  e.  ( dom  f  u.  {
x } )  |->  if ( z  =  x ,  y ,  ( f `  z ) ) )  e.  ( ( ( jt  ( dom  f  u.  { x } ) )  CnP  j ) `  x
) } )
df-dv 23631 |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
df-dvn 23632 |-  Dn  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s )  |->  seq 0 ( ( ( x  e.  _V  |->  ( s  _D  x ) )  o.  1st ) ,  ( NN0  X.  { f } ) ) )
df-cpn 23633 |-  C^n  =  ( s  e.  ~P CC  |->  ( x  e.  NN0  |->  { f  e.  ( CC  ^pm  s )  |  ( ( s  Dn f ) `
 x )  e.  ( dom  f -cn-> CC ) } ) )
cmdg 23813 class mDeg
cdg1 23814 class deg1
df-mdeg 23815 |- mDeg 
=  ( i  e. 
_V ,  r  e. 
_V  |->  ( f  e.  ( Base `  (
i mPoly  r ) ) 
|->  sup ( ran  (
h  e.  ( f supp  ( 0g `  r
) )  |->  (fld  gsumg  h ) ) , 
RR* ,  <  ) ) )
df-deg1 23816 |- deg1  =  ( r  e.  _V  |->  ( 1o mDeg  r )
)
cmn1 23885 class Monic1p
cuc1p 23886 class Unic1p
cq1p 23887 class quot1p
cr1p 23888 class rem1p
cig1p 23889 class idlGen1p
df-mon1 23890 |- Monic1p  =  ( r  e.  _V  |->  { f  e.  (
Base `  (Poly1 `  r
) )  |  ( f  =/=  ( 0g
`  (Poly1 `  r ) )  /\  ( (coe1 `  f
) `  ( ( deg1  `  r ) `  f
) )  =  ( 1r `  r ) ) } )
df-uc1p 23891 |- Unic1p  =  ( r  e.  _V  |->  { f  e.  (
Base `  (Poly1 `  r
) )  |  ( f  =/=  ( 0g
`  (Poly1 `  r ) )  /\  ( (coe1 `  f
) `  ( ( deg1  `  r ) `  f
) )  e.  (Unit `  r ) ) } )
df-q1p 23892 |- quot1p  =  ( r  e.  _V  |->  [_ (Poly1 `  r )  /  p ]_ [_ ( Base `  p )  /  b ]_ ( f  e.  b ,  g  e.  b 
|->  ( iota_ q  e.  b  ( ( deg1  `  r ) `  ( f ( -g `  p ) ( q ( .r `  p
) g ) ) )  <  ( ( deg1  `  r ) `  g
) ) ) )
df-r1p 23893 |- rem1p  =  ( r  e.  _V  |->  [_ ( Base `  (Poly1 `  r ) )  / 
b ]_ ( f  e.  b ,  g  e.  b  |->  ( f (
-g `  (Poly1 `  r
) ) ( ( f (quot1p `  r ) g ) ( .r `  (Poly1 `  r ) ) g ) ) ) )
df-ig1p 23894 |- idlGen1p  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r ) ) 
|->  if ( i  =  { ( 0g `  (Poly1 `  r ) ) } ,  ( 0g `  (Poly1 `  r ) ) ,  ( iota_ g  e.  ( i  i^i  (Monic1p `  r
) ) ( ( deg1  `  r ) `  g
)  = inf ( ( ( deg1  `  r ) "
( i  \  {
( 0g `  (Poly1 `  r ) ) } ) ) ,  RR ,  <  ) ) ) ) )
cply 23940 class Poly
cidp 23941 class  Xp
ccoe 23942 class coeff
cdgr 23943 class deg
df-ply 23944 |- Poly 
=  ( x  e. 
~P CC  |->  { f  |  E. n  e. 
NN0  E. a  e.  ( ( x  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) } )
df-idp 23945 |-  Xp  =  (  _I  |`  CC )
df-coe 23946 |- coeff  =  ( f  e.  (Poly `  CC )  |->  ( iota_ a  e.  ( CC  ^m  NN0 ) E. n  e.  NN0  ( ( a "
( ZZ>= `  ( n  +  1 ) ) )  =  { 0 }  /\  f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) ) )
df-dgr 23947 |- deg 
=  ( f  e.  (Poly `  CC )  |->  sup ( ( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  ) )
cquot 24045 class quot
df-quot 24046 |- quot 
=  ( f  e.  (Poly `  CC ) ,  g  e.  (
(Poly `  CC )  \  { 0p }
)  |->  ( iota_ q  e.  (Poly `  CC ) [. ( f  oF  -  ( g  oF  x.  q ) )  /  r ]. ( r  =  0p  \/  (deg `  r )  <  (deg `  g ) ) ) )
caa 24069 class  AA
df-aa 24070 |-  AA  =  U_ f  e.  ( (Poly `  ZZ )  \  { 0p } ) ( `' f " { 0 } )
ctayl 24107 class Tayl
cana 24108 class Ana
df-tayl 24109 |- Tayl 
=  ( s  e. 
{ RR ,  CC } ,  f  e.  ( CC  ^pm  s ) 
|->  ( n  e.  ( NN0  u.  { +oo } ) ,  a  e. 
|^|_ k  e.  ( ( 0 [,] n
)  i^i  ZZ ) dom  ( ( s  Dn f ) `  k )  |->  U_ x  e.  CC  ( { x }  X.  (fld tsums 
( k  e.  ( ( 0 [,] n
)  i^i  ZZ )  |->  ( ( ( ( ( s  Dn
f ) `  k
) `  a )  /  ( ! `  k ) )  x.  ( ( x  -  a ) ^ k
) ) ) ) ) ) )
df-ana 24110 |- Ana 
=  ( s  e. 
{ RR ,  CC }  |->  { f  e.  ( CC  ^pm  s
)  |  A. x  e.  dom  f  x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  ( f  i^i  ( +oo (
s Tayl  f ) x ) ) ) } )
culm 24130 class  ~~> u
df-ulm 24131 |-  ~~> u  =  ( s  e.  _V  |->  { <. f ,  y >.  |  E. n  e.  ZZ  (
f : ( ZZ>= `  n ) --> ( CC 
^m  s )  /\  y : s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) } )
clog 24301 class  log
ccxp 24302 class  ^c
df-log 24303 |- 
log  =  `' ( exp  |`  ( `' Im " ( -u pi (,] pi ) ) )
df-cxp 24304 |- 
^c  =  ( x  e.  CC , 
y  e.  CC  |->  if ( x  =  0 ,  if ( y  =  0 ,  1 ,  0 ) ,  ( exp `  (
y  x.  ( log `  x ) ) ) ) )
clogb 24502 class logb
df-logb 24503 |- logb  =  ( x  e.  ( CC  \  { 0 ,  1 } ) ,  y  e.  ( CC  \  { 0 } )  |->  ( ( log `  y )  /  ( log `  x
) ) )
casin 24589 class arcsin
cacos 24590 class arccos
catan 24591 class arctan
df-asin 24592 |- arcsin  =  ( x  e.  CC  |->  ( -u _i  x.  ( log `  (
( _i  x.  x
)  +  ( sqr `  ( 1  -  (
x ^ 2 ) ) ) ) ) ) )
df-acos 24593 |- arccos  =  ( x  e.  CC  |->  ( ( pi 
/  2 )  -  (arcsin `  x ) ) )
df-atan 24594 |- arctan  =  ( x  e.  ( CC  \  { -u _i ,  _i }
)  |->  ( ( _i 
/  2 )  x.  ( ( log `  (
1  -  ( _i  x.  x ) ) )  -  ( log `  ( 1  +  ( _i  x.  x ) ) ) ) ) )
carea 24682 class area
df-area 24683 |- area 
=  ( s  e. 
{ t  e.  ~P ( RR  X.  RR )  |  ( A. x  e.  RR  (
t " { x } )  e.  ( `' vol " RR )  /\  ( x  e.  RR  |->  ( vol `  (
t " { x } ) ) )  e.  L^1 ) }  |->  S. RR ( vol `  ( s
" { x }
) )  _d x )
cem 24718 class  gamma
df-em 24719 |-  gamma  =  sum_ k  e.  NN  ( ( 1  / 
k )  -  ( log `  ( 1  +  ( 1  /  k
) ) ) )
czeta 24739 class  zeta
df-zeta 24740 |- 
zeta  =  ( iota_ f  e.  ( ( CC 
\  { 1 } ) -cn-> CC ) A. s  e.  ( CC  \  {
1 } ) ( ( 1  -  (
2  ^c  ( 1  -  s ) ) )  x.  (
f `  s )
)  =  sum_ n  e.  NN0  ( sum_ k  e.  ( 0 ... n
) ( ( (
-u 1 ^ k
)  x.  ( n  _C  k ) )  x.  ( ( k  +  1 )  ^c  s ) )  /  ( 2 ^ ( n  +  1 ) ) ) )
clgam 24742 class  log _G
cgam 24743 class  _G
cigam 24744 class 1/ _G
df-lgam 24745 |- 
log _G  =  (
z  e.  ( CC 
\  ( ZZ  \  NN ) )  |->  ( sum_ m  e.  NN  ( ( z  x.  ( log `  ( ( m  + 
1 )  /  m
) ) )  -  ( log `  ( ( z  /  m )  +  1 ) ) )  -  ( log `  z ) ) )
df-gam 24746 |- 
_G  =  ( exp 
o.  log _G )
df-igam 24747 |- 1/ _G  =  ( x  e.  CC  |->  if ( x  e.  ( ZZ  \  NN ) ,  0 ,  ( 1  /  ( _G `  x ) ) ) )
ccht 24817 class  theta
cvma 24818 class Λ
cchp 24819 class ψ
cppi 24820 class π
cmu 24821 class  mmu
csgm 24822 class  sigma
df-cht 24823 |- 
theta  =  ( x  e.  RR  |->  sum_ p  e.  ( ( 0 [,] x
)  i^i  Prime ) ( log `  p ) )
df-vma 24824 |- Λ  =  ( x  e.  NN  |->  [_ { p  e. 
Prime  |  p  ||  x }  /  s ]_ if ( ( # `  s
)  =  1 ,  ( log `  U. s ) ,  0 ) )
df-chp 24825 |- ψ  =  ( x  e.  RR  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) (Λ `  n )
)
df-ppi 24826 |- π  =  ( x  e.  RR  |->  ( # `  ( ( 0 [,] x )  i^i  Prime ) ) )
df-mu 24827 |-  mmu  =  ( x  e.  NN  |->  if ( E. p  e.  Prime  (
p ^ 2 ) 
||  x ,  0 ,  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  x } ) ) ) )
df-sgm 24828 |- 
sigma  =  ( x  e.  CC ,  n  e.  NN  |->  sum_ k  e.  {
p  e.  NN  |  p  ||  n }  (
k  ^c  x ) )
cdchr 24957 class DChr
df-dchr 24958 |- DChr 
=  ( n  e.  NN  |->  [_ (ℤ/n `  n )  /  z ]_ [_ { x  e.  ( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b ) )
>. } )
clgs 25019 class  /L
df-lgs 25020 |- 
/L  =  ( a  e.  ZZ ,  n  e.  ZZ  |->  if ( n  =  0 ,  if ( ( a ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( n  <  0  /\  a  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( if ( m  =  2 ,  if ( 2  ||  a ,  0 ,  if ( ( a  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( a ^ ( ( m  -  1 )  /  2 ) )  +  1 )  mod  m )  -  1 ) ) ^ (
m  pCnt  n )
) ,  1 ) ) ) `  ( abs `  n ) ) ) ) )
cstrkg 25329 class TarskiG
cstrkgc 25330 class TarskiGC
cstrkgb 25331 class TarskiGB
cstrkgcb 25332 class TarskiGCB
cstrkgld 25333 class DimTarskiG
cstrkge 25334 class TarskiGE
citv 25335 class Itv
clng 25336 class LineG
df-itv 25337 |- Itv 
= Slot ; 1 6
df-lng 25338 |- LineG  = Slot ; 1 7
df-trkgc 25347 |- TarskiGC  =  { f  |  [. ( Base `  f )  /  p ]. [. ( dist `  f )  / 
d ]. ( A. x  e.  p  A. y  e.  p  ( x
d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  ( (
x d y )  =  ( z d z )  ->  x  =  y ) ) }
df-trkgb 25348 |- TarskiGB  =  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. ( A. x  e.  p  A. y  e.  p  ( y  e.  ( x i x )  ->  x  =  y )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  A. u  e.  p  A. v  e.  p  (
( u  e.  ( x i z )  /\  v  e.  ( y i z ) )  ->  E. a  e.  p  ( a  e.  ( u i y )  /\  a  e.  ( v i x ) ) )  /\  A. s  e.  ~P  p A. t  e.  ~P  p ( E. a  e.  p  A. x  e.  s  A. y  e.  t  x  e.  ( a i y )  ->  E. b  e.  p  A. x  e.  s  A. y  e.  t  b  e.  ( x i y ) ) ) }
df-trkgcb 25349 |- TarskiGCB  =  { f  |  [. ( Base `  f )  /  p ]. [. ( dist `  f )  / 
d ]. [. (Itv `  f )  /  i ]. ( A. x  e.  p  A. y  e.  p  A. z  e.  p  A. u  e.  p  A. a  e.  p  A. b  e.  p  A. c  e.  p  A. v  e.  p  ( ( ( x  =/=  y  /\  y  e.  ( x
i z )  /\  b  e.  ( a
i c ) )  /\  ( ( ( x d y )  =  ( a d b )  /\  (
y d z )  =  ( b d c ) )  /\  ( ( x d u )  =  ( a d v )  /\  ( y d u )  =  ( b d v ) ) ) )  -> 
( z d u )  =  ( c d v ) )  /\  A. x  e.  p  A. y  e.  p  A. a  e.  p  A. b  e.  p  E. z  e.  p  ( y  e.  ( x i z )  /\  ( y d z )  =  ( a d b ) ) ) }
df-trkge 25350 |- TarskiGE  =  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. A. x  e.  p  A. y  e.  p  A. z  e.  p  A. u  e.  p  A. v  e.  p  ( ( u  e.  ( x i v )  /\  u  e.  ( y i z )  /\  x  =/=  u )  ->  E. a  e.  p  E. b  e.  p  ( y  e.  ( x i a )  /\  z  e.  ( x i b )  /\  v  e.  ( a i b ) ) ) }
df-trkgld 25351 |- DimTarskiG =  { <. g ,  n >.  |  [. ( Base `  g )  /  p ]. [. ( dist `  g
)  /  d ]. [. (Itv `  g )  /  i ]. E. f ( f : ( 1..^ n )
-1-1-> p  /\  E. x  e.  p  E. y  e.  p  E. z  e.  p  ( A. j  e.  ( 2..^ n ) ( ( ( f `  1
) d x )  =  ( ( f `
 j ) d x )  /\  (
( f `  1
) d y )  =  ( ( f `
 j ) d y )  /\  (
( f `  1
) d z )  =  ( ( f `
 j ) d z ) )  /\  -.  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) ) ) }
df-trkg 25352 |- TarskiG  =  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )
ccgrg 25405 class cgrG
df-cgrg 25406 |- cgrG 
=  ( g  e. 
_V  |->  { <. a ,  b >.  |  ( ( a  e.  ( ( Base `  g
)  ^pm  RR )  /\  b  e.  (
( Base `  g )  ^pm  RR ) )  /\  ( dom  a  =  dom  b  /\  A. i  e. 
dom  a A. j  e.  dom  a ( ( a `  i ) ( dist `  g
) ( a `  j ) )  =  ( ( b `  i ) ( dist `  g ) ( b `
 j ) ) ) ) } )
cismt 25427 class Ismt
df-ismt 25428 |- Ismt 
=  ( g  e. 
_V ,  h  e. 
_V  |->  { f  |  ( f : (
Base `  g ) -1-1-onto-> ( Base `  h )  /\  A. a  e.  ( Base `  g ) A. b  e.  ( Base `  g
) ( ( f `
 a ) (
dist `  h )
( f `  b
) )  =  ( a ( dist `  g
) b ) ) } )
cleg 25477 class ≤G
df-leg 25478 |- ≤G  =  ( g  e. 
_V  |->  { <. e ,  f >.  |  [. ( Base `  g )  /  p ]. [. ( dist `  g )  / 
d ]. [. (Itv `  g )  /  i ]. E. x  e.  p  E. y  e.  p  ( f  =  ( x d y )  /\  E. z  e.  p  ( z  e.  ( x i y )  /\  e  =  ( x d z ) ) ) } )
chlg 25495 class hlG
df-hlg 25496 |- hlG 
=  ( g  e. 
_V  |->  ( c  e.  ( Base `  g
)  |->  { <. a ,  b >.  |  ( ( a  e.  (
Base `  g )  /\  b  e.  ( Base `  g ) )  /\  ( a  =/=  c  /\  b  =/=  c  /\  ( a  e.  ( c (Itv
`  g ) b )  \/  b  e.  ( c (Itv `  g ) a ) ) ) ) } ) )
cmir 25547 class pInvG
df-mir 25548 |- pInvG  =  ( g  e. 
_V  |->  ( m  e.  ( Base `  g
)  |->  ( a  e.  ( Base `  g
)  |->  ( iota_ b  e.  ( Base `  g
) ( ( m ( dist `  g
) b )  =  ( m ( dist `  g ) a )  /\  m  e.  ( b (Itv `  g
) a ) ) ) ) ) )
crag 25588 class ∟G
df-rag 25589 |- ∟G  =  ( g  e. 
_V  |->  { w  e. Word 
( Base `  g )  |  ( ( # `  w )  =  3  /\  ( ( w `
 0 ) (
dist `  g )
( w `  2
) )  =  ( ( w `  0
) ( dist `  g
) ( ( (pInvG `  g ) `  (
w `  1 )
) `  ( w `  2 ) ) ) ) } )
cperpg 25590 class ⟂G
df-perpg 25591 |- ⟂G  =  ( g  e. 
_V  |->  { <. a ,  b >.  |  ( ( a  e.  ran  (LineG `  g )  /\  b  e.  ran  (LineG `  g ) )  /\  E. x  e.  ( a  i^i  b ) A. u  e.  a  A. v  e.  b  <" u x v ">  e.  (∟G `  g
) ) } )
chpg 25649 class hpG
df-hpg 25650 |- hpG 
=  ( g  e. 
_V  |->  ( d  e. 
ran  (LineG `  g )  |->  { <. a ,  b
>.  |  [. ( Base `  g )  /  p ]. [. (Itv `  g
)  /  i ]. E. c  e.  p  ( ( ( a  e.  ( p  \ 
d )  /\  c  e.  ( p  \  d
) )  /\  E. t  e.  d  t  e.  ( a i c ) )  /\  (
( b  e.  ( p  \  d )  /\  c  e.  ( p  \  d ) )  /\  E. t  e.  d  t  e.  ( b i c ) ) ) } ) )
cmid 25664 class midG
clmi 25665 class lInvG
df-mid 25666 |- midG 
=  ( g  e. 
_V  |->  ( a  e.  ( Base `  g
) ,  b  e.  ( Base `  g
)  |->  ( iota_ m  e.  ( Base `  g
) b  =  ( ( (pInvG `  g
) `  m ) `  a ) ) ) )
df-lmi 25667 |- lInvG  =  ( g  e. 
_V  |->  ( m  e. 
ran  (LineG `  g )  |->  ( a  e.  (
Base `  g )  |->  ( iota_ b  e.  (
Base `  g )
( ( a (midG `  g ) b )  e.  m  /\  (
m (⟂G `  g )
( a (LineG `  g ) b )  \/  a  =  b ) ) ) ) ) )
ccgra 25699 class cgrA
df-cgra 25700 |- cgrA 
=  ( g  e. 
_V  |->  { <. a ,  b >.  |  [. ( Base `  g )  /  p ]. [. (hlG `  g )  /  k ]. ( ( a  e.  ( p  ^m  (
0..^ 3 ) )  /\  b  e.  ( p  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  p  E. y  e.  p  ( a (cgrG `  g ) <" x
( b `  1
) y ">  /\  x ( k `  ( b `  1
) ) ( b `
 0 )  /\  y ( k `  ( b `  1
) ) ( b `
 2 ) ) ) } )
cinag 25726 class inA
cleag 25727 class
df-inag 25728 |- inA 
=  ( g  e. 
_V  |->  { <. p ,  t >.  |  ( ( p  e.  (
Base `  g )  /\  t  e.  (
( Base `  g )  ^m  ( 0..^ 3 ) ) )  /\  (
( ( t ` 
0 )  =/=  (
t `  1 )  /\  ( t `  2
)  =/=  ( t `
 1 )  /\  p  =/=  ( t ` 
1 ) )  /\  E. x  e.  ( Base `  g ) ( x  e.  ( ( t `
 0 ) (Itv
`  g ) ( t `  2 ) )  /\  ( x  =  ( t ` 
1 )  \/  x
( (hlG `  g
) `  ( t `  1 ) ) p ) ) ) ) } )
df-leag 25732 |-  =  ( g  e.  _V  |->  { <. a ,  b
>.  |  ( (
a  e.  ( (
Base `  g )  ^m  ( 0..^ 3 ) )  /\  b  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) ) )  /\  E. x  e.  ( Base `  g
) ( x (inA
`  g ) <" ( b ` 
0 ) ( b `
 1 ) ( b `  2 ) ">  /\  <" ( a `  0
) ( a ` 
1 ) ( a `
 2 ) "> (cgrA `  g
) <" ( b `
 0 ) ( b `  1 ) x "> )
) } )
ceqlg 25745 class eqltrG
df-eqlg 25746 |- eqltrG  =  ( g  e. 
_V  |->  { x  e.  ( ( Base `  g
)  ^m  ( 0..^ 3 ) )  |  x (cgrG `  g
) <" ( x `
 1 ) ( x `  2 ) ( x `  0
) "> } )
cttg 25753 class toTG
df-ttg 25754 |- toTG 
=  ( w  e. 
_V  |->  [_ ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
cee 25768 class  EE
cbtwn 25769 class  Btwn
ccgr 25770 class Cgr
df-ee 25771 |-  EE  =  ( n  e.  NN  |->  ( RR  ^m  ( 1 ... n
) ) )
df-btwn 25772 |- 
Btwn  =  `' { <. <.
x ,  z >. ,  y >.  |  E. n  e.  NN  (
( x  e.  ( EE `  n )  /\  z  e.  ( EE `  n )  /\  y  e.  ( EE `  n ) )  /\  E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... n
) ( y `  i )  =  ( ( ( 1  -  t )  x.  (
x `  i )
)  +  ( t  x.  ( z `  i ) ) ) ) }
df-cgr 25773 |- Cgr 
=  { <. x ,  y >.  |  E. n  e.  NN  (
( x  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  y  e.  ( ( EE `  n
)  X.  ( EE
`  n ) ) )  /\  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  x
) `  i )  -  ( ( 2nd `  x ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... n
) ( ( ( ( 1st `  y
) `  i )  -  ( ( 2nd `  y ) `  i
) ) ^ 2 ) ) }
ceeng 25857 class EEG
df-eeng 25858 |- EEG 
=  ( n  e.  NN  |->  ( { <. (
Base `  ndx ) ,  ( EE `  n
) >. ,  <. ( dist `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  sum_ i  e.  ( 1 ... n ) ( ( ( x `
 i )  -  ( y `  i
) ) ^ 2 ) ) >. }  u.  {
<. (Itv `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( EE `  n ) 
|->  { z  e.  ( EE `  n )  |  z  Btwn  <. x ,  y >. } )
>. ,  <. (LineG `  ndx ) ,  ( x  e.  ( EE `  n ) ,  y  e.  ( ( EE
`  n )  \  { x } ) 
|->  { z  e.  ( EE `  n )  |  ( z  Btwn  <.
x ,  y >.  \/  x  Btwn  <. z ,  y >.  \/  y  Btwn  <. x ,  z
>. ) } ) >. } ) )
cedgf 25867 class .ef
df-edgf 25868 |- .ef 
= Slot ; 1 8
cvtx 25874 class Vtx
ciedg 25875 class iEdg
df-vtx 25876 |- Vtx 
=  ( g  e. 
_V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 1st `  g ) ,  (
Base `  g )
) )
df-iedg 25877 |- iEdg 
=  ( g  e. 
_V  |->  if ( g  e.  ( _V  X.  _V ) ,  ( 2nd `  g ) ,  (.ef
`  g ) ) )
cedg 25939 class Edg
df-edg 25940 |- Edg 
=  ( g  e. 
_V  |->  ran  (iEdg `  g
) )
cuhgr 25951 class UHGraph
cushgr 25952 class USHGraph
df-uhgr 25953 |- UHGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> ( ~P v  \  { (/)
} ) }
df-ushgr 25954 |- USHGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> ( ~P v  \  { (/) } ) }
cupgr 25975 class UPGraph
cumgr 25976 class UMGraph
df-upgr 25977 |- UPGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } }
df-umgr 25978 |- UMGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  =  2 } }
cuspgr 26043 class USPGraph
cusgr 26044 class USGraph
df-uspgr 26045 |- USPGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } }
df-usgr 26046 |- USGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. [. (iEdg `  g )  /  e ]. e : dom  e -1-1-> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  =  2 } }
csubgr 26159 class SubGraph
df-subgr 26160 |- SubGraph  =  { <. s ,  g
>.  |  ( (Vtx `  s )  C_  (Vtx `  g )  /\  (iEdg `  s )  =  ( (iEdg `  g )  |` 
dom  (iEdg `  s )
)  /\  (Edg `  s
)  C_  ~P (Vtx `  s ) ) }
cfusgr 26208 class FinUSGraph
df-fusgr 26209 |- FinUSGraph  =  { g  e. USGraph  |  (Vtx
`  g )  e. 
Fin }
cnbgr 26224 class NeighbVtx
cuvtxa 26225 class UnivVtx
ccplgr 26226 class ComplGraph
ccusgr 26227 class ComplUSGraph
df-nbgr 26228 |- NeighbVtx  =  ( g  e. 
_V ,  v  e.  (Vtx `  g )  |->  { n  e.  ( (Vtx `  g )  \  { v } )  |  E. e  e.  (Edg `  g ) { v ,  n }  C_  e } )
df-uvtxa 26230 |- UnivVtx  =  ( g  e. 
_V  |->  { v  e.  (Vtx `  g )  |  A. n  e.  ( (Vtx `  g )  \  { v } ) n  e.  ( g NeighbVtx  v ) } )
df-cplgr 26231 |- ComplGraph  =  { g  |  A. v  e.  (Vtx `  g
) v  e.  (UnivVtx `  g ) }
df-cusgr 26232 |- ComplUSGraph  =  { g  e. USGraph  |  g  e. ComplGraph }
cvtxdg 26361 class VtxDeg
df-vtxdg 26362 |- VtxDeg  =  ( g  e. 
_V  |->  [_ (Vtx `  g
)  /  v ]_ [_ (iEdg `  g )  /  e ]_ (
u  e.  v  |->  ( ( # `  {
x  e.  dom  e  |  u  e.  (
e `  x ) } ) +e
( # `  { x  e.  dom  e  |  ( e `  x )  =  { u } } ) ) ) )
crgr 26451 class RegGraph
crusgr 26452 class RegUSGraph
df-rgr 26453 |- RegGraph  =  { <. g ,  k
>.  |  ( k  e. NN0*  /\  A. v  e.  (Vtx `  g )
( (VtxDeg `  g
) `  v )  =  k ) }
df-rusgr 26454 |- RegUSGraph  =  { <. g ,  k
>.  |  ( g  e. USGraph  /\  g RegGraph  k ) }
cewlks 26491 class EdgWalks
cwlks 26492 class Walks
cwlkson 26493 class WalksOn
df-ewlks 26494 |- EdgWalks  =  ( g  e. 
_V ,  s  e. NN0*  |->  { f  |  [. (iEdg `  g )  / 
i ]. ( f  e. Word  dom  i  /\  A. k  e.  ( 1..^ ( # `  f ) ) s  <_  ( # `  (
( i `  (
f `  ( k  -  1 ) ) )  i^i  ( i `
 ( f `  k ) ) ) ) ) } )
df-wlks 26495 |- Walks  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
df-wlkson 26496 |- WalksOn  =  ( g  e. 
_V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f (Walks `  g
) p  /\  (
p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b ) } ) )
ctrls 26587 class Trails
ctrlson 26588 class TrailsOn
df-trls 26589 |- Trails  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Walks `  g
) p  /\  Fun  `' f ) } )
df-trlson 26590 |- TrailsOn  =  ( g  e. 
_V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a (WalksOn `  g ) b ) p  /\  f (Trails `  g ) p ) } ) )
cpths 26608 class Paths
cspths 26609 class SPaths
cpthson 26610 class PathsOn
cspthson 26611 class SPathsOn
df-pths 26612 |- Paths  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Trails `  g
) p  /\  Fun  `' ( p  |`  (
1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) ) } )
df-spths 26613 |- SPaths  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Trails `  g
) p  /\  Fun  `' p ) } )
df-pthson 26614 |- PathsOn  =  ( g  e. 
_V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a (TrailsOn `  g ) b ) p  /\  f (Paths `  g ) p ) } ) )
df-spthson 26615 |- SPathsOn  =  ( g  e. 
_V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a (TrailsOn `  g ) b ) p  /\  f (SPaths `  g ) p ) } ) )
cclwlks 26666 class ClWalks
df-clwlks 26667 |- ClWalks  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Walks `  g
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
ccrcts 26679 class Circuits
ccycls 26680 class Cycles
df-crcts 26681 |- Circuits  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Trails `  g
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
df-cycls 26682 |- Cycles  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Paths `  g
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
cwwlks 26717 class WWalks
cwwlksn 26718 class WWalksN
cwwlksnon 26719 class WWalksNOn
cwwspthsn 26720 class WSPathsN
cwwspthsnon 26721 class WSPathsNOn
df-wwlks 26722 |- WWalks  =  ( g  e. 
_V  |->  { w  e. Word 
(Vtx `  g )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  g ) ) } )
df-wwlksn 26723 |- WWalksN  =  ( n  e. 
NN0 ,  g  e.  _V  |->  { w  e.  (WWalks `  g )  |  ( # `  w
)  =  ( n  +  1 ) } )
df-wwlksnon 26724 |- WWalksNOn  =  ( n  e. 
NN0 ,  g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( n WWalksN  g )  |  ( ( w `
 0 )  =  a  /\  ( w `
 n )  =  b ) } ) )
df-wspthsn 26725 |- WSPathsN  =  ( n  e. 
NN0 ,  g  e.  _V  |->  { w  e.  ( n WWalksN  g )  |  E. f  f (SPaths `  g )
w } )
df-wspthsnon 26726 |- WSPathsNOn  =  ( n  e. 
NN0 ,  g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g )  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } ) )
cclwwlks 26875 class ClWWalks
cclwwlksn 26876 class ClWWalksN
df-clwwlks 26877 |- ClWWalks  =  ( g  e. 
_V  |->  { w  e. Word 
(Vtx `  g )  |  ( w  =/=  (/)  /\  A. i  e.  ( 0..^ ( (
# `  w )  -  1 ) ) { ( w `  i ) ,  ( w `  ( i  +  1 ) ) }  e.  (Edg `  g )  /\  {
( lastS  `  w ) ,  ( w `  0
) }  e.  (Edg
`  g ) ) } )
df-clwwlksn 26878 |- ClWWalksN  =  ( n  e.  NN ,  g  e. 
_V  |->  { w  e.  (ClWWalks `  g )  |  ( # `  w
)  =  n }
)
cconngr 27046 class ConnGraph
df-conngr 27047 |- ConnGraph  =  { g  |  [. (Vtx `  g )  / 
v ]. A. k  e.  v  A. n  e.  v  E. f E. p  f ( k (PathsOn `  g )
n ) p }
ceupth 27057 class EulerPaths
df-eupth 27058 |- EulerPaths  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f (Trails `  g
) p  /\  f : ( 0..^ (
# `  f )
) -onto-> dom  (iEdg `  g
) ) } )
cfrgr 27120 class FriendGraph
df-frgr 27121 |- FriendGraph  =  { g  |  ( g  e. USGraph  /\  [. (Vtx `  g )  /  v ]. [. (Edg `  g
)  /  e ]. A. k  e.  v  A. l  e.  (
v  \  { k } ) E! x  e.  v  { { x ,  k } ,  { x ,  l } }  C_  e
) }
cplig 27326 class  Plig
df-plig 27327 |- 
Plig  =  { x  |  ( A. a  e.  U. x A. b  e.  U. x ( a  =/=  b  ->  E! l  e.  x  (
a  e.  l  /\  b  e.  l )
)  /\  A. l  e.  x  E. a  e.  U. x E. b  e.  U. x ( a  =/=  b  /\  a  e.  l  /\  b  e.  l )  /\  E. a  e.  U. x E. b  e.  U. x E. c  e.  U. x A. l  e.  x  -.  ( a  e.  l  /\  b  e.  l  /\  c  e.  l ) ) }
crpm 27339 class RPrime
df-rprm 27340 |- RPrime  =  ( w  e. 
_V  |->  [_ ( Base `  w
)  /  b ]_ { p  e.  (
b  \  ( (Unit `  w )  u.  {
( 0g `  w
) } ) )  |  A. x  e.  b  A. y  e.  b  [. ( ||r `  w
)  /  d ]. ( p d ( x ( .r `  w ) y )  ->  ( p d x  \/  p d y ) ) } )
cgr 27343 class  GrpOp
cgi 27344 class GId
cgn 27345 class  inv
cgs 27346 class  /g
df-grpo 27347 |- 
GrpOp  =  { g  |  E. t ( g : ( t  X.  t ) --> t  /\  A. x  e.  t  A. y  e.  t  A. z  e.  t  (
( x g y ) g z )  =  ( x g ( y g z ) )  /\  E. u  e.  t  A. x  e.  t  (
( u g x )  =  x  /\  E. y  e.  t  ( y g x )  =  u ) ) }
df-gid 27348 |- GId 
=  ( g  e. 
_V  |->  ( iota_ u  e. 
ran  g A. x  e.  ran  g ( ( u g x )  =  x  /\  (
x g u )  =  x ) ) )
df-ginv 27349 |- 
inv  =  ( g  e.  GrpOp  |->  ( x  e. 
ran  g  |->  ( iota_ z  e.  ran  g ( z g x )  =  (GId `  g
) ) ) )
df-gdiv 27350 |- 
/g  =  ( g  e.  GrpOp  |->  ( x  e. 
ran  g ,  y  e.  ran  g  |->  ( x g ( ( inv `  g ) `
 y ) ) ) )
cablo 27398 class  AbelOp
df-ablo 27399 |- 
AbelOp  =  { g  e. 
GrpOp  |  A. x  e.  ran  g A. y  e.  ran  g ( x g y )  =  ( y g x ) }
cvc 27413 class  CVecOLD
df-vc 27414 |-  CVecOLD  =  { <. g ,  s >.  |  ( g  e.  AbelOp  /\  s : ( CC  X.  ran  g ) --> ran  g  /\  A. x  e.  ran  g ( ( 1 s x )  =  x  /\  A. y  e.  CC  ( A. z  e.  ran  g ( y s ( x g z ) )  =  ( ( y s x ) g ( y s z ) )  /\  A. z  e.  CC  ( ( ( y  +  z ) s x )  =  ( ( y s x ) g ( z s x ) )  /\  ( ( y  x.  z ) s x )  =  ( y s ( z s x ) ) ) ) ) ) }
cnv 27439 class  NrmCVec
cpv 27440 class  +v
cba 27441 class  BaseSet
cns 27442 class  .sOLD
cn0v 27443 class  0vec
cnsb 27444 class  -v
cnmcv 27445 class  normCV
cims 27446 class  IndMet
df-nv 27447 |-  NrmCVec  =  { <. <. g ,  s
>. ,  n >.  |  ( <. g ,  s
>.  e.  CVecOLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) }
df-va 27450 |-  +v  =  ( 1st  o. 
1st )
df-ba 27451 |-  BaseSet  =  ( x  e. 
_V  |->  ran  ( +v `  x ) )
df-sm 27452 |-  .sOLD  =  ( 2nd 
o.  1st )
df-0v 27453 |-  0vec 
=  (GId  o.  +v )
df-vs 27454 |-  -v  =  (  /g  o.  +v )
df-nmcv 27455 |- 
normCV  =  2nd
df-ims 27456 |- 
IndMet  =  ( u  e.  NrmCVec 
|->  ( ( normCV `  u
)  o.  ( -v
`  u ) ) )
cdip 27555 class  .iOLD
df-dip 27556 |-  .iOLD  =  ( u  e.  NrmCVec  |->  ( x  e.  ( BaseSet `  u
) ,  y  e.  ( BaseSet `  u )  |->  ( sum_ k  e.  ( 1 ... 4 ) ( ( _i ^
k )  x.  (
( ( normCV `  u
) `  ( x
( +v `  u
) ( ( _i
^ k ) ( .sOLD `  u
) y ) ) ) ^ 2 ) )  /  4 ) ) )
css 27576 class  SubSp
df-ssp 27577 |- 
SubSp  =  ( u  e.  NrmCVec  |->  { w  e.  NrmCVec  |  ( ( +v
`  w )  C_  ( +v `  u )  /\  ( .sOLD `  w )  C_  ( .sOLD `  u )  /\  ( normCV `  w
)  C_  ( normCV `  u
) ) } )
clno 27595 class  LnOp
cnmoo 27596 class  normOpOLD
cblo 27597 class  BLnOp
c0o 27598 class  0op
df-lno 27599 |- 
LnOp  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec 
|->  { t  e.  ( ( BaseSet `  w )  ^m  ( BaseSet `  u )
)  |  A. x  e.  CC  A. y  e.  ( BaseSet `  u ) A. z  e.  ( BaseSet
`  u ) ( t `  ( ( x ( .sOLD `  u ) y ) ( +v `  u
) z ) )  =  ( ( x ( .sOLD `  w ) ( t `
 y ) ) ( +v `  w
) ( t `  z ) ) } )
df-nmoo 27600 |- 
normOpOLD  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec 
|->  ( t  e.  ( ( BaseSet `  w )  ^m  ( BaseSet `  u )
)  |->  sup ( { x  |  E. z  e.  (
BaseSet `  u ) ( ( ( normCV `  u
) `  z )  <_  1  /\  x  =  ( ( normCV `  w
) `  ( t `  z ) ) ) } ,  RR* ,  <  ) ) )
df-blo 27601 |- 
BLnOp  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec 
|->  { t  e.  ( u  LnOp  w )  |  ( ( u
normOpOLD w ) `  t )  < +oo } )
df-0o 27602 |-  0op  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  ( ( BaseSet `  u )  X.  { ( 0vec `  w
) } ) )
caj 27603 class  adj
chmo 27604 class  HmOp
df-aj 27605 |-  adj  =  ( u  e.  NrmCVec ,  w  e.  NrmCVec  |->  {
<. t ,  s >.  |  ( t : ( BaseSet `  u ) --> ( BaseSet `  w )  /\  s : ( BaseSet `  w ) --> ( BaseSet `  u )  /\  A. x  e.  ( BaseSet `  u ) A. y  e.  ( BaseSet `  w )
( ( t `  x ) ( .iOLD `  w ) y )  =  ( x ( .iOLD `  u ) ( s `
 y ) ) ) } )
df-hmo 27606 |- 
HmOp  =  ( u  e.  NrmCVec  |->  { t  e. 
dom  ( u adj u )  |  ( ( u adj u
) `  t )  =  t } )
ccphlo 27667 class  CPreHil OLD
df-ph 27668 |-  CPreHil OLD  =  ( NrmCVec  i^i  { <. <. g ,  s
>. ,  n >.  | 
A. x  e.  ran  g A. y  e.  ran  g ( ( ( n `  ( x g y ) ) ^ 2 )  +  ( ( n `  ( x g (
-u 1 s y ) ) ) ^
2 ) )  =  ( 2  x.  (
( ( n `  x ) ^ 2 )  +  ( ( n `  y ) ^ 2 ) ) ) } )
ccbn 27718 class  CBan
df-cbn 27719 |- 
CBan  =  { u  e.  NrmCVec  |  ( IndMet `  u )  e.  (
CMet `  ( BaseSet `  u
) ) }
chlo 27741 class  CHilOLD
df-hlo 27742 |- 
CHilOLD  =  ( CBan 
i^i  CPreHil OLD )
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
chil 27776 class  ~H
cva 27777 class  +h
csm 27778 class  .h
csp 27779 class  .ih
cno 27780 class  normh
c0v 27781 class  0h
cmv 27782 class  -h
ccau 27783 class  Cauchy
chli 27784 class  ~~>v
csh 27785 class  SH
cch 27786 class  CH
cort 27787 class  _|_
cph 27788 class  +H
cspn 27789 class  span
chj 27790 class  vH
chsup 27791 class  \/H
c0h 27792 class  0H
ccm 27793 class  C_H
cpjh 27794 class  proj h
chos 27795 class  +op
chot 27796 class  .op
chod 27797 class  -op
chfs 27798 class  +fn
chft 27799 class  .fn
ch0o 27800 class  0hop
chio 27801 class  Iop
cnop 27802 class  normop
ccop 27803 class  ContOp
clo 27804 class  LinOp
cbo 27805 class  BndLinOp
cuo 27806 class  UniOp
cho 27807 class  HrmOp
cnmf 27808 class  normfn
cnl 27809 class  null
ccnfn 27810 class  ContFn
clf 27811 class  LinFn
cado 27812 class  adjh
cbr 27813 class  bra
ck 27814 class  ketbra
cleo 27815 class  <_op
cei 27816 class  eigvec
cel 27817 class  eigval
cspc 27818 class  Lambda
cst 27819 class  States
chst 27820 class  CHStates
ccv 27821 class  <oH
cat 27822 class HAtoms
cmd 27823 class  MH
cdmd 27824 class  MH*
df-hnorm 27825 |- 
normh  =  ( x  e.  dom  dom  .ih  |->  ( sqr `  ( x  .ih  x
) ) )
df-hba 27826 |- 
~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
df-h0v 27827 |- 
0h  =  ( 0vec `  <. <.  +h  ,  .h  >. ,  normh >. )
df-hvsub 27828 |- 
-h  =  ( x  e.  ~H ,  y  e.  ~H  |->  ( x  +h  ( -u 1  .h  y ) ) )
df-hlim 27829 |- 
~~>v  =  { <. f ,  w >.  |  (
( f : NN --> ~H  /\  w  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( f `  z )  -h  w
) )  <  x
) }
df-hcau 27830 |- 
Cauchy  =  { f  e.  ( ~H  ^m  NN )  |  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
( normh `  ( (
f `  y )  -h  ( f `  z
) ) )  < 
x }
ax-hilex 27856 |- 
~H  e.  _V
ax-hfvadd 27857 |- 
+h  : ( ~H 
X.  ~H ) --> ~H
ax-hvcom 27858 |-  ( ( A  e. 
~H  /\  B  e.  ~H )  ->  ( A  +h  B )  =  ( B  +h  A
) )
ax-hvass 27859 |-  ( ( A  e. 
~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  +h  B )  +h  C )  =  ( A  +h  ( B  +h  C ) ) )
ax-hv0cl 27860 |- 
0h  e.  ~H
ax-hvaddid 27861 |-  ( A  e.  ~H  ->  ( A  +h  0h )  =  A )
ax-hfvmul 27862 |-  .h  : ( CC 
X.  ~H ) --> ~H
ax-hvmulid 27863 |-  ( A  e.  ~H  ->  ( 1  .h  A
)  =  A )
ax-hvmulass 27864 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e. 
~H )  ->  (
( A  x.  B
)  .h  C )  =  ( A  .h  ( B  .h  C
) ) )
ax-hvdistr1 27865 |-  ( ( A  e.  CC  /\  B  e. 
~H  /\  C  e.  ~H )  ->  ( A  .h  ( B  +h  C ) )  =  ( ( A  .h  B )  +h  ( A  .h  C )
) )
ax-hvdistr2 27866 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e. 
~H )  ->  (
( A  +  B
)  .h  C )  =  ( ( A  .h  C )  +h  ( B  .h  C
) ) )
ax-hvmul0 27867 |-  ( A  e.  ~H  ->  ( 0  .h  A
)  =  0h )
ax-hfi 27936 |- 
.ih  : ( ~H  X.  ~H ) --> CC
ax-his1 27939 |-  ( ( A  e. 
~H  /\  B  e.  ~H )  ->  ( A 
.ih  B )  =  ( * `  ( B  .ih  A ) ) )
ax-his2 27940 |-  ( ( A  e. 
~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  +h  B )  .ih  C )  =  ( ( A  .ih  C )  +  ( B  .ih  C ) ) )
ax-his3 27941 |-  ( ( A  e.  CC  /\  B  e. 
~H  /\  C  e.  ~H )  ->  ( ( A  .h  B ) 
.ih  C )  =  ( A  x.  ( B  .ih  C ) ) )
ax-his4 27942 |-  ( ( A  e. 
~H  /\  A  =/=  0h )  ->  0  <  ( A  .ih  A ) )
ax-hcompl 28059 |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
df-sh 28064 |-  SH  =  { h  e.  ~P ~H  |  ( 0h  e.  h  /\  (  +h  " ( h  X.  h ) ) 
C_  h  /\  (  .h  " ( CC  X.  h ) )  C_  h ) }
df-ch 28078 |-  CH  =  { h  e.  SH  |  (  ~~>v  "
( h  ^m  NN ) )  C_  h }
df-oc 28109 |-  _|_  =  ( x  e. 
~P ~H  |->  { y  e.  ~H  |  A. z  e.  x  (
y  .ih  z )  =  0 } )
df-ch0 28110 |-  0H  =  { 0h }
df-shs 28167 |- 
+H  =  ( x  e.  SH ,  y  e.  SH  |->  (  +h  " ( x  X.  y ) ) )
df-span 28168 |- 
span  =  ( x  e.  ~P ~H  |->  |^| { y  e.  SH  |  x 
C_  y } )
df-chj 28169 |- 
vH  =  ( x  e.  ~P ~H , 
y  e.  ~P ~H  |->  ( _|_ `  ( _|_ `  ( x  u.  y
) ) ) )
df-chsup 28170 |-  \/H  =  ( x  e. 
~P ~P ~H  |->  ( _|_ `  ( _|_ `  U. x ) ) )
df-pjh 28254 |- 
proj h  =  (
h  e.  CH  |->  ( x  e.  ~H  |->  (
iota_ z  e.  h  E. y  e.  ( _|_ `  h ) x  =  ( z  +h  y ) ) ) )
df-cm 28442 |-  C_H  =  { <. x ,  y >.  |  ( ( x  e.  CH  /\  y  e.  CH )  /\  x  =  (
( x  i^i  y
)  vH  ( x  i^i  ( _|_ `  y
) ) ) ) }
df-hosum 28589 |- 
+op  =  ( f  e.  ( ~H  ^m  ~H ) ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e. 
~H  |->  ( ( f `
 x )  +h  ( g `  x
) ) ) )
df-homul 28590 |- 
.op  =  ( f  e.  CC ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e.  ~H  |->  ( f  .h  ( g `  x ) ) ) )
df-hodif 28591 |- 
-op  =  ( f  e.  ( ~H  ^m  ~H ) ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e. 
~H  |->  ( ( f `
 x )  -h  ( g `  x
) ) ) )
df-hfsum 28592 |- 
+fn  =  ( f  e.  ( CC  ^m  ~H ) ,  g  e.  ( CC  ^m  ~H )  |->  ( x  e. 
~H  |->  ( ( f `
 x )  +  ( g `  x
) ) ) )
df-hfmul 28593 |- 
.fn  =  ( f  e.  CC ,  g  e.  ( CC  ^m  ~H )  |->  ( x  e.  ~H  |->  ( f  x.  ( g `  x ) ) ) )
df-h0op 28607 |- 
0hop  =  ( proj h `  0H )
df-iop 28608 |- 
Iop  =  ( proj h `  ~H )
df-nmop 28698 |-  normop  =  ( t  e.  ( ~H  ^m  ~H )  |->  sup ( { x  |  E. z  e.  ~H  ( ( normh `  z
)  <_  1  /\  x  =  ( normh `  ( t `  z
) ) ) } ,  RR* ,  <  )
)
df-cnop 28699 |- 
ContOp  =  { t  e.  ( ~H  ^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( normh `  ( ( t `  w )  -h  (
t `  x )
) )  <  y
) }
df-lnop 28700 |- 
LinOp  =  { t  e.  ( ~H  ^m  ~H )  |  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( t `
 y ) )  +h  ( t `  z ) ) }
df-bdop 28701 |-  BndLinOp  =  { t  e. 
LinOp  |  ( normop `  t
)  < +oo }
df-unop 28702 |- 
UniOp  =  { t  |  ( t : ~H -onto-> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( t `
 x )  .ih  ( t `  y
) )  =  ( x  .ih  y ) ) }
df-hmop 28703 |- 
HrmOp  =  { t  e.  ( ~H  ^m  ~H )  |  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( t `  y
) )  =  ( ( t `  x
)  .ih  y ) }
df-nmfn 28704 |- 
normfn  =  ( t  e.  ( CC  ^m  ~H )  |->  sup ( { x  |  E. z  e.  ~H  ( ( normh `  z
)  <_  1  /\  x  =  ( abs `  ( t `  z
) ) ) } ,  RR* ,  <  )
)
df-nlfn 28705 |- 
null  =  ( t  e.  ( CC  ^m  ~H )  |->  ( `' t
" { 0 } ) )
df-cnfn 28706 |- 
ContFn  =  { t  e.  ( CC  ^m  ~H )  |  A. x  e.  ~H  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ~H  (
( normh `  ( w  -h  x ) )  < 
z  ->  ( abs `  ( ( t `  w )  -  (
t `  x )
) )  <  y
) }
df-lnfn 28707 |- 
LinFn  =  { t  e.  ( CC  ^m  ~H )  |  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( t `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  x.  ( t `
 y ) )  +  ( t `  z ) ) }
df-adjh 28708 |- 
adjh  =  { <. t ,  u >.  |  (
t : ~H --> ~H  /\  u : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( t `  x
)  .ih  y )  =  ( x  .ih  ( u `  y
) ) ) }
df-bra 28709 |- 
bra  =  ( x  e.  ~H  |->  ( y  e.  ~H  |->  ( y 
.ih  x ) ) )
df-kb 28710 |-  ketbra  =  ( x  e. 
~H ,  y  e. 
~H  |->  ( z  e. 
~H  |->  ( ( z 
.ih  y )  .h  x ) ) )
df-leop 28711 |- 
<_op  =  { <. t ,  u >.  |  (
( u  -op  t
)  e.  HrmOp  /\  A. x  e.  ~H  0  <_  ( ( ( u  -op  t ) `  x )  .ih  x
) ) }
df-eigvec 28712 |- 
eigvec  =  ( t  e.  ( ~H  ^m  ~H )  |->  { x  e.  ( ~H  \  0H )  |  E. z  e.  CC  ( t `  x )  =  ( z  .h  x ) } )
df-eigval 28713 |- 
eigval  =  ( t  e.  ( ~H  ^m  ~H )  |->  ( x  e.  ( eigvec `  t )  |->  ( ( ( t `
 x )  .ih  x )  /  (
( normh `  x ) ^ 2 ) ) ) )
df-spec 28714 |- 
Lambda  =  ( t  e.  ( ~H  ^m  ~H )  |->  { x  e.  CC  |  -.  (
t  -op  ( x  .op  (  _I  |`  ~H )
) ) : ~H -1-1-> ~H } )
df-st 29070 |-  States  =  { f  e.  ( ( 0 [,] 1
)  ^m  CH )  |  ( ( f `
 ~H )  =  1  /\  A. x  e.  CH  A. y  e. 
CH  ( x  C_  ( _|_ `  y )  ->  ( f `  ( x  vH  y
) )  =  ( ( f `  x
)  +  ( f `
 y ) ) ) ) }
df-hst 29071 |-  CHStates  =  { f  e.  ( ~H  ^m  CH )  |  ( ( normh `  ( f `  ~H ) )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  (
( ( f `  x )  .ih  (
f `  y )
)  =  0  /\  ( f `  (
x  vH  y )
)  =  ( ( f `  x )  +h  ( f `  y ) ) ) ) ) }
df-cv 29138 |-  <oH  =  { <. x ,  y >.  |  ( ( x  e.  CH  /\  y  e.  CH )  /\  ( x  C.  y  /\  -.  E. z  e. 
CH  ( x  C.  z  /\  z  C.  y
) ) ) }
df-md 29139 |-  MH  =  { <. x ,  y >.  |  ( ( x  e.  CH  /\  y  e.  CH )  /\  A. z  e.  CH  ( z  C_  y  ->  ( ( z  vH  x )  i^i  y
)  =  ( z  vH  ( x  i^i  y ) ) ) ) }
df-dmd 29140 |- 
MH*  =  { <. x ,  y >.  |  ( ( x  e.  CH  /\  y  e.  CH )  /\  A. z  e.  CH  ( y  C_  z  ->  ( ( z  i^i  x )  vH  y
)  =  ( z  i^i  ( x  vH  y ) ) ) ) }
df-at 29197 |- HAtoms  =  { x  e.  CH  |  0H  <oH  x }
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
cdp2 29577 class _ A B
df-dp2 29578 |- _ A B  =  ( A  +  ( B  / ; 1 0 ) )
cdp 29595 class  period
df-dp 29596 |-  period  =  ( x  e. 
NN0 ,  y  e.  RR  |-> _ x y )
cxdiv 29625 class /𝑒
df-xdiv 29626 |- /𝑒  =  ( x  e.  RR* ,  y  e.  ( RR  \  { 0 } ) 
|->  ( iota_ z  e.  RR*  ( y xe z )  =  x ) )
ax-xrssca 29673 |- RRfld  =  (Scalar `  RR*s )
ax-xrsvsca 29674 |-  xe  =  ( .s `  RR*s
)
comnd 29697 class oMnd
cogrp 29698 class oGrp
df-omnd 29699 |- oMnd 
=  { g  e. 
Mnd  |  [. ( Base `  g )  /  v ]. [. ( +g  `  g
)  /  p ]. [. ( le `  g
)  /  l ]. ( g  e. Toset  /\  A. a  e.  v  A. b  e.  v  A. c  e.  v  (
a l b  -> 
( a p c ) l ( b p c ) ) ) }
df-ogrp 29700 |- oGrp 
=  ( Grp  i^i oMnd )
csgns 29725 class sgns
df-sgns 29726 |- sgns  =  ( r  e.  _V  |->  ( x  e.  ( Base `  r )  |->  if ( x  =  ( 0g `  r ) ,  0 ,  if ( ( 0g `  r ) ( lt
`  r ) x ,  1 ,  -u
1 ) ) ) )
cinftm 29730 class <<<
carchi 29731 class Archi
df-inftm 29732 |- <<<  =  ( w  e.  _V  |->  { <. x ,  y
>.  |  ( (
x  e.  ( Base `  w )  /\  y  e.  ( Base `  w
) )  /\  (
( 0g `  w
) ( lt `  w ) x  /\  A. n  e.  NN  (
n (.g `  w ) x ) ( lt `  w ) y ) ) } )
df-archi 29733 |- Archi  =  { w  |  (<<< `  w )  =  (/) }
cslmd 29753 class SLMod
df-slmd 29754 |- SLMod  =  { g  e. CMnd  |  [. ( Base `  g
)  /  v ]. [. ( +g  `  g
)  /  a ]. [. ( .s `  g
)  /  s ]. [. (Scalar `  g )  /  f ]. [. ( Base `  f )  / 
k ]. [. ( +g  `  f )  /  p ]. [. ( .r `  f )  /  t ]. ( f  e. SRing  /\  A. q  e.  k  A. r  e.  k  A. x  e.  v  A. w  e.  v  (
( ( r s w )  e.  v  /\  ( r s ( w a x ) )  =  ( ( r s w ) a ( r s x ) )  /\  ( ( q p r ) s w )  =  ( ( q s w ) a ( r s w ) ) )  /\  ( ( ( q t r ) s w )  =  ( q s ( r s w ) )  /\  (
( 1r `  f
) s w )  =  w  /\  (
( 0g `  f
) s w )  =  ( 0g `  g ) ) ) ) }
corng 29795 class oRing
cofld 29796 class oField
df-orng 29797 |- oRing  =  { r  e.  (
Ring  i^i oGrp )  |  [. ( Base `  r )  /  v ]. [. ( 0g `  r )  / 
z ]. [. ( .r
`  r )  / 
t ]. [. ( le
`  r )  / 
l ]. A. a  e.  v  A. b  e.  v  ( ( z l a  /\  z
l b )  -> 
z l ( a t b ) ) }
df-ofld 29798 |- oField  =  (Field  i^i oRing )
cresv 29824 classv
df-resv 29825 |-v  =  ( w  e.  _V ,  x  e.  _V  |->  if ( ( Base `  (Scalar `  w ) )  C_  x ,  w , 
( w sSet  <. (Scalar ` 
ndx ) ,  ( (Scalar `  w )s  x
) >. ) ) )
csmat 29859 class subMat1
df-smat 29860 |- subMat1  =  ( m  e. 
_V  |->  ( k  e.  NN ,  l  e.  NN  |->  ( m  o.  ( i  e.  NN ,  j  e.  NN  |->  <. if ( i  < 
k ,  i ,  ( i  +  1 ) ) ,  if ( j  <  l ,  j ,  ( j  +  1 ) ) >. ) ) ) )
clmat 29877 class litMat
df-lmat 29878 |- litMat  =  ( m  e. 
_V  |->  ( i  e.  ( 1 ... ( # `
 m ) ) ,  j  e.  ( 1 ... ( # `  ( m `  0
) ) )  |->  ( ( m `  (
i  -  1 ) ) `  ( j  -  1 ) ) ) )
ccref 29909 class CovHasRef A
df-cref 29910 |- CovHasRef A  =  { j  e.  Top  |  A. y  e.  ~P  j ( U. j  =  U. y  ->  E. z  e.  ( ~P j  i^i  A
) z Ref y
) }
cldlf 29919 class Ldlf
df-ldlf 29920 |- Ldlf 
= CovHasRef { x  |  x  ~<_  om }
cpcmp 29922 class Paracomp
df-pcmp 29923 |- Paracomp  =  { j  |  j  e. CovHasRef ( LocFin `  j ) }
cmetid 29929 class ~Met
cpstm 29930 class pstoMet
df-metid 29931 |- ~Met 
=  ( d  e. 
U. ran PsMet  |->  { <. x ,  y >.  |  ( ( x  e.  dom  dom  d  /\  y  e. 
dom  dom  d )  /\  ( x d y )  =  0 ) } )
df-pstm 29932 |- pstoMet  =  ( d  e. 
U. ran PsMet  |->  ( a  e.  ( dom  dom  d /. (~Met `  d )
) ,  b  e.  ( dom  dom  d /. (~Met `  d )
)  |->  U. { z  |  E. x  e.  a  E. y  e.  b  z  =  ( x d y ) } ) )
chcmp 30002 class HCmp
df-hcmp 30003 |- HCmp 
=  { <. u ,  w >.  |  (
( u  e.  U. ran UnifOn 
/\  w  e. CUnifSp )  /\  ( (UnifSt `  w
)t 
dom  U. u )  =  u  /\  ( ( cls `  ( TopOpen `  w ) ) `  dom  U. u )  =  ( Base `  w
) ) }
cqqh 30016 class QQHom
df-qqh 30017 |- QQHom  =  ( r  e. 
_V  |->  ran  ( x  e.  ZZ ,  y  e.  ( `' ( ZRHom `  r ) " (Unit `  r ) )  |->  <.
( x  /  y
) ,  ( ( ( ZRHom `  r
) `  x )
(/r `  r ) ( ( ZRHom `  r
) `  y )
) >. ) )
crrh 30037 class RRHom
crrext 30038 class ℝExt
df-rrh 30039 |- RRHom  =  ( r  e. 
_V  |->  ( ( (
topGen `  ran  (,) )CnExt ( TopOpen `  r )
) `  (QQHom `  r
) ) )
df-rrext 30043 |- ℝExt  =  { r  e.  (NrmRing  i^i 
DivRing )  |  ( ( ( ZMod `  r
)  e. NrmMod  /\  (chr `  r )  =  0 )  /\  ( r  e. CUnifSp  /\  (UnifSt `  r
)  =  (metUnif `  (
( dist `  r )  |`  ( ( Base `  r
)  X.  ( Base `  r ) ) ) ) ) ) }
cxrh 30060 class RR*Hom
df-xrh 30061 |- RR*Hom  =  ( r  e.  _V  |->  ( x  e.  RR*  |->  if ( x  e.  RR , 
( (RRHom `  r
) `  x ) ,  if ( x  = +oo ,  ( ( lub `  r ) `
 ( (RRHom `  r ) " RR ) ) ,  ( ( glb `  r
) `  ( (RRHom `  r ) " RR ) ) ) ) ) )
cmntop 30066 class ManTop
df-mntop 30067 |- ManTop  =  { <. n ,  j
>.  |  ( n  e.  NN0  /\  ( j  e.  2ndc  /\  j  e.  Haus  /\  j  e. Locally  [ ( TopOpen `  (𝔼hil `  n ) ) ]  ~=  ) ) }
cind 30072 class 𝟭
df-ind 30073 |- 𝟭  =  ( o  e. 
_V  |->  ( a  e. 
~P o  |->  ( x  e.  o  |->  if ( x  e.  a ,  1 ,  0 ) ) ) )
cesum 30089 class Σ* k  e.  A B
df-esum 30090 |- Σ* k  e.  A B  = 
U. ( ( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  A  |->  B ) )
cofc 30157 class𝑓/𝑐 R
df-ofc 30158 |-𝑓/𝑐 R  =  ( f  e.  _V ,  c  e.  _V  |->  ( x  e.  dom  f  |->  ( ( f `
 x ) R c ) ) )
csiga 30170 class sigAlgebra
df-siga 30171 |- sigAlgebra  =  ( o  e. 
_V  |->  { s  |  ( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
csigagen 30201 class sigaGen
df-sigagen 30202 |- sigaGen  =  ( x  e. 
_V  |->  |^| { s  e.  (sigAlgebra `  U. x )  |  x  C_  s } )
cbrsiga 30244 class 𝔅
df-brsiga 30245 |- 𝔅  =  (sigaGen `  ( topGen `  ran  (,) ) )
csx 30251 class ×s
df-sx 30252 |- ×s  =  ( s  e.  _V ,  t  e.  _V  |->  (sigaGen `  ran  ( x  e.  s ,  y  e.  t  |->  ( x  X.  y ) ) ) )
cmeas 30258 class measures
df-meas 30259 |- measures  =  ( s  e. 
U. ran sigAlgebra  |->  { m  |  ( m : s --> ( 0 [,] +oo )  /\  ( m `  (/) )  =  0  /\ 
A. x  e.  ~P  s ( ( x  ~<_  om  /\ Disj  y  e.  x  y )  ->  (
m `  U. x )  = Σ* y  e.  x ( m `  y ) ) ) } )
cdde 30295 class δ
df-dde 30296 |- δ  =  ( a  e. 
~P RR  |->  if ( 0  e.  a ,  1 ,  0 ) )
cae 30300 class a.e.
cfae 30301 class ~ a.e.
df-ae 30302 |- a.e.  =  { <. a ,  m >.  |  ( m `  ( U. dom  m  \ 
a ) )  =  0 }
df-fae 30308 |- ~ a.e.  =  ( r  e. 
_V ,  m  e. 
U. ran measures  |->  { <. f ,  g >.  |  ( ( f  e.  ( dom  r  ^m  U. dom  m )  /\  g  e.  ( dom  r  ^m  U.
dom  m ) )  /\  { x  e. 
U. dom  m  | 
( f `  x
) r ( g `
 x ) }a.e. m ) } )
cmbfm 30312 class MblFnM
df-mbfm 30313 |- MblFnM  =  ( s  e. 
U. ran sigAlgebra ,  t  e. 
U. ran sigAlgebra  |->  { f  e.  ( U. t  ^m  U. s )  |  A. x  e.  t  ( `' f " x
)  e.  s } )
coms 30353 class toOMeas
df-oms 30354 |- toOMeas  =  ( r  e. 
_V  |->  ( a  e. 
~P U. dom  r  |-> inf ( ran  ( x  e. 
{ z  e.  ~P dom  r  |  (
a  C_  U. z  /\  z  ~<_  om ) }  |-> Σ* y  e.  x ( r `  y ) ) ,  ( 0 [,] +oo ) ,  <  ) ) )
ccarsg 30363 class toCaraSiga
df-carsg 30364 |- toCaraSiga  =  ( m  e. 
_V  |->  { a  e. 
~P U. dom  m  | 
A. e  e.  ~P  U.
dom  m ( ( m `  ( e  i^i  a ) ) +e ( m `
 ( e  \ 
a ) ) )  =  ( m `  e ) } )
citgm 30389 class itgm
csitm 30390 class sitm
csitg 30391 class sitg
df-sitg 30392 |- sitg 
=  ( w  e. 
_V ,  m  e. 
U. ran measures  |->  ( f  e.  { g  e.  ( dom  mMblFnM (sigaGen `  ( TopOpen
`  w ) ) )  |  ( ran  g  e.  Fin  /\  A. x  e.  ( ran  g  \  { ( 0g `  w ) } ) ( m `
 ( `' g
" { x }
) )  e.  ( 0 [,) +oo )
) }  |->  ( w 
gsumg  ( x  e.  ( ran  f  \  { ( 0g `  w ) } )  |->  ( ( (RRHom `  (Scalar `  w
) ) `  (
m `  ( `' f " { x }
) ) ) ( .s `  w ) x ) ) ) ) )
df-sitm 30393 |- sitm 
=  ( w  e. 
_V ,  m  e. 
U. ran measures  |->  ( f  e.  dom  ( wsitg m
) ,  g  e. 
dom  ( wsitg m
)  |->  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg m ) `
 ( f  oF ( dist `  w
) g ) ) ) )
df-itgm 30415 |- itgm 
=  ( w  e. 
_V ,  m  e. 
U. ran measures  |->  ( (
(metUnif `  ( wsitm m
) )CnExt (UnifSt `  w ) ) `  ( wsitg m ) ) )
csseq 30445 class seqstr
df-sseq 30446 |- seqstr  =  ( m  e.  _V ,  f  e.  _V  |->  ( m  u.  ( lastS  o. 
seq ( # `  m
) ( ( x  e.  _V ,  y  e.  _V  |->  ( x ++ 
<" ( f `  x ) "> ) ) ,  ( NN0  X.  { ( m ++  <" ( f `
 m ) "> ) } ) ) ) ) )
cfib 30458 class Fibci
df-fib 30459 |- Fibci  =  ( <" 0
1 ">seqstr ( w  e.  (Word 
NN0  i^i  ( `' #
" ( ZZ>= `  2
) ) )  |->  ( ( w `  (
( # `  w )  -  2 ) )  +  ( w `  ( ( # `  w
)  -  1 ) ) ) ) )
cprb 30469 class Prob
df-prob 30470 |- Prob 
=  { p  e. 
U. ran measures  |  ( p `
 U. dom  p
)  =  1 }
ccprob 30493 class cprob
df-cndprob 30494 |- cprob  =  ( p  e. Prob  |->  ( a  e.  dom  p ,  b  e.  dom  p  |->  ( ( p `
 ( a  i^i  b ) )  / 
( p `  b
) ) ) )
crrv 30502 class rRndVar
df-rrv 30503 |- rRndVar  =  ( p  e. Prob  |->  ( dom  pMblFnM𝔅 ) )
corvc 30517 classRV/𝑐 R
df-orvc 30518 |-RV/𝑐 R  =  ( x  e.  {
x  |  Fun  x } ,  a  e.  _V  |->  ( `' x " { y  |  y R a } ) )
crepr 30686 class repr
df-repr 30687 |- repr 
=  ( s  e. 
NN0  |->  ( b  e. 
~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
0..^ s ) )  |  sum_ a  e.  ( 0..^ s ) ( c `  a )  =  m } ) )
cvts 30713 class vts
df-vts 30714 |- vts 
=  ( l  e.  ( CC  ^m  NN ) ,  n  e.  NN0  |->  ( x  e.  CC  |->  sum_ a  e.  ( 1 ... n ) ( ( l `  a
)  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  (
a  x.  x ) ) ) ) ) )
ax-hgt749 30722 |- 
A. n  e.  {
z  e.  ZZ  |  -.  2  ||  z }  ( (; 1 0 ^; 2 7 )  <_  n  ->  E. h  e.  ( ( 0 [,) +oo )  ^m  NN ) E. k  e.  ( ( 0 [,) +oo )  ^m  NN ) ( A. m  e.  NN  (
k `  m )  <_  ( 1 period_ 0_ 7_ 9_ 9_ 5 5 )  /\  A. m  e.  NN  ( h `  m )  <_  (
1 period_ 4_ 1 4 )  /\  (
( 0 period_ 0_ 0_ 0_ 4_ 2_ 2_ 4 8 )  x.  ( n ^ 2 ) )  <_  S. ( 0 (,) 1
) ( ( ( ( (Λ  oF  x.  h )vts n ) `  x )  x.  ( ( ( (Λ  oF  x.  k
)vts n ) `  x ) ^ 2 ) )  x.  ( exp `  ( ( _i  x.  ( 2  x.  pi ) )  x.  ( -u n  x.  x ) ) ) )  _d x ) )
ax-ros335 30723 |- 
A. x  e.  RR+  (ψ `  x )  < 
( ( 1 period_ 0_ 3_ 8_ 8 3 )  x.  x
)
ax-ros336 30724 |- 
A. x  e.  RR+  ( (ψ `  x )  -  ( theta `  x
) )  <  (
( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  x ) )
cstrkg2d 30742 class TarskiG2D
df-trkg2d 30743 |- TarskiG2D  =  { f  |  [. ( Base `  f )  /  p ]. [. ( dist `  f )  / 
d ]. [. (Itv `  f )  /  i ]. ( E. x  e.  p  E. y  e.  p  E. z  e.  p  -.  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  A. u  e.  p  A. v  e.  p  (
( ( ( x d u )  =  ( x d v )  /\  ( y d u )  =  ( y d v )  /\  ( z d u )  =  ( z d v ) )  /\  u  =/=  v )  ->  (
z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) ) ) }
cafs 30747 class AFS
df-afs 30748 |- AFS 
=  ( g  e. TarskiG  |->  { <. e ,  f
>.  |  [. ( Base `  g )  /  p ]. [. ( dist `  g
)  /  h ]. [. (Itv `  g )  /  i ]. E. a  e.  p  E. b  e.  p  E. c  e.  p  E. d  e.  p  E. x  e.  p  E. y  e.  p  E. z  e.  p  E. w  e.  p  (
e  =  <. <. a ,  b >. ,  <. c ,  d >. >.  /\  f  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  e.  ( a i c )  /\  y  e.  ( x
i z ) )  /\  ( ( a h b )  =  ( x h y )  /\  ( b h c )  =  ( y h z ) )  /\  (
( a h d )  =  ( x h w )  /\  ( b h d )  =  ( y h w ) ) ) ) } )
w-bnj17 30752 wff  ( ph  /\  ps  /\ 
ch  /\  th )
df-bnj17 30753 |-  ( ( ph  /\  ps  /\  ch  /\  th ) 
<->  ( ( ph  /\  ps  /\  ch )  /\  th ) )
c-bnj14 30754 class  pred ( X ,  A ,  R )
df-bnj14 30755 |- 
pred ( X ,  A ,  R )  =  { y  e.  A  |  y R X }
w-bnj13 30756 wff 
R  Se  A
df-bnj13 30757 |-  ( R  Se  A  <->  A. x  e.  A  pred ( x ,  A ,  R )  e.  _V )
w-bnj15 30758 wff 
R  FrSe  A
df-bnj15 30759 |-  ( R  FrSe  A  <->  ( R  Fr  A  /\  R  Se  A ) )
c-bnj18 30760 class  trCl ( X ,  A ,  R )
df-bnj18 30761 |- 
trCl ( X ,  A ,  R )  =  U_ f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
w-bnj19 30762 wff 
TrFo ( B ,  A ,  R )
df-bnj19 30763 |-  (  TrFo ( B ,  A ,  R )  <->  A. x  e.  B  pred ( x ,  A ,  R )  C_  B
)
ax-7d 31141 |-  ( A. x A. y ph  ->  A. y A. x ph )
ax-8d 31142 |-  ( x  =  y  ->  ( x  =  z  ->  y  =  z ) )
ax-9d1 31143 |- 
-.  A. x  -.  x  =  x
ax-9d2 31144 |- 
-.  A. x  -.  x  =  y
ax-10d 31145 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-11d 31146 |-  ( x  =  y  ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
) )
cretr 31199 class Retr
df-retr 31200 |- Retr 
=  ( j  e. 
Top ,  k  e.  Top  |->  { r  e.  ( j  Cn  k
)  |  E. s  e.  ( k  Cn  j
) ( ( r  o.  s ) ( j Htpy  j ) (  _I  |`  U. j
) )  =/=  (/) } )
cpconn 31201 class PConn
csconn 31202 class SConn
df-pconn 31203 |- PConn  =  { j  e.  Top  | 
A. x  e.  U. j A. y  e.  U. j E. f  e.  ( II  Cn  j ) ( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) }
df-sconn 31204 |- SConn  =  { j  e. PConn  |  A. f  e.  (
II  Cn  j )
( ( f ` 
0 )  =  ( f `  1 )  ->  f (  ~=ph  `  j ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ) }
ccvm 31237 class CovMap
df-cvm 31238 |- CovMap  =  ( c  e. 
Top ,  j  e.  Top  |->  { f  e.  ( c  Cn  j
)  |  A. x  e.  U. j E. k  e.  j  ( x  e.  k  /\  E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u )
Homeo ( jt  k ) ) ) ) ) } )
cgoe 31315 class  e.g
cgna 31316 class  |g
cgol 31317 class  A.g N U
csat 31318 class  Sat
cfmla 31319 class  Fmla
csate 31320 class  SatE
cprv 31321 class  |=
df-goel 31322 |- 
e.g  =  ( x  e.  ( om  X.  om )  |->  <. (/) ,  x >. )
df-gona 31323 |- 
|g  =  ( x  e.  ( _V 
X.  _V )  |->  <. 1o ,  x >. )
df-goal 31324 |-  A.g N U  =  <. 2o ,  <. N ,  U >. >.
df-sat 31325 |- 
Sat  =  ( m  e.  _V ,  e  e.  _V  |->  ( rec ( ( f  e. 
_V  |->  ( f  u. 
{ <. x ,  y
>.  |  E. u  e.  f  ( E. v  e.  f  (
x  =  ( ( 1st `  u ) 
|g  ( 1st `  v ) )  /\  y  =  ( (
m  ^m  om )  \  ( ( 2nd `  u )  i^i  ( 2nd `  v ) ) ) )  \/  E. i  e.  om  (
x  =  A.g i
( 1st `  u
)  /\  y  =  { a  e.  ( m  ^m  om )  |  A. z  e.  m  ( { <. i ,  z
>. }  u.  ( a  |`  ( om  \  {
i } ) ) )  e.  ( 2nd `  u ) } ) ) } ) ) ,  { <. x ,  y >.  |  E. i  e.  om  E. j  e.  om  ( x  =  ( i  e.g  j
)  /\  y  =  { a  e.  ( m  ^m  om )  |  ( a `  i ) e ( a `  j ) } ) } )  |`  suc  om ) )
df-sate 31326 |- 
SatE  =  ( m  e.  _V ,  u  e.  _V  |->  ( ( ( m  Sat  (  _E  i^i  ( m  X.  m ) ) ) `
 om ) `  u ) )
df-fmla 31327 |- 
Fmla  =  ( n  e.  suc  om  |->  dom  (
( (/)  Sat  (/) ) `  n ) )
cgon 31328 class  -.g U
cgoa 31329 class  /\g
cgoi 31330 class  ->g
cgoo 31331 class  \/g
cgob 31332 class  <->g
cgoq 31333 class  =g
cgox 31334 class  E.g N U
df-gonot 31335 |- 
-.g U  =  ( U  |g  U )
df-goan 31336 |- 
/\g  =  ( u  e.  _V ,  v  e.  _V  |->  -.g (
u  |g  v ) )
df-goim 31337 |- 
->g  =  ( u  e. 
_V ,  v  e. 
_V  |->  ( u  |g  -.g v ) )
df-goor 31338 |- 
\/g  =  ( u  e.  _V ,  v  e.  _V  |->  ( -.g u  ->g  v ) )
df-gobi 31339 |- 
<->g  =  ( u  e. 
_V ,  v  e. 
_V  |->  ( ( u 
->g  v )  /\g  (
v  ->g  u ) ) )
df-goeq 31340 |- 
=g  =  ( u  e.  om ,  v  e.  om  |->  [_ suc  ( u  u.  v
)  /  w ]_ A.g w ( ( w  e.g  u )  <->g  (
w  e.g  v )
) )
df-goex 31341 |-  E.g N U  =  -.g A.g N -.g U
df-prv 31342 |- 
|=  =  { <. m ,  u >.  |  ( m  SatE  u )  =  ( m  ^m  om ) }
cgze 31343 class  AxExt
cgzr 31344 class  AxRep
cgzp 31345 class  AxPow
cgzu 31346 class  AxUn
cgzg 31347 class  AxReg
cgzi 31348 class  AxInf
cgzf 31349 class  ZF
df-gzext 31350 |- 
AxExt  =  ( A.g 2o ( ( 2o  e.g  (/) )  <->g  ( 2o  e.g  1o ) )  ->g  ( (/)  =g  1o ) )
df-gzrep 31351 |- 
AxRep  =  ( u  e.  ( Fmla `  om )  |->  ( A.g 3o E.g
1o A.g 2o ( A.g 1o u  ->g  ( 2o 
=g  1o ) ) 
->g  A.g 1o A.g 2o ( ( 2o  e.g  1o )  <->g  E.g 3o ( ( 3o  e.g  (/) )  /\g  A.g
1o u ) ) ) )
df-gzpow 31352 |- 
AxPow  =  E.g 1o A.g 2o ( A.g 1o ( ( 1o  e.g  2o ) 
<->g  ( 1o  e.g  (/) ) ) 
->g  ( 2o  e.g  1o ) )
df-gzun 31353 |- 
AxUn  =  E.g 1o A.g 2o ( E.g 1o ( ( 2o  e.g  1o ) 
/\g  ( 1o  e.g  (/) ) )  ->g  ( 2o 
e.g  1o ) )
df-gzreg 31354 |- 
AxReg  =  ( E.g 1o ( 1o  e.g  (/) )  ->g  E.g
1o ( ( 1o 
e.g  (/) )  /\g  A.g 2o ( ( 2o  e.g  1o )  ->g  -.g ( 2o 
e.g  (/) ) ) ) )
df-gzinf 31355 |- 
AxInf  =  E.g 1o ( ( (/)  e.g  1o ) 
/\g  A.g 2o ( ( 2o  e.g  1o ) 
->g  E.g (/) ( ( 2o 
e.g  (/) )  /\g  ( (/) 
e.g  1o ) ) ) )
df-gzf 31356 |-  ZF  =  { m  |  ( ( Tr  m  /\  m  |=  AxExt  /\  m  |=  AxPow )  /\  ( m  |=  AxUn  /\  m  |=  AxReg  /\  m  |=  AxInf
)  /\  A. u  e.  ( Fmla `  om ) m  |=  ( AxRep `  u ) ) }
cmcn 31357 class mCN
cmvar 31358 class mVR
cmty 31359 class mType
cmvt 31360 class mVT
cmtc 31361 class mTC
cmax 31362 class mAx
cmrex 31363 class mREx
cmex 31364 class mEx
cmdv 31365 class mDV
cmvrs 31366 class mVars
cmrsub 31367 class mRSubst
cmsub 31368 class mSubst
cmvh 31369 class mVH
cmpst 31370 class mPreSt
cmsr 31371 class mStRed
cmsta 31372 class mStat
cmfs 31373 class mFS
cmcls 31374 class mCls
cmpps 31375 class mPPSt
cmthm 31376 class mThm
df-mcn 31377 |- mCN 
= Slot  1
df-mvar 31378 |- mVR 
= Slot  2
df-mty 31379 |- mType  = Slot  3
df-mtc 31380 |- mTC 
= Slot  4
df-mmax 31381 |- mAx 
= Slot  5
df-mvt 31382 |- mVT 
=  ( t  e. 
_V  |->  ran  (mType `  t
) )
df-mrex 31383 |- mREx 
=  ( t  e. 
_V  |-> Word  ( (mCN `  t
)  u.  (mVR `  t ) ) )
df-mex 31384 |- mEx 
=  ( t  e. 
_V  |->  ( (mTC `  t )  X.  (mREx `  t ) ) )
df-mdv 31385 |- mDV 
=  ( t  e. 
_V  |->  ( ( (mVR
`  t )  X.  (mVR `  t )
)  \  _I  )
)
df-mvrs 31386 |- mVars  =  ( t  e. 
_V  |->  ( e  e.  (mEx `  t )  |->  ( ran  ( 2nd `  e )  i^i  (mVR `  t ) ) ) )
df-mrsub 31387 |- mRSubst  =  ( t  e. 
_V  |->  ( f  e.  ( (mREx `  t
)  ^pm  (mVR `  t
) )  |->  ( e  e.  (mREx `  t
)  |->  ( (freeMnd `  (
(mCN `  t )  u.  (mVR `  t )
) )  gsumg  ( ( v  e.  ( (mCN `  t
)  u.  (mVR `  t ) )  |->  if ( v  e.  dom  f ,  ( f `  v ) ,  <" v "> )
)  o.  e ) ) ) ) )
df-msub 31388 |- mSubst  =  ( t  e. 
_V  |->  ( f  e.  ( (mREx `  t
)  ^pm  (mVR `  t
) )  |->  ( e  e.  (mEx `  t
)  |->  <. ( 1st `  e
) ,  ( ( (mRSubst `  t ) `  f ) `  ( 2nd `  e ) )
>. ) ) )
df-mvh 31389 |- mVH 
=  ( t  e. 
_V  |->  ( v  e.  (mVR `  t )  |-> 
<. ( (mType `  t
) `  v ) ,  <" v "> >. ) )
df-mpst 31390 |- mPreSt  =  ( t  e. 
_V  |->  ( ( { d  e.  ~P (mDV `  t )  |  `' d  =  d }  X.  ( ~P (mEx `  t )  i^i  Fin ) )  X.  (mEx `  t ) ) )
df-msr 31391 |- mStRed  =  ( t  e. 
_V  |->  ( s  e.  (mPreSt `  t )  |-> 
[_ ( 2nd `  ( 1st `  s ) )  /  h ]_ [_ ( 2nd `  s )  / 
a ]_ <. ( ( 1st `  ( 1st `  s
) )  i^i  [_ U. ( (mVars `  t ) " ( h  u. 
{ a } ) )  /  z ]_ ( z  X.  z
) ) ,  h ,  a >. )
)
df-msta 31392 |- mStat  =  ( t  e. 
_V  |->  ran  (mStRed `  t
) )
df-mfs 31393 |- mFS 
=  { t  |  ( ( ( (mCN
`  t )  i^i  (mVR `  t )
)  =  (/)  /\  (mType `  t ) : (mVR
`  t ) --> (mTC
`  t ) )  /\  ( (mAx `  t )  C_  (mStat `  t )  /\  A. v  e.  (mVT `  t
)  -.  ( `' (mType `  t ) " { v } )  e.  Fin ) ) }
df-mcls 31394 |- mCls 
=  ( t  e. 
_V  |->  ( d  e. 
~P (mDV `  t
) ,  h  e. 
~P (mEx `  t
)  |->  |^| { c  |  ( ( h  u. 
ran  (mVH `  t )
)  C_  c  /\  A. m A. o A. p ( <. m ,  o ,  p >.  e.  (mAx `  t
)  ->  A. s  e.  ran  (mSubst `  t
) ( ( ( s " ( o  u.  ran  (mVH `  t ) ) ) 
C_  c  /\  A. x A. y ( x m y  ->  (
( (mVars `  t
) `  ( s `  ( (mVH `  t
) `  x )
) )  X.  (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  y ) ) ) )  C_  d )
)  ->  ( s `  p )  e.  c ) ) ) } ) )
df-mpps 31395 |- mPPSt  =  ( t  e. 
_V  |->  { <. <. d ,  h >. ,  a >.  |  ( <. d ,  h ,  a >.  e.  (mPreSt `  t )  /\  a  e.  (
d (mCls `  t
) h ) ) } )
df-mthm 31396 |- mThm 
=  ( t  e. 
_V  |->  ( `' (mStRed `  t ) " (
(mStRed `  t ) " (mPPSt `  t )
) ) )
cm0s 31482 class m0St
cmsa 31483 class mSA
cmwgfs 31484 class mWGFS
cmsy 31485 class mSyn
cmesy 31486 class mESyn
cmgfs 31487 class mGFS
cmtree 31488 class mTree
cmst 31489 class mST
cmsax 31490 class mSAX
cmufs 31491 class mUFS
df-m0s 31492 |- m0St 
=  ( a  e. 
_V  |->  <. (/) ,  (/) ,  a
>. )
df-msa 31493 |- mSA 
=  ( t  e. 
_V  |->  { a  e.  (mEx `  t )  |  ( (m0St `  a )  e.  (mAx
`  t )  /\  ( 1st `  a )  e.  (mVT `  t
)  /\  Fun  ( `' ( 2nd `  a
)  |`  (mVR `  t
) ) ) } )
df-mwgfs 31494 |- mWGFS  =  { t  e. mFS  |  A. d A. h A. a ( ( <.
d ,  h ,  a >.  e.  (mAx `  t )  /\  ( 1st `  a )  e.  (mVT `  t )
)  ->  E. s  e.  ran  (mSubst `  t
) a  e.  ( s " (mSA `  t ) ) ) }
df-msyn 31495 |- mSyn 
= Slot  6
df-mtree 31496 |- mTree  =  ( t  e. 
_V  |->  ( d  e. 
~P (mDV `  t
) ,  h  e. 
~P (mEx `  t
)  |->  |^| { r  |  ( A. e  e. 
ran  (mVH `  t )
e r <. (m0St `  e ) ,  (/) >.  /\  A. e  e.  h  e r <. (
(mStRed `  t ) `  <. d ,  h ,  e >. ) ,  (/) >.  /\  A. m A. o A. p (
<. m ,  o ,  p >.  e.  (mAx `  t )  ->  A. s  e.  ran  (mSubst `  t
) ( A. x A. y ( x m y  ->  ( (
(mVars `  t ) `  ( s `  (
(mVH `  t ) `  x ) ) )  X.  ( (mVars `  t ) `  (
s `  ( (mVH `  t ) `  y
) ) ) ) 
C_  d )  -> 
( { ( s `
 p ) }  X.  X_ e  e.  ( o  u.  ( (mVH
`  t ) " U. ( (mVars `  t
) " ( o  u.  { p }
) ) ) ) ( r " {
( s `  e
) } ) ) 
C_  r ) ) ) } ) )
df-mst 31497 |- mST 
=  ( t  e. 
_V  |->  ( ( (/) (mTree `  t ) (/) )  |`  ( (mEx `  t )  |`  (mVT `  t ) ) ) )
df-msax 31498 |- mSAX 
=  ( t  e. 
_V  |->  ( p  e.  (mSA `  t )  |->  ( (mVH `  t
) " ( (mVars `  t ) `  p
) ) ) )
df-mufs 31499 |- mUFS 
=  { t  e. mGFS  |  Fun  (mST `  t
) }
cmuv 31500 class mUV
cmvl 31501 class mVL
cmvsb 31502 class mVSubst
cmfsh 31503 class mFresh
cmfr 31504 class mFRel
cmevl 31505 class mEval
cmdl 31506 class mMdl
cusyn 31507 class mUSyn
cgmdl 31508 class mGMdl
cmitp 31509 class mItp
cmfitp 31510 class mFromItp
df-muv 31511 |- mUV 
= Slot  7
df-mfsh 31512 |- mFresh  = Slot  8
df-mevl 31513 |- mEval  = Slot  9
df-mvl 31514 |- mVL 
=  ( t  e. 
_V  |->  X_ v  e.  (mVR
`  t ) ( (mUV `  t ) " { ( (mType `  t ) `  v
) } ) )
df-mvsb 31515 |- mVSubst  =  ( t  e. 
_V  |->  { <. <. s ,  m >. ,  x >.  |  ( ( s  e. 
ran  (mSubst `  t )  /\  m  e.  (mVL `  t ) )  /\  A. v  e.  (mVR `  t ) m dom  (mEval `  t )
( s `  (
(mVH `  t ) `  v ) )  /\  x  =  ( v  e.  (mVR `  t )  |->  ( m (mEval `  t ) ( s `
 ( (mVH `  t ) `  v
) ) ) ) ) } )
df-mfrel 31516 |- mFRel  =  ( t  e. 
_V  |->  { r  e. 
~P ( (mUV `  t )  X.  (mUV `  t ) )  |  ( `' r  =  r  /\  A. c  e.  (mVT `  t ) A. w  e.  ( ~P (mUV `  t )  i^i  Fin ) E. v  e.  ( (mUV `  t
) " { c } ) w  C_  ( r " {
v } ) ) } )
df-mdl 31517 |- mMdl 
=  { t  e. mFS 
|  [. (mUV `  t
)  /  u ]. [. (mEx `  t )  /  x ]. [. (mVL `  t )  /  v ]. [. (mEval `  t
)  /  n ]. [. (mFresh `  t )  /  f ]. (
( u  C_  (
(mTC `  t )  X.  _V )  /\  f  e.  (mFRel `  t )  /\  n  e.  (
u  ^pm  ( v  X.  (mEx `  t )
) ) )  /\  A. m  e.  v  ( ( A. e  e.  x  ( n " { <. m ,  e
>. } )  C_  (
u " { ( 1st `  e ) } )  /\  A. y  e.  (mVR `  t
) <. m ,  ( (mVH `  t ) `  y ) >. n
( m `  y
)  /\  A. d A. h A. a (
<. d ,  h ,  a >.  e.  (mAx `  t )  ->  (
( A. y A. z ( y d z  ->  ( m `  y ) f ( m `  z ) )  /\  h  C_  ( dom  n " {
m } ) )  ->  m dom  n  a ) ) )  /\  ( A. s  e.  ran  (mSubst `  t
) A. e  e.  (mEx `  t ) A. y ( <. s ,  m >. (mVSubst `  t )
y  ->  ( n " { <. m ,  ( s `  e )
>. } )  =  ( n " { <. y ,  e >. } ) )  /\  A. p  e.  v  A. e  e.  x  ( (
m  |`  ( (mVars `  t ) `  e
) )  =  ( p  |`  ( (mVars `  t ) `  e
) )  ->  (
n " { <. m ,  e >. } )  =  ( n " { <. p ,  e
>. } ) )  /\  A. y  e.  u  A. e  e.  x  (
( m " (
(mVars `  t ) `  e ) )  C_  ( f " {
y } )  -> 
( n " { <. m ,  e >. } )  C_  (
f " { y } ) ) ) ) ) }
df-musyn 31518 |- mUSyn  =  ( t  e. 
_V  |->  ( v  e.  (mUV `  t )  |-> 
<. ( (mSyn `  t
) `  ( 1st `  v ) ) ,  ( 2nd `  v
) >. ) )
df-gmdl 31519 |- mGMdl  =  { t  e.  (mGFS 
i^i mMdl )  |  ( A. c  e.  (mTC `  t ) ( (mUV
`  t ) " { c } ) 
C_  ( (mUV `  t ) " {
( (mSyn `  t
) `  c ) } )  /\  A. v  e.  (mUV `  c
) A. w  e.  (mUV `  c )
( v (mFresh `  t ) w  <->  v (mFresh `  t ) ( (mUSyn `  t ) `  w
) )  /\  A. m  e.  (mVL `  t
) A. e  e.  (mEx `  t )
( (mEval `  t
) " { <. m ,  e >. } )  =  ( ( (mEval `  t ) " { <. m ,  ( (mESyn `  t ) `  e
) >. } )  i^i  ( (mUV `  t
) " { ( 1st `  e ) } ) ) ) }
df-mitp 31520 |- mItp 
=  ( t  e. 
_V  |->  ( a  e.  (mSA `  t )  |->  ( g  e.  X_ i  e.  ( (mVars `  t ) `  a
) ( (mUV `  t ) " {
( (mType `  t
) `  i ) } )  |->  ( iota
x E. m  e.  (mVL `  t )
( g  =  ( m  |`  ( (mVars `  t ) `  a
) )  /\  x  =  ( m (mEval `  t ) a ) ) ) ) ) )
df-mfitp 31521 |- mFromItp  =  ( t  e. 
_V  |->  ( f  e.  X_ a  e.  (mSA `  t ) ( ( (mUV `  t ) " { ( ( 1st `  t ) `  a
) } )  ^m  X_ i  e.  ( (mVars `  t ) `  a
) ( (mUV `  t ) " {
( (mType `  t
) `  i ) } ) )  |->  (
iota_ n  e.  (
(mUV `  t )  ^pm  ( (mVL `  t
)  X.  (mEx `  t ) ) ) A. m  e.  (mVL
`  t ) ( A. v  e.  (mVR
`  t ) <.
m ,  ( (mVH
`  t ) `  v ) >. n
( m `  v
)  /\  A. e A. a A. g ( e (mST `  t
) <. a ,  g
>.  ->  <. m ,  e
>. n ( f `  ( i  e.  ( (mVars `  t ) `  a )  |->  ( m n ( g `  ( (mVH `  t ) `  i ) ) ) ) ) )  /\  A. e  e.  (mEx `  t ) ( n
" { <. m ,  e >. } )  =  ( ( n
" { <. m ,  ( (mESyn `  t ) `  e
) >. } )  i^i  ( (mUV `  t
) " { ( 1st `  e ) } ) ) ) ) ) )
citr 31522 class IntgRing
ccpms 31523 class cplMetSp
chlb 31524 class HomLimB
chlim 31525 class HomLim
cpfl 31526 class polyFld
csf1 31527 class splitFld1
csf 31528 class splitFld
cpsl 31529 class polySplitLim
df-irng 31530 |- IntgRing  =  ( r  e. 
_V ,  s  e. 
_V  |->  U_ f  e.  (Monic1p `  ( rs  s ) ) ( `' f " { ( 0g `  r ) } ) )
df-cplmet 31531 |- cplMetSp  =  ( w  e. 
_V  |->  [_ ( ( w  ^s  NN )s  ( Cau `  ( dist `  w ) ) )  /  r ]_ [_ ( Base `  r
)  /  v ]_ [_ { <. f ,  g
>.  |  ( {
f ,  g } 
C_  v  /\  A. x  e.  RR+  E. j  e.  ZZ  ( f  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( g `  j ) ( ball `  ( dist `  w ) ) x ) ) }  /  e ]_ (
( r  /.s  e ) sSet  {
<. ( dist `  ndx ) ,  { <. <. x ,  y >. ,  z
>.  |  E. p  e.  v  E. q  e.  v  ( (
x  =  [ p ] e  /\  y  =  [ q ] e )  /\  ( p  oF ( dist `  r ) q )  ~~>  z ) } >. } ) )
df-homlimb 31532 |- HomLimB  =  ( f  e. 
_V  |->  [_ U_ n  e.  NN  ( { n }  X.  dom  ( f `
 n ) )  /  v ]_ [_ |^| { s  |  ( s  Er  v  /\  (
x  e.  v  |->  <.
( ( 1st `  x
)  +  1 ) ,  ( ( f `
 ( 1st `  x
) ) `  ( 2nd `  x ) )
>. )  C_  s ) }  /  e ]_ <. ( v /. e
) ,  ( n  e.  NN  |->  ( x  e.  dom  ( f `
 n )  |->  [
<. n ,  x >. ] e ) ) >.
)
df-homlim 31533 |- HomLim  =  ( r  e. 
_V ,  f  e. 
_V  |->  [_ ( HomLimB  `  f
)  /  e ]_ [_ ( 1st `  e
)  /  v ]_ [_ ( 2nd `  e
)  /  g ]_ ( { <. ( Base `  ndx ) ,  v >. , 
<. ( +g  `  ndx ) ,  U_ n  e.  NN  ran  ( x  e.  dom  ( g `
 n ) ,  y  e.  dom  (
g `  n )  |-> 
<. <. ( ( g `
 n ) `  x ) ,  ( ( g `  n
) `  y ) >. ,  ( ( g `
 n ) `  ( x ( +g  `  ( r `  n
) ) y ) ) >. ) >. ,  <. ( .r `  ndx ) ,  U_ n  e.  NN  ran  ( x  e.  dom  ( g `  n
) ,  y  e. 
dom  ( g `  n )  |->  <. <. (
( g `  n
) `  x ) ,  ( ( g `
 n ) `  y ) >. ,  ( ( g `  n
) `  ( x
( .r `  (
r `  n )
) y ) )
>. ) >. }  u.  { <. ( TopOpen `  ndx ) ,  { s  e.  ~P v  |  A. n  e.  NN  ( `' ( g `  n )
" s )  e.  ( TopOpen `  ( r `  n ) ) }
>. ,  <. ( dist `  ndx ) ,  U_ n  e.  NN  ran  ( x  e.  dom  ( ( g `  n ) `  n
) ,  y  e. 
dom  ( ( g `
 n ) `  n )  |->  <. <. (
( g `  n
) `  x ) ,  ( ( g `
 n ) `  y ) >. ,  ( x ( dist `  (
r `  n )
) y ) >.
) >. ,  <. ( le `  ndx ) , 
U_ n  e.  NN  ( `' ( g `  n )  o.  (
( le `  (
r `  n )
)  o.  ( g `
 n ) ) ) >. } ) )
df-plfl 31534 |- polyFld  =  ( r  e. 
_V ,  p  e. 
_V  |->  [_ (Poly1 `  r )  / 
s ]_ [_ ( (RSpan `  s ) `  {
p } )  / 
i ]_ [_ ( z  e.  ( Base `  r
)  |->  [ ( z ( .s `  s
) ( 1r `  s ) ) ] ( s ~QG  i ) )  / 
f ]_ <. [_ ( s  /.s  (
s ~QG 
i ) )  / 
t ]_ ( ( t toNrmGrp  ( iota_ n  e.  (AbsVal `  t ) ( n  o.  f )  =  ( norm `  r
) ) ) sSet  <. ( le `  ndx ) ,  [_ ( z  e.  ( Base `  t
)  |->  ( iota_ q  e.  z  ( r deg1  q )  <  ( r deg1  p ) ) )  /  g ]_ ( `' g  o.  ( ( le `  s )  o.  g
) ) >. ) ,  f >. )
df-sfl1 31535 |- splitFld1  =  ( r  e.  _V ,  j  e.  _V  |->  ( p  e.  (Poly1 `  r )  |->  ( rec ( ( s  e. 
_V ,  f  e. 
_V  |->  [_ ( mPoly  `  s
)  /  m ]_ [_ { g  e.  ( (Monic1p `  s )  i^i  (Irred `  m )
)  |  ( g ( ||r `
 m ) ( p  o.  f )  /\  1  <  (
s deg1  g ) ) }  /  b ]_ if ( ( ( p  o.  f )  =  ( 0g `  m
)  \/  b  =  (/) ) ,  <. s ,  f >. ,  [_ ( glb `  b )  /  h ]_ [_ (
s polyFld  h )  /  t ]_ <. ( 1st `  t
) ,  ( f  o.  ( 2nd `  t
) ) >. )
) ,  j ) `
 ( card `  (
1 ... ( r deg1  p ) ) ) ) ) )
df-sfl 31536 |- splitFld  =  ( r  e. 
_V ,  p  e. 
_V  |->  ( iota x E. f ( f  Isom  <  ,  ( lt `  r ) ( ( 1 ... ( # `  p ) ) ,  p )  /\  x  =  (  seq 0
( ( e  e. 
_V ,  g  e. 
_V  |->  ( ( r splitFld1  e ) `  g ) ) ,  ( f  u.  { <. 0 ,  <. r ,  (  _I  |`  ( Base `  r ) ) >. >. } ) ) `  ( # `  p ) ) ) ) )
df-psl 31537 |- polySplitLim  =  ( r  e.  _V ,  p  e.  (
( ~P ( Base `  r )  i^i  Fin )  ^m  NN )  |->  [_ ( 1st  o.  seq 0
( ( g  e. 
_V ,  q  e. 
_V  |->  [_ ( 1st `  g
)  /  e ]_ [_ ( 1st `  e
)  /  s ]_ [_ ( s splitFld  ran  (
x  e.  q  |->  ( x  o.  ( 2nd `  g ) ) ) )  /  f ]_ <. f ,  ( ( 2nd `  g )  o.  ( 2nd `  f
) ) >. ) ,  ( p  u. 
{ <. 0 ,  <. <.
r ,  (/) >. ,  (  _I  |`  ( Base `  r ) ) >. >. } ) ) )  /  f ]_ (
( 1st  o.  (
f  shift  1 ) ) HomLim 
( 2nd  o.  f
) ) )
czr 31538 class ZRing
cgf 31539 class GF
cgfo 31540 class GF
ceqp 31541 class ~Qp
crqp 31542 class /Qp
cqp 31543 class Qp
cqpOLD 31544 class QpOLD
czp 31545 class Zp
cqpa 31546 class _Qp
ccp 31547 class Cp
df-zrng 31548 |- ZRing  =  ( r  e. 
_V  |->  ( r IntgRing  ran  ( ZRHom `  r )
) )
df-gf 31549 |- GF  =  ( p  e.  Prime ,  n  e.  NN  |->  [_ (ℤ/n `  p )  /  r ]_ ( 1st `  (
r splitFld  { [_ (Poly1 `  r
)  /  s ]_ [_ (var1 `  r )  /  x ]_ ( ( ( p ^ n ) (.g `  (mulGrp `  s
) ) x ) ( -g `  s
) x ) } ) ) )
df-gfoo 31550 |- GF  =  ( p  e.  Prime  |->  [_ (ℤ/n `  p )  /  r ]_ ( r polySplitLim  ( n  e.  NN  |->  { [_ (Poly1 `  r )  /  s ]_ [_ (var1 `  r )  /  x ]_ ( ( ( p ^ n ) (.g `  (mulGrp `  s
) ) x ) ( -g `  s
) x ) } ) ) )
df-eqp 31551 |- ~Qp 
=  ( p  e. 
Prime  |->  { <. f ,  g >.  |  ( { f ,  g }  C_  ( ZZ  ^m  ZZ )  /\  A. n  e.  ZZ  sum_ k  e.  ( ZZ>= `  -u n ) ( ( ( f `
 -u k )  -  ( g `  -u k
) )  /  (
p ^ ( k  +  ( n  + 
1 ) ) ) )  e.  ZZ ) } )
df-rqp 31552 |- /Qp 
=  ( p  e. 
Prime  |->  (~Qp  i^i  [_ {
f  e.  ( ZZ 
^m  ZZ )  |  E. x  e.  ran  ZZ>= ( `' f " ( ZZ  \  { 0 } ) )  C_  x }  /  y ]_ (
y  X.  ( y  i^i  ( ZZ  ^m  ( 0 ... (
p  -  1 ) ) ) ) ) ) )
df-qp 31553 |- Qp  =  ( p  e.  Prime  |->  [_ { h  e.  ( ZZ  ^m  ( 0 ... ( p  - 
1 ) ) )  |  E. x  e. 
ran  ZZ>= ( `' h " ( ZZ  \  {
0 } ) ) 
C_  x }  / 
b ]_ ( ( {
<. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( (/Qp `  p ) `  (
f  oF  +  g ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( (/Qp `  p ) `  ( n  e.  ZZ  |->  sum_ k  e.  ZZ  (
( f `  k
)  x.  ( g `
 ( n  -  k ) ) ) ) ) ) >. }  u.  { <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  b  /\  sum_ k  e.  ZZ  (
( f `  -u k
)  x.  ( ( p  +  1 ) ^ -u k ) )  <  sum_ k  e.  ZZ  ( ( g `
 -u k )  x.  ( ( p  + 
1 ) ^ -u k
) ) ) }
>. } ) toNrmGrp  ( f  e.  b  |->  if ( f  =  ( ZZ 
X.  { 0 } ) ,  0 ,  ( p ^ -uinf ( ( `' f " ( ZZ  \  { 0 } ) ) ,  RR ,  <  ) ) ) ) ) )
df-qpOLD 31554 |- QpOLD  =  ( p  e. 
Prime  |->  [_ { h  e.  ( ZZ  ^m  (
0 ... ( p  - 
1 ) ) )  |  E. x  e. 
ran  ZZ>= ( `' h " ( ZZ  \  {
0 } ) ) 
C_  x }  / 
b ]_ ( ( {
<. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( (/Qp `  p ) `  (
f  oF  +  g ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( (/Qp `  p ) `  ( n  e.  ZZ  |->  sum_ k  e.  ZZ  (
( f `  k
)  x.  ( g `
 ( n  -  k ) ) ) ) ) ) >. }  u.  { <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  b  /\  sum_ k  e.  ZZ  (
( f `  -u k
)  x.  ( ( p  +  1 ) ^ -u k ) )  <  sum_ k  e.  ZZ  ( ( g `
 -u k )  x.  ( ( p  + 
1 ) ^ -u k
) ) ) }
>. } ) toNrmGrp  ( f  e.  b  |->  if ( f  =  ( ZZ 
X.  { 0 } ) ,  0 ,  ( p ^ -u sup ( ( `' f
" ( ZZ  \  { 0 } ) ) ,  RR ,  `'  <  ) ) ) ) ) )
df-zp 31555 |- Zp  =  (ZRing  o. Qp )
df-qpa 31556 |- _Qp 
=  ( p  e. 
Prime  |->  [_ (Qp `  p
)  /  r ]_ ( r polySplitLim  ( n  e.  NN  |->  { f  e.  (Poly1 `  r )  |  ( ( r deg1  f )  <_  n  /\  A. d  e.  ran  (coe1 `  f
) ( `' d
" ( ZZ  \  { 0 } ) )  C_  ( 0 ... n ) ) } ) ) )
df-cp 31557 |- Cp  =  ( cplMetSp  o. _Qp )
ctrpred 31717 class  TrPred ( R ,  A ,  X )
df-trpred 31718 |- 
TrPred ( R ,  A ,  X )  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )
cwsuc 31752 class wsuc ( R ,  A ,  X )
cwsucOLD 31753 class wsucOLD ( R ,  A ,  X )
cwlim 31754 class WLim ( R ,  A )
cwlimOLD 31755 class WLimOLD ( R ,  A )
df-wsuc 31756 |- wsuc
( R ,  A ,  X )  = inf ( Pred ( `' R ,  A ,  X ) ,  A ,  R )
df-wsucOLD 31757 |- wsucOLD ( R ,  A ,  X )  =  sup ( Pred ( `' R ,  A ,  X ) ,  A ,  `' R )
df-wlim 31758 |- WLim
( R ,  A
)  =  { x  e.  A  |  (
x  =/= inf ( A ,  A ,  R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) ) }
df-wlimOLD 31759 |- WLimOLD ( R ,  A )  =  { x  e.  A  |  ( x  =/=  sup ( A ,  A ,  `' R )  /\  x  =  sup ( Pred ( R ,  A ,  x ) ,  A ,  R ) ) }
csur 31793 class  No
cslt 31794 class  <s
cbday 31795 class  bday
df-no 31796 |-  No  =  { f  |  E. a  e.  On  f : a --> { 1o ,  2o } }
df-slt 31797 |- 
<s  =  { <. f ,  g >.  |  ( ( f  e.  No  /\  g  e.  No )  /\  E. x  e.  On  ( A. y  e.  x  ( f `  y
)  =  ( g `
 y )  /\  ( f `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( g `  x ) ) ) }
df-bday 31798 |- 
bday  =  ( x  e.  No  |->  dom  x )
csle 31869 class  ≤s
df-sle 31870 |- 
≤s  =  (
( No  X.  No )  \  `' <s
)
csslt 31896 class  <
<s
df-sslt 31897 |- 
< <s  =  { <. a ,  b >.  |  ( a  C_  No  /\  b  C_  No  /\ 
A. x  e.  a 
A. y  e.  b  x <s y ) }
cscut 31898 class  |s
df-scut 31899 |-  |s  =  ( a  e.  ~P No ,  b  e.  (
< <s " {
a } )  |->  (
iota_ x  e.  { y  e.  No  |  ( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) )
cmade 31925 class M
cold 31926 class O
cnew 31927 class N
cleft 31928 class L
cright 31929 class R
df-made 31930 |- M  = recs ( ( f  e.  _V  |->  ( |s " ( ~P
U. ran  f  X.  ~P U. ran  f ) ) ) )
df-old 31931 |- O  =  ( x  e.  On  |->  U. ( M  " x
) )
df-new 31932 |- N  =  ( x  e.  On  |->  ( ( O  `  x )  \  ( M  `  x ) ) )
df-left 31933 |- L  =  ( x  e.  No  |->  { y  e.  ( O  `  ( bday `  x ) )  | 
A. z  e.  No  ( ( y <s z  /\  z
<s x )  ->  ( bday `  y
)  e.  ( bday `  z ) ) } )
df-right 31934 |- R  =  ( x  e.  No  |->  { y  e.  ( O  `  ( bday `  x ) )  | 
A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  ( bday `  y
)  e.  ( bday `  z ) ) } )
ctxp 31937 class  ( A  (x)  B )
cpprod 31938 class pprod ( R ,  S )
csset 31939 class  SSet
ctrans 31940 class  Trans
cbigcup 31941 class  Bigcup
cfix 31942 class  Fix A
climits 31943 class  Limits
cfuns 31944 class  Funs
csingle 31945 class Singleton
csingles 31946 class  Singletons
cimage 31947 class Image A
ccart 31948 class Cart
cimg 31949 class Img
cdomain 31950 class Domain
crange 31951 class Range
capply 31952 class Apply
ccup 31953 class Cup
ccap 31954 class Cap
csuccf 31955 class Succ
cfunpart 31956 class Funpart F
cfullfn 31957 class FullFun F
crestrict 31958 class Restrict
cub 31959 class UB R
clb 31960 class LB R
df-txp 31961 |-  ( A  (x)  B
)  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )
df-pprod 31962 |- pprod
( A ,  B
)  =  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
df-sset 31963 |- 
SSet  =  ( ( _V  X.  _V )  \  ran  (  _E  (x)  ( _V  \  _E  ) ) )
df-trans 31964 |- 
Trans  =  ( _V  \  ran  ( (  _E  o.  _E  )  \  _E  ) )
df-bigcup 31965 |- 
Bigcup  =  ( ( _V 
X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( (  _E  o.  _E  )  (x)  _V ) ) )
df-fix 31966 |- 
Fix A  =  dom  ( A  i^i  _I  )
df-limits 31967 |- 
Limits  =  ( ( On 
i^i  Fix Bigcup )  \  { (/)
} )
df-funs 31968 |- 
Funs  =  ( ~P ( _V  X.  _V )  \  Fix (  _E  o.  ( ( 1st  (x)  ( ( _V  \  _I  )  o.  2nd ) )  o.  `'  _E  ) ) )
df-singleton 31969 |- Singleton  =  ( ( _V 
X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  (  _I  (x)  _V ) ) )
df-singles 31970 |-  Singletons  =  ran Singleton
df-image 31971 |- Image A  =  ( ( _V  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( (  _E  o.  `' A ) 
(x)  _V ) ) )
df-cart 31972 |- Cart 
=  ( ( ( _V  X.  _V )  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  (pprod (  _E  ,  _E  )  (x)  _V ) ) )
df-img 31973 |- Img 
=  (Image ( ( 2nd  o.  1st )  |`  ( 1st  |`  ( _V  X.  _V ) ) )  o. Cart )
df-domain 31974 |- Domain  = Image ( 1st  |`  ( _V  X.  _V ) )
df-range 31975 |- Range  = Image ( 2nd  |`  ( _V  X.  _V ) )
df-cup 31976 |- Cup 
=  ( ( ( _V  X.  _V )  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( ( ( `' 1st  o.  _E  )  u.  ( `' 2nd  o.  _E  ) )  (x)  _V ) ) )
df-cap 31977 |- Cap 
=  ( ( ( _V  X.  _V )  X.  _V )  \  ran  ( ( _V  (x)  _E  )  /_\  ( ( ( `' 1st  o.  _E  )  i^i  ( `' 2nd  o.  _E  ) )  (x)  _V ) ) )
df-restrict 31978 |- Restrict  =  (Cap  o.  ( 1st  (x)  (Cart  o.  ( 2nd  (x)  (Range  o.  1st ) ) ) ) )
df-succf 31979 |- Succ 
=  (Cup  o.  (  _I  (x) Singleton ) )
df-apply 31980 |- Apply  =  ( ( Bigcup  o. 
Bigcup )  o.  (
( ( _V  X.  _V )  \  ran  (
( _V  (x)  _E  )  /_\  ( (  _E  |` 
Singletons )  (x)  _V )
) )  o.  (
(Singleton  o. Img )  o. pprod (  _I  , Singleton ) ) ) )
df-funpart 31981 |- Funpart F  =  ( F  |` 
dom  ( (Image F  o. Singleton )  i^i  ( _V 
X.  Singletons ) ) )
df-fullfun 31982 |- FullFun F  =  (Funpart F  u.  ( ( _V  \  dom Funpart F )  X.  { (/)
} ) )
df-ub 31983 |- UB R  =  ( ( _V 
X.  _V )  \  (
( _V  \  R
)  o.  `'  _E  ) )
df-lb 31984 |- LB R  = UB `' R
caltop 32063 class  << A ,  B >>
caltxp 32064 class 
( A  XX.  B
)
df-altop 32065 |- 
<< A ,  B >>  =  { { A } ,  { A ,  { B } } }
df-altxp 32066 |-  ( A  XX.  B
)  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  << x ,  y >> }
cofs 32089 class  OuterFiveSeg
df-ofs 32090 |-  OuterFiveSeg  =  { <. p ,  q
>.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) ) }
ctransport 32136 class TransportTo
df-transport 32137 |- TransportTo  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
cifs 32142 class  InnerFiveSeg
ccgr3 32143 class Cgr3
ccolin 32144 class  Colinear
cfs 32145 class  FiveSeg
df-colinear 32146 |-  Colinear  =  `' { <. <.
b ,  c >. ,  a >.  |  E. n  e.  NN  (
( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n )  /\  c  e.  ( EE `  n ) )  /\  ( a 
Btwn  <. b ,  c
>.  \/  b  Btwn  <. c ,  a >.  \/  c  Btwn  <. a ,  b
>. ) ) }
df-ifs 32147 |-  InnerFiveSeg  =  { <. p ,  q
>.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  c >.Cgr <. x ,  z >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. c ,  d >.Cgr <. z ,  w >. ) ) ) }
df-cgr3 32148 |- Cgr3 
=  { <. p ,  q >.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. e  e.  ( EE `  n
) E. f  e.  ( EE `  n
) ( p  = 
<. a ,  <. b ,  c >. >.  /\  q  =  <. d ,  <. e ,  f >. >.  /\  ( <. a ,  b >.Cgr <. d ,  e >.  /\  <. a ,  c
>.Cgr <. d ,  f
>.  /\  <. b ,  c
>.Cgr <. e ,  f
>. ) ) }
df-fs 32149 |-  FiveSeg  =  { <. p ,  q
>.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( a  Colinear  <.
b ,  c >.  /\  <. a ,  <. b ,  c >. >.Cgr3 <. x ,  <. y ,  z
>. >.  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\  <. b ,  d >.Cgr <. y ,  w >. ) ) ) }
csegle 32213 class  Seg<_
df-segle 32214 |- 
Seg<_  =  { <. p ,  q >.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) ( p  = 
<. a ,  b >.  /\  q  =  <. c ,  d >.  /\  E. y  e.  ( EE `  n ) ( y 
Btwn  <. c ,  d
>.  /\  <. a ,  b
>.Cgr <. c ,  y
>. ) ) }
coutsideof 32226 class OutsideOf
df-outsideof 32227 |- OutsideOf  =  (  Colinear  \  Btwn  )
cline2 32241 class Line
cray 32242 class Ray
clines2 32243 class LinesEE
df-line2 32244 |- Line 
=  { <. <. a ,  b >. ,  l
>.  |  E. n  e.  NN  ( ( a  e.  ( EE `  n )  /\  b  e.  ( EE `  n
)  /\  a  =/=  b )  /\  l  =  [ <. a ,  b
>. ] `'  Colinear  ) }
df-ray 32245 |- Ray 
=  { <. <. p ,  a >. ,  r
>.  |  E. n  e.  NN  ( ( p  e.  ( EE `  n )  /\  a  e.  ( EE `  n
)  /\  p  =/=  a )  /\  r  =  { x  e.  ( EE `  n )  |  pOutsideOf <. a ,  x >. } ) }
df-lines2 32246 |- LinesEE  =  ran Line
cfwddif 32265 class  _/_\
df-fwddif 32266 |-  _/_\  =  ( f  e.  ( CC  ^pm  CC )  |->  ( x  e. 
{ y  e.  dom  f  |  ( y  +  1 )  e. 
dom  f }  |->  ( ( f `  (
x  +  1 ) )  -  ( f `
 x ) ) ) )
cfwddifn 32267 class  _/_\^nn
df-fwddifn 32268 |-  _/_\^nn  =  ( n  e.  NN0 ,  f  e.  ( CC 
^pm  CC )  |->  ( x  e.  { y  e.  CC  |  A. k  e.  ( 0 ... n
) ( y  +  k )  e.  dom  f }  |->  sum_ k  e.  ( 0 ... n
) ( ( n  _C  k )  x.  ( ( -u 1 ^ ( n  -  k ) )  x.  ( f `  (
x  +  k ) ) ) ) ) )
chf 32279 class Hf
df-hf 32280 |- Hf  = 
U. ( R1 " om )
cfne 32331 class  Fne
df-fne 32332 |- 
Fne  =  { <. x ,  y >.  |  ( U. x  =  U. y  /\  A. z  e.  x  z  C_  U. (
y  i^i  ~P z
) ) }
w3nand 32394 wff  ( ph  -/\  ps  -/\  ch )
df-3nand 32395 |-  ( ( ph  -/\  ps  -/\  ch )  <->  ( ph  ->  ( ps  ->  -.  ch )
) )
cgcdOLD 32458 class  gcdOLD ( A ,  B )
df-gcdOLD 32459 |- 
gcdOLD ( A ,  B )  =  sup ( { x  e.  NN  |  ( ( A  /  x )  e.  NN  /\  ( B  /  x )  e.  NN ) } ,  NN ,  <  )
cprvb 32582 wff Prv  ph
ax-prv1 32583 |- 
ph   =>    |- Prv  ph
ax-prv2 32584 |-  (Prv  ( ph  ->  ps )  ->  (Prv  ph  -> Prv  ps ) )
ax-prv3 32585 |-  (Prv  ph  -> Prv Prv  ph )
wssb 32619 wff [ t/ x]b ph
df-ssb 32620 |-  ([ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
wrnf 32930 wff 
F/ x  e.  A ph
df-bj-rnf 32931 |-  ( F/ x  e.  A ph  <->  ( E. x  e.  A  ph  ->  A. x  e.  A  ph ) )
bj-csngl 32953 class sngl  A
df-bj-sngl 32954 |- sngl  A  =  { x  |  E. y  e.  A  x  =  { y } }
bj-ctag 32962 class tag  A
df-bj-tag 32963 |- tag 
A  =  (sngl  A  u.  { (/) } )
bj-cproj 32978 class 
( A Proj  B )
df-bj-proj 32979 |-  ( A Proj  B )  =  { x  |  { x }  e.  ( B " { A } ) }
bj-c1upl 32985 class (| A|)
df-bj-1upl 32986 |- (|
A|)  =  ( {
(/) }  X. tag  A )
bj-cpr1 32988 class pr1  A
df-bj-pr1 32989 |- pr1  A  =  ( (/) Proj  A )
bj-c2uple 32998 class (| A,  B|)
df-bj-2upl 32999 |- (|
A,  B|)  =  ((| A|)  u.  ( { 1o }  X. tag  B
) )
bj-cpr2 33002 class pr2  A
df-bj-pr2 33003 |- pr2  A  =  ( 1o Proj  A
)
celwise 33032 class elwise
df-elwise 33033 |- elwise  =  ( o  e. 
_V  |->  ( x  e. 
_V ,  y  e. 
_V  |->  { z  |  E. u  e.  x  E. v  e.  y 
z  =  ( u o v ) } ) )
cmoore 33057 class Moore_
df-bj-moore 33058 |- Moore_  =  { x  |  A. y  e.  ~P  x
( U. x  i^i  |^| y )  e.  x }
cmpt3 33073 class  ( x  e.  A , 
y  e.  B , 
z  e.  C  |->  D )
df-bj-mpt3 33074 |-  ( x  e.  A ,  y  e.  B ,  z  e.  C  |->  D )  =  { <. s ,  t >.  |  E. x  e.  A  E. y  e.  B  E. z  e.  C  ( s  =  <. x ,  y ,  z
>.  /\  t  =  D ) }
csethom 33075 class -Set->
ctophom 33076 class -Top->
cmagmahom 33077 class -Magma->
df-bj-sethom 33078 |- -Set->  =  ( x  e. 
_V ,  y  e. 
_V  |->  { f  |  f : x --> y } )
df-bj-tophom 33079 |- -Top->  =  ( x  e. 
TopSp ,  y  e.  TopSp  |->  { f  e.  ( ( Base `  x
) -Set->  ( Base `  y
) )  |  A. u  e.  ( TopOpen `  y ) ( `' f " u )  e.  ( TopOpen `  x
) } )
df-bj-magmahom 33080 |- -Magma->  =  ( x  e. Mgm
,  y  e. Mgm  |->  { f  e.  ( (
Base `  x ) -Set->  (
Base `  y )
)  |  A. u  e.  ( Base `  x
) A. v  e.  ( Base `  x
) ( f `  ( u ( +g  `  x ) v ) )  =  ( ( f `  u ) ( +g  `  y
) ( f `  v ) ) } )
ccur- 33081 class curry_
df-bj-cur 33082 |- curry_  =  ( x  e. 
_V ,  y  e. 
_V ,  z  e. 
_V  |->  ( f  e.  ( ( x  X.  y ) -Set->  z )  |->  ( a  e.  x  |->  ( b  e.  y 
|->  ( f `  <. a ,  b >. )
) ) ) )
cunc- 33083 class uncurry_
df-bj-unc 33084 |- uncurry_  =  ( x  e. 
_V ,  y  e. 
_V ,  z  e. 
_V  |->  ( f  e.  ( x -Set->  ( y -Set-> 
z ) )  |->  ( a  e.  x ,  b  e.  y  |->  ( ( f `  a
) `  b )
) ) )
cdiag2 33088 class Diag
df-bj-diag 33089 |- Diag 
=  ( x  e. 
_V  |->  (  _I  i^i  ( x  X.  x
) ) )
cinftyexpi 33093 class inftyexpi
df-bj-inftyexpi 33094 |- inftyexpi  =  ( x  e.  ( -u pi (,] pi )  |->  <. x ,  CC >. )
cccinfty 33098 class CCinfty
df-bj-ccinfty 33099 |- CCinfty  =  ran inftyexpi
cccbar 33102 class CCbar
df-bj-ccbar 33103 |- CCbar  =  ( CC  u. CCinfty )
cpinfty 33106 class pinfty
df-bj-pinfty 33107 |- pinfty  =  (inftyexpi  `  0 )
cminfty 33110 class minfty
df-bj-minfty 33111 |- minfty  =  (inftyexpi  `  pi )
crrbar 33115 class RRbar
df-bj-rrbar 33116 |- RRbar  =  ( RR  u.  {minfty
, pinfty } )
cinfty 33117 class infty
df-bj-infty 33118 |- infty  =  ~P U. CC
ccchat 33119 class CChat
df-bj-cchat 33120 |- CChat  =  ( CC  u.  {infty
} )
crrhat 33121 class RRhat
df-bj-rrhat 33122 |- RRhat  =  ( RR  u.  {infty
} )
caddcc 33124 class +cc
df-bj-addc 33125 |- +cc 
=  ( x  e.  ( ( ( CC 
X. CCbar )  u.  (CCbar  X.  CC ) )  u.  ( (CChat  X. CChat )  u.  (Diag ` CCinfty ) ) ) 
|->  if ( ( ( 1st `  x )  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( ( 1st `  x )  e.  CC ,  if ( ( 2nd `  x
)  e.  CC , 
( ( 1st `  x
)  +  ( 2nd `  x ) ) ,  ( 2nd `  x
) ) ,  ( 1st `  x ) ) ) )
coppcc 33126 class -cc
df-bj-oppc 33127 |- -cc 
=  ( x  e.  (CCbar  u. CChat )  |->  if ( x  = infty , infty ,  if ( x  e.  CC ,  -u x ,  (inftyexpi  `  if ( 0  < 
( 1st `  x
) ,  ( ( 1st `  x )  -  pi ) ,  ( ( 1st `  x
)  +  pi ) ) ) ) ) )
cprcpal 33128 class prcpal
df-bj-prcpal 33129 |- prcpal  =  ( x  e.  RR  |->  ( ( x  mod  ( 2  x.  pi ) )  -  if ( ( x  mod  ( 2  x.  pi ) )  <_  pi ,  0 ,  ( 2  x.  pi ) ) ) )
carg 33130 class Arg
df-bj-arg 33131 |- Arg 
=  ( x  e.  (CCbar  \  { 0 } )  |->  if ( x  e.  CC , 
( Im `  ( log `  x ) ) ,  ( 1st `  x
) ) )
cmulc 33132 class .cc
df-bj-mulc 33133 |- .cc 
=  ( x  e.  ( (CCbar  X. CCbar )  u.  (CChat  X. CChat ) )  |->  if ( ( ( 1st `  x )  =  0  \/  ( 2nd `  x )  =  0 ) ,  0 ,  if ( ( ( 1st `  x
)  = infty  \/  ( 2nd `  x )  = infty ) , infty ,  if ( x  e.  ( CC  X.  CC ) ,  ( ( 1st `  x
)  x.  ( 2nd `  x ) ) ,  (inftyexpi  `  (prcpal `  (
(Arg `  ( 1st `  x ) )  +  (Arg `  ( 2nd `  x ) ) ) ) ) ) ) ) )
cinvc 33134 class invc
df-bj-invc 33135 |- invc 
=  ( x  e.  (CCbar  u. CChat )  |->  if ( x  =  0 , infty
,  if ( x  e.  CC ,  ( 1  /  x ) ,  0 ) ) )
cfinsum 33145 class FinSum
df-bj-finsum 33146 |- FinSum  =  ( x  e. 
{ <. y ,  z
>.  |  ( y  e. CMnd  /\  E. t  e. 
Fin  z : t --> ( Base `  y
) ) }  |->  ( iota s E. m  e.  NN0  E. f ( f : ( 1 ... m ) -1-1-onto-> dom  ( 2nd `  x )  /\  s  =  (  seq 1 ( ( +g  `  ( 1st `  x
) ) ,  ( n  e.  NN  |->  ( ( 2nd `  x
) `  ( f `  n ) ) ) ) `  m ) ) ) )
crrvec 33148 class RR-Vec
df-bj-rrvec 33149 |- RR-Vec  =  { x  e.  LVec  |  (Scalar `  x )  = RRfld }
ctau 33163 class  tau
df-tau 33164 |- 
tau  = inf ( ( RR+  i^i  ( `' cos " { 1 } ) ) ,  RR ,  <  )
cfinxp 33220 class 
( U ^^ ^^ N )
df-finxp 33221 |-  ( U ^^ ^^ N )  =  {
y  |  ( N  e.  om  /\  (/)  =  ( rec ( ( n  e.  om ,  x  e.  _V  |->  if ( ( n  =  1o  /\  x  e.  U ) ,  (/) ,  if ( x  e.  ( _V 
X.  U ) , 
<. U. n ,  ( 1st `  x )
>. ,  <. n ,  x >. ) ) ) ,  <. N ,  y
>. ) `  N ) ) }
ax-luk1 33241 |-  ( ( ph  ->  ps )  ->  ( ( ps  ->  ch )  -> 
( ph  ->  ch )
) )
ax-luk2 33242 |-  ( ( -.  ph  ->  ph )  ->  ph )
ax-luk3 33243 |-  ( ph  ->  ( -.  ph  ->  ps )
)
ax-wl-13v 33286 |-  ( -.  A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z ) )
ax-wl-11v 33361 |-  ( A. x A. y ph  ->  A. y A. x ph )
wcel-wl 33373 wff  x  e.  B
wcel2-wl 33375 wff  x  e.  B
ax-wl-8cl 33377 |-  ( x  =  y  ->  ( x  e.  A  ->  y  e.  A ) )
df-wl-clelv2 33380 |-  ( x  e.  A  <->  A. u ( u  =  x  ->  u  e.  A ) )
ctotbnd 33565 class  TotBnd
cbnd 33566 class  Bnd
df-totbnd 33567 |- 
TotBnd  =  ( x  e. 
_V  |->  { m  e.  ( Met `  x
)  |  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  x  /\  A. b  e.  v  E. y  e.  x  b  =  ( y ( ball `  m ) d ) ) } )
df-bnd 33578 |- 
Bnd  =  ( x  e.  _V  |->  { m  e.  ( Met `  x
)  |  A. y  e.  x  E. r  e.  RR+  x  =  ( y ( ball `  m
) r ) } )
cismty 33597 class  Ismty
df-ismty 33598 |- 
Ismty  =  ( m  e.  U. ran  *Met ,  n  e.  U. ran  *Met  |->  { f  |  ( f : dom  dom  m -1-1-onto-> dom  dom  n  /\  A. x  e.  dom  dom  m A. y  e.  dom  dom  m ( x m y )  =  ( ( f `  x
) n ( f `
 y ) ) ) } )
crrn 33624 class  Rn
df-rrn 33625 |- 
Rn  =  ( i  e.  Fin  |->  ( x  e.  ( RR  ^m  i ) ,  y  e.  ( RR  ^m  i )  |->  ( sqr `  sum_ k  e.  i  ( ( ( x `
 k )  -  ( y `  k
) ) ^ 2 ) ) ) )
cass 33641 class  Ass
df-ass 33642 |- 
Ass  =  { g  |  A. x  e. 
dom  dom  g A. y  e.  dom  dom  g A. z  e.  dom  dom  g
( ( x g y ) g z )  =  ( x g ( y g z ) ) }
cexid 33643 class  ExId
df-exid 33644 |- 
ExId  =  { g  |  E. x  e.  dom  dom  g A. y  e. 
dom  dom  g ( ( x g y )  =  y  /\  (
y g x )  =  y ) }
cmagm 33647 class  Magma
df-mgmOLD 33648 |- 
Magma  =  { g  |  E. t  g : ( t  X.  t
) --> t }
csem 33659 class  SemiGrp
df-sgrOLD 33660 |-  SemiGrp  =  ( Magma  i^i  Ass )
cmndo 33665 class MndOp
df-mndo 33666 |- MndOp  =  ( SemiGrp  i^i  ExId  )
cghomOLD 33682 class GrpOpHom
df-ghomOLD 33683 |- GrpOpHom  =  ( g  e. 
GrpOp ,  h  e.  GrpOp  |->  { f  |  ( f : ran  g --> ran  h  /\  A. x  e.  ran  g A. y  e.  ran  g ( ( f `  x ) h ( f `  y ) )  =  ( f `  (
x g y ) ) ) } )
crngo 33693 class  RingOps
df-rngo 33694 |-  RingOps  =  { <. g ,  h >.  |  (
( g  e.  AbelOp  /\  h : ( ran  g  X.  ran  g
) --> ran  g )  /\  ( A. x  e. 
ran  g A. y  e.  ran  g A. z  e.  ran  g ( ( ( x h y ) h z )  =  ( x h ( y h z ) )  /\  (
x h ( y g z ) )  =  ( ( x h y ) g ( x h z ) )  /\  (
( x g y ) h z )  =  ( ( x h z ) g ( y h z ) ) )  /\  E. x  e.  ran  g A. y  e.  ran  g ( ( x h y )  =  y  /\  ( y h x )  =  y ) ) ) }
cdrng 33747 class  DivRingOps
df-drngo 33748 |-  DivRingOps  =  { <. g ,  h >.  |  ( <. g ,  h >.  e.  RingOps  /\  (
h  |`  ( ( ran  g  \  { (GId
`  g ) } )  X.  ( ran  g  \  { (GId
`  g ) } ) ) )  e. 
GrpOp ) }
crnghom 33759 class  RngHom
crngiso 33760 class  RngIso
crisc 33761 class  ~=R
df-rngohom 33762 |- 
RngHom  =  ( r  e.  RingOps ,  s  e.  RingOps  |->  { f  e.  ( ran  ( 1st `  s
)  ^m  ran  ( 1st `  r ) )  |  ( ( f `  (GId `  ( 2nd `  r
) ) )  =  (GId `  ( 2nd `  s ) )  /\  A. x  e.  ran  ( 1st `  r ) A. y  e.  ran  ( 1st `  r ) ( ( f `  ( x ( 1st `  r
) y ) )  =  ( ( f `
 x ) ( 1st `  s ) ( f `  y
) )  /\  (
f `  ( x
( 2nd `  r
) y ) )  =  ( ( f `
 x ) ( 2nd `  s ) ( f `  y
) ) ) ) } )
df-rngoiso 33775 |- 
RngIso  =  ( r  e.  RingOps ,  s  e.  RingOps  |->  { f  e.  ( r 
RngHom  s )  |  f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
) } )
df-risc 33782 |- 
~=R  =  { <. r ,  s >.  |  ( ( r  e.  RingOps  /\  s  e.  RingOps )  /\  E. f  f  e.  ( r  RngIso  s ) ) }
ccm2 33788 class  Com2
df-com2 33789 |- 
Com2  =  { <. g ,  h >.  |  A. a  e.  ran  g A. b  e.  ran  g ( a h b )  =  ( b h a ) }
cfld 33790 class  Fld
df-fld 33791 |- 
Fld  =  ( DivRingOps  i^i  Com2 )
ccring 33792 class CRingOps
df-crngo 33793 |- CRingOps  =  ( RingOps  i^i  Com2 )
cidl 33806 class  Idl
cpridl 33807 class  PrIdl
cmaxidl 33808 class  MaxIdl
df-idl 33809 |- 
Idl  =  ( r  e.  RingOps  |->  { i  e. 
~P ran  ( 1st `  r )  |  ( (GId `  ( 1st `  r ) )  e.  i  /\  A. x  e.  i  ( A. y  e.  i  (
x ( 1st `  r
) y )  e.  i  /\  A. z  e.  ran  ( 1st `  r
) ( ( z ( 2nd `  r
) x )  e.  i  /\  ( x ( 2nd `  r
) z )  e.  i ) ) ) } )
df-pridl 33810 |- 
PrIdl  =  ( r  e.  RingOps  |->  { i  e.  ( Idl `  r
)  |  ( i  =/=  ran  ( 1st `  r )  /\  A. a  e.  ( Idl `  r ) A. b  e.  ( Idl `  r
) ( A. x  e.  a  A. y  e.  b  ( x
( 2nd `  r
) y )  e.  i  ->  ( a  C_  i  \/  b  C_  i ) ) ) } )
df-maxidl 33811 |- 
MaxIdl  =  ( r  e.  RingOps 
|->  { i  e.  ( Idl `  r )  |  ( i  =/= 
ran  ( 1st `  r
)  /\  A. j  e.  ( Idl `  r
) ( i  C_  j  ->  ( j  =  i  \/  j  =  ran  ( 1st `  r
) ) ) ) } )
cprrng 33845 class  PrRing
cdmn 33846 class  Dmn
df-prrngo 33847 |- 
PrRing  =  { r  e.  RingOps  |  { (GId `  ( 1st `  r ) ) }  e.  (
PrIdl `  r ) }
df-dmn 33848 |- 
Dmn  =  ( PrRing  i^i 
Com2 )
cigen 33858 class  IdlGen
df-igen 33859 |- 
IdlGen  =  ( r  e.  RingOps ,  s  e.  ~P ran  ( 1st `  r
)  |->  |^| { j  e.  ( Idl `  r
)  |  s  C_  j } )
cxrn 33982 class  ( A  |X.  B )
df-xrn 34134 |-  ( A  |X.  B
)  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )
wprt 34156 wff 
Prt  A
df-prt 34157 |-  ( Prt  A  <->  A. x  e.  A  A. y  e.  A  ( x  =  y  \/  (
x  i^i  y )  =  (/) ) )
ax-c5 34168 |-  ( A. x ph  ->  ph )
ax-c4 34169 |-  ( A. x ( A. x ph  ->  ps )  ->  ( A. x ph  ->  A. x ps )
)
ax-c7 34170 |-  ( -.  A. x  -.  A. x ph  ->  ph )
ax-c10 34171 |-  ( A. x ( x  =  y  ->  A. x ph )  ->  ph )
ax-c11 34172 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
ax-c11n 34173 |-  ( A. x  x  =  y  ->  A. y 
y  =  x )
ax-c15 34174 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
ax-c9 34175 |-  ( -.  A. z 
z  =  x  -> 
( -.  A. z 
z  =  y  -> 
( x  =  y  ->  A. z  x  =  y ) ) )
ax-c14 34176 |-  ( -.  A. z 
z  =  x  -> 
( -.  A. z 
z  =  y  -> 
( x  e.  y  ->  A. z  x  e.  y ) ) )
ax-c16 34177 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
)
ax-riotaBAD 34239 |-  ( iota_ x  e.  A  ph )  =  if ( E! x  e.  A  ph ,  ( iota x
( x  e.  A  /\  ph ) ) ,  ( Undef `  { x  |  x  e.  A } ) )
clsa 34261 class LSAtoms
clsh 34262 class LSHyp
df-lsatoms 34263 |- LSAtoms  =  ( w  e. 
_V  |->  ran  ( v  e.  ( ( Base `  w
)  \  { ( 0g `  w ) } )  |->  ( ( LSpan `  w ) `  {
v } ) ) )
df-lshyp 34264 |- LSHyp  =  ( w  e. 
_V  |->  { s  e.  ( LSubSp `  w )  |  ( s  =/=  ( Base `  w
)  /\  E. v  e.  ( Base `  w
) ( ( LSpan `  w ) `  (
s  u.  { v } ) )  =  ( Base `  w
) ) } )
clcv 34305 class  <oLL
df-lcv 34306 |- 
<oLL 
=  ( w  e. 
_V  |->  { <. t ,  u >.  |  (
( t  e.  (
LSubSp `  w )  /\  u  e.  ( LSubSp `  w ) )  /\  ( t  C.  u  /\  -.  E. s  e.  ( LSubSp `  w )
( t  C.  s  /\  s  C.  u ) ) ) } )
clfn 34344 class LFnl
df-lfl 34345 |- LFnl 
=  ( w  e. 
_V  |->  { f  e.  ( ( Base `  (Scalar `  w ) )  ^m  ( Base `  w )
)  |  A. r  e.  ( Base `  (Scalar `  w ) ) A. x  e.  ( Base `  w ) A. y  e.  ( Base `  w
) ( f `  ( ( r ( .s `  w ) x ) ( +g  `  w ) y ) )  =  ( ( r ( .r `  (Scalar `  w ) ) ( f `  x
) ) ( +g  `  (Scalar `  w )
) ( f `  y ) ) } )
clk 34372 class LKer
df-lkr 34373 |- LKer 
=  ( w  e. 
_V  |->  ( f  e.  (LFnl `  w )  |->  ( `' f " { ( 0g `  (Scalar `  w ) ) } ) ) )
cld 34410 class LDual
df-ldual 34411 |- LDual  =  ( v  e. 
_V  |->  ( { <. (
Base `  ndx ) ,  (LFnl `  v ) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  (Scalar `  v ) )  |`  ( (LFnl `  v )  X.  (LFnl `  v )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  v ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  v ) ) ,  f  e.  (LFnl `  v )  |->  ( f  oF ( .r
`  (Scalar `  v )
) ( ( Base `  v )  X.  {
k } ) ) ) >. } ) )
cops 34459 class  OP
ccmtN 34460 class  cm
col 34461 class  OL
coml 34462 class  OML
df-oposet 34463 |-  OP  =  { p  e.  Poset  |  ( ( ( Base `  p
)  e.  dom  ( lub `  p )  /\  ( Base `  p )  e.  dom  ( glb `  p
) )  /\  E. o ( o  =  ( oc `  p
)  /\  A. a  e.  ( Base `  p
) A. b  e.  ( Base `  p
) ( ( ( o `  a )  e.  ( Base `  p
)  /\  ( o `  ( o `  a
) )  =  a  /\  ( a ( le `  p ) b  ->  ( o `  b ) ( le
`  p ) ( o `  a ) ) )  /\  (
a ( join `  p
) ( o `  a ) )  =  ( 1. `  p
)  /\  ( a
( meet `  p )
( o `  a
) )  =  ( 0. `  p ) ) ) ) }
df-cmtN 34464 |- 
cm  =  ( p  e.  _V  |->  { <. x ,  y >.  |  ( x  e.  ( Base `  p )  /\  y  e.  ( Base `  p
)  /\  x  =  ( ( x (
meet `  p )
y ) ( join `  p ) ( x ( meet `  p
) ( ( oc
`  p ) `  y ) ) ) ) } )
df-ol 34465 |-  OL  =  ( Lat  i^i 
OP )
df-oml 34466 |- 
OML  =  { l  e.  OL  |  A. a  e.  ( Base `  l ) A. b  e.  ( Base `  l
) ( a ( le `  l ) b  ->  b  =  ( a ( join `  l ) ( b ( meet `  l
) ( ( oc
`  l ) `  a ) ) ) ) }
ccvr 34549 class  <o
catm 34550 class  Atoms
cal 34551 class  AtLat
clc 34552 class  CvLat
df-covers 34553 |- 
<o  =  ( p  e.  _V  |->  { <. a ,  b >.  |  ( ( a  e.  (
Base `  p )  /\  b  e.  ( Base `  p ) )  /\  a ( lt
`  p ) b  /\  -.  E. z  e.  ( Base `  p
) ( a ( lt `  p ) z  /\  z ( lt `  p ) b ) ) } )
df-ats 34554 |- 
Atoms  =  ( p  e.  _V  |->  { a  e.  ( Base `  p
)  |  ( 0.
`  p ) ( 
<o  `  p ) a } )
df-atl 34585 |- 
AtLat  =  { k  e.  Lat  |  ( (
Base `  k )  e.  dom  ( glb `  k
)  /\  A. x  e.  ( Base `  k
) ( x  =/=  ( 0. `  k
)  ->  E. p  e.  ( Atoms `  k )
p ( le `  k ) x ) ) }
df-cvlat 34609 |- 
CvLat  =  { k  e.  AtLat  |  A. a  e.  ( Atoms `  k ) A. b  e.  ( Atoms `  k ) A. c  e.  ( Base `  k ) ( ( -.  a ( le
`  k ) c  /\  a ( le
`  k ) ( c ( join `  k
) b ) )  ->  b ( le
`  k ) ( c ( join `  k
) a ) ) }
chlt 34637 class  HL
df-hlat 34638 |-  HL  =  { l  e.  ( ( OML 
i^i  CLat )  i^i  CvLat )  |  ( A. a  e.  ( Atoms `  l ) A. b  e.  ( Atoms `  l ) ( a  =/=  b  ->  E. c  e.  ( Atoms `  l ) ( c  =/=  a  /\  c  =/=  b  /\  c
( le `  l
) ( a (
join `  l )
b ) ) )  /\  E. a  e.  ( Base `  l
) E. b  e.  ( Base `  l
) E. c  e.  ( Base `  l
) ( ( ( 0. `  l ) ( lt `  l
) a  /\  a
( lt `  l
) b )  /\  ( b ( lt
`  l ) c  /\  c ( lt
`  l ) ( 1. `  l ) ) ) ) }
clln 34777 class  LLines
clpl 34778 class  LPlanes
clvol 34779 class  LVols
clines 34780 class  Lines
cpointsN 34781 class  Points
cpsubsp 34782 class  PSubSp
cpmap 34783 class  pmap
df-llines 34784 |- 
LLines  =  ( k  e. 
_V  |->  { x  e.  ( Base `  k
)  |  E. p  e.  ( Atoms `  k )
p (  <o  `  k
) x } )
df-lplanes 34785 |-  LPlanes  =  ( k  e. 
_V  |->  { x  e.  ( Base `  k
)  |  E. p  e.  ( LLines `  k )
p (  <o  `  k
) x } )
df-lvols 34786 |- 
LVols  =  ( k  e.  _V  |->  { x  e.  ( Base `  k
)  |  E. p  e.  ( LPlanes `  k )
p (  <o  `  k
) x } )
df-lines 34787 |- 
Lines  =  ( k  e.  _V  |->  { s  |  E. q  e.  (
Atoms `  k ) E. r  e.  ( Atoms `  k ) ( q  =/=  r  /\  s  =  { p  e.  (
Atoms `  k )  |  p ( le `  k ) ( q ( join `  k
) r ) } ) } )
df-pointsN 34788 |- 
Points  =  ( k  e. 
_V  |->  { q  |  E. p  e.  (
Atoms `  k ) q  =  { p } } )
df-psubsp 34789 |- 
PSubSp  =  ( k  e. 
_V  |->  { s  |  ( s  C_  ( Atoms `  k )  /\  A. p  e.  s  A. q  e.  s  A. r  e.  ( Atoms `  k ) ( r ( le `  k
) ( p (
join `  k )
q )  ->  r  e.  s ) ) } )
df-pmap 34790 |- 
pmap  =  ( k  e.  _V  |->  ( a  e.  ( Base `  k
)  |->  { p  e.  ( Atoms `  k )  |  p ( le `  k ) a } ) )
cpadd 35081 class  +P
df-padd 35082 |-  +P  =  ( l  e.  _V  |->  ( m  e.  ~P ( Atoms `  l ) ,  n  e.  ~P ( Atoms `  l )  |->  ( ( m  u.  n
)  u.  { p  e.  ( Atoms `  l )  |  E. q  e.  m  E. r  e.  n  p ( le `  l ) ( q ( join `  l
) r ) } ) ) )
cpclN 35173 class  PCl
df-pclN 35174 |- 
PCl  =  ( k  e.  _V  |->  ( x  e.  ~P ( Atoms `  k )  |->  |^| { y  e.  ( PSubSp `  k
)  |  x  C_  y } ) )
cpolN 35188 class  _|_P
df-polarityN 35189 |- 
_|_P  =  ( l  e.  _V  |->  ( m  e.  ~P ( Atoms `  l )  |->  ( ( Atoms `  l )  i^i  |^|_ p  e.  m  ( ( pmap `  l
) `  ( ( oc `  l ) `  p ) ) ) ) )
cpscN 35220 class  PSubCl
df-psubclN 35221 |- 
PSubCl  =  ( k  e. 
_V  |->  { s  |  ( s  C_  ( Atoms `  k )  /\  ( ( _|_P `  k ) `  (
( _|_P `  k ) `  s
) )  =  s ) } )
clh 35270 class  LHyp
claut 35271 class  LAut
cwpointsN 35272 class  WAtoms
cpautN 35273 class  PAut
df-lhyp 35274 |- 
LHyp  =  ( k  e.  _V  |->  { x  e.  ( Base `  k
)  |  x ( 
<o  `  k ) ( 1. `  k ) } )
df-laut 35275 |- 
LAut  =  ( k  e.  _V  |->  { f  |  ( f : (
Base `  k ) -1-1-onto-> ( Base `  k )  /\  A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) } )
df-watsN 35276 |- 
WAtoms  =  ( k  e. 
_V  |->  ( d  e.  ( Atoms `  k )  |->  ( ( Atoms `  k
)  \  ( ( _|_P `  k ) `
 { d } ) ) ) )
df-pautN 35277 |- 
PAut  =  ( k  e.  _V  |->  { f  |  ( f : (
PSubSp `  k ) -1-1-onto-> ( PSubSp `  k )  /\  A. x  e.  ( PSubSp `  k ) A. y  e.  ( PSubSp `  k )
( x  C_  y  <->  ( f `  x ) 
C_  ( f `  y ) ) ) } )
cldil 35386 class  LDil
cltrn 35387 class  LTrn
cdilN 35388 class  Dil
ctrnN 35389 class  Trn
df-ldil 35390 |- 
LDil  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  { f  e.  ( LAut `  k
)  |  A. x  e.  ( Base `  k
) ( x ( le `  k ) w  ->  ( f `  x )  =  x ) } ) )
df-ltrn 35391 |- 
LTrn  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  { f  e.  ( ( LDil `  k
) `  w )  |  A. p  e.  (
Atoms `  k ) A. q  e.  ( Atoms `  k ) ( ( -.  p ( le
`  k ) w  /\  -.  q ( le `  k ) w )  ->  (
( p ( join `  k ) ( f `
 p ) ) ( meet `  k
) w )  =  ( ( q (
join `  k )
( f `  q
) ) ( meet `  k ) w ) ) } ) )
df-dilN 35392 |- 
Dil  =  ( k  e.  _V  |->  ( d  e.  ( Atoms `  k
)  |->  { f  e.  ( PAut `  k
)  |  A. x  e.  ( PSubSp `  k )
( x  C_  (
( WAtoms `  k ) `  d )  ->  (
f `  x )  =  x ) } ) )
df-trnN 35393 |- 
Trn  =  ( k  e.  _V  |->  ( d  e.  ( Atoms `  k
)  |->  { f  e.  ( ( Dil `  k
) `  d )  |  A. q  e.  ( ( WAtoms `  k ) `  d ) A. r  e.  ( ( WAtoms `  k
) `  d )
( ( q ( +P `  k
) ( f `  q ) )  i^i  ( ( _|_P `  k ) `  {
d } ) )  =  ( ( r ( +P `  k ) ( f `
 r ) )  i^i  ( ( _|_P `  k ) `
 { d } ) ) } ) )
ctrl 35445 class  trL
df-trl 35446 |- 
trL  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( f  e.  ( ( LTrn `  k
) `  w )  |->  ( iota_ x  e.  (
Base `  k ) A. p  e.  ( Atoms `  k ) ( -.  p ( le
`  k ) w  ->  x  =  ( ( p ( join `  k ) ( f `
 p ) ) ( meet `  k
) w ) ) ) ) ) )
ctgrp 36030 class  TGrp
df-tgrp 36031 |- 
TGrp  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. } ) )
ctendo 36040 class  TEndo
cedring 36041 class  EDRing
cedring-rN 36042 class  EDRingR
df-tendo 36043 |- 
TEndo  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  { f  |  ( f : ( ( LTrn `  k
) `  w ) --> ( ( LTrn `  k
) `  w )  /\  A. x  e.  ( ( LTrn `  k
) `  w ) A. y  e.  (
( LTrn `  k ) `  w ) ( f `
 ( x  o.  y ) )  =  ( ( f `  x )  o.  (
f `  y )
)  /\  A. x  e.  ( ( LTrn `  k
) `  w )
( ( ( trL `  k ) `  w
) `  ( f `  x ) ) ( le `  k ) ( ( ( trL `  k ) `  w
) `  x )
) } ) )
df-edring-rN 36044 |- 
EDRingR  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  t  e.  (
( TEndo `  k ) `  w )  |->  ( f  e.  ( ( LTrn `  k ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( t  o.  s ) ) >. } ) )
df-edring 36045 |- 
EDRing  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  { <. ( Base `  ndx ) ,  ( ( TEndo `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  t  e.  (
( TEndo `  k ) `  w )  |->  ( f  e.  ( ( LTrn `  k ) `  w
)  |->  ( ( s `
 f )  o.  ( t `  f
) ) ) )
>. ,  <. ( .r
`  ndx ) ,  ( s  e.  ( (
TEndo `  k ) `  w ) ,  t  e.  ( ( TEndo `  k ) `  w
)  |->  ( s  o.  t ) ) >. } ) )
cdveca 36290 class  DVecA
df-dveca 36291 |- 
DVecA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( { <. (
Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  k ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  f  e.  (
( LTrn `  k ) `  w )  |->  ( s `
 f ) )
>. } ) ) )
cdia 36317 class  DIsoA
df-disoa 36318 |- 
DIsoA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e. 
{ y  e.  (
Base `  k )  |  y ( le
`  k ) w }  |->  { f  e.  ( ( LTrn `  k
) `  w )  |  ( ( ( trL `  k ) `
 w ) `  f ) ( le
`  k ) x } ) ) )
cdvh 36367 class  DVecH
df-dvech 36368 |- 
DVecH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( { <. (
Base `  ndx ) ,  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) ,  g  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  k ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  f  e.  (
( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
cocaN 36408 class  ocA
df-docaN 36409 |- 
ocA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e. 
~P ( ( LTrn `  k ) `  w
)  |->  ( ( (
DIsoA `  k ) `  w ) `  (
( ( ( oc
`  k ) `  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) ) (
meet `  k )
w ) ) ) ) )
cdjaN 36420 class  vA
df-djaN 36421 |-  vA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e. 
~P ( ( LTrn `  k ) `  w
) ,  y  e. 
~P ( ( LTrn `  k ) `  w
)  |->  ( ( ( ocA `  k ) `
 w ) `  ( ( ( ( ocA `  k ) `
 w ) `  x )  i^i  (
( ( ocA `  k
) `  w ) `  y ) ) ) ) ) )
cdib 36427 class  DIsoB
df-dib 36428 |- 
DIsoB  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e. 
dom  ( ( DIsoA `  k ) `  w
)  |->  ( ( ( ( DIsoA `  k ) `  w ) `  x
)  X.  { ( f  e.  ( (
LTrn `  k ) `  w )  |->  (  _I  |`  ( Base `  k
) ) ) } ) ) ) )
cdic 36461 class  DIsoC
df-dic 36462 |- 
DIsoC  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( q  e. 
{ r  e.  (
Atoms `  k )  |  -.  r ( le
`  k ) w }  |->  { <. f ,  s >.  |  ( f  =  ( s `
 ( iota_ g  e.  ( ( LTrn `  k
) `  w )
( g `  (
( oc `  k
) `  w )
)  =  q ) )  /\  s  e.  ( ( TEndo `  k
) `  w )
) } ) ) )
cdih 36517 class  DIsoH
df-dih 36518 |- 
DIsoH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e.  ( Base `  k
)  |->  if ( x ( le `  k
) w ,  ( ( ( DIsoB `  k
) `  w ) `  x ) ,  (
iota_ u  e.  ( LSubSp `
 ( ( DVecH `  k ) `  w
) ) A. q  e.  ( Atoms `  k )
( ( -.  q
( le `  k
) w  /\  (
q ( join `  k
) ( x (
meet `  k )
w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  k ) `  w ) `  q
) ( LSSum `  (
( DVecH `  k ) `  w ) ) ( ( ( DIsoB `  k
) `  w ) `  ( x ( meet `  k ) w ) ) ) ) ) ) ) ) )
coch 36636 class  ocH
df-doch 36637 |- 
ocH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e. 
~P ( Base `  (
( DVecH `  k ) `  w ) )  |->  ( ( ( DIsoH `  k
) `  w ) `  ( ( oc `  k ) `  (
( glb `  k
) `  { y  e.  ( Base `  k
)  |  x  C_  ( ( ( DIsoH `  k ) `  w
) `  y ) } ) ) ) ) ) )
cdjh 36683 class joinH
df-djh 36684 |- joinH  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e. 
~P ( Base `  (
( DVecH `  k ) `  w ) ) ,  y  e.  ~P ( Base `  ( ( DVecH `  k ) `  w
) )  |->  ( ( ( ocH `  k
) `  w ) `  ( ( ( ( ocH `  k ) `
 w ) `  x )  i^i  (
( ( ocH `  k
) `  w ) `  y ) ) ) ) ) )
clpoN 36769 class LPol
df-lpolN 36770 |- LPol 
=  ( w  e. 
_V  |->  { o  e.  ( ( LSubSp `  w
)  ^m  ~P ( Base `  w ) )  |  ( ( o `
 ( Base `  w
) )  =  {
( 0g `  w
) }  /\  A. x A. y ( ( x  C_  ( Base `  w )  /\  y  C_  ( Base `  w
)  /\  x  C_  y
)  ->  ( o `  y )  C_  (
o `  x )
)  /\  A. x  e.  (LSAtoms `  w )
( ( o `  x )  e.  (LSHyp `  w )  /\  (
o `  ( o `  x ) )  =  x ) ) } )
clcd 36875 class LCDual
df-lcdual 36876 |- LCDual  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  ( (LDual `  ( ( DVecH `  k
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  k
) `  w )
)  |  ( ( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f ) } ) ) )
cmpd 36913 class mapd
df-mapd 36914 |- mapd 
=  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  k ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  k
) `  w )
)  |  ( ( ( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) } ) ) )
chvm 37045 class HVMap
df-hvmap 37046 |- HVMap  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  ( x  e.  ( ( Base `  (
( DVecH `  k ) `  w ) )  \  { ( 0g `  ( ( DVecH `  k
) `  w )
) } )  |->  ( v  e.  ( Base `  ( ( DVecH `  k
) `  w )
)  |->  ( iota_ j  e.  ( Base `  (Scalar `  ( ( DVecH `  k
) `  w )
) ) E. t  e.  ( ( ( ocH `  k ) `  w
) `  { x } ) v  =  ( t ( +g  `  ( ( DVecH `  k
) `  w )
) ( j ( .s `  ( (
DVecH `  k ) `  w ) ) x ) ) ) ) ) ) )
chdma1 37081 class HDMap1
chdma 37082 class HDMap
df-hdmap1 37083 |- HDMap1  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  { a  | 
[. ( ( DVecH `  k ) `  w
)  /  u ]. [. ( Base `  u
)  /  v ]. [. ( LSpan `  u )  /  n ]. [. (
(LCDual `  k ) `  w )  /  c ]. [. ( Base `  c
)  /  d ]. [. ( LSpan `  c )  /  j ]. [. (
(mapd `  k ) `  w )  /  m ]. a  e.  (
x  e.  ( ( v  X.  d )  X.  v )  |->  if ( ( 2nd `  x
)  =  ( 0g
`  u ) ,  ( 0g `  c
) ,  ( iota_ h  e.  d  ( ( m `  ( n `
 { ( 2nd `  x ) } ) )  =  ( j `
 { h }
)  /\  ( m `  ( n `  {
( ( 1st `  ( 1st `  x ) ) ( -g `  u
) ( 2nd `  x
) ) } ) )  =  ( j `
 { ( ( 2nd `  ( 1st `  x ) ) (
-g `  c )
h ) } ) ) ) ) ) } ) )
df-hdmap 37084 |- HDMap  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  { a  | 
[. <. (  _I  |`  ( Base `  k ) ) ,  (  _I  |`  (
( LTrn `  k ) `  w ) ) >.  /  e ]. [. (
( DVecH `  k ) `  w )  /  u ]. [. ( Base `  u
)  /  v ]. [. ( (HDMap1 `  k
) `  w )  /  i ]. a  e.  ( t  e.  v 
|->  ( iota_ y  e.  (
Base `  ( (LCDual `  k ) `  w
) ) A. z  e.  v  ( -.  z  e.  ( (
( LSpan `  u ) `  { e } )  u.  ( ( LSpan `  u ) `  {
t } ) )  ->  y  =  ( i `  <. z ,  ( i `  <. e ,  ( ( (HVMap `  k ) `  w ) `  e
) ,  z >.
) ,  t >.
) ) ) ) } ) )
chg 37175 class HGMap
df-hgmap 37176 |- HGMap  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  { a  | 
[. ( ( DVecH `  k ) `  w
)  /  u ]. [. ( Base `  (Scalar `  u ) )  / 
b ]. [. ( (HDMap `  k ) `  w
)  /  m ]. a  e.  ( x  e.  b  |->  ( iota_ y  e.  b  A. v  e.  ( Base `  u
) ( m `  ( x ( .s
`  u ) v ) )  =  ( y ( .s `  ( (LCDual `  k ) `  w ) ) ( m `  v ) ) ) ) } ) )
chlh 37224 class HLHil
df-hlhil 37225 |- HLHil  =  ( k  e. 
_V  |->  ( w  e.  ( LHyp `  k
)  |->  [_ ( ( DVecH `  k ) `  w
)  /  u ]_ [_ ( Base `  u
)  /  v ]_ ( { <. ( Base `  ndx ) ,  v >. , 
<. ( +g  `  ndx ) ,  ( +g  `  u ) >. ,  <. (Scalar `  ndx ) ,  ( ( ( EDRing `  k
) `  w ) sSet  <.
( *r `  ndx ) ,  ( (HGMap `  k ) `  w
) >. ) >. }  u.  {
<. ( .s `  ndx ) ,  ( .s `  u ) >. ,  <. ( .i `  ndx ) ,  ( x  e.  v ,  y  e.  v  |->  ( ( ( (HDMap `  k ) `  w ) `  y
) `  x )
) >. } ) ) )
cnacs 37265 class NoeACS
df-nacs 37266 |- NoeACS  =  ( x  e. 
_V  |->  { c  e.  (ACS `  x )  |  A. s  e.  c  E. g  e.  ( ~P x  i^i  Fin ) s  =  ( (mrCls `  c ) `  g ) } )
cmzpcl 37284 class mzPolyCld
cmzp 37285 class mzPoly
df-mzpcl 37286 |- mzPolyCld  =  ( v  e. 
_V  |->  { p  e. 
~P ( ZZ  ^m  ( ZZ  ^m  v
) )  |  ( ( A. i  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ i } )  e.  p  /\  A. j  e.  v  (
x  e.  ( ZZ 
^m  v )  |->  ( x `  j ) )  e.  p )  /\  A. f  e.  p  A. g  e.  p  ( ( f  oF  +  g )  e.  p  /\  ( f  oF  x.  g )  e.  p ) ) } )
df-mzp 37287 |- mzPoly  =  ( v  e. 
_V  |->  |^| (mzPolyCld `  v )
)
cdioph 37318 class Dioph
df-dioph 37319 |- Dioph  =  ( n  e. 
NN0  |->  ran  ( k  e.  ( ZZ>= `  n ) ,  p  e.  (mzPoly `  ( 1 ... k
) )  |->  { t  |  E. u  e.  ( NN0  ^m  (
1 ... k ) ) ( t  =  ( u  |`  ( 1 ... n ) )  /\  ( p `  u )  =  0 ) } ) )
csquarenn 37400 classNN
cpell1qr 37401 class Pell1QR
cpell1234qr 37402 class Pell1234QR
cpell14qr 37403 class Pell14QR
cpellfund 37404 class PellFund
df-squarenn 37405 |-NN  =  { x  e.  NN  |  ( sqr `  x
)  e.  QQ }
df-pell1qr 37406 |- Pell1QR  =  ( x  e.  ( NN  \NN )  |->  { y  e.  RR  |  E. z  e.  NN0  E. w  e. 
NN0  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 ) } )
df-pell14qr 37407 |- Pell14QR  =  ( x  e.  ( NN  \NN )  |->  { y  e.  RR  |  E. z  e.  NN0  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 ) } )
df-pell1234qr 37408 |- Pell1234QR  =  ( x  e.  ( NN  \NN )  |->  { y  e.  RR  |  E. z  e.  ZZ  E. w  e.  ZZ  ( y  =  ( z  +  ( ( sqr `  x
)  x.  w ) )  /\  ( ( z ^ 2 )  -  ( x  x.  ( w ^ 2 ) ) )  =  1 ) } )
df-pellfund 37409 |- PellFund  =  ( x  e.  ( NN  \NN )  |-> inf ( { z  e.  (Pell14QR `  x
)  |  1  < 
z } ,  RR ,  <  ) )
crmx 37464 class Xrm
crmy 37465 class Yrm
df-rmx 37466 |- Xrm  =  ( a  e.  (
ZZ>= `  2 ) ,  n  e.  ZZ  |->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( a  +  ( sqr `  (
( a ^ 2 )  -  1 ) ) ) ^ n
) ) ) )
df-rmy 37467 |- Yrm  =  ( a  e.  (
ZZ>= `  2 ) ,  n  e.  ZZ  |->  ( 2nd `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( a  +  ( sqr `  (
( a ^ 2 )  -  1 ) ) ) ^ n
) ) ) )
clfig 37637 class LFinGen
df-lfig 37638 |- LFinGen  =  { w  e.  LMod  |  ( Base `  w
)  e.  ( (
LSpan `  w ) "
( ~P ( Base `  w )  i^i  Fin ) ) }
clnm 37645 class LNoeM
df-lnm 37646 |- LNoeM  =  { w  e.  LMod  | 
A. i  e.  (
LSubSp `  w ) ( ws  i )  e. LFinGen }
clnr 37679 class LNoeR
df-lnr 37680 |- LNoeR  =  { a  e.  Ring  |  (ringLMod `  a )  e. LNoeM }
cldgis 37691 class ldgIdlSeq
df-ldgis 37692 |- ldgIdlSeq  =  ( r  e. 
_V  |->  ( i  e.  (LIdeal `  (Poly1 `  r
) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) )
cmnc 37701 class  Monic
cplylt 37702 class Poly<
df-mnc 37703 |- 
Monic  =  ( s  e.  ~P CC  |->  { p  e.  (Poly `  s )  |  ( (coeff `  p ) `  (deg `  p ) )  =  1 } )
df-plylt 37704 |- Poly<  =  ( s  e.  ~P CC ,  x  e.  NN0  |->  { p  e.  (Poly `  s )  |  ( p  =  0p  \/  (deg `  p
)  <  x ) } )
cdgraa 37710 class degAA
cmpaa 37711 class minPolyAA
df-dgraa 37712 |- degAA  =  ( x  e.  AA  |-> inf ( { d  e.  NN  |  E. p  e.  ( (Poly `  QQ )  \  { 0p }
) ( (deg `  p )  =  d  /\  ( p `  x )  =  0 ) } ,  RR ,  <  ) )
df-mpaa 37713 |- minPolyAA  =  ( x  e.  AA  |->  ( iota_ p  e.  (Poly `  QQ )
( (deg `  p
)  =  (degAA `  x
)  /\  ( p `  x )  =  0  /\  ( (coeff `  p ) `  (degAA `  x ) )  =  1 ) ) )
citgo 37727 class IntgOver
cza 37728 class
df-itgo 37729 |- IntgOver  =  ( s  e. 
~P CC  |->  { x  e.  CC  |  E. p  e.  (Poly `  s )
( ( p `  x )  =  0  /\  ( (coeff `  p ) `  (deg `  p ) )  =  1 ) } )
df-za 37730 |-  =  (IntgOver `  ZZ )
cmend 37745 class MEndo
df-mend 37746 |- MEndo  =  ( m  e. 
_V  |->  [_ ( m LMHom  m
)  /  b ]_ ( { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  oF ( +g  `  m
) y ) )
>. ,  <. ( .r
`  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  o.  y ) ) >. }  u.  { <. (Scalar `  ndx ) ,  (Scalar `  m ) >. ,  <. ( .s `  ndx ) ,  ( x  e.  ( Base `  (Scalar `  m ) ) ,  y  e.  b  |->  ( ( ( Base `  m
)  X.  { x } )  oF ( .s `  m
) y ) )
>. } ) )
csdrg 37765 class SubDRing
df-sdrg 37766 |- SubDRing  =  ( w  e.  DivRing 
|->  { s  e.  (SubRing `  w )  |  ( ws  s )  e.  DivRing } )
ccytp 37780 class CytP
df-cytp 37781 |- CytP 
=  ( n  e.  NN  |->  ( (mulGrp `  (Poly1 ` fld ) )  gsumg  ( r  e.  ( `' ( od `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) " {
n } )  |->  ( (var1 ` fld ) ( -g `  (Poly1 ` fld )
) ( (algSc `  (Poly1 ` fld ) ) `  r
) ) ) ) )
ctopsep 37791 class TopSep
ctoplnd 37792 class TopLnd
df-topsep 37793 |- TopSep  =  { j  e.  Top  |  E. x  e.  ~P  U. j ( x  ~<_  om 
/\  ( ( cls `  j ) `  x
)  =  U. j
) }
df-toplnd 37794 |- TopLnd  =  { x  e.  Top  | 
A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ~P  x ( z  ~<_  om  /\  U. x  =  U. z ) ) }
crcl 37964 class  r*
df-rcl 37965 |-  r*  =  ( x  e.  _V  |->  |^|
{ z  |  ( x  C_  z  /\  (  _I  |`  ( dom  z  u.  ran  z
) )  C_  z
) } )
whe 38066 wff 
R hereditary  A
df-he 38067 |-  ( R hereditary  A  <->  ( R " A )  C_  A
)
ax-frege1 38084 |-  ( ph  ->  ( ps  ->  ph ) )
ax-frege2 38085 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ( ph  ->  ps )  -> 
( ph  ->  ch )
) )
ax-frege8 38103 |-  ( ( ph  ->  ( ps  ->  ch )
)  ->  ( ps  ->  ( ph  ->  ch ) ) )
ax-frege28 38124 |-  ( ( ph  ->  ps )  ->  ( -.  ps  ->  -.  ph ) )
ax-frege31 38128 |-  ( -.  -.  ph  ->  ph )
ax-frege41 38139 |-  ( ph  ->  -.  -.  ph )
ax-frege52a 38151 |-  ( ( ph  <->  ps )  ->  (if- ( ph ,  th ,  ch )  -> if- ( ps ,  th ,  ch ) ) )
ax-frege54a 38156 |-  ( ph  <->  ph )
ax-frege58a 38169 |-  ( ( ps  /\  ch )  -> if- ( ph ,  ps ,  ch )
)
ax-frege52c 38182 |-  ( A  =  B  ->  ( [. A  /  x ]. ph  ->  [. B  /  x ]. ph ) )
ax-frege54c 38186 |-  A  =  A
ax-frege58b 38195 |-  ( A. x ph  ->  [ y  /  x ] ph )
cbcc 38535 class C𝑐
df-bcc 38536 |- C𝑐  =  ( c  e.  CC ,  k  e.  NN0  |->  ( ( c FallFac  k
)  /  ( ! `
 k ) ) )
cplusr 38661 class  +r
cminusr 38662 class  -r
ctimesr 38663 class  .v
cptdfc 38664 class  PtDf ( A ,  B
)
crr3c 38665 class  RR3
cline3 38666 class  line3
df-addr 38667 |-  +r  =  ( x  e.  _V , 
y  e.  _V  |->  ( v  e.  RR  |->  ( ( x `  v
)  +  ( y `
 v ) ) ) )
df-subr 38668 |- 
-r  =  ( x  e.  _V , 
y  e.  _V  |->  ( v  e.  RR  |->  ( ( x `  v
)  -  ( y `
 v ) ) ) )
df-mulv 38669 |-  .v  =  ( x  e.  _V , 
y  e.  _V  |->  ( v  e.  RR  |->  ( x  x.  ( y `
 v ) ) ) )
df-ptdf 38680 |- 
PtDf ( A ,  B )  =  ( x  e.  RR  |->  ( ( ( x .v ( B -r A ) ) +v A ) " { 1 ,  2 ,  3 } ) )
df-rr3 38681 |-  RR3  =  ( RR  ^m  { 1 ,  2 ,  3 } )
df-line3 38682 |- 
line3  =  {
x  e.  ~P RR3  |  ( 2o  ~<_  x  /\  A. y  e.  x  A. z  e.  x  ( z  =/=  y  ->  ran  PtDf (
y ,  z )  =  x ) ) }
wvd1 38785 wff 
(. ph  ->.  ps ).
df-vd1 38786 |-  ( (. ph  ->.  ps ).  <->  ( ph  ->  ps ) )
wvd2 38793 wff 
(. ph ,. ps  ->.  ch ).
df-vd2 38794 |-  ( (. ph ,. ps  ->.  ch ).  <->  ( ( ph  /\  ps )  ->  ch ) )
wvhc2 38796 wff 
(. ph ,. ps ).
df-vhc2 38797 |-  ( (. ph ,. ps ).  <->  ( ph  /\  ps ) )
wvd3 38803 wff 
(. ph ,. ps ,. ch  ->.  th ).
wvhc3 38804 wff 
(. ph ,. ps ,. ch ).
df-vhc3 38805 |-  ( (. ph ,. ps ,. ch ).  <->  ( ph  /\ 
ps  /\  ch )
)
df-vd3 38806 |-  ( (. ph ,. ps ,. ch  ->.  th ).  <->  ( ( ph  /\  ps  /\  ch )  ->  th ) )
wvhc4 38813 wff 
(. ph ,. ps ,. ch ,. th ).
wvhc5 38814 wff 
(. ph ,. ps ,. ch ,. th ,. ta ).
wvhc6 38815 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ).
wvhc7 38816 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ,. ze ).
wvhc8 38817 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ,. ze ,. si ).
wvhc9 38818 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ,. ze ,. si ,. rh ).
wvhc10 38819 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ,. ze ,. si ,. rh ,. mu ).
wvhc11 38820 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ,. ze ,. si ,. rh ,. mu ,. la ).
wvhc12 38821 wff 
(. ph ,. ps ,. ch ,. th ,. ta ,. et ,. ze ,. si ,. rh ,. mu ,. la ,. ka ).
clsi 39983 class liminf
df-liminf 39984 |- liminf  =  ( x  e. 
_V  |->  sup ( ran  (
k  e.  RR  |-> inf ( ( ( x "
( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) ) ,  RR* ,  <  ) )
clsxlim 40044 class ~~>*
df-xlim 40045 |- ~~>*  =  ( ~~> t `  (ordTop `  <_  ) )
csalg 40528 class SAlg
df-salg 40529 |- SAlg 
=  { x  |  ( (/)  e.  x  /\  A. y  e.  x  ( U. x  \  y
)  e.  x  /\  A. y  e.  ~P  x
( y  ~<_  om  ->  U. y  e.  x ) ) }
csalon 40530 class SalOn
df-salon 40531 |- SalOn  =  ( x  e. 
_V  |->  { s  e. SAlg  |  U. s  =  x } )
csalgen 40532 class SalGen
df-salgen 40533 |- SalGen  =  ( x  e. 
_V  |->  |^| { s  e. SAlg  |  ( U. s  =  U. x  /\  x  C_  s ) } )
csumge0 40579 class Σ^
df-sumge0 40580 |- Σ^  =  ( x  e.  _V  |->  if ( +oo  e.  ran  x , +oo ,  sup ( ran  ( y  e.  ( ~P dom  x  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w ) ) , 
RR* ,  <  ) ) )
cmea 40666 class Meas
df-mea 40667 |- Meas 
=  { x  |  ( ( ( x : dom  x --> ( 0 [,] +oo )  /\  dom  x  e. SAlg )  /\  ( x `  (/) )  =  0 )  /\  A. y  e.  ~P  dom  x
( ( y  ~<_  om 
/\ Disj  w  e.  y  w )  ->  ( x `  U. y )  =  (Σ^ `  ( x  |`  y
) ) ) ) }
come 40703 class OutMeas
df-ome 40704 |- OutMeas  =  { x  |  ( ( ( ( x : dom  x --> ( 0 [,] +oo )  /\  dom  x  =  ~P U. dom  x )  /\  (
x `  (/) )  =  0 )  /\  A. y  e.  ~P  U. dom  x A. z  e.  ~P  y ( x `  z )  <_  (
x `  y )
)  /\  A. y  e.  ~P  dom  x ( y  ~<_  om  ->  ( x `
 U. y )  <_  (Σ^ `  ( x  |`  y
) ) ) ) }
ccaragen 40705 class CaraGen
df-caragen 40706 |- CaraGen  =  ( o  e. OutMeas  |->  { e  e.  ~P U.
dom  o  |  A. a  e.  ~P  U. dom  o ( ( o `
 ( a  i^i  e ) ) +e ( o `  ( a  \  e
) ) )  =  ( o `  a
) } )
covoln 40750 class voln*
df-ovoln 40751 |- voln*  =  ( x  e.  Fin  |->  ( y  e.  ~P ( RR  ^m  x )  |->  if ( x  =  (/) ,  0 , inf ( { z  e.  RR*  |  E. i  e.  ( (
( RR  X.  RR )  ^m  x )  ^m  NN ) ( y  C_  U_ j  e.  NN  X_ k  e.  x  (
( [,)  o.  (
i `  j )
) `  k )  /\  z  =  (Σ^ `  (
j  e.  NN  |->  prod_
k  e.  x  ( vol `  ( ( [,)  o.  ( i `
 j ) ) `
 k ) ) ) ) ) } ,  RR* ,  <  )
) ) )
cvoln 40752 class voln
df-voln 40753 |- voln 
=  ( x  e. 
Fin  |->  ( (voln* `  x )  |`  (CaraGen `  (voln* `  x ) ) ) )
csmblfn 40909 class SMblFn
df-smblfn 40910 |- SMblFn  =  ( s  e. SAlg  |->  { f  e.  ( RR  ^pm  U. s
)  |  A. a  e.  RR  ( `' f
" ( -oo (,) a ) )  e.  ( st  dom  f ) } )
wdfat 41193 wff 
F defAt  A
cafv 41194 class  ( F''' A )
caov 41195 class (( A F B))
df-dfat 41196 |-  ( F defAt  A  <->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )
df-afv 41197 |-  ( F''' A )  =  if ( F defAt  A , 
( iota x A F x ) ,  _V )
df-aov 41198 |- ((
A F B))  =  ( F''' <. A ,  B >. )
cnelbr 41288 class _ e//
df-nelbr 41289 |- _
e//  =  { <. x ,  y >.  |  -.  x  e.  y }
ciccp 41349 class RePart
df-iccp 41350 |- RePart  =  ( m  e.  NN  |->  { p  e.  ( RR*  ^m  (
0 ... m ) )  |  A. i  e.  ( 0..^ m ) ( p `  i
)  <  ( p `  ( i  +  1 ) ) } )
cpfx 41381 class prefix
df-pfx 41382 |- prefix  =  ( s  e. 
_V ,  l  e. 
NN0  |->  ( s substr  <. 0 ,  l >. ) )
cfmtno 41439 class FermatNo
df-fmtno 41440 |- FermatNo  =  ( n  e. 
NN0  |->  ( ( 2 ^ ( 2 ^ n ) )  +  1 ) )
ceven 41537 class Even
codd 41538 class Odd
df-even 41539 |- Even 
=  { z  e.  ZZ  |  ( z  /  2 )  e.  ZZ }
df-odd 41540 |- Odd 
=  { z  e.  ZZ  |  ( ( z  +  1 )  /  2 )  e.  ZZ }
cgbe 41633 class GoldbachEven
cgbow 41634 class GoldbachOddW
cgbo 41635 class GoldbachOdd
df-gbe 41636 |- GoldbachEven  =  { z  e. Even  |  E. p  e.  Prime  E. q  e.  Prime  (
p  e. Odd  /\  q  e. Odd  /\  z  =  ( p  +  q ) ) }
df-gbow 41637 |- GoldbachOddW  =  { z  e. Odd  |  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  z  =  ( ( p  +  q )  +  r ) }
df-gbo 41638 |- GoldbachOdd  =  { z  e. Odd  |  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  ( ( p  e. Odd  /\  q  e. Odd  /\  r  e. Odd  )  /\  z  =  ( (
p  +  q )  +  r ) ) }
ax-bgbltosilva 41698 |-  ( ( N  e. Even  /\  4  <  N  /\  N  <_  ( 4  x.  (; 1 0 ^; 1 8 ) ) )  ->  N  e. GoldbachEven  )
ax-tgoldbachgt 41699 |-  O  =  { z  e.  ZZ  |  -.  2  ||  z }   &    |-  G  =  { z  e.  O  |  E. p  e.  Prime  E. q  e.  Prime  E. r  e.  Prime  ( ( p  e.  O  /\  q  e.  O  /\  r  e.  O )  /\  z  =  ( ( p  +  q )  +  r ) ) }   =>    |-  E. m  e.  NN  (
m  <_  (; 1 0 ^; 2 7 )  /\  A. n  e.  O  ( m  <  n  ->  n  e.  G )
)
ax-hgprmladder 41702 |- 
E. d  e.  (
ZZ>= `  3 ) E. f  e.  (RePart `  d ) ( ( ( f `  0
)  =  7  /\  ( f `  1
)  = ; 1 3  /\  (
f `  d )  =  (; 8 9  x.  (; 1 0 ^; 2 9 ) ) )  /\  A. i  e.  ( 0..^ d ) ( ( f `  i )  e.  ( Prime  \  { 2 } )  /\  (
( f `  (
i  +  1 ) )  -  ( f `
 i ) )  <  ( ( 4  x.  (; 1 0 ^; 1 8 ) )  -  4 )  /\  4  <  ( ( f `
 ( i  +  1 ) )  -  ( f `  i
) ) ) )
ax-bgbltosilvaOLD 41706 |-  ( ( N  e. Even  /\  4  <  N  /\  N  <_  ( 4  x.  ( 10 ^; 1 8 ) ) )  ->  N  e. GoldbachEven  )
ax-hgprmladderOLD 41708 |- 
E. d  e.  (
ZZ>= `  3 ) E. f  e.  (RePart `  d ) ( ( ( f `  0
)  =  7  /\  ( f `  1
)  = ; 1 3  /\  (
f `  d )  =  (; 8 9  x.  ( 10 ^; 2 9 ) ) )  /\  A. i  e.  ( 0..^ d ) ( ( f `  i )  e.  ( Prime  \  { 2 } )  /\  (
( f `  (
i  +  1 ) )  -  ( f `
 i ) )  <  ( ( 4  x.  ( 10 ^; 1 8 ) )  -  4 )  /\  4  < 
( ( f `  ( i  +  1 ) )  -  (
f `  i )
) ) )
ax-tgoldbachgtOLD 41711 |- 
E. m  e.  NN  ( m  <_  ( 10
^; 2 7 )  /\  A. n  e. Odd  ( m  <  n  ->  n  e. GoldbachOdd  ) )
cupwlks 41714 class UPWalks
df-upwlks 41715 |- UPWalks  =  ( g  e. 
_V  |->  { <. f ,  p >.  |  (
f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( # `  f
) ) --> (Vtx `  g )  /\  A. k  e.  ( 0..^ ( # `  f
) ) ( (iEdg `  g ) `  (
f `  k )
)  =  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) } ) } )
cspr 41727 class Pairs
df-spr 41728 |- Pairs  =  ( v  e. 
_V  |->  { p  |  E. a  e.  v  E. b  e.  v  p  =  { a ,  b } }
)
cmgmhm 41777 class MgmHom
csubmgm 41778 class SubMgm
df-mgmhm 41779 |- MgmHom  =  ( s  e. Mgm
,  t  e. Mgm  |->  { f  e.  ( (
Base `  t )  ^m  ( Base `  s
) )  |  A. x  e.  ( Base `  s ) A. y  e.  ( Base `  s
) ( f `  ( x ( +g  `  s ) y ) )  =  ( ( f `  x ) ( +g  `  t
) ( f `  y ) ) } )
df-submgm 41780 |- SubMgm  =  ( s  e. Mgm  |->  { t  e.  ~P ( Base `  s )  |  A. x  e.  t 
A. y  e.  t  ( x ( +g  `  s ) y )  e.  t } )
ccllaw 41819 class clLaw
casslaw 41820 class assLaw
ccomlaw 41821 class comLaw
df-cllaw 41822 |- clLaw  =  { <. o ,  m >.  |  A. x  e.  m  A. y  e.  m  ( x o y )  e.  m }
df-comlaw 41823 |- comLaw  =  { <. o ,  m >.  |  A. x  e.  m  A. y  e.  m  ( x o y )  =  ( y o x ) }
df-asslaw 41824 |- assLaw  =  { <. o ,  m >.  |  A. x  e.  m  A. y  e.  m  A. z  e.  m  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
cintop 41832 class intOp
cclintop 41833 class clIntOp
cassintop 41834 class assIntOp
df-intop 41835 |- intOp  =  ( m  e. 
_V ,  n  e. 
_V  |->  ( n  ^m  ( m  X.  m
) ) )
df-clintop 41836 |- clIntOp  =  ( m  e. 
_V  |->  ( m intOp  m
) )
df-assintop 41837 |- assIntOp  =  ( m  e. 
_V  |->  { o  e.  ( clIntOp  `  m )  |  o assLaw  m } )
cmgm2 41851 class MgmALT
ccmgm2 41852 class CMgmALT
csgrp2 41853 class SGrpALT
ccsgrp2 41854 class CSGrpALT
df-mgm2 41855 |- MgmALT  =  { m  |  ( +g  `  m ) clLaw 
( Base `  m ) }
df-cmgm2 41856 |- CMgmALT  =  { m  e. MgmALT  |  ( +g  `  m ) comLaw 
( Base `  m ) }
df-sgrp2 41857 |- SGrpALT  =  { g  e. MgmALT  |  ( +g  `  g ) assLaw 
( Base `  g ) }
df-csgrp2 41858 |- CSGrpALT  =  { g  e. SGrpALT  |  ( +g  `  g ) comLaw 
( Base `  g ) }
crng 41874 class Rng
df-rng0 41875 |- Rng 
=  { f  e. 
Abel  |  ( (mulGrp `  f )  e. SGrp  /\  [. ( Base `  f
)  /  b ]. [. ( +g  `  f
)  /  p ]. [. ( .r `  f
)  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) )  /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
crngh 41885 class RngHomo
crngs 41886 class RngIsom
df-rnghomo 41887 |- RngHomo  =  ( r  e. Rng
,  s  e. Rng  |->  [_ ( Base `  r )  /  v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v
)  |  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) } )
df-rngisom 41888 |- RngIsom  =  ( r  e. 
_V ,  s  e. 
_V  |->  { f  e.  ( r RngHomo  s )  |  `' f  e.  ( s RngHomo  r ) } )
crngc 41957 class RngCat
crngcALTV 41958 class RngCatALTV
df-rngc 41959 |- RngCat  =  ( u  e. 
_V  |->  ( (ExtStrCat `  u
)  |`cat  ( RngHomo  |`  ( ( u  i^i Rng )  X.  (
u  i^i Rng ) )
) ) )
df-rngcALTV 41960 |- RngCatALTV  =  ( u  e. 
_V  |->  [_ ( u  i^i Rng
)  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x RngHomo  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RngHomo 
z ) ,  f  e.  ( ( 1st `  v ) RngHomo  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. } )
cringc 42003 class RingCat
cringcALTV 42004 class RingCatALTV
df-ringc 42005 |- RingCat  =  ( u  e. 
_V  |->  ( (ExtStrCat `  u
)  |`cat  ( RingHom  |`  ( ( u  i^i  Ring )  X.  (
u  i^i  Ring ) ) ) ) )
df-ringcALTV 42006 |- RingCatALTV  =  ( u  e.  _V  |->  [_ ( u  i^i  Ring )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x RingHom  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) RingHom 
z ) ,  f  e.  ( ( 1st `  v ) RingHom  ( 2nd `  v ) )  |->  ( g  o.  f ) ) ) >. } )
cdmatalt 42185 class DMatALT
cscmatalt 42186 class ScMatALT
df-dmatalt 42187 |- DMatALT  =  ( n  e. 
Fin ,  r  e.  _V  |->  [_ ( n Mat  r
)  /  a ]_ ( as  { m  e.  (
Base `  a )  |  A. i  e.  n  A. j  e.  n  ( i  =/=  j  ->  ( i m j )  =  ( 0g
`  r ) ) } ) )
df-scmatalt 42188 |- ScMatALT  =  ( n  e. 
Fin ,  r  e.  _V  |->  [_ ( n Mat  r
)  /  a ]_ ( as  { m  e.  (
Base `  a )  |  E. c  e.  (
Base `  r ) A. i  e.  n  A. j  e.  n  ( i m j )  =  if ( i  =  j ,  c ,  ( 0g
`  r ) ) } ) )
clinc 42193 class linC
clinco 42194 class LinCo
df-linc 42195 |- linC 
=  ( m  e. 
_V  |->  ( s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v ) ,  v  e.  ~P ( Base `  m )  |->  ( m 
gsumg  ( x  e.  v  |->  ( ( s `  x ) ( .s
`  m ) x ) ) ) ) )
df-lco 42196 |- LinCo  =  ( m  e. 
_V ,  v  e. 
~P ( Base `  m
)  |->  { c  e.  ( Base `  m
)  |  E. s  e.  ( ( Base `  (Scalar `  m ) )  ^m  v ) ( s finSupp 
( 0g `  (Scalar `  m ) )  /\  c  =  ( s
( linC  `  m )
v ) ) } )
clininds 42229 class linIndS
clindeps 42230 class linDepS
df-lininds 42231 |- linIndS  =  { <. s ,  m >.  |  ( s  e. 
~P ( Base `  m
)  /\  A. f  e.  ( ( Base `  (Scalar `  m ) )  ^m  s ) ( ( f finSupp  ( 0g `  (Scalar `  m ) )  /\  ( f ( linC  `  m ) s )  =  ( 0g `  m ) )  ->  A. x  e.  s 
( f `  x
)  =  ( 0g
`  (Scalar `  m )
) ) ) }
df-lindeps 42233 |- linDepS  =  { <. s ,  m >.  |  -.  s linIndS  m }
cfdiv 42331 class /_f
df-fdiv 42332 |- /_f 
=  ( f  e. 
_V ,  g  e. 
_V  |->  ( ( f  oF  /  g
)  |`  ( g supp  0
) ) )
cbigo 42341 class _O
df-bigo 42342 |- _O 
=  ( g  e.  ( RR  ^pm  RR )  |->  { f  e.  ( RR  ^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( f `
 y )  <_ 
( m  x.  (
g `  y )
) } )
cblen 42363 class #b
df-blen 42364 |- #b 
=  ( n  e. 
_V  |->  if ( n  =  0 ,  1 ,  ( ( |_
`  ( 2 logb  ( abs `  n ) ) )  +  1 ) ) )
cdig 42389 class digit
df-dig 42390 |- digit  =  ( b  e.  NN  |->  ( k  e.  ZZ ,  r  e.  ( 0 [,) +oo )  |->  ( ( |_
`  ( ( b ^ -u k )  x.  r ) )  mod  b ) ) )
csetrecs 42430 class setrecs ( F )
df-setrecs 42431 |- setrecs ( F )  =  U. { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) }
cpg 42452 class Pg
df-pg 42453 |- Pg  = setrecs
( ( x  e. 
_V  |->  ( ~P x  X.  ~P x ) ) )
cge-real 42461 class  >_
cgt 42462 class  >
df-gte 42463 |- 
>_  =  `'  <_
df-gt 42464 |-  >  =  `'  <
csinh 42471 class sinh
ccosh 42472 class cosh
ctanh 42473 class tanh
df-sinh 42474 |- sinh 
=  ( x  e.  CC  |->  ( ( sin `  ( _i  x.  x
) )  /  _i ) )
df-cosh 42475 |- cosh 
=  ( x  e.  CC  |->  ( cos `  (
_i  x.  x )
) )
df-tanh 42476 |- tanh 
=  ( x  e.  ( `'cosh " ( CC  \  { 0 } ) )  |->  ( ( tan `  ( _i  x.  x ) )  /  _i ) )
csec 42482 class  sec
ccsc 42483 class  csc
ccot 42484 class  cot
df-sec 42485 |- 
sec  =  ( x  e.  { y  e.  CC  |  ( cos `  y )  =/=  0 }  |->  ( 1  / 
( cos `  x
) ) )
df-csc 42486 |- 
csc  =  ( x  e.  { y  e.  CC  |  ( sin `  y )  =/=  0 }  |->  ( 1  / 
( sin `  x
) ) )
df-cot 42487 |- 
cot  =  ( x  e.  { y  e.  CC  |  ( sin `  y )  =/=  0 }  |->  ( ( cos `  x )  /  ( sin `  x ) ) )
clog- 42506 class log_
df-logbALT 42507 |- log_ 
=  ( b  e.  ( CC  \  {
0 ,  1 } )  |->  ( x  e.  ( CC  \  {
0 } )  |->  ( ( log `  x
)  /  ( log `  b ) ) ) )
wreflexive 42508 wff 
RReflexive A
df-reflexive 42509 |-  ( RReflexive A  <->  ( R  C_  ( A  X.  A
)  /\  A. x  e.  A  x R x ) )
wirreflexive 42510 wff 
RIrreflexive A
df-irreflexive 42511 |-  ( RIrreflexive A  <->  ( R  C_  ( A  X.  A
)  /\  A. x  e.  A  -.  x R x ) )
walsi 42532 wff  A.! x ( ph  ->  ps )
walsc 42533 wff  A.! x  e.  A ph
df-alsi 42534 |-  ( A.! x (
ph  ->  ps )  <->  ( A. x ( ph  ->  ps )  /\  E. x ph ) )
df-alsc 42535 |-  ( A.! x  e.  A ph  <->  ( A. x  e.  A  ph  /\  E. x  x  e.  A
) )
  Copyright terms: Public domain W3C validator