Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Most Recent Proofs
 
Mirrors  >  Home  >  ILE Home  >  Th. List  >  Recent MPE Most Recent             Other  >  MM 100

Most recent proofs    These are the 100 (Unicode, GIF) or 1000 (Unicode, GIF) most recent proofs in the iset.mm database for the Intuitionistic Logic Explorer. The iset.mm database is maintained on GitHub with master (stable) and develop (development) versions. This page was created from the commit given on the MPE Most Recent Proofs page. The database from that commit is also available here: iset.mm.

See the MPE Most Recent Proofs page for news and some useful links.

Color key:   Intuitionistic Logic Explorer  Intuitionistic Logic Explorer   User Mathboxes  User Mathboxes  

Last updated on 12-Feb-2022 at 12:00 PM ET.
Recent Additions to the Intuitionistic Logic Explorer
DateLabelDescription
Theorem
 
10-Feb-2022ltmininf 10116 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
10-Feb-2022maxltsup 10104 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
9-Feb-2022maxleastlt 10101 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
6-Feb-2022unsnfidcel 6386 The ¬ 𝐵𝐴 condition in unsnfi 6384. This is intended to show that unsnfi 6384 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵𝐴)
 
6-Feb-2022unsnfidcex 6385 The 𝐵𝑉 condition in unsnfi 6384. This is intended to show that unsnfi 6384 without that condition would not be provable but it probably would need to be strengthened (for example, to imply included middle) to fully show that. (Contributed by Jim Kingdon, 6-Feb-2022.)
((𝐴 ∈ Fin ∧ ¬ 𝐵𝐴 ∧ (𝐴 ∪ {𝐵}) ∈ Fin) → DECID ¬ 𝐵 ∈ V)
 
5-Feb-2022funrnfi 6392 The range of a finite relation is finite if its converse is a function. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴 ∧ Fun 𝐴𝐴 ∈ Fin) → ran 𝐴 ∈ Fin)
 
5-Feb-2022relcnvfi 6391 If a relation is finite, its converse is as well. (Contributed by Jim Kingdon, 5-Feb-2022.)
((Rel 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
 
5-Feb-2022fundmfi 6389 The domain of a finite function is finite. (Contributed by Jim Kingdon, 5-Feb-2022.)
((𝐴 ∈ Fin ∧ Fun 𝐴) → dom 𝐴 ∈ Fin)
 
5-Feb-2022infiexmid 6362 If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
(𝑥 ∈ Fin → (𝑥𝑦) ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
3-Feb-2022unsnfi 6384 Adding a singleton to a finite set yields a finite set. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
 
3-Feb-2022domfiexmid 6363 If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
3-Feb-2022ssfilem 6360 Lemma for ssfiexmid 6361. (Contributed by Jim Kingdon, 3-Feb-2022.)
{𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin       (𝜑 ∨ ¬ 𝜑)
 
1-Feb-2022maxclpr 10108 The maximum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 8395 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
31-Jan-2022znege1 10556 The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → 1 ≤ (abs‘(𝐴𝐵)))
 
31-Jan-2022maxleastb 10100 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
30-Jan-2022max0addsup 10105 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
(𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
 
29-Jan-2022expcanlem 9643 Lemma for expcan 9644. Proving the order in one direction. (Contributed by Jim Kingdon, 29-Jan-2022.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → 1 < 𝐴)       (𝜑 → ((𝐴𝑀) ≤ (𝐴𝑁) → 𝑀𝑁))
 
28-Jan-2022exfzdc 9249 Decidability of the existence of an integer defined by a decidable proposition. (Contributed by Jim Kingdon, 28-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑛 ∈ (𝑀...𝑁)) → DECID 𝜓)       (𝜑DECID𝑛 ∈ (𝑀...𝑁)𝜓)
 
25-Jan-20221nen2 6347 One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.)
¬ 1𝑜 ≈ 2𝑜
 
24-Jan-2022divmulasscomap 7784 An associative/commutative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
 
24-Jan-2022divmulassap 7783 An associative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷)))
 
21-Jan-2022lcmmndc 10444 Decidablity lemma used in various proofs related to lcm. (Contributed by Jim Kingdon, 21-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0))
 
20-Jan-2022infssuzcldc 10347 The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
 
19-Jan-2022suprnubex 8031 An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
 
19-Jan-2022suprlubex 8030 The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
 
18-Jan-2022suprubex 8029 A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
17-Jan-2022zdvdsdc 10216 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
17-Jan-2022suplub2ti 6414 Bidirectional form of suplubti 6413. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝑅 Or 𝐴)    &   (𝜑𝐵𝐴)       ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
 
16-Jan-2022zssinfcl 10344 The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))    &   (𝜑𝐵 ⊆ ℤ)    &   (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)       (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
 
16-Jan-2022supelti 6415 Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐶 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))    &   (𝜑𝐶𝐴)       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐶)
 
15-Jan-2022infsupneg 8684 If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 8683. (Contributed by Jim Kingdon, 15-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑦 < 𝑧)))
 
15-Jan-2022supinfneg 8683 If a set of real numbers has a least upper bound, the set of the negation of those numbers has a greatest lower bound. For a theorem which is similar but only for the boundedness part, see ublbneg 8698. (Contributed by Jim Kingdon, 15-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴} ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧 ∈ {𝑤 ∈ ℝ ∣ -𝑤𝐴}𝑧 < 𝑦)))
 
14-Jan-2022supminfex 8685 A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → sup(𝐴, ℝ, < ) = -inf({𝑤 ∈ ℝ ∣ -𝑤𝐴}, ℝ, < ))
 
14-Jan-2022infrenegsupex 8682 The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))    &   (𝜑𝐴 ⊆ ℝ)       (𝜑 → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
 
13-Jan-2022infssuzledc 10346 The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
13-Jan-2022infssuzex 10345 Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
 
11-Jan-2022eucialg 10441 Euclid's Algorithm computes the greatest common divisor of two nonnegative integers by repeatedly replacing the larger of them with its remainder modulo the smaller until the remainder is 0. Theorem 1.15 in [ApostolNT] p. 20.

Upon halting, the 1st member of the final state (𝑅𝑁) is equal to the gcd of the values comprising the input state 𝑀, 𝑁. This is Metamath 100 proof #69 (greatest common divisor algorithm). (Contributed by Jim Kingdon, 11-Jan-2022.)

𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))    &   𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}), (ℕ0 × ℕ0))    &   𝑁 = (2nd𝐴)    &   𝐴 = ⟨𝑀, 𝑁       ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (1st ‘(𝑅𝑁)) = (𝑀 gcd 𝑁))
 
11-Jan-2022eucialgcvga 10440 Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Jim Kingdon, 11-Jan-2022.)
𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))    &   𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}), (ℕ0 × ℕ0))    &   𝑁 = (2nd𝐴)       (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
 
11-Jan-2022ifcldadc 3378 Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.)
((𝜑𝜓) → 𝐴𝐶)    &   ((𝜑 ∧ ¬ 𝜓) → 𝐵𝐶)    &   (𝜑DECID 𝜓)       (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
 
9-Jan-2022bezoutlemsup 10398 Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
 
9-Jan-2022bezoutlemle 10397 Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))    &   (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))       (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
 
9-Jan-2022bezoutlemeu 10396 Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))       (𝜑 → ∃!𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)))
 
9-Jan-2022bezoutlemmo 10395 Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐷 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))    &   (𝜑𝐸 ∈ ℕ0)    &   (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐸 ↔ (𝑧𝐴𝑧𝐵)))       (𝜑𝐷 = 𝐸)
 
8-Jan-2022bezoutlembi 10394 Lemma for Bézout's identity. Like bezoutlembz 10393 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
8-Jan-2022bezoutlembz 10393 Lemma for Bézout's identity. Like bezoutlemaz 10392 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
8-Jan-2022bezoutlemaz 10392 Lemma for Bézout's identity. Like bezoutlemzz 10391 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
8-Jan-2022bezoutlemzz 10391 Lemma for Bézout's identity. Like bezoutlemex 10390 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
6-Jan-2022bezoutlemnewy 10385 Lemma for Bézout's identity. The is-bezout predicate holds for (𝑦 mod 𝑊). (Contributed by Jim Kingdon, 6-Jan-2022.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)    &   (𝜃𝑊 ∈ ℕ)    &   (𝜃 → [𝑦 / 𝑟]𝜑)    &   (𝜃𝑦 ∈ ℕ0)    &   (𝜃[𝑊 / 𝑟]𝜑)       (𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑)
 
3-Jan-2022bezoutlemex 10390 Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 
3-Jan-2022bezoutlemstep 10386 Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)    &   (𝜃𝑊 ∈ ℕ)    &   (𝜃 → [𝑦 / 𝑟]𝜑)    &   (𝜃𝑦 ∈ ℕ0)    &   (𝜃[𝑊 / 𝑟]𝜑)    &   (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))    &   ((𝜃[(𝑦 mod 𝑊) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓𝜑))    &   𝑥𝜃    &   𝑟𝜃       (𝜃 → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓𝜑))
 
1-Jan-2022fvifdc 5217 Move a conditional outside of a function. (Contributed by Jim Kingdon, 1-Jan-2022.)
(DECID 𝜑 → (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹𝐴), (𝐹𝐵)))
 
1-Jan-2022ifeq1dadc 3379 Conditional equality. (Contributed by Jim Kingdon, 1-Jan-2022.)
((𝜑𝜓) → 𝐴 = 𝐵)    &   (𝜑DECID 𝜓)       (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
 
1-Jan-2022ifsbdc 3363 Distribute a function over an if-clause. (Contributed by Jim Kingdon, 1-Jan-2022.)
(if(𝜑, 𝐴, 𝐵) = 𝐴𝐶 = 𝐷)    &   (if(𝜑, 𝐴, 𝐵) = 𝐵𝐶 = 𝐸)       (DECID 𝜑𝐶 = if(𝜑, 𝐷, 𝐸))
 
31-Dec-2021dfgcd3 10399 Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑑 ∈ ℕ0𝑧 ∈ ℤ (𝑧𝑑 ↔ (𝑧𝑀𝑧𝑁))))
 
30-Dec-2021bezoutlemb 10389 Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)       (𝜃[𝐵 / 𝑟]𝜑)
 
30-Dec-2021bezoutlema 10388 Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)       (𝜃[𝐴 / 𝑟]𝜑)
 
30-Dec-2021bezoutlemmain 10387 Lemma for Bézout's identity. This is the main result which we prove by induction and which represents the application of the Extended Euclidean algorithm. (Contributed by Jim Kingdon, 30-Dec-2021.)
(𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))    &   (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧𝑟 → (𝑧𝑥𝑧𝑦)))    &   (𝜃𝐴 ∈ ℕ0)    &   (𝜃𝐵 ∈ ℕ0)       (𝜃 → ∀𝑥 ∈ ℕ0 ([𝑥 / 𝑟]𝜑 → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓𝜑))))
 
22-Dec-2021maxleast 10099 The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
 
22-Dec-2021maxcl 10096 The maximum of two real numbers is a real number. (Contributed by Jim Kingdon, 22-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
 
22-Dec-2021maxabslemval 10094 Lemma for maxabs 10095. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
21-Dec-2021dfabsmax 10103 Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.)
(𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ))
 
21-Dec-2021maxleb 10102 Equivalence of and being equal to the maximum of two reals. Lemma 3.12 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
 
21-Dec-2021maxle2 10098 The maximum of two reals is no smaller than the second real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
 
21-Dec-2021maxle1 10097 The maximum of two reals is no smaller than the first real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
 
21-Dec-2021maxabslemab 10092 Lemma for maxabs 10095. A variation of maxleim 10091- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 21-Dec-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = 𝐵)
 
21-Dec-2021maxleim 10091 Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
 
21-Dec-2021maxcom 10089 The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < )
 
20-Dec-2021maxabs 10095 Maximum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 20-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
20-Dec-2021maxabslemlub 10093 Lemma for maxabs 10095. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
20-Dec-2021maxabsle 10090 An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
20-Dec-2021suprzclex 8445 The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℤ)       (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 
20-Dec-2021r19.12sn 3458 Special case of r19.12 2466 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
(𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
 
19-Dec-2021infisoti 6445 Image of an infimum under an isomorphism. (Contributed by Jim Kingdon, 19-Dec-2021.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐶 𝑧𝑅𝑦)))    &   ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → inf((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅)))
 
19-Dec-2021infsnti 6443 The infimum of a singleton. (Contributed by Jim Kingdon, 19-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐵𝐴)       (𝜑 → inf({𝐵}, 𝐴, 𝑅) = 𝐵)
 
19-Dec-2021infeuti 6442 An infimum is unique. (Contributed by Jim Kingdon, 19-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
 
18-Dec-2021infmoti 6441 Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
 
18-Dec-2021infminti 6440 The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 
18-Dec-2021infnlbti 6439 A lower bound is not greater than the infimum. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
18-Dec-2021infglbti 6438 An infimum is the greatest lower bound. See also infclti 6436 and inflbti 6437. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
 
18-Dec-2021inflbti 6437 An infimum is a lower bound. See also infclti 6436 and infglbti 6438. (Contributed by Jim Kingdon, 18-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
 
17-Dec-2021infclti 6436 An infimum belongs to its base class (closure law). See also inflbti 6437 and infglbti 6438. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
17-Dec-2021infvalti 6435 Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
 
17-Dec-2021cnvti 6432 If a relation satisfies a condition corresponding to tightness of an apartness generated by an order, so does its converse. (Contributed by Jim Kingdon, 17-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
 
17-Dec-2021cnvinfex 6431 Two ways of expressing existence of an infimum (one in terms of converse). (Contributed by Jim Kingdon, 17-Dec-2021.)
(𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))       (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
16-Dec-2021eqinftid 6434 Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)    &   ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 
16-Dec-2021eqinfti 6433 Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
 
13-Dec-2021orandc 880 Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.)
((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∧ ¬ 𝜓)))
 
12-Dec-2021gcdsupex 10349 Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
 
12-Dec-2021gcdmndc 10340 Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
 
12-Dec-2021ddifstab 3104 A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.)
((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥STAB 𝑥𝐴)
 
11-Dec-2021gcdsupcl 10350 Closure of the supremum used in defining gcd. A lemma for gcdval 10351 and gcdn0cl 10354. (Contributed by Jim Kingdon, 11-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ ℕ)
 
11-Dec-2021dvdsbnd 10348 There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
 
7-Dec-2021zsupcl 10343 Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the non-empty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝑛 = 𝑀 → (𝜓𝜒))    &   (𝜑𝜒)    &   ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)    &   (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)       (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
 
7-Dec-2021zsupcllemex 10342 Lemma for zsupcl 10343. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝑛 = 𝑀 → (𝜓𝜒))    &   (𝜑𝜒)    &   ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)    &   (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)       (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
 
7-Dec-2021zsupcllemstep 10341 Lemma for zsupcl 10343. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)       (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
 
5-Dec-2021divalglemqt 10319 Lemma for divalg 10324. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
(𝜑𝐷 ∈ ℤ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑𝑄 = 𝑇)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑𝑅 = 𝑆)
 
4-Dec-2021divalglemeuneg 10323 Lemma for divalg 10324. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
4-Dec-2021divalglemeunn 10321 Lemma for divalg 10324. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
4-Dec-2021divalglemnqt 10320 Lemma for divalg 10324. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
(𝜑𝐷 ∈ ℕ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑 → 0 ≤ 𝑆)    &   (𝜑𝑅 < 𝐷)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑 → ¬ 𝑄 < 𝑇)
 
2-Dec-2021rspc2gv 2712 Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.)
((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊) → (∀𝑥𝑉𝑦𝑊 𝜑𝜓))
 
30-Nov-2021divalglemex 10322 Lemma for divalg 10324. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
30-Nov-2021divalglemnn 10318 Lemma for divalg 10324. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
27-Nov-2021ioom 9269 An open interval of extended reals is inhabited iff the lower argument is less than the upper argument. (Contributed by Jim Kingdon, 27-Nov-2021.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 < 𝐵))
 
26-Nov-2021supisoti 6423 Image of a supremum under an isomorphism. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑𝐶𝐴)    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))    &   ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → sup((𝐹𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅)))
 
26-Nov-2021isoti 6420 An isomorphism preserves tightness. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢𝐵𝑣𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))))
 
26-Nov-2021isotilem 6419 Lemma for isoti 6420. (Contributed by Jim Kingdon, 26-Nov-2021.)
(𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 = 𝑦 ↔ (¬ 𝑥𝑆𝑦 ∧ ¬ 𝑦𝑆𝑥)) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))))
 
26-Nov-2021supsnti 6418 The supremum of a singleton. (Contributed by Jim Kingdon, 26-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐵𝐴)       (𝜑 → sup({𝐵}, 𝐴, 𝑅) = 𝐵)
 
24-Nov-2021supmaxti 6417 The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   (𝜑𝐶𝐵)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
24-Nov-2021suplubti 6413 A supremum is the least upper bound. See also supclti 6411 and supubti 6412. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
 
24-Nov-2021supubti 6412 A supremum is an upper bound. See also supclti 6411 and suplubti 6413.

This proof demonstrates how to expand an iota-based definition (df-iota 4887) using riotacl2 5501.

(Contributed by Jim Kingdon, 24-Nov-2021.)

((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
 
24-Nov-2021supclti 6411 A supremum belongs to its base class (closure law). See also supubti 6412 and suplubti 6413. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
 
24-Nov-2021eqsuptid 6410 Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 24-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑𝐶𝐴)    &   ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)    &   ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)       (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
 
23-Nov-2021eqsupti 6409 Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
 
23-Nov-2021supval2ti 6408 Alternate expression for the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
 
23-Nov-2021supeuti 6407 A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))    &   (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))       (𝜑 → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
23-Nov-2021supmoti 6406 Any class 𝐵 has at most one supremum in 𝐴 (where 𝑅 is interpreted as 'less than'). The hypothesis is satisfied by real numbers (see lttri3 7191) or other orders which correspond to tight apartnesses. (Contributed by Jim Kingdon, 23-Nov-2021.)
((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))       (𝜑 → ∃*𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
 
17-Nov-2021sqne2sq 10555 The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
 
17-Nov-20212sqpwodd 10554 The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
 
17-Nov-2021sqpweven 10553 The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
 
17-Nov-2021oddpwdclemndvds 10549 Lemma for oddpwdc 10552. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝐴 ∈ ℕ → ¬ (2↑((𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴)
 
17-Nov-2021oddpwdclemdvds 10548 Lemma for oddpwdc 10552. A natural number is divisible by the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝐴 ∈ ℕ → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴)
 
17-Nov-2021pw2dvdseulemle 10545 Lemma for pw2dvdseu 10546. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑 → (2↑𝐴) ∥ 𝑁)    &   (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁)       (𝜑𝐴𝐵)
 
16-Nov-2021oddpwdclemdc 10551 Lemma for oddpwdc 10552. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
 
16-Nov-2021oddpwdclemodd 10550 Lemma for oddpwdc 10552. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.)
(𝐴 ∈ ℕ → ¬ 2 ∥ (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
 
16-Nov-2021oddpwdclemxy 10547 Lemma for oddpwdc 10552. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
 
16-Nov-2021pw2dvdseu 10546 A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
(𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
 
14-Nov-2021pw2dvds 10544 A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
(𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
 
14-Nov-2021pw2dvdslemn 10543 Lemma for pw2dvds 10544. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
 
14-Nov-2021dvdsdc 10203 Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
11-Nov-2021fz01or 10278 An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
(𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
 
11-Nov-2021muldivdirap 7795 Distribution of division over addition with a multiplication. (Contributed by Jim Kingdon, 11-Nov-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶)))
 
10-Nov-2021zeoxor 10268 An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁))
 
9-Nov-2021qlttri2 8726 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
8-Nov-2021dvdslelemd 10243 Lemma for dvdsle 10244. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
 
8-Nov-2021qabsord 9962 The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
 
8-Nov-2021qabsor 9961 The absolute value of a rational number is either that number or its negative. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝐴 ∈ ℚ → ((abs‘𝐴) = 𝐴 ∨ (abs‘𝐴) = -𝐴))
 
6-Nov-2021ibcval5 9690 Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Jim Kingdon, 6-Nov-2021.)
((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I , ℂ)‘𝑁) / (!‘𝐾)))
 
3-Nov-2021qavgle 9267 The average of two rational numbers is less than or equal to at least one of them. (Contributed by Jim Kingdon, 3-Nov-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))
 
31-Oct-2021nn0opth2d 9650 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 9649. (Contributed by Jim Kingdon, 31-Oct-2021.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℕ0)    &   (𝜑𝐷 ∈ ℕ0)       (𝜑 → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
31-Oct-2021nn0opthd 9649 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers 𝐴 and 𝐵 by (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3407 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℕ0)    &   (𝜑𝐷 ∈ ℕ0)       (𝜑 → ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
31-Oct-2021nn0opthlem2d 9648 Lemma for nn0opth2 9651. (Contributed by Jim Kingdon, 31-Oct-2021.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℕ0)    &   (𝜑𝐷 ∈ ℕ0)       (𝜑 → ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)))
 
31-Oct-2021nn0opthlem1d 9647 A rather pretty lemma for nn0opth2 9651. (Contributed by Jim Kingdon, 31-Oct-2021.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐶 ∈ ℕ0)       (𝜑 → (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶)))
 
31-Oct-2021nn0le2msqd 9646 The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.)
(𝜑𝐴 ∈ ℕ0)    &   (𝜑𝐵 ∈ ℕ0)       (𝜑 → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
 
28-Oct-2021mulle0r 8022 Multiplying a nonnegative number by a nonpositive number yields a nonpositive number. (Contributed by Jim Kingdon, 28-Oct-2021.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≤ 0 ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ≤ 0)
 
26-Oct-2021modqeqmodmin 9396 A rational number equals the difference of the rational number and a modulus modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (𝐴 mod 𝑀) = ((𝐴𝑀) mod 𝑀))
 
26-Oct-2021modqsubdir 9395 Distribute the modulo operation over a subtraction. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) ≤ (𝐴 mod 𝐶) ↔ ((𝐴𝐵) mod 𝐶) = ((𝐴 mod 𝐶) − (𝐵 mod 𝐶))))
 
26-Oct-2021modqdi 9394 Distribute multiplication over a modulo operation. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℚ ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
 
26-Oct-2021modqaddmulmod 9393 The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
 
26-Oct-2021modqmulmodr 9392 The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 · (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀))
 
25-Oct-2021modqmulmod 9391 The product of a rational number modulo a modulus and an integer equals the product of the rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) · 𝐵) mod 𝑀) = ((𝐴 · 𝐵) mod 𝑀))
 
25-Oct-2021q2submod 9387 If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
 
25-Oct-2021q2txmodxeq0 9386 Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.)
((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0)
 
25-Oct-2021modqsubmodmod 9385 The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴𝐵) mod 𝑀))
 
25-Oct-2021modqsubmod 9384 The difference of a number modulo a modulus and another number equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − 𝐵) mod 𝑀) = ((𝐴𝐵) mod 𝑀))
 
25-Oct-2021modqsub12d 9383 Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑𝐸 ∈ ℚ)    &   (𝜑 → 0 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))       (𝜑 → ((𝐴𝐶) mod 𝐸) = ((𝐵𝐷) mod 𝐸))
 
25-Oct-2021modqadd12d 9382 Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑𝐸 ∈ ℚ)    &   (𝜑 → 0 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))       (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
 
25-Oct-2021syldc 45 Syllogism deduction. Commuted form of syld 44. (Contributed by BJ, 25-Oct-2021.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜒𝜃))       (𝜓 → (𝜑𝜃))
 
25-Oct-2021syl11 31 A syllogism inference. Commuted form of an instance of syl 14. (Contributed by BJ, 25-Oct-2021.)
(𝜑 → (𝜓𝜒))    &   (𝜃𝜑)       (𝜓 → (𝜃𝜒))
 
24-Oct-2021ax-ddkcomp 10784 Axiom of Dedekind completeness for Dedekind real numbers: every inhabited upper-bounded located set of reals has a real upper bound. Ideally, this axiom should be "proved" as "axddkcomp" for the real numbers constructed from IZF, and then the axiom ax-ddkcomp 10784 should be used in place of construction specific results. In particular, axcaucvg 7066 should be proved from it. (Contributed by BJ, 24-Oct-2021.)
(((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 𝑦𝑥 ∧ ((𝐵𝑅 ∧ ∀𝑦𝐴 𝑦𝐵) → 𝑥𝐵)))
 
24-Oct-2021modqnegd 9381 Negation property of the modulo operation. (Contributed by Jim Kingdon, 24-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑 → 0 < 𝐶)    &   (𝜑 → (𝐴 mod 𝐶) = (𝐵 mod 𝐶))       (𝜑 → (-𝐴 mod 𝐶) = (-𝐵 mod 𝐶))
 
24-Oct-2021modqmul12d 9380 Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Jim Kingdon, 24-Oct-2021.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℤ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℤ)    &   (𝜑𝐸 ∈ ℚ)    &   (𝜑 → 0 < 𝐸)    &   (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))    &   (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))       (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
 
24-Oct-2021modqmul1 9379 Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℤ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑 → 0 < 𝐷)    &   (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))       (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
 
24-Oct-2021modqltm1p1mod 9378 If a number modulo a modulus is less than the modulus decreased by 1, the first number increased by 1 modulo the modulus equals the first number modulo the modulus, increased by 1. (Contributed by Jim Kingdon, 24-Oct-2021.)
(((𝐴 ∈ ℚ ∧ (𝐴 mod 𝑀) < (𝑀 − 1)) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + 1) mod 𝑀) = ((𝐴 mod 𝑀) + 1))
 
24-Oct-2021modqm1p1mod0 9377 If a number modulo a modulus equals the modulus decreased by 1, the first number increased by 1 modulo the modulus equals 0. (Contributed by Jim Kingdon, 24-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = (𝑀 − 1) → ((𝐴 + 1) mod 𝑀) = 0))
 
24-Oct-2021modqadd2mod 9376 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
 
24-Oct-2021qnegmod 9371 The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
 
23-Oct-2021modqmuladdnn0 9370 Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
((𝐴 ∈ ℕ0𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
 
23-Oct-2021modqmuladdim 9369 Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
 
23-Oct-2021modqmuladd 9368 Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by Jim Kingdon, 23-Oct-2021.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐵 ∈ (0[,)𝑀))    &   (𝜑𝑀 ∈ ℚ)    &   (𝜑 → 0 < 𝑀)       (𝜑 → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
 
23-Oct-2021mulqaddmodid 9366 The sum of a positive rational number less than an upper bound and the product of an integer and the upper bound is the positive rational number modulo the upper bound. (Contributed by Jim Kingdon, 23-Oct-2021.)
(((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℚ) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ∈ (0[,)𝑀))) → (((𝑁 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
 
23-Oct-2021modqaddmod 9365 The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the same modulus. (Contributed by Jim Kingdon, 23-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀))
 
22-Oct-2021modqaddabs 9364 Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶))
 
22-Oct-2021modqadd1 9363 Addition property of the modulo operation. (Contributed by Jim Kingdon, 22-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐷 ∈ ℚ)    &   (𝜑 → 0 < 𝐷)    &   (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))       (𝜑 → ((𝐴 + 𝐶) mod 𝐷) = ((𝐵 + 𝐶) mod 𝐷))
 
21-Oct-2021modqcyc2 9362 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 𝑁)) mod 𝐵) = (𝐴 mod 𝐵))
 
21-Oct-2021modqcyc 9361 The modulo operation is periodic. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 + (𝑁 · 𝐵)) mod 𝐵) = (𝐴 mod 𝐵))
 
21-Oct-2021modqabs2 9360 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) mod 𝐵) = (𝐴 mod 𝐵))
 
21-Oct-2021modqabs 9359 Absorption law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑 → 0 < 𝐵)    &   (𝜑𝐶 ∈ ℚ)    &   (𝜑𝐵𝐶)       (𝜑 → ((𝐴 mod 𝐵) mod 𝐶) = (𝐴 mod 𝐵))
 
21-Oct-2021q1mod 9358 Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
 
21-Oct-2021q0mod 9357 Special case: 0 modulo a positive real number is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
 
21-Oct-2021modqid2 9353 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 𝐴 ↔ (0 ≤ 𝐴𝐴 < 𝐵)))
 
21-Oct-2021modqid0 9352 A positive real number modulo itself is 0. (Contributed by Jim Kingdon, 21-Oct-2021.)
((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (𝑁 mod 𝑁) = 0)
 
21-Oct-2021modqid 9351 Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
(((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) → (𝐴 mod 𝐵) = 𝐴)
 
20-Oct-2021modqvalp1 9345 The value of the modulo operation (expressed with sum of denominator and nominator). (Contributed by Jim Kingdon, 20-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 + 𝐵) − (((⌊‘(𝐴 / 𝐵)) + 1) · 𝐵)) = (𝐴 mod 𝐵))
 
20-Oct-2021onunsnss 6383 Adding a singleton to create an ordinal. (Contributed by Jim Kingdon, 20-Oct-2021.)
((𝐵𝑉 ∧ (𝐴 ∪ {𝐵}) ∈ On) → 𝐵𝐴)
 
19-Oct-2021snon0 6387 An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.)
((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)
 
18-Oct-2021qdencn 10785 The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 10088 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
 
18-Oct-2021modqmulnn 9344 Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
 
18-Oct-2021intqfrac 9341 Break a number into its integer part and its fractional part. (Contributed by Jim Kingdon, 18-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 = ((⌊‘𝐴) + (𝐴 mod 1)))
 
18-Oct-2021flqmod 9340 The floor function expressed in terms of the modulo operation. (Contributed by Jim Kingdon, 18-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) = (𝐴 − (𝐴 mod 1)))
 
18-Oct-2021modqfrac 9339 The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 mod 1) = (𝐴 − (⌊‘𝐴)))
 
18-Oct-2021modqdifz 9338 The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ)
 
18-Oct-2021modqdiffl 9337 The modulo operation differs from 𝐴 by an integer multiple of 𝐵. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
 
18-Oct-2021modqelico 9336 Modular reduction produces a half-open interval. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ (0[,)𝐵))
 
18-Oct-2021modqlt 9335 The modulo operation is less than its second argument. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) < 𝐵)
 
18-Oct-2021modqge0 9334 The modulo operation is nonnegative. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 0 ≤ (𝐴 mod 𝐵))
 
18-Oct-2021negqmod0 9333 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))
 
18-Oct-2021mulqmod0 9332 The product of an integer and a positive rational number is 0 modulo the positive real number. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 · 𝑀) mod 𝑀) = 0)
 
18-Oct-2021flqdiv 9323 Cancellation of the embedded floor of a real divided by an integer. (Contributed by Jim Kingdon, 18-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑁)) = (⌊‘(𝐴 / 𝑁)))
 
18-Oct-2021intqfrac2 9321 Decompose a real into integer and fractional parts. (Contributed by Jim Kingdon, 18-Oct-2021.)
𝑍 = (⌊‘𝐴)    &   𝐹 = (𝐴𝑍)       (𝐴 ∈ ℚ → (0 ≤ 𝐹𝐹 < 1 ∧ 𝐴 = (𝑍 + 𝐹)))
 
17-Oct-2021modq0 9331 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jim Kingdon, 17-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))
 
16-Oct-2021modqcld 9330 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
(𝜑𝐴 ∈ ℚ)    &   (𝜑𝐵 ∈ ℚ)    &   (𝜑 → 0 < 𝐵)       (𝜑 → (𝐴 mod 𝐵) ∈ ℚ)
 
16-Oct-2021flqpmodeq 9329 Partition of a division into its integer part and the remainder. (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)
 
16-Oct-2021modqcl 9328 Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ ℚ)
 
16-Oct-2021modqvalr 9327 The value of the modulo operation (multiplication in reversed order). (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
 
16-Oct-2021modqval 9326 The value of the modulo operation. The modulo congruence notation of number theory, 𝐽𝐾 (modulo 𝑁), can be expressed in our notation as (𝐽 mod 𝑁) = (𝐾 mod 𝑁). Definition 1 in Knuth, The Art of Computer Programming, Vol. I (1972), p. 38. Knuth uses "mod" for the operation and "modulo" for the congruence. Unlike Knuth, we restrict the second argument to positive numbers to simplify certain theorems. (This also gives us future flexibility to extend it to any one of several different conventions for a zero or negative second argument, should there be an advantage in doing so.) As with flqcl 9277 we only prove this for rationals although other particular kinds of real numbers may be possible. (Contributed by Jim Kingdon, 16-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
 
15-Oct-2021qdenre 10088 The rational numbers are dense in : any real number can be approximated with arbitrary precision by a rational number. For order theoretic density, see qbtwnre 9265. (Contributed by BJ, 15-Oct-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (abs‘(𝑥𝐴)) < 𝐵)
 
14-Oct-2021qbtwnrelemcalc 9264 Lemma for qbtwnre 9265. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑀 < (𝐴 · (2 · 𝑁)))    &   (𝜑 → (1 / 𝑁) < (𝐵𝐴))       (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)
 
13-Oct-2021rebtwn2z 9263 A real number can be bounded by integers above and below which are two apart.

The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.)

(𝐴 ∈ ℝ → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
 
13-Oct-2021rebtwn2zlemshrink 9262 Lemma for rebtwn2z 9263. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
 
13-Oct-2021rebtwn2zlemstep 9261 Lemma for rebtwn2z 9263. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
 
11-Oct-2021flqeqceilz 9320 A rational number is an integer iff its floor equals its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
 
11-Oct-2021flqleceil 9319 The floor of a rational number is less than or equal to its ceiling. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ≤ (⌈‘𝐴))
 
11-Oct-2021ceilqidz 9318 A rational number equals its ceiling iff it is an integer. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
 
11-Oct-2021ceilqle 9316 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → (⌈‘𝐴) ≤ 𝐵)
 
11-Oct-2021ceiqle 9315 The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → -(⌊‘-𝐴) ≤ 𝐵)
 
11-Oct-2021ceilqm1lt 9314 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → ((⌈‘𝐴) − 1) < 𝐴)
 
11-Oct-2021ceiqm1l 9313 One less than the ceiling of a real number is strictly less than that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (-(⌊‘-𝐴) − 1) < 𝐴)
 
11-Oct-2021ceilqge 9312 The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 ≤ (⌈‘𝐴))
 
11-Oct-2021ceiqge 9311 The ceiling of a real number is greater than or equal to that number. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 ≤ -(⌊‘-𝐴))
 
11-Oct-2021ceilqcl 9310 Closure of the ceiling function. (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → (⌈‘𝐴) ∈ ℤ)
 
11-Oct-2021ceiqcl 9309 The ceiling function returns an integer (closure law). (Contributed by Jim Kingdon, 11-Oct-2021.)
(𝐴 ∈ ℚ → -(⌊‘-𝐴) ∈ ℤ)
 
11-Oct-2021qdceq 9256 Equality of rationals is decidable. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → DECID 𝐴 = 𝐵)
 
11-Oct-2021qltlen 8725 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 7730 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
10-Oct-2021ceilqval 9308 The value of the ceiling function. (Contributed by Jim Kingdon, 10-Oct-2021.)
(𝐴 ∈ ℚ → (⌈‘𝐴) = -(⌊‘-𝐴))
 
10-Oct-2021flqmulnn0 9301 Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
 
10-Oct-2021flqzadd 9300 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℚ) → (⌊‘(𝑁 + 𝐴)) = (𝑁 + (⌊‘𝐴)))
 
10-Oct-2021flqaddz 9299 An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
 
10-Oct-2021flqge1nn 9296 The floor of a number greater than or equal to 1 is a positive integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
 
10-Oct-2021flqge0nn0 9295 The floor of a number greater than or equal to 0 is a nonnegative integer. (Contributed by Jim Kingdon, 10-Oct-2021.)
((𝐴 ∈ ℚ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
 
10-Oct-20214ap0 8138 The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
4 # 0
 
10-Oct-20213ap0 8135 The number 3 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.)
3 # 0
 
9-Oct-2021flqbi2 9293 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝑁 ∈ ℤ ∧ 𝐹 ∈ ℚ) → ((⌊‘(𝑁 + 𝐹)) = 𝑁 ↔ (0 ≤ 𝐹𝐹 < 1)))
 
9-Oct-2021flqbi 9292 A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) = 𝐵 ↔ (𝐵𝐴𝐴 < (𝐵 + 1))))
 
9-Oct-2021flqword2 9291 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴𝐵) → (⌊‘𝐵) ∈ (ℤ‘(⌊‘𝐴)))
 
9-Oct-2021flqwordi 9290 Ordering relationship for the greatest integer function. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐴𝐵) → (⌊‘𝐴) ≤ (⌊‘𝐵))
 
9-Oct-2021flqltnz 9289 If A is not an integer, then the floor of A is less than A. (Contributed by Jim Kingdon, 9-Oct-2021.)
((𝐴 ∈ ℚ ∧ ¬ 𝐴 ∈ ℤ) → (⌊‘𝐴) < 𝐴)
 
9-Oct-2021flqidz 9288 A rational number equals its floor iff it is an integer. (Contributed by Jim Kingdon, 9-Oct-2021.)
(𝐴 ∈ ℚ → ((⌊‘𝐴) = 𝐴𝐴 ∈ ℤ))
 
8-Oct-2021flqidm 9287 The floor function is idempotent. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘(⌊‘𝐴)) = (⌊‘𝐴))
 
8-Oct-2021flqlt 9285 The floor function value is less than the next integer. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (⌊‘𝐴) < 𝐵))
 
8-Oct-2021flqge 9284 The floor function value is the greatest integer less than or equal to its argument. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
 
8-Oct-2021qfracge0 9283 The fractional part of a rational number is nonnegative. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → 0 ≤ (𝐴 − (⌊‘𝐴)))
 
8-Oct-2021qfraclt1 9282 The fractional part of a rational number is less than one. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (𝐴 − (⌊‘𝐴)) < 1)
 
8-Oct-2021flqltp1 9281 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
 
8-Oct-2021flqle 9280 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
 
8-Oct-2021flqcld 9279 The floor (greatest integer) function is an integer (closure law). (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝜑𝐴 ∈ ℚ)       (𝜑 → (⌊‘𝐴) ∈ ℤ)
 
8-Oct-2021flqlelt 9278 A basic property of the floor (greatest integer) function. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → ((⌊‘𝐴) ≤ 𝐴𝐴 < ((⌊‘𝐴) + 1)))
 
8-Oct-2021flqcl 9277 The floor (greatest integer) function yields an integer when applied to a rational (closure law). It would presumably be possible to prove a similar result for some real numbers (for example, those apart from any integer), but not real numbers in general. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
 
8-Oct-2021qbtwnz 9260 There is a unique greatest integer less than or equal to a rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
(𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
8-Oct-2021qbtwnzlemex 9259 Lemma for qbtwnz 9260. Existence of the integer.

The proof starts by finding two integers which are less than and greater than the given rational number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on rational number trichotomy, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

(𝐴 ∈ ℚ → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
8-Oct-2021qbtwnzlemshrink 9258 Lemma for qbtwnz 9260. Shrinking the range around the given rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐽 ∈ ℕ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
 
8-Oct-2021qbtwnzlemstep 9257 Lemma for qbtwnz 9260. Induction step. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐾)))
 
8-Oct-2021qltnle 9255 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 
7-Oct-2021qlelttric 9254 Rational trichotomy. (Contributed by Jim Kingdon, 7-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵𝐵 < 𝐴))
 
6-Oct-2021qletric 9253 Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵𝐵𝐴))
 
6-Oct-2021qtri3or 9252 Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
 
3-Oct-2021reg3exmid 4322 If any inhabited set satisfying df-wetr 4089 for E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.)
(( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)       (𝜑 ∨ ¬ 𝜑)
 
3-Oct-2021reg3exmidlemwe 4321 Lemma for reg3exmid 4322. Our counterexample 𝐴 satisfies We. (Contributed by Jim Kingdon, 3-Oct-2021.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}        E We 𝐴
 
2-Oct-2021sqrt2irrap 10558 The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 10541. (Contributed by Jim Kingdon, 2-Oct-2021.)
(𝑄 ∈ ℚ → (√‘2) # 𝑄)
 
2-Oct-2021sqrt2irraplemnn 10557 Lemma for sqrt2irrap 10558. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
 
2-Oct-2021reg2exmid 4279 If any inhabited set has a minimal element (when expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)       (𝜑 ∨ ¬ 𝜑)
 
2-Oct-2021reg2exmidlema 4277 Lemma for reg2exmid 4279. If 𝐴 has a minimal element (expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}       (∃𝑢𝐴𝑣𝐴 𝑢𝑣 → (𝜑 ∨ ¬ 𝜑))
 
30-Sep-2021fin0or 6370 A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 = ∅ ∨ ∃𝑥 𝑥𝐴))
 
30-Sep-2021wessep 4320 A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
(( E We 𝐴𝐵𝐴) → E We 𝐵)
 
28-Sep-2021frind 4107 Induction over a well-founded set. (Contributed by Jim Kingdon, 28-Sep-2021.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   ((𝜒𝑥𝐴) → (∀𝑦𝐴 (𝑦𝑅𝑥𝜓) → 𝜑))    &   (𝜒𝑅 Fr 𝐴)    &   (𝜒𝐴𝑉)       ((𝜒𝑥𝐴) → 𝜑)
 
26-Sep-2021wetriext 4319 A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.)
(𝜑𝑅 We 𝐴)    &   (𝜑𝐴𝑉)    &   (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐴)    &   (𝜑 → ∀𝑧𝐴 (𝑧𝑅𝐵𝑧𝑅𝐶))       (𝜑𝐵 = 𝐶)
 
25-Sep-2021nnwetri 6382 A natural number is well-ordered by E. More specifically, this order both satisfies We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
(𝐴 ∈ ω → ( E We 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
 
23-Sep-2021wepo 4114 A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
((𝑅 We 𝐴𝐴𝑉) → 𝑅 Po 𝐴)
 
23-Sep-2021df-wetr 4089 Define the well-ordering predicate. It is unusual to define "well-ordering" in the absence of excluded middle, but we mean an ordering which is like the ordering which we have for ordinals (for example, it does not entail trichotomy because ordinals don't have that as seen at ordtriexmid 4265). Given excluded middle, well-ordering is usually defined to require trichotomy (and the defintion of Fr is typically also different). (Contributed by Mario Carneiro and Jim Kingdon, 23-Sep-2021.)
(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
 
22-Sep-2021frforeq3 4102 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
(𝑆 = 𝑇 → ( FrFor 𝑅𝐴𝑆 ↔ FrFor 𝑅𝐴𝑇))
 
22-Sep-2021frforeq2 4100 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
(𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇))
 
22-Sep-2021frforeq1 4098 Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
(𝑅 = 𝑆 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑆𝐴𝑇))
 
22-Sep-2021df-frfor 4086 Define the well-founded relation predicate where 𝐴 might be a proper class. By passing in 𝑆 we allow it potentially to be a proper class rather than a set. (Contributed by Jim Kingdon and Mario Carneiro, 22-Sep-2021.)
( FrFor 𝑅𝐴𝑆 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑆) → 𝑥𝑆) → 𝐴𝑆))
 
21-Sep-2021frirrg 4105 A well-founded relation is irreflexive. This is the case where 𝐴 exists. (Contributed by Jim Kingdon, 21-Sep-2021.)
((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)
 
21-Sep-2021df-frind 4087 Define the well-founded relation predicate. In the presence of excluded middle, there are a variety of equivalent ways to define this. In our case, this definition, in terms of an inductive principle, works better than one along the lines of "there is an element which is minimal when A is ordered by R". Because 𝑠 is constrained to be a set (not a proper class) here, sometimes it may be necessary to use FrFor directly rather than via Fr. (Contributed by Jim Kingdon and Mario Carneiro, 21-Sep-2021.)
(𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
 
17-Sep-2021ontr2exmid 4268 An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.)
𝑥 ∈ On ∀𝑦𝑧 ∈ On ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)       (𝜑 ∨ ¬ 𝜑)
 
16-Sep-2021decrmac 8534 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐺) = 𝐸    &   ((𝐵 · 𝑃) + 𝑁) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
16-Sep-2021decrmanc 8533 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑃 ∈ ℕ0    &   (𝐴 · 𝑃) = 𝐸    &   ((𝐵 · 𝑃) + 𝑁) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
16-Sep-2021nnsseleq 6102 For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 
15-Sep-2021fientri3 6381 Trichotomy of dominance for finite sets. (Contributed by Jim Kingdon, 15-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵𝐵𝐴))
 
15-Sep-2021nntri2or2 6099 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
 
14-Sep-2021findcard2sd 6376 Deduction form of finite set induction . (Contributed by Jim Kingdon, 14-Sep-2021.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))    &   (𝜑𝐴 ∈ Fin)       (𝜑𝜂)
 
13-Sep-2021php5fin 6366 A finite set is not equinumerous to a set which adds one element. (Contributed by Jim Kingdon, 13-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) → ¬ 𝐴 ≈ (𝐴 ∪ {𝐵}))
 
13-Sep-2021fiunsnnn 6365 Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)
 
12-Sep-2021fisbth 6367 Schroeder-Bernstein Theorem for finite sets. (Contributed by Jim Kingdon, 12-Sep-2021.)
(((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 
11-Sep-2021diffisn 6377 Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ∈ Fin)
 
10-Sep-2021fin0 6369 A nonempty finite set has at least one element. (Contributed by Jim Kingdon, 10-Sep-2021.)
(𝐴 ∈ Fin → (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴))
 
9-Sep-2021fidifsnid 6356 If we remove a single element from a finite set then put it back in, we end up with the original finite set. This strengthens difsnss 3531 from subset to equality when the set is finite. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
9-Sep-2021fidifsnen 6355 All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.)
((𝑋 ∈ Fin ∧ 𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
 
8-Sep-20213dvdsdec 10264 A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g. 𝐴 = 𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (3 ∥ 𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵))
 
8-Sep-20211lt10 8615 1 is less than 10. (Contributed by NM, 7-Nov-2012.) (Revised by Mario Carneiro, 9-Mar-2015.) (Revised by AV, 8-Sep-2021.)
1 < 10
 
8-Sep-20212lt10 8614 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
2 < 10
 
8-Sep-20213lt10 8613 3 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
3 < 10
 
8-Sep-20214lt10 8612 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
4 < 10
 
8-Sep-20215lt10 8611 5 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
5 < 10
 
8-Sep-20216lt10 8610 6 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
6 < 10
 
8-Sep-20217lt10 8609 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.)
7 < 10
 
8-Sep-20218lt10 8608 8 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
8 < 10
 
8-Sep-20219lt10 8607 9 is less than 10. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 8-Sep-2021.)
9 < 10
 
8-Sep-2021decltdi 8515 Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶 < 𝐴𝐵
 
8-Sep-2021decleh 8511 Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶𝐵𝐷
 
8-Sep-2021decle 8510 Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐵𝐶       𝐴𝐵𝐴𝐶
 
8-Sep-20213declth 8508 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 ≤ 9    &   𝐸 ≤ 9       𝐴𝐶𝐸 < 𝐵𝐷𝐹
 
8-Sep-2021declth 8506 Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 ≤ 9    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷
 
8-Sep-2021le9lt10 8503 A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐴 ≤ 9       𝐴 < 10
 
8-Sep-202110re 8495 The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
10 ∈ ℝ
 
8-Sep-202110pos 8493 The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.)
0 < 10
 
8-Sep-2021diffifi 6378 Subtracting one finite set from another produces a finite set. (Contributed by Jim Kingdon, 8-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐵𝐴) → (𝐴𝐵) ∈ Fin)
 
8-Sep-2021diffitest 6371 If subtracting any set from a finite set gives a finite set, any proposition of the form ¬ 𝜑 is decidable. This is not a proof of full excluded middle, but it is close enough to show we won't be able to prove 𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin. (Contributed by Jim Kingdon, 8-Sep-2021.)
𝑎 ∈ Fin ∀𝑏(𝑎𝑏) ∈ Fin       𝜑 ∨ ¬ ¬ 𝜑)
 
6-Sep-20219t11e99 8606 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
(9 · 11) = 99
 
6-Sep-20218t6e48 8595 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 · 6) = 48
 
6-Sep-20218t5e40 8594 8 times 5 equals 40. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 · 5) = 40
 
6-Sep-20216t6e36 8584 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 · 6) = 36
 
6-Sep-20216t5e30 8583 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 · 5) = 30
 
6-Sep-20215t5e25 8579 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 5) = 25
 
6-Sep-20215t4e20 8578 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 4) = 20
 
6-Sep-20215t3e15 8577 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(5 · 3) = 15
 
6-Sep-202110m1e9 8572 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.)
(10 − 1) = 9
 
6-Sep-202110p10e20 8571 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 10) = 20
 
6-Sep-20219p2e11 8563 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(9 + 2) = 11
 
6-Sep-20218p3e11 8557 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(8 + 3) = 11
 
6-Sep-20218p2e10 8556 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(8 + 2) = 10
 
6-Sep-20217p4e11 8552 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(7 + 4) = 11
 
6-Sep-20217p3e10 8551 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(7 + 3) = 10
 
6-Sep-20216p5e11 8549 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(6 + 5) = 11
 
6-Sep-20216p4e10 8548 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(6 + 4) = 10
 
6-Sep-20215p5e10 8547 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
(5 + 5) = 10
 
6-Sep-2021decmul10add 8545 A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑀 ∈ ℕ0    &   𝐸 = (𝑀 · 𝐴)    &   𝐹 = (𝑀 · 𝐵)       (𝑀 · 𝐴𝐵) = (𝐸0 + 𝐹)
 
6-Sep-2021decmul2c 8542 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝑃 · 𝐴) + 𝐸) = 𝐶    &   (𝑃 · 𝐵) = 𝐸𝐷       (𝑃 · 𝑁) = 𝐶𝐷
 
6-Sep-2021decmul1c 8541 The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐸) = 𝐶    &   (𝐵 · 𝑃) = 𝐸𝐷       (𝑁 · 𝑃) = 𝐶𝐷
 
6-Sep-2021decmul1 8540 The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝑃 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 = 𝐴𝐵    &   𝐷 ∈ ℕ0    &   (𝐴 · 𝑃) = 𝐶    &   (𝐵 · 𝑃) = 𝐷       (𝑁 · 𝑃) = 𝐶𝐷
 
6-Sep-2021decsubi 8539 Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   (𝐵𝑁) = 𝐶       (𝑀𝑁) = 𝐴𝐶
 
6-Sep-2021decaddci2 8538 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝑁 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   (𝐴 + 1) = 𝐷    &   (𝐵 + 𝑁) = 10       (𝑀 + 𝑁) = 𝐷0
 
6-Sep-2021decaddc2 8532 Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   (𝐵 + 𝐷) = 10       (𝑀 + 𝑁) = 𝐸0
 
6-Sep-2021decaddc 8531 Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   ((𝐴 + 𝐶) + 1) = 𝐸    &   𝐹 ∈ ℕ0    &   (𝐵 + 𝐷) = 1𝐹       (𝑀 + 𝑁) = 𝐸𝐹
 
6-Sep-2021decadd 8530 Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   (𝐴 + 𝐶) = 𝐸    &   (𝐵 + 𝐷) = 𝐹       (𝑀 + 𝑁) = 𝐸𝐹
 
6-Sep-2021decma2c 8529 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸    &   ((𝑃 · 𝐵) + 𝐷) = 𝐺𝐹       ((𝑃 · 𝑀) + 𝑁) = 𝐸𝐹
 
6-Sep-2021decmac 8528 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐺 ∈ ℕ0    &   ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
6-Sep-2021decma 8527 Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝑀 = 𝐴𝐵    &   𝑁 = 𝐶𝐷    &   𝑃 ∈ ℕ0    &   ((𝐴 · 𝑃) + 𝐶) = 𝐸    &   ((𝐵 · 𝑃) + 𝐷) = 𝐹       ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
 
6-Sep-2021dec10p 8519 Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(10 + 𝐴) = 1𝐴
 
6-Sep-2021decsucc 8517 The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   (𝐴 + 1) = 𝐵    &   𝑁 = 𝐴9       (𝑁 + 1) = 𝐵0
 
6-Sep-2021declti 8514 Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 < 10       𝐶 < 𝐴𝐵
 
6-Sep-20213decltc 8509 Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐸 ∈ ℕ0    &   𝐹 ∈ ℕ0    &   𝐴 < 𝐵    &   𝐶 < 10    &   𝐸 < 10       𝐴𝐶𝐸 < 𝐵𝐷𝐹
 
6-Sep-2021decsuc 8507 The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   (𝐵 + 1) = 𝐶    &   𝑁 = 𝐴𝐵       (𝑁 + 1) = 𝐴𝐶
 
6-Sep-2021decltc 8505 Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐷 ∈ ℕ0    &   𝐶 < 10    &   𝐴 < 𝐵       𝐴𝐶 < 𝐵𝐷
 
6-Sep-2021declt 8504 Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ    &   𝐵 < 𝐶       𝐴𝐵 < 𝐴𝐶
 
6-Sep-2021decnncl2 8500 Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ       𝐴0 ∈ ℕ
 
6-Sep-2021dec0h 8498 Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       𝐴 = 0𝐴
 
6-Sep-2021dec0u 8497 Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0       (10 · 𝐴) = 𝐴0
 
6-Sep-2021decnncl 8496 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ       𝐴𝐵 ∈ ℕ
 
6-Sep-202110nn0 8494 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ0
 
6-Sep-202110nn 8492 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.)
10 ∈ ℕ
 
6-Sep-2021deccl 8491 Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵 ∈ ℕ0
 
6-Sep-2021deceq2 8482 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐶𝐴 = 𝐶𝐵)
 
6-Sep-2021deceq1 8481 Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
(𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
 
6-Sep-2021phpelm 6352 Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
 
5-Sep-2021ex-gcd 10568 Example for df-gcd 10339. (Contributed by AV, 5-Sep-2021.)
(-6 gcd 9) = 3
 
5-Sep-2021fidceq 6354 Equality of members of a finite set is decidable. This may be counterintuitive: cannot any two sets be elements of a finite set? Well, to show, for example, that {𝐵, 𝐶} is finite would require showing it is equinumerous to 1𝑜 or to 2𝑜 but to show that you'd need to know 𝐵 = 𝐶 or ¬ 𝐵 = 𝐶, respectively. (Contributed by Jim Kingdon, 5-Sep-2021.)
((𝐴 ∈ Fin ∧ 𝐵𝐴𝐶𝐴) → DECID 𝐵 = 𝐶)
 
5-Sep-2021phplem4on 6353 Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
 
4-Sep-2021ex-bc 10566 Example for df-bc 9675. (Contributed by AV, 4-Sep-2021.)
(5C3) = 10
 
4-Sep-2021ex-fac 10565 Example for df-fac 9653. (Contributed by AV, 4-Sep-2021.)
(!‘5) = 120
 
4-Sep-2021ex-ceil 10564 Example for df-ceil 9275. (Contributed by AV, 4-Sep-2021.)
((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)
 
4-Sep-20215t2e10 8576 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.)
(5 · 2) = 10
 
3-Sep-20210elsucexmid 4308 If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
𝑥 ∈ On ∅ ∈ suc 𝑥       (𝜑 ∨ ¬ 𝜑)
 
1-Sep-2021php5dom 6349 A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
(𝐴 ∈ ω → ¬ suc 𝐴𝐴)
 
1-Sep-2021phplem4dom 6348 Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))
 
1-Sep-2021snnen2oprc 6346 A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a set, see snnen2og 6345. (Contributed by Jim Kingdon, 1-Sep-2021.)
𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜)
 
1-Sep-2021snnen2og 6345 A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6346. (Contributed by Jim Kingdon, 1-Sep-2021.)
(𝐴𝑉 → ¬ {𝐴} ≈ 2𝑜)
 
1-Sep-2021phplem3g 6342 A natural number is equinumerous to its successor minus any element of the successor. Version of phplem3 6340 with unnecessary hypotheses removed. (Contributed by Jim Kingdon, 1-Sep-2021.)
((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
 
31-Aug-2021nndifsnid 6103 If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3531 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
 
30-Aug-2021carden2bex 6458 If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
 
30-Aug-2021cardval3ex 6454 The value of (card‘𝐴). (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
 
30-Aug-2021cardcl 6450 The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
 
30-Aug-2021onintrab2im 4262 An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
(∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ On)
 
30-Aug-2021onintonm 4261 The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
((𝐴 ⊆ On ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ On)
 
29-Aug-2021onintexmid 4315 If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
((𝑦 ⊆ On ∧ ∃𝑥 𝑥𝑦) → 𝑦𝑦)       (𝜑 ∨ ¬ 𝜑)
 
29-Aug-2021ordtri2or2exmid 4314 Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.)
𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑦𝑥)       (𝜑 ∨ ¬ 𝜑)
 
29-Aug-2021ordtri2or2exmidlem 4269 A set which is 2𝑜 if 𝜑 or if ¬ 𝜑 is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.)
{𝑥 ∈ {∅, {∅}} ∣ 𝜑} ∈ On
 
29-Aug-20212ordpr 4267 Version of 2on 6032 with the definition of 2𝑜 expanded and expressed in terms of Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
Ord {∅, {∅}}
 
25-Aug-2021nnap0d 8084 A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 # 0)
 
24-Aug-2021climcaucn 10188 A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 10184 but adds the part that (𝐹𝑘) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
𝑍 = (ℤ𝑀)       ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
 
24-Aug-2021climcvg1nlem 10186 Lemma for climcvg1n 10187. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
(𝜑𝐹:ℕ⟶ℂ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))    &   𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))    &   𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))    &   𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))       (𝜑𝐹 ∈ dom ⇝ )
 
23-Aug-2021climcvg1n 10187 A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
(𝜑𝐹:ℕ⟶ℂ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))       (𝜑𝐹 ∈ dom ⇝ )
 
23-Aug-2021climrecvg1n 10185 A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))       (𝜑𝐹 ∈ dom ⇝ )
 
22-Aug-2021climserile 10183 The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by Jim Kingdon, 22-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ 𝐴)
 
22-Aug-2021iserige0 10181 The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Jim Kingdon, 22-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ 𝐴)
 
22-Aug-2021iserile 10180 Comparison of the limits of two infinite series. (Contributed by Jim Kingdon, 22-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)    &   (𝜑 → seq𝑀( + , 𝐺, ℂ) ⇝ 𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑𝐴𝐵)
 
22-Aug-2021serile 9474 Comparison of partial sums of two infinite series of reals. (Contributed by Jim Kingdon, 22-Aug-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹, ℂ)‘𝑁) ≤ (seq𝑀( + , 𝐺, ℂ)‘𝑁))
 
22-Aug-2021serige0 9473 A finite sum of nonnegative terms is nonnegative. (Contributed by Jim Kingdon, 22-Aug-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ (seq𝑀( + , 𝐹, ℂ)‘𝑁))
 
21-Aug-2021divalgmodcl 10328 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 10327. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
 
21-Aug-2021divalgmod 10327 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 10326 and divalgb 10325). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
 
21-Aug-2021clim2iser2 10176 The limit of an infinite series with an initial segment added. (Contributed by Jim Kingdon, 21-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ 𝐴)       (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ (𝐴 + (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
 
21-Aug-2021iseqdistr 9470 The distributive property for series. (Contributed by Jim Kingdon, 21-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))    &   (𝜑𝑆𝑉)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   (𝜑𝐶𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
 
21-Aug-2021iseqhomo 9468 Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 21-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   (𝜑𝑆𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)       (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
 
20-Aug-2021oddprmge3 10516 An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
 
20-Aug-2021oddprmgt2 10515 An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.)
(𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
 
20-Aug-2021clim2iser 10175 The limit of an infinite series with an initial segment removed. (Contributed by Jim Kingdon, 20-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹, ℂ) ⇝ 𝐴)       (𝜑 → seq(𝑁 + 1)( + , 𝐹, ℂ) ⇝ (𝐴 − (seq𝑀( + , 𝐹, ℂ)‘𝑁)))
 
20-Aug-2021iseqex 9433 Existence of the sequence builder operation. (Contributed by Jim Kingdon, 20-Aug-2021.)
seq𝑀( + , 𝐹, 𝑆) ∈ V
 
20-Aug-2021frecex 6004 Finite recursion produces a set. (Contributed by Jim Kingdon, 20-Aug-2021.)
frec(𝐹, 𝐴) ∈ V
 
20-Aug-2021tfrfun 5978 Transfinite recursion produces a function. (Contributed by Jim Kingdon, 20-Aug-2021.)
Fun recs(𝐹)
 
19-Aug-2021modremain 10329 The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
 
19-Aug-2021iserclim0 10144 The zero series converges to zero. (Contributed by Jim Kingdon, 19-Aug-2021.)
(𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0}), ℂ) ⇝ 0)
 
19-Aug-2021shftval4g 9725 Value of a sequence shifted by -𝐴. (Contributed by Jim Kingdon, 19-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
 
19-Aug-2021iser0f 9472 A zero-valued infinite series is equal to the constant zero function. (Contributed by Jim Kingdon, 19-Aug-2021.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( + , (𝑍 × {0}), ℂ) = (𝑍 × {0}))
 
19-Aug-2021iser0 9471 The value of the partial sums in a zero-valued infinite series. (Contributed by Jim Kingdon, 19-Aug-2021.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}), ℂ)‘𝑁) = 0)
 
19-Aug-2021ovexg 5559 Evaluating a set operation at two sets gives a set. (Contributed by Jim Kingdon, 19-Aug-2021.)
((𝐴𝑉𝐹𝑊𝐵𝑋) → (𝐴𝐹𝐵) ∈ V)
 
18-Aug-2021iseqid3s 9466 A sequence that consists of zeroes up to 𝑁 sums to zero at 𝑁. In this case by "zero" we mean whatever the identity 𝑍 is for the operation +). (Contributed by Jim Kingdon, 18-Aug-2021.)
(𝜑 → (𝑍 + 𝑍) = 𝑍)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) = 𝑍)    &   (𝜑𝑍𝑆)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = 𝑍)
 
18-Aug-2021iseqid3 9465 A sequence that consists entirely of zeroes (or whatever the identity 𝑍 is for operation +) sums to zero. (Contributed by Jim Kingdon, 18-Aug-2021.)
(𝜑 → (𝑍 + 𝑍) = 𝑍)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = 𝑍)    &   (𝜑𝑍𝑉)       (𝜑 → (seq𝑀( + , 𝐹, {𝑍})‘𝑁) = 𝑍)
 
18-Aug-2021iseqss 9446 Specifying a larger universe for seq. As long as 𝐹 and + are closed over 𝑆, then any set which contains 𝑆 can be used as the last argument to seq. This theorem does not allow 𝑇 to be a proper class, however. It also currently requires that + be closed over 𝑇 (as well as 𝑆). (Contributed by Jim Kingdon, 18-Aug-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑇𝑉)    &   (𝜑𝑆𝑇)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))
 
17-Aug-2021iseqcaopr 9462 The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Jim Kingdon, 17-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))    &   (𝜑𝑆𝑉)       (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
 
17-Aug-2021declei 8512 Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0    &   𝐶 ≤ 9       𝐶𝐴𝐵
 
16-Aug-2021oddge22np1 10281 An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
(𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
 
16-Aug-2021iseqcaopr3 9460 Lemma for iseqcaopr2 . (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))    &   ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))    &   (𝜑𝑆𝑉)       (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
 
16-Aug-2021iseq1p 9459 Removing the first term from a sequence. (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑆𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = ((𝐹𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))
 
16-Aug-2021iseqsplit 9458 Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.)
((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))    &   (𝜑𝑆𝑉)    &   (𝜑𝑀 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)       (𝜑 → (seq𝐾( + , 𝐹, 𝑆)‘𝑁) = ((seq𝐾( + , 𝐹, 𝑆)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹, 𝑆)‘𝑁)))
 
15-Aug-2021n2dvdsm1 10313 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
¬ 2 ∥ -1
 
15-Aug-2021shftfibg 9708 Value of a fiber of the relation 𝐹. (Contributed by Jim Kingdon, 15-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 
15-Aug-2021ovshftex 9707 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
((𝐹𝑉𝐴 ∈ ℂ) → (𝐹 shift 𝐴) ∈ V)
 
15-Aug-2021isermono 9457 The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ ℝ)    &   ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝐹𝑥))       (𝜑 → (seq𝑀( + , 𝐹, ℝ)‘𝐾) ≤ (seq𝑀( + , 𝐹, ℝ)‘𝑁))
 
15-Aug-2021iserf 9453 An infinite series of complex terms is a function from to . (Contributed by Jim Kingdon, 15-Aug-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
 
15-Aug-2021iseqshft2 9452 Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐾 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
 
15-Aug-2021iseqfeq 9451 Equality of sequences. (Contributed by Jim Kingdon, 15-Aug-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐺𝑘))    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆))
 
13-Aug-2021absdivapd 10081 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
13-Aug-2021absrpclapd 10074 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (abs‘𝐴) ∈ ℝ+)
 
13-Aug-2021absdivapzi 10040 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
13-Aug-2021absgt0ap 9985 The absolute value of a number apart from zero is positive. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ 0 < (abs‘𝐴)))
 
13-Aug-2021recvalap 9983 Reciprocal expressed with a real denominator. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) = ((∗‘𝐴) / ((abs‘𝐴)↑2)))
 
13-Aug-2021sqap0 9542 A number is apart from zero iff its square is apart from zero. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝐴 ∈ ℂ → ((𝐴↑2) # 0 ↔ 𝐴 # 0))
 
13-Aug-2021leltapd 7737 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 < 𝐵𝐵 # 𝐴))
 
13-Aug-2021leltap 7724 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵 # 𝐴))
 
12-Aug-2021evennn2n 10283 A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
 
12-Aug-2021evennn02n 10282 A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
 
12-Aug-2021abssubap0 9976 If the absolute value of a complex number is less than a real, its difference from the real is apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵𝐴) # 0)
 
12-Aug-2021ltabs 9973 A number which is less than its absolute value is negative. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
 
12-Aug-2021absext 9949 Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
 
12-Aug-2021sq11ap 9639 Analogue to sq11 9548 but for apartness. (Contributed by Jim Kingdon, 12-Aug-2021.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) # (𝐵↑2) ↔ 𝐴 # 𝐵))
 
12-Aug-2021subap0d 7740 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴𝐵) # 0)
 
12-Aug-2021ltapd 7736 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴 # 𝐵)
 
12-Aug-2021gtapd 7735 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵 # 𝐴)
 
12-Aug-2021ltapi 7734 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵 # 𝐴)
 
12-Aug-2021ltapii 7733 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴 # 𝐵
 
12-Aug-2021gtapii 7732 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐵 # 𝐴
 
12-Aug-2021ltap 7731 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
 
11-Aug-2021absexpzap 9966 Absolute value of integer exponentiation. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
11-Aug-2021absdivap 9956 Absolute value distributes over division. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
11-Aug-2021abs00ap 9948 The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
 
11-Aug-2021absrpclap 9947 The absolute value of a number apart from zero is a positive real. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+)
 
11-Aug-2021sqrt11ap 9924 Analogue to sqrt11 9925 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) # (√‘𝐵) ↔ 𝐴 # 𝐵))
 
11-Aug-2021cjap0d 9835 A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (∗‘𝐴) # 0)
 
11-Aug-2021ap0gt0d 7739 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 # 0)       (𝜑 → 0 < 𝐴)
 
11-Aug-2021ap0gt0 7738 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴))
 
10-Aug-2021rersqrtthlem 9916 Lemma for resqrtth 9917. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (√‘𝐴)))
 
10-Aug-2021rersqreu 9914 Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
 
10-Aug-2021rsqrmo 9913 Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))
 
9-Aug-2021dvdsdivcl 10250 The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
 
9-Aug-2021resqrexlemoverl 9907 Lemma for resqrex 9912. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   (𝜑𝐾 ∈ ℕ)       (𝜑𝐿 ≤ (𝐹𝐾))
 
8-Aug-2021isoddgcd1 10538 The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.)
(𝑍 ∈ ℤ → (¬ 2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 1))
 
8-Aug-2021isevengcd2 10537 The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.)
(𝑍 ∈ ℤ → (2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 2))
 
8-Aug-2021gcdeq 10412 𝐴 is equal to its gcd with 𝐵 if and only if 𝐴 divides 𝐵. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 
8-Aug-2021dfgcd2 10403 Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷𝑀𝐷𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒𝑀𝑒𝑁) → 𝑒𝐷))))
 
8-Aug-2021resqrexlemga 9909 Lemma for resqrex 9912. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))       (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
 
8-Aug-2021resqrexlemglsq 9908 Lemma for resqrex 9912. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))    &   𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))       (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
 
8-Aug-2021recvguniqlem 9880 Lemma for recvguniq 9881. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑𝐴 < ((𝐹𝐾) + ((𝐴𝐵) / 2)))    &   (𝜑 → (𝐹𝐾) < (𝐵 + ((𝐴𝐵) / 2)))       (𝜑 → ⊥)
 
8-Aug-2021ifcldcd 3381 Membership (closure) of a conditional operator, deduction form. (Contributed by Jim Kingdon, 8-Aug-2021.)
(𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)    &   (𝜑DECID 𝜓)       (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶)
 
8-Aug-2021ifbothdc 3380 A wff 𝜃 containing a conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 8-Aug-2021.)
(𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓𝜃))    &   (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝜒𝜃))       ((𝜓𝜒DECID 𝜑) → 𝜃)
 
7-Aug-2021divconjdvds 10249 If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
((𝑀𝑁𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁)
 
7-Aug-2021dvdseq 10248 If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.)
(((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀𝑁𝑁𝑀)) → 𝑀 = 𝑁)
 
7-Aug-2021dvdsabseq 10247 If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
((𝑀𝑁𝑁𝑀) → (abs‘𝑀) = (abs‘𝑁))
 
7-Aug-2021resqrexlemsqa 9910 Lemma for resqrex 9912. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))       (𝜑 → (𝐿↑2) = 𝐴)
 
7-Aug-2021resqrexlemgt0 9906 Lemma for resqrex 9912. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))       (𝜑 → 0 ≤ 𝐿)
 
7-Aug-2021recvguniq 9881 Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐿 ∈ ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))    &   (𝜑𝑀 ∈ ℝ)    &   (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))       (𝜑𝐿 = 𝑀)
 
6-Aug-2021resqrexlemcvg 9905 Lemma for resqrex 9912. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹𝑖) + 𝑥)))
 
6-Aug-2021cvg1nlemcxze 9868 Lemma for cvg1n 9872. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
(𝜑𝐶 ∈ ℝ+)    &   (𝜑𝑋 ∈ ℝ+)    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐸 ∈ ℕ)    &   (𝜑𝐴 ∈ ℕ)    &   (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸)       (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2))
 
4-Aug-2021coprmdvds1 10473 If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.)
((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
 
1-Aug-20213dvds2dec 10265 A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0    &   𝐶 ∈ ℕ0       (3 ∥ 𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶))
 
1-Aug-2021cvg1n 9872 Convergence of real sequences.

This is a version of caucvgre 9867 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
1-Aug-2021cvg1nlemres 9871 Lemma for cvg1n 9872. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
1-Aug-2021cvg1nlemcau 9870 Lemma for cvg1n 9872. By selecting spaced out terms for the modified sequence 𝐺, the terms are within 1 / 𝑛 (without the constant 𝐶). (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐺𝑛) < ((𝐺𝑘) + (1 / 𝑛)) ∧ (𝐺𝑘) < ((𝐺𝑛) + (1 / 𝑛))))
 
1-Aug-2021cvg1nlemf 9869 Lemma for cvg1n 9872. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))    &   𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))    &   (𝜑𝑍 ∈ ℕ)    &   (𝜑𝐶 < 𝑍)       (𝜑𝐺:ℕ⟶ℝ)
 
1-Aug-20213dec 9642 A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       𝐴𝐵𝐶 = ((((10↑2) · 𝐴) + (10 · 𝐵)) + 𝐶)
 
1-Aug-2021sq10e99m1 9641 The square of 10 is 99 plus 1. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
(10↑2) = (99 + 1)
 
1-Aug-2021sq10 9640 The square of 10 is 100. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
(10↑2) = 100
 
1-Aug-2021dfdec10 8480 Version of the definition of the "decimal constructor" using 10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.)
𝐴𝐵 = ((10 · 𝐴) + 𝐵)
 
1-Aug-20219p1e10 8479 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
(9 + 1) = 10
 
1-Aug-2021df-dec 8478 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 10562. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
 
31-Jul-2021resqrexlemnm 9904 Lemma for resqrex 9912. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑀)       (𝜑 → ((𝐹𝑁) − (𝐹𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1))))
 
31-Jul-2021resqrexlemdecn 9898 Lemma for resqrex 9912. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝐹𝑀) < (𝐹𝑁))
 
30-Jul-2021resqrexlemnmsq 9903 Lemma for resqrex 9912. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁𝑀)       (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
 
30-Jul-2021decaddm10 8535 The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.)
𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (𝐴0 + 𝐵0) = (𝐴 + 𝐵)0
 
30-Jul-2021divmuldivapd 7918 Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐷 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
 
30-Jul-2021muladd11r 7264 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
 
29-Jul-2021resqrexlemcalc3 9902 Lemma for resqrex 9912. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
 
29-Jul-2021resqrexlemcalc2 9901 Lemma for resqrex 9912. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹𝑁)↑2) − 𝐴) / 4))
 
29-Jul-2021resqrexlemcalc1 9900 Lemma for resqrex 9912. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
 
29-Jul-2021resqrexlemlo 9899 Lemma for resqrex 9912. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹𝑁))
 
29-Jul-2021resqrexlemdec 9897 Lemma for resqrex 9912. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
 
28-Jul-2021resqrexlemp1rp 9892 Lemma for resqrex 9912. Applying the recursion rule yields a positive real (expressed in a way that will help apply iseqf 9444 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑 ∧ (𝐵 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+)
 
28-Jul-2021resqrexlem1arp 9891 Lemma for resqrex 9912. 1 + 𝐴 is a positive real (expressed in a way that will help apply iseqf 9444 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+)
 
28-Jul-2021rpap0d 8779 A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
(𝜑𝐴 ∈ ℝ+)       (𝜑𝐴 # 0)
 
27-Jul-2021resqrexlemex 9911 Lemma for resqrex 9912. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
 
27-Jul-2021resqrexlemover 9896 Lemma for resqrex 9912. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → 𝐴 < ((𝐹𝑁)↑2))
 
27-Jul-2021resqrexlemfp1 9895 Lemma for resqrex 9912. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
 
27-Jul-2021resqrexlemf1 9894 Lemma for resqrex 9912. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (𝐹‘1) = (1 + 𝐴))
 
27-Jul-2021resqrexlemf 9893 Lemma for resqrex 9912. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑𝐹:ℕ⟶ℝ+)
 
26-Jul-2021nndivides 10202 Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁))
 
25-Jul-2021summodnegmod 10226 The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁)))
 
24-Jul-2021dvdsnprmd 10507 If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
(𝜑 → 1 < 𝐴)    &   (𝜑𝐴 < 𝑁)    &   (𝜑𝐴𝑁)       (𝜑 → ¬ 𝑁 ∈ ℙ)
 
23-Jul-2021iseqf 9444 Range of the recursive sequence builder. (Contributed by Jim Kingdon, 23-Jul-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑆𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆):𝑍𝑆)
 
22-Jul-2021ialgrlemconst 10425 Lemma for ialgr0 10426. Closure of a constant function, in a form suitable for theorems such as iseq1 9442 or iseqfn 9441. (Contributed by Jim Kingdon, 22-Jul-2021.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐴𝑆)       ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
 
22-Jul-2021ialgrlem1st 10424 Lemma for ialgr0 10426. Expressing algrflemg 5871 in a form suitable for theorems such as iseq1 9442 or iseqfn 9441. (Contributed by Jim Kingdon, 22-Jul-2021.)
(𝜑𝐹:𝑆𝑆)       ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
 
22-Jul-2021algrflemg 5871 Lemma for algrf and related theorems. (Contributed by Jim Kingdon, 22-Jul-2021.)
((𝐵𝑉𝐶𝑊) → (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵))
 
21-Jul-2021mod2eq0even 10277 An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁))
 
21-Jul-2021modmulconst 10227 Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
 
21-Jul-2021zmod1congr 9343 Two arbitrary integers are congruent modulo 1, see example 4 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 mod 1) = (𝐵 mod 1))
 
20-Jul-2021caucvgrelemcau 9866 Lemma for caucvgre 9867. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
 
20-Jul-2021caucvgrelemrec 9865 Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴))
 
19-Jul-2021sqoddm1div8z 10286 A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ)
 
19-Jul-2021mulsucdiv2z 10285 An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
 
19-Jul-2021caucvgre 9867 Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 
19-Jul-2021sqoddm1div8 9625 A squared odd number minus 1 divided by 8 is the odd number multiplied with its successor divided by 2. (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ 𝑀 = ((2 · 𝑁) + 1)) → (((𝑀↑2) − 1) / 8) = ((𝑁 · (𝑁 + 1)) / 2))
 
19-Jul-2021mulbinom2 9589 The square of a binomial with factor. (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)))
 
19-Jul-2021nzadd 8403 The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ))
 
19-Jul-2021ax-caucvg 7096 Completeness. Axiom for real and complex numbers, justified by theorem axcaucvg 7066.

A Cauchy sequence (as defined here, which has a rate convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

This axiom should not be used directly; instead use caucvgre 9867 (which is the same, but stated in terms of the and 1 / 𝑛 notations). (Contributed by Jim Kingdon, 19-Jul-2021.) (New usage is discouraged.)

𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
18-Jul-2021mulnqpr 6767 Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
18-Jul-2021mulnqprlemfu 6766 Lemma for mulnqpr 6767. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
18-Jul-2021mulnqprlemfl 6765 Lemma for mulnqpr 6767. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
18-Jul-2021mulnqprlemru 6764 Lemma for mulnqpr 6767. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
 
18-Jul-2021mulnqprlemrl 6763 Lemma for mulnqpr 6767. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
 
18-Jul-2021lt2mulnq 6595 Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
(((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
 
17-Jul-2021recidpirqlemcalc 7025 Lemma for recidpirq 7026. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑 → (𝐴 ·P 𝐵) = 1P)       (𝜑 → ((((𝐴 +P 1P) ·P (𝐵 +P 1P)) +P (1P ·P 1P)) +P 1P) = ((((𝐴 +P 1P) ·P 1P) +P (1P ·P (𝐵 +P 1P))) +P (1P +P 1P)))
 
17-Jul-2021recidpipr 7024 Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
(𝑁N → (⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = 1P)
 
16-Jul-20212teven 10287 A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵)
 
16-Jul-20212tp1odd 10284 A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)
 
15-Jul-2021mulp1mod1 9367 The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
 
15-Jul-2021rereceu 7055 The reciprocal from axprecex 7046 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
 
15-Jul-2021recidpirq 7026 A real number times its reciprocal is one, where reciprocal is expressed with *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = 1)
 
15-Jul-2021recnnre 7019 Embedding the reciprocal of a natural number into . (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 
15-Jul-2021pitore 7018 Embedding from N to . Similar to pitonn 7016 but separate in the sense that we have not proved nnssre 8043 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 
15-Jul-2021pitoregt0 7017 Embedding from N to yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
(𝑁N → 0 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
14-Jul-2021m1modge3gt1 9373 Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
(𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))
 
14-Jul-2021m1modnnsub1 9372 Minus one modulo a positive integer is equal to the integer minus one. (Contributed by AV, 14-Jul-2021.)
(𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
 
14-Jul-2021adddivflid 9294 The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ) → (𝐵 < 𝐶 ↔ (⌊‘(𝐴 + (𝐵 / 𝐶))) = 𝐴))
 
14-Jul-2021nnindnn 7059 Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 8055 designed for real number axioms which involve natural numbers (notably, axcaucvg 7066). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝑧 = 1 → (𝜑𝜓))    &   (𝑧 = 𝑘 → (𝜑𝜒))    &   (𝑧 = (𝑘 + 1) → (𝜑𝜃))    &   (𝑧 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑘𝑁 → (𝜒𝜃))       (𝐴𝑁𝜏)
 
14-Jul-2021peano5nnnn 7058 Peano's inductive postulate. This is a counterpart to peano5nni 8042 designed for real number axioms which involve natural numbers (notably, axcaucvg 7066). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       ((1 ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑧 + 1) ∈ 𝐴) → 𝑁𝐴)
 
14-Jul-2021peano2nnnn 7021 A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8051 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7066). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       (𝐴𝑁 → (𝐴 + 1) ∈ 𝑁)
 
14-Jul-2021peano1nnnn 7020 One is an element of . This is a counterpart to 1nn 8050 designed for real number axioms which involve natural numbers (notably, axcaucvg 7066). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       1 ∈ 𝑁
 
14-Jul-2021addvalex 7012 Existence of a sum. This is dependent on how we define + so once we proceed to real number axioms we will replace it with theorems such as addcl 7098. (Contributed by Jim Kingdon, 14-Jul-2021.)
((𝐴𝑉𝐵𝑊) → (𝐴 + 𝐵) ∈ V)
 
13-Jul-2021cncongrprm 10536 Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))
 
13-Jul-2021prmndvdsfaclt 10535 A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁)))
 
13-Jul-2021cncongrcoprm 10488 Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ (𝐶 gcd 𝑁) = 1)) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐵 mod 𝑁)))
 
13-Jul-2021cncongr 10487 Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greates common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
 
13-Jul-2021cncongr1 10485 One direction of the bicondition in cncongr 10487. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
 
13-Jul-2021nntopi 7060 Mapping from to N. (Contributed by Jim Kingdon, 13-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}       (𝐴𝑁 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
 
13-Jul-2021ltrennb 7022 Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 13-Jul-2021.)
((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
 
12-Jul-2021divgcdcoprmex 10484 Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
((𝐴 ∈ ℤ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑀 = (𝐴 gcd 𝐵)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ (𝐴 = (𝑀 · 𝑎) ∧ 𝐵 = (𝑀 · 𝑏) ∧ (𝑎 gcd 𝑏) = 1))
 
12-Jul-2021divgcdcoprm0 10483 Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
 
12-Jul-2021ltrenn 7023 Ordering of natural numbers with <N or <. (Contributed by Jim Kingdon, 12-Jul-2021.)
(𝐽 <N 𝐾 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
11-Jul-2021cncongr2 10486 The other direction of the bicondition in cncongr 10487. (Contributed by AV, 11-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) → ((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁)))
 
11-Jul-2021congr 10482 Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory)): An integer 𝐴 is congruent to an integer 𝐵 modulo 𝑀 if their difference is a multiple of 𝑀. See also the definition in [ApostolNT] p. 104: "... 𝑎 is congruent to 𝑏 modulo 𝑚, and we write 𝑎𝑏 (mod 𝑚) if 𝑚 divides the difference 𝑎𝑏", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence, 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = (𝐴𝐵)))
 
11-Jul-2021divgcdz 10363 An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
 
11-Jul-2021zeqzmulgcd 10362 An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
 
11-Jul-2021recriota 7056 Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
(𝑁N → (𝑟 ∈ ℝ (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ · 𝑟) = 1) = ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
11-Jul-2021elrealeu 6998 The real number mapping in elreal 6997 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
(𝐴 ∈ ℝ ↔ ∃!𝑥R𝑥, 0R⟩ = 𝐴)
 
10-Jul-2021coprmdvds 10474 Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by AV, 10-Jul-2021.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ (𝑀 · 𝑁) ∧ (𝐾 gcd 𝑀) = 1) → 𝐾𝑁))
 
10-Jul-2021divgcdnnr 10367 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐵 gcd 𝐴)) ∈ ℕ)
 
10-Jul-2021divgcdnn 10366 A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ)
 
10-Jul-2021gcd2n0cl 10361 Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ)
 
10-Jul-2021axcaucvglemres 7065 Lemma for axcaucvg 7066. Mapping the limit from N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
10-Jul-2021axcaucvglemval 7063 Lemma for axcaucvg 7066. Value of sequence when mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       ((𝜑𝐽N) → (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨(𝐺𝐽), 0R⟩)
 
10-Jul-2021axcaucvglemcl 7061 Lemma for axcaucvg 7066. Mapping to N and R. (Contributed by Jim Kingdon, 10-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)       ((𝜑𝐽N) → (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐽, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐽, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩) ∈ R)
 
9-Jul-2021axcaucvglemcau 7064 Lemma for axcaucvg 7066. The result of mapping to N and R satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
9-Jul-2021axcaucvglemf 7062 Lemma for axcaucvg 7066. Mapping to N and R yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))    &   𝐺 = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))       (𝜑𝐺:NR)
 
8-Jul-2021fldiv4p1lem1div2 9307 The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
((𝑁 = 3 ∨ 𝑁 ∈ (ℤ‘5)) → ((⌊‘(𝑁 / 4)) + 1) ≤ ((𝑁 − 1) / 2))
 
8-Jul-2021divfl0 9298 The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (⌊‘(𝐴 / 𝐵)) = 0))
 
8-Jul-2021div4p1lem1div2 8284 An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
 
8-Jul-2021axcaucvg 7066 Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of .

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7096. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}    &   (𝜑𝐹:𝑁⟶ℝ)    &   (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))       (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
 
7-Jul-2021ltadd1sr 6953 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴R𝐴 <R (𝐴 +R 1R))
 
7-Jul-2021lteupri 6807 The difference from ltexpri 6803 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
 
7-Jul-2021sbcimdv 2879 Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1386). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
7-Jul-2021eqsbc3r 2874 eqsbc3 2853 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
 
4-Jul-2021flodddiv4t2lthalf 10337 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
 
4-Jul-2021flodddiv4lt 10336 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
 
4-Jul-2021fldivndvdslt 10335 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
 
4-Jul-20214dvdseven 10317 An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
(4 ∥ 𝑁 → 2 ∥ 𝑁)
 
4-Jul-2021z4even 10316 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.)
2 ∥ 4
 
4-Jul-2021caucvgsrlemasr 6966 Lemma for caucvgsr 6978. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
(𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑𝐴R)
 
3-Jul-2021caucvgsrlemoffres 6976 Lemma for caucvgsr 6978. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
3-Jul-2021caucvgsrlemoffgt1 6975 Lemma for caucvgsr 6978. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
 
3-Jul-2021caucvgsrlemoffcau 6974 Lemma for caucvgsr 6978. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
 
3-Jul-2021caucvgsrlemofff 6973 Lemma for caucvgsr 6978. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       (𝜑𝐺:NR)
 
3-Jul-2021caucvgsrlemoffval 6972 Lemma for caucvgsr 6978. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))    &   𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))       ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
 
2-Jul-2021caucvgsrlemcl 6965 Lemma for caucvgsr 6978. Terms of the sequence from caucvgsrlemgt1 6971 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       ((𝜑𝐴N) → (𝑦P (𝐹𝐴) = [⟨(𝑦 +P 1P), 1P⟩] ~R ) ∈ P)
 
1-Jul-2021halfleoddlt 10294 An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
 
1-Jul-2021zltaddlt1le 9028 The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁))
 
1-Jul-2021addlelt 8839 If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
 
29-Jun-2021ltoddhalfle 10293 An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
 
29-Jun-2021ledivge1le 8803 If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐶 ∈ ℝ+ ∧ 1 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 / 𝐶) ≤ 𝐵))
 
29-Jun-2021divle1le 8802 A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ≤ 1 ↔ 𝐴𝐵))
 
29-Jun-2021caucvgsrlemfv 6967 Lemma for caucvgsr 6978. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       ((𝜑𝐴N) → [⟨((𝐺𝐴) +P 1P), 1P⟩] ~R = (𝐹𝐴))
 
29-Jun-2021prsrriota 6964 Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → [⟨((𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴) +P 1P), 1P⟩] ~R = 𝐴)
 
29-Jun-2021prsrlt 6963 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ [⟨(𝐴 +P 1P), 1P⟩] ~R <R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
29-Jun-2021prsradd 6962 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
((𝐴P𝐵P) → [⟨((𝐴 +P 𝐵) +P 1P), 1P⟩] ~R = ([⟨(𝐴 +P 1P), 1P⟩] ~R +R [⟨(𝐵 +P 1P), 1P⟩] ~R ))
 
28-Jun-2021nnoddm1d2 10310 A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
 
28-Jun-2021nn0oddm1d2 10309 A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
28-Jun-2021nnehalf 10304 The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
 
28-Jun-2021nn0ehalf 10303 The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0)
 
26-Jun-2021m1expo 10300 Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
 
25-Jun-2021m1expe 10299 Exponentiation of -1 by an even power. Variant of m1expeven 9523. (Contributed by AV, 25-Jun-2021.)
(2 ∥ 𝑁 → (-1↑𝑁) = 1)
 
25-Jun-2021caucvgsrlembound 6970 Lemma for caucvgsr 6978. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
 
25-Jun-2021prsrpos 6961 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → 0R <R [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
25-Jun-2021prsrcl 6960 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
(𝐴P → [⟨(𝐴 +P 1P), 1P⟩] ~RR)
 
25-Jun-2021srpospr 6959 Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
((𝐴R ∧ 0R <R 𝐴) → ∃!𝑥P [⟨(𝑥 +P 1P), 1P⟩] ~R = 𝐴)
 
23-Jun-2021z2even 10314 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 2
 
23-Jun-2021z0even 10311 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 0
 
23-Jun-2021caucvgsrlemcau 6969 Lemma for caucvgsr 6978. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛)<P ((𝐺𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐺𝑘)<P ((𝐺𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
 
23-Jun-2021caucvgsrlemf 6968 Lemma for caucvgsr 6978. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))    &   𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))       (𝜑𝐺:NP)
 
22-Jun-2021oddm1d2 10292 An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
22-Jun-2021oddp1d2 10290 An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 8452 and zeo2 8453. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
 
22-Jun-2021evend2 10289 An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 8452 and zeo2 8453. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
 
22-Jun-2021zeneo 10270 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 8448 follows immediately from the fact that a contradiction implies anything, see pm2.21i 607. (Contributed by AV, 22-Jun-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴𝐵))
 
22-Jun-2021evenelz 10266 An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 10200. (Contributed by AV, 22-Jun-2021.)
(2 ∥ 𝑁𝑁 ∈ ℤ)
 
22-Jun-2021caucvgsrlemgt1 6971 Lemma for caucvgsr 6978. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑖) +R 𝑥)))))
 
20-Jun-2021m1exp1 10301 Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
(𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
 
20-Jun-2021caucvgsr 6978 A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 6902 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 6977).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 6973).

3. Since a signed real (element of R) which is greater than zero can be mapped to a positive real (element of P), perform that mapping on each element of the sequence and invoke caucvgprpr 6902 to get a limit (see caucvgsrlemgt1 6971).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 6971).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 6976). (Contributed by Jim Kingdon, 20-Jun-2021.)

(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
19-Jun-2021prm2orodd 10508 A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.)
(𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃))
 
19-Jun-2021oddnn02np1 10280 A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
 
19-Jun-20212tnp1ge0ge0 9303 Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021.)
(𝑁 ∈ ℤ → (0 ≤ ((2 · 𝑁) + 1) ↔ 0 ≤ 𝑁))
 
19-Jun-2021nn0ledivnn 8838 Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
 
19-Jun-2021nnledivrp 8837 Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
 
19-Jun-2021caucvgsrlembnd 6977 Lemma for caucvgsr 6978. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NR)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))    &   (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))       (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
 
19-Jun-2021caucvgprprlemclphr 6895 Lemma for caucvgprpr 6902. The putative limit is a positive real. Like caucvgprprlemcl 6894 but without a distinct variable constraint between 𝜑 and 𝑟. (Contributed by Jim Kingdon, 19-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑𝐿P)
 
19-Jun-2021ltnqpr 6783 We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
17-Jun-2021flodddiv4 10334 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
 
17-Jun-2021zeo4 10269 An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))
 
17-Jun-2021zeo3 10267 An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
 
17-Jun-2021caucvgprprlemnbj 6883 Lemma for caucvgprpr 6902. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐵N)    &   (𝜑𝐽N)       (𝜑 → ¬ (((𝐹𝐵) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P (𝐹𝐽))
 
16-Jun-2021caucvgprprlemexbt 6896 Lemma for caucvgprpr 6902. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑇P)    &   (𝜑 → (𝐿 +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)       (𝜑 → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P ⟨{𝑝𝑝 <Q 𝑄}, {𝑞𝑄 <Q 𝑞}⟩)<P 𝑇)
 
16-Jun-2021prplnqu 6810 Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝑋P)    &   (𝜑𝑄Q)    &   (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))       (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
 
15-Jun-202111multnc 8544 The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.)
𝑁 ∈ ℕ0       (𝑁 · 11) = 𝑁𝑁
 
15-Jun-2021decmulnc 8543 The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.)
𝑁 ∈ ℕ0    &   𝐴 ∈ ℕ0    &   𝐵 ∈ ℕ0       (𝑁 · 𝐴𝐵) = (𝑁 · 𝐴)(𝑁 · 𝐵)
 
15-Jun-2021caucvgprprlemexb 6897 Lemma for caucvgprpr 6902. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝑅N)       (𝜑 → (((𝐿 +P 𝑄) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑅) +P 𝑄) → ∃𝑏N (((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) +P (𝑄 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑅, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑅, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))<P ((𝐹𝑅) +P 𝑄)))
 
5-Jun-2021caucvgprprlemaddq 6898 Lemma for caucvgprpr 6902. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑋P)    &   (𝜑𝑄P)    &   (𝜑 → ∃𝑟N (𝑋 +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ((𝐹𝑟) +P 𝑄))       (𝜑𝑋<P (𝐿 +P 𝑄))
 
5-Apr-2021simpl2im 378 Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.)
(𝜑 → (𝜓𝜒))    &   (𝜒𝜃)       (𝜑𝜃)
 
27-Mar-2021notnotd 592 Deduction associated with notnot 591 and notnoti 606. (Contributed by Jarvin Udandy, 2-Sep-2016.) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021.)
(𝜑𝜓)       (𝜑 → ¬ ¬ 𝜓)
 
20-Mar-2021addmodlteq 9400 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. (Contributed by AV, 20-Mar-2021.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))
 
20-Mar-2021subfzo0 9251 The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
 
19-Mar-2021modsumfzodifsn 9398 The sum of a number within a half-open range of positive integers is an element of the corresponding open range of nonnegative integers with one excluded integer modulo the excluded integer. (Contributed by AV, 19-Mar-2021.)
((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ (1..^𝑁)) → ((𝐾 + 𝐽) mod 𝑁) ∈ ((0..^𝑁) ∖ {𝐽}))
 
19-Mar-2021modfzo0difsn 9397 For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
 
19-Mar-2021addmodidr 9375 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by AV, 19-Mar-2021.)
((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝐴 + 𝑀) mod 𝑀) = 𝐴)
 
19-Mar-2021ltaddnegr 7529 Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ (𝐴 + 𝐵) < 𝐵))
 
14-Mar-2021addmodlteqALT 10259 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 9400 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽))
 
14-Mar-2021modlteq 9399 Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021.)
((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐼 mod 𝑁) = (𝐽 mod 𝑁) ↔ 𝐼 = 𝐽))
 
3-Mar-2021caucvgprprlemval 6878 Lemma for caucvgprpr 6902. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))       ((𝜑𝐴 <N 𝐵) → ((𝐹𝐴)<P ((𝐹𝐵) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∧ (𝐹𝐵)<P ((𝐹𝐴) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
 
28-Feb-2021n2dvds3 10315 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
¬ 2 ∥ 3
 
27-Feb-2021recnnpr 6738 The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
(𝐴N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
 
12-Feb-2021caucvgprprlemnjltk 6881 Lemma for caucvgprpr 6902. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐽 <N 𝐾) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
12-Feb-2021caucvgprprlemnkeqj 6880 Lemma for caucvgprpr 6902. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐾 = 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
12-Feb-2021caucvgprprlemnkltj 6879 Lemma for caucvgprpr 6902. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       ((𝜑𝐾 <N 𝐽) → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
12-Feb-2021caucvgprprlemcbv 6877 Lemma for caucvgprpr 6902. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))       (𝜑 → ∀𝑎N𝑏N (𝑎 <N 𝑏 → ((𝐹𝑎)<P ((𝐹𝑏) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑏)<P ((𝐹𝑎) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
 
9-Feb-2021min2inf 10114 The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵)
 
8-Feb-2021min1inf 10113 The minimum of two numbers is less than or equal to the first. (Contributed by Jim Kingdon, 8-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐴)
 
8-Feb-2021minmax 10112 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
 
8-Feb-2021mincom 10111 The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )
 
8-Feb-2021caucvgprprlemloccalc 6874 Lemma for caucvgprpr 6902. Rearranging some expressions for caucvgprprlemloc 6893. (Contributed by Jim Kingdon, 8-Feb-2021.)
(𝜑𝑆 <Q 𝑇)    &   (𝜑𝑌Q)    &   (𝜑 → (𝑆 +Q 𝑌) = 𝑇)    &   (𝜑𝑋Q)    &   (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)    &   (𝜑𝑀N)    &   (𝜑 → (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋)       (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
 
5-Feb-2021fvinim0ffz 9250 The function values for the borders of a finite interval of integers, which is the domain of the function, are not in the image of the interior of the interval iff the intersection of the images of the interior and the borders is empty. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 5-Feb-2021.)
((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ ↔ ((𝐹‘0) ∉ (𝐹 “ (1..^𝐾)) ∧ (𝐹𝐾) ∉ (𝐹 “ (1..^𝐾)))))
 
28-Jan-2021caucvgprprlemelu 6876 Lemma for caucvgprpr 6902. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝑋 ∈ (2nd𝐿) ↔ (𝑋Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑋}, {𝑞𝑋 <Q 𝑞}⟩))
 
21-Jan-2021caucvgprprlemell 6875 Lemma for caucvgprpr 6902. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
 
20-Jan-2021caucvgprprlemnkj 6882 Lemma for caucvgprpr 6902. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       (𝜑 → ¬ (⟨{𝑝𝑝 <Q (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝐾) ∧ ((𝐹𝐽) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑆}, {𝑞𝑆 <Q 𝑞}⟩))
 
17-Jan-2021addn0nid 7478 Adding a nonzero number to a complex number does not yield the complex number. (Contributed by AV, 17-Jan-2021.)
((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑌 ≠ 0) → (𝑋 + 𝑌) ≠ 𝑋)
 
17-Jan-2021addid0 7477 If adding a number to a another number yields the other number, the added number must be 0. This shows that 0 is the unique (right) identity of the complex numbers. (Contributed by AV, 17-Jan-2021.)
((𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ((𝑋 + 𝑌) = 𝑋𝑌 = 0))
 
8-Jan-2021ltnqpri 6784 We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
(𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
 
29-Dec-2020caucvgprprlemmu 6885 Lemma for caucvgprpr 6902. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∃𝑡Q 𝑡 ∈ (2nd𝐿))
 
29-Dec-2020caucvgprprlemml 6884 Lemma for caucvgprpr 6902. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
 
21-Dec-2020caucvgprprlemloc 6893 Lemma for caucvgprpr 6902. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∀𝑠Q𝑡Q (𝑠 <Q 𝑡 → (𝑠 ∈ (1st𝐿) ∨ 𝑡 ∈ (2nd𝐿))))
 
21-Dec-2020caucvgprprlemdisj 6892 Lemma for caucvgprpr 6902. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
 
21-Dec-2020caucvgprprlemrnd 6891 Lemma for caucvgprpr 6902. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿))) ∧ ∀𝑡Q (𝑡 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))))
 
21-Dec-2020caucvgprprlemupu 6890 Lemma for caucvgprpr 6902. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)) → 𝑡 ∈ (2nd𝐿))
 
21-Dec-2020caucvgprprlemopu 6889 Lemma for caucvgprpr 6902. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑡 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑡𝑠 ∈ (2nd𝐿)))
 
21-Dec-2020caucvgprprlemlol 6888 Lemma for caucvgprpr 6902. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
21-Dec-2020caucvgprprlemopl 6887 Lemma for caucvgprpr 6902. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑡Q (𝑠 <Q 𝑡𝑡 ∈ (1st𝐿)))
 
21-Dec-2020caucvgprprlemm 6886 Lemma for caucvgprpr 6902. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑡Q 𝑡 ∈ (2nd𝐿)))
 
29-Nov-2020nqpru 6742 Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
 
28-Nov-2020caucvgprprlemk 6873 Lemma for caucvgprpr 6902. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
(𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
 
25-Nov-2020caucvgprprlem2 6900 Lemma for caucvgprpr 6902. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
 
25-Nov-2020caucvgprprlem1 6899 Lemma for caucvgprpr 6902. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩    &   (𝜑𝑄P)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)       (𝜑 → (𝐹𝐾)<P (𝐿 +P 𝑄))
 
25-Nov-2020archrecpr 6854 Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
(𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)
 
21-Nov-2020caucvgprprlemlim 6901 Lemma for caucvgprpr 6902. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑 → ∀𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝐿 +P 𝑥) ∧ 𝐿<P ((𝐹𝑘) +P 𝑥))))
 
21-Nov-2020caucvgprprlemcl 6894 Lemma for caucvgprpr 6902. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩       (𝜑𝐿P)
 
17-Nov-2020pm3.2 137 Join antecedents with conjunction. Theorem *3.2 of [WhiteheadRussell] p. 111. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) (Proof shortened by Jia Ming, 17-Nov-2020.)
(𝜑 → (𝜓 → (𝜑𝜓)))
 
14-Nov-2020caucvgprpr 6902 A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 6872 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 6852) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

(𝜑𝐹:NP)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))    &   (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))       (𝜑 → ∃𝑦P𝑥P𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘)<P (𝑦 +P 𝑥) ∧ 𝑦<P ((𝐹𝑘) +P 𝑥))))
 
27-Oct-2020bj-omssonALT 10758 Alternate proof of bj-omsson 10757. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
ω ⊆ On
 
27-Oct-2020bj-omsson 10757 Constructive proof of omsson 4353. See also bj-omssonALT 10758. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.
ω ⊆ On
 
27-Oct-2020bj-nnelon 10754 A natural number is an ordinal. Constructive proof of nnon 4350. Can also be proved from bj-omssonALT 10758. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → 𝐴 ∈ On)
 
27-Oct-2020bj-nnord 10753 A natural number is an ordinal. Constructive proof of nnord 4352. Can also be proved from bj-nnelon 10754 if the latter is proved from bj-omssonALT 10758. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.)
(𝐴 ∈ ω → Ord 𝐴)
 
27-Oct-2020bj-axempty2 10685 Axiom of the empty set from bounded separation, alternate version to bj-axempty 10684. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3904 instead. (New usage is discouraged.)
𝑥𝑦 ¬ 𝑦𝑥
 
25-Oct-2020bj-indind 10727 If 𝐴 is inductive and 𝐵 is "inductive in 𝐴", then (𝐴𝐵) is inductive. (Contributed by BJ, 25-Oct-2020.)
((Ind 𝐴 ∧ (∅ ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑥𝐵 → suc 𝑥𝐵))) → Ind (𝐴𝐵))
 
25-Oct-2020bj-axempty 10684 Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a non-empty universe. See axnul 3903. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3904 instead. (New usage is discouraged.)
𝑥𝑦𝑥
 
25-Oct-2020bj-axemptylem 10683 Lemma for bj-axempty 10684 and bj-axempty2 10685. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3904 instead. (New usage is discouraged.)
𝑥𝑦(𝑦𝑥 → ⊥)
 
23-Oct-2020caucvgprlemnkj 6856 Lemma for caucvgpr 6872. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑𝐾N)    &   (𝜑𝐽N)    &   (𝜑𝑆Q)       (𝜑 → ¬ ((𝑆 +Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )) <Q (𝐹𝐾) ∧ ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q 𝑆))
 
20-Oct-2020caucvgprlemupu 6862 Lemma for caucvgpr 6872. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))
 
20-Oct-2020caucvgprlemopu 6861 Lemma for caucvgpr 6872. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
 
20-Oct-2020caucvgprlemlol 6860 Lemma for caucvgpr 6872. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
20-Oct-2020caucvgprlemopl 6859 Lemma for caucvgpr 6872. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
 
18-Oct-2020caucvgprlemnbj 6857 Lemma for caucvgpr 6872. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑𝐵N)    &   (𝜑𝐽N)       (𝜑 → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽))
 
11-Oct-2020elexd 2612 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴𝑉)       (𝜑𝐴 ∈ V)
 
9-Oct-2020caucvgprlemladdfu 6867 Lemma for caucvgpr 6872. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑗N (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) +Q 𝑆) <Q 𝑢})
 
9-Oct-2020caucvgprlemk 6855 Lemma for caucvgpr 6872. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
(𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)       (𝜑 → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑄)
 
8-Oct-2020caucvgprlemladdrl 6868 Lemma for caucvgpr 6872. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
 
3-Oct-2020caucvgprlem2 6870 Lemma for caucvgpr 6872. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)       (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝐾) +Q 𝑄)}, {𝑢 ∣ ((𝐹𝐾) +Q 𝑄) <Q 𝑢}⟩)
 
3-Oct-2020caucvgprlem1 6869 Lemma for caucvgpr 6872. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝐽 <N 𝐾)    &   (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑄)       (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
 
3-Oct-2020ltnnnq 6613 Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1𝑜⟩] ~Q <Q [⟨𝐵, 1𝑜⟩] ~Q ))
 
1-Oct-2020caucvgprlemlim 6871 Lemma for caucvgpr 6872. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
 
27-Sep-2020caucvgprlemloc 6865 Lemma for caucvgpr 6872. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
 
27-Sep-2020caucvgprlemdisj 6864 Lemma for caucvgpr 6872. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
 
27-Sep-2020caucvgprlemrnd 6863 Lemma for caucvgpr 6872. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
 
27-Sep-2020caucvgprlemm 6858 Lemma for caucvgpr 6872. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
 
27-Sep-2020archrecnq 6853 Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
(𝐴Q → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝐴)
 
26-Sep-2020caucvgprlemcl 6866 Lemma for caucvgpr 6872. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩       (𝜑𝐿P)
 
16-Sep-2020lcmass 10467 Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))
 
16-Sep-2020lcmgcdlem 10459 Lemma for lcmgcd 10460 and lcmdvds 10461. Prove them for positive 𝑀, 𝑁, and 𝐾. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (abs‘(𝑀 · 𝑁)) ∧ ((𝐾 ∈ ℕ ∧ (𝑀𝐾𝑁𝐾)) → (𝑀 lcm 𝑁) ∥ 𝐾)))
 
16-Sep-2020lcmledvds 10452 A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
(((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀𝐾𝑁𝐾) → (𝑀 lcm 𝑁) ≤ 𝐾))
 
16-Sep-2020lcmcllem 10449 Lemma for lcmn0cl 10450 and dvdslcm 10451. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
 
16-Sep-2020lcmn0val 10448 The value of the lcm operator when both operands are nonzero. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
 
16-Sep-2020lcm0val 10447 The value, by convention, of the lcm operator when either operand is 0. (Use lcmcom 10446 for a left-hand 0.) (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
(𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
 
16-Sep-2020lcmcom 10446 The lcm operator is commutative. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
 
16-Sep-2020lcmval 10445 Value of the lcm operator. (𝑀 lcm 𝑁) is the least common multiple of 𝑀 and 𝑁. If either 𝑀 or 𝑁 is 0, the result is defined conventionally as 0. Contrast with df-gcd 10339 and gcdval 10351. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
 
16-Sep-2020df-lcm 10443 Define the lcm operator. For example, (6 lcm 9) = 18. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
 
4-Sep-2020dfinfre 8034 The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
(𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
 
4-Sep-2020lbinfle 8028 If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
4-Sep-2020lbinfcl 8027 If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) ∈ 𝑆)
 
4-Sep-2020lbinf 8026 If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
 
4-Sep-2020inf00 6444 The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
inf(𝐵, ∅, 𝑅) = ∅
 
4-Sep-2020sup00 6416 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
sup(𝐵, ∅, 𝑅) = ∅
 
2-Sep-2020nfinf 6430 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
𝑥𝐴    &   𝑥𝐵    &   𝑥𝑅       𝑥inf(𝐴, 𝐵, 𝑅)
 
2-Sep-2020infeq123d 6429 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → inf(𝐴, 𝐵, 𝐶) = inf(𝐷, 𝐸, 𝐹))
 
2-Sep-2020infeq3 6428 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝑅 = 𝑆 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐵, 𝑆))
 
2-Sep-2020infeq2 6427 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐵 = 𝐶 → inf(𝐴, 𝐵, 𝑅) = inf(𝐴, 𝐶, 𝑅))
 
2-Sep-2020infeq1i 6426 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
𝐵 = 𝐶       inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅)
 
2-Sep-2020infeq1d 6425 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
(𝜑𝐵 = 𝐶)       (𝜑 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
 
2-Sep-2020infeq1 6424 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
(𝐵 = 𝐶 → inf(𝐵, 𝐴, 𝑅) = inf(𝐶, 𝐴, 𝑅))
 
2-Sep-2020df-inf 6398 Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
 
2-Sep-2020impel 274 An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019.) (Proof shortened by Wolf Lammen, 2-Sep-2020.)
(𝜑 → (𝜓𝜒))    &   (𝜃𝜓)       ((𝜑𝜃) → 𝜒)
 
1-Sep-20202a1 25 A double form of ax-1 5. Its associated inference is 2a1i 27. Its associated deduction is 2a1d 23. (Contributed by BJ, 10-Aug-2020.) (Proof shortened by Wolf Lammen, 1-Sep-2020.)
(𝜑 → (𝜓 → (𝜒𝜑)))
 
27-Aug-20203lcm2e6 10539 The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.)
(3 lcm 2) = 6
 
27-Aug-20206lcm4e12 10469 The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020.)
(6 lcm 4) = 12
 
27-Aug-20203lcm2e6woprm 10468 The least common multiple of three and two is six. This proof does not use the property of 2 and 3 being prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 27-Aug-2020.)
(3 lcm 2) = 6
 
27-Aug-2020lcmgcdnn 10464 The product of two positive integers' least common multiple and greatest common divisor is the product of the two integers. (Contributed by AV, 27-Aug-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 lcm 𝑁) · (𝑀 gcd 𝑁)) = (𝑀 · 𝑁))
 
27-Aug-20206gcd4e2 10384 The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.)
(6 gcd 4) = 2
 
26-Aug-2020sqrt0rlem 9889 Lemma for sqrt0 9890. (Contributed by Jim Kingdon, 26-Aug-2020.)
((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0)
 
23-Aug-2020lcm1 10463 The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020.)
(𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀))
 
23-Aug-2020sqrtrval 9886 Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
(𝐴 ∈ ℝ → (√‘𝐴) = (𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)))
 
23-Aug-2020df-rsqrt 9884 Define a function whose value is the square root of a nonnegative real number.

Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root.

(Contributed by Jim Kingdon, 23-Aug-2020.)

√ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
 
19-Aug-2020addnqpr 6751 Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
19-Aug-2020addnqprlemfu 6750 Lemma for addnqpr 6751. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
19-Aug-2020addnqprlemfl 6749 Lemma for addnqpr 6751. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
19-Aug-2020addnqprlemru 6748 Lemma for addnqpr 6751. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
 
19-Aug-2020addnqprlemrl 6747 Lemma for addnqpr 6751. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
 
15-Aug-2020prmdvdsfz 10520 Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.)
((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝𝑁𝑝𝐼))
 
15-Aug-2020caucvgprlemcanl 6834 Lemma for cauappcvgprlemladdrl 6847. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
(𝜑𝐿P)    &   (𝜑𝑆Q)    &   (𝜑𝑅Q)    &   (𝜑𝑄Q)       (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
 
10-Aug-20202a1d 23 Deduction introducing two antecedents. Two applications of a1d 22. Deduction associated with 2a1 25 and 2a1i 27. (Contributed by BJ, 10-Aug-2020.)
(𝜑𝜓)       (𝜑 → (𝜒 → (𝜃𝜓)))
 
9-Aug-2020ncoprmgcdgt1b 10472 Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is greater than 1. (Contributed by AV, 9-Aug-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
 
9-Aug-2020ncoprmgcdne1b 10471 Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
 
9-Aug-2020coprmgcdb 10470 Two positive integers are coprime, i.e. the only positive integer that divides both of them is 1, iff their greatest common divisor is 1. (Contributed by AV, 9-Aug-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
 
9-Aug-2020nndvdslegcd 10357 A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
9-Aug-2020negfi 10110 The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
 
9-Aug-2020negf1o 7486 Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
𝐹 = (𝑥𝐴 ↦ -𝑥)       (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
 
4-Aug-2020cauappcvgprlemupu 6839 Lemma for cauappcvgpr 6852. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)) → 𝑟 ∈ (2nd𝐿))
 
4-Aug-2020cauappcvgprlemopu 6838 Lemma for cauappcvgpr 6852. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑟 ∈ (2nd𝐿)) → ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))
 
4-Aug-2020cauappcvgprlemlol 6837 Lemma for cauappcvgpr 6852. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
 
4-Aug-2020cauappcvgprlemopl 6836 Lemma for cauappcvgpr 6852. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       ((𝜑𝑠 ∈ (1st𝐿)) → ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)))
 
22-Jul-2020prmex 10495 The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
ℙ ∈ V
 
22-Jul-2020prmssnn 10494 The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
ℙ ⊆ ℕ
 
18-Jul-2020cauappcvgprlemloc 6842 Lemma for cauappcvgpr 6852. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q𝑟Q (𝑠 <Q 𝑟 → (𝑠 ∈ (1st𝐿) ∨ 𝑟 ∈ (2nd𝐿))))
 
18-Jul-2020cauappcvgprlemdisj 6841 Lemma for cauappcvgpr 6852. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
 
18-Jul-2020cauappcvgprlemrnd 6840 Lemma for cauappcvgpr 6852. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∀𝑠Q (𝑠 ∈ (1st𝐿) ↔ ∃𝑟Q (𝑠 <Q 𝑟𝑟 ∈ (1st𝐿))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐿) ↔ ∃𝑠Q (𝑠 <Q 𝑟𝑠 ∈ (2nd𝐿)))))
 
18-Jul-2020cauappcvgprlemm 6835 Lemma for cauappcvgpr 6852. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
 
11-Jul-2020cauappcvgprlemladdrl 6847 Lemma for cauappcvgprlemladd 6848. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
 
11-Jul-2020cauappcvgprlemladdru 6846 Lemma for cauappcvgprlemladd 6848. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩) ⊆ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
 
11-Jul-2020cauappcvgprlemladdfl 6845 Lemma for cauappcvgprlemladd 6848. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
 
11-Jul-2020cauappcvgprlemladdfu 6844 Lemma for cauappcvgprlemladd 6848. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩))
 
8-Jul-2020nqprl 6741 Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by <P. (Contributed by Jim Kingdon, 8-Jul-2020.)
((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
 
5-Jul-2020addmodid 9374 The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)
 
1-Jul-2020gcdzeq 10411 A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 10412. (Contributed by AV, 1-Jul-2020.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴𝐴𝐵))
 
29-Jun-2020rspcda 2706 Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 29-Jun-2020.)
(𝑥 = 𝐶 → (𝜓𝜒))    &   (𝜑 → ∀𝑥𝐴 𝜓)    &   (𝜑𝐶𝐴)    &   𝑥𝜑       (𝜑𝜒)
 
26-Jun-2020zeo5 10288 An integer is either even or odd, version of zeo3 10267 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)))
 
25-Jun-2020even2n 10273 An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
(2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
 
24-Jun-2020nqprlu 6737 The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
(𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
 
23-Jun-2020cauappcvgprlem2 6850 Lemma for cauappcvgpr 6852. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑅Q)       (𝜑𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑅))}, {𝑢 ∣ ((𝐹𝑄) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
 
23-Jun-2020cauappcvgprlem1 6849 Lemma for cauappcvgpr 6852. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑄Q)    &   (𝜑𝑅Q)       (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))
 
23-Jun-2020cauappcvgprlemladd 6848 Lemma for cauappcvgpr 6852. This takes 𝐿 and offsets it by the positive fraction 𝑆. (Contributed by Jim Kingdon, 23-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩    &   (𝜑𝑆Q)       (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q 𝑆)}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q 𝑆) <Q 𝑢}⟩)
 
21-Jun-2020rspcdva 2707 Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.)
(𝑥 = 𝐶 → (𝜓𝜒))    &   (𝜑 → ∀𝑥𝐴 𝜓)    &   (𝜑𝐶𝐴)       (𝜑𝜒)
 
20-Jun-2020cauappcvgprlemlim 6851 Lemma for cauappcvgpr 6852. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
 
20-Jun-2020cauappcvgprlemcl 6843 Lemma for cauappcvgpr 6852. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))    &   𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩       (𝜑𝐿P)
 
19-Jun-2020cauappcvgpr 6852 A Cauchy approximation has a limit. A Cauchy approximation, here 𝐹, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of 𝐹 is Q rather than P. We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 6872 and caucvgprpr 6902 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

(𝜑𝐹:QQ)    &   (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))    &   (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))       (𝜑 → ∃𝑦P𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
 
18-Jun-2020caucvgpr 6872 A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction 𝐴, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 6852 and caucvgprpr 6902. Reading cauappcvgpr 6852 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

(𝜑𝐹:NQ)    &   (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))    &   (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))       (𝜑 → ∃𝑦P𝑥Q𝑗N𝑘N (𝑗 <N 𝑘 → (⟨{𝑙𝑙 <Q (𝐹𝑘)}, {𝑢 ∣ (𝐹𝑘) <Q 𝑢}⟩<P (𝑦 +P ⟨{𝑙𝑙 <Q 𝑥}, {𝑢𝑥 <Q 𝑢}⟩) ∧ 𝑦<P ⟨{𝑙𝑙 <Q ((𝐹𝑘) +Q 𝑥)}, {𝑢 ∣ ((𝐹𝑘) +Q 𝑥) <Q 𝑢}⟩)))
 
15-Jun-2020imdivapd 9862 Imaginary part of a division. Related to remul2 9760. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴))
 
15-Jun-2020redivapd 9861 Real part of a division. Related to remul2 9760. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴))
 
15-Jun-2020cjdivapd 9855 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
15-Jun-2020riotaexg 5492 Restricted iota is a set. (Contributed by Jim Kingdon, 15-Jun-2020.)
(𝐴𝑉 → (𝑥𝐴 𝜓) ∈ V)
 
14-Jun-2020cjdivapi 9822 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
14-Jun-2020cjdivap 9796 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵)))
 
14-Jun-2020cjap0 9794 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ (∗‘𝐴) # 0))
 
14-Jun-2020cjap 9793 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) # (∗‘𝐵) ↔ 𝐴 # 𝐵))
 
14-Jun-2020imdivap 9768 Imaginary part of a division. Related to immul2 9767. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵))
 
14-Jun-2020redivap 9761 Real part of a division. Related to remul2 9760. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵))
 
14-Jun-2020mulreap 9751 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
 
13-Jun-2020sqgt0apd 9633 The square of a real apart from zero is positive. (Contributed by Jim Kingdon, 13-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 # 0)       (𝜑 → 0 < (𝐴↑2))
 
13-Jun-2020reexpclzapd 9630 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 13-Jun-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴𝑁) ∈ ℝ)
 
13-Jun-2020expdivapd 9619 Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 13-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))
 
13-Jun-2020sqdivapd 9618 Distribution of square over division. (Contributed by Jim Kingdon, 13-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
 
12-Jun-2020expsubapd 9616 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
 
12-Jun-2020expm1apd 9615 Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
 
12-Jun-2020expp1zapd 9614 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
 
12-Jun-2020exprecapd 9613 Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
 
12-Jun-2020expnegapd 9612 Value of a complex number raised to a negative power. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
 
12-Jun-2020expap0d 9611 Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴𝑁) # 0)
 
12-Jun-2020expclzapd 9610 Closure law for integer exponentiation. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝐴𝑁) ∈ ℂ)
 
12-Jun-2020sqrecapd 9609 Square of reciprocal. (Contributed by Jim Kingdon, 12-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → ((1 / 𝐴)↑2) = (1 / (𝐴↑2)))
 
12-Jun-2020sqgt0api 9561 The square of a nonzero real is positive. (Contributed by Jim Kingdon, 12-Jun-2020.)
𝐴 ∈ ℝ       (𝐴 # 0 → 0 < (𝐴↑2))
 
12-Jun-2020sqdivapi 9559 Distribution of square over division. (Contributed by Jim Kingdon, 12-Jun-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐵 # 0       ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))
 
11-Jun-2020sqgt0ap 9544 The square of a nonzero real is positive. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴↑2))
 
11-Jun-2020sqdivap 9540 Distribution of square over division. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
 
11-Jun-2020expdivap 9527 Nonnegative integer exponentiation of a quotient. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 𝐵)↑𝑁) = ((𝐴𝑁) / (𝐵𝑁)))
 
11-Jun-2020expm1ap 9526 Value of a complex number raised to an integer power minus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 − 1)) = ((𝐴𝑁) / 𝐴))
 
11-Jun-2020expp1zap 9525 Value of a nonzero complex number raised to an integer power plus one. (Contributed by Jim Kingdon, 11-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
 
11-Jun-2020expsubap 9524 Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀𝑁)) = ((𝐴𝑀) / (𝐴𝑁)))
 
11-Jun-2020expmulzap 9522 Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 · 𝑁)) = ((𝐴𝑀)↑𝑁))
 
10-Jun-2020expaddzap 9520 Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
10-Jun-2020expaddzaplem 9519 Lemma for expaddzap 9520. (Contributed by Jim Kingdon, 10-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
 
10-Jun-2020exprecap 9517 Nonnegative integer exponentiation of a reciprocal. (Contributed by Jim Kingdon, 10-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → ((1 / 𝐴)↑𝑁) = (1 / (𝐴𝑁)))
 
10-Jun-2020mulexpzap 9516 Integer exponentiation of a product. (Contributed by Jim Kingdon, 10-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝑁 ∈ ℤ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
 
10-Jun-2020expap0i 9508 Integer exponentiation is apart from zero if its mantissa is apart from zero. (Contributed by Jim Kingdon, 10-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) # 0)
 
10-Jun-2020expap0 9506 Positive integer exponentiation is apart from zero iff its mantissa is apart from zero. That it is easier to prove this first, and then prove expeq0 9507 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." ([Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))
 
10-Jun-2020mvllmulapd 7921 Move LHS left multiplication to RHS. (Contributed by Jim Kingdon, 10-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑 → (𝐴 · 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 / 𝐴))
 
9-Jun-2020expclzap 9501 Closure law for integer exponentiation. (Contributed by Jim Kingdon, 9-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
 
9-Jun-2020expclzaplem 9500 Closure law for integer exponentiation. Lemma for expclzap 9501 and expap0i 9508. (Contributed by Jim Kingdon, 9-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ {𝑧 ∈ ℂ ∣ 𝑧 # 0})
 
9-Jun-2020reexpclzap 9496 Closure of exponentiation of reals. (Contributed by Jim Kingdon, 9-Jun-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℝ)
 
9-Jun-2020neg1ap0 8148 -1 is apart from zero. (Contributed by Jim Kingdon, 9-Jun-2020.)
-1 # 0
 
8-Jun-2020expcl2lemap 9488 Lemma for proving integer exponentiation closure laws. (Contributed by Jim Kingdon, 8-Jun-2020.)
𝐹 ⊆ ℂ    &   ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)    &   1 ∈ 𝐹    &   ((𝑥𝐹𝑥 # 0) → (1 / 𝑥) ∈ 𝐹)       ((𝐴𝐹𝐴 # 0 ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ 𝐹)
 
8-Jun-2020expn1ap0 9486 A number to the negative one power is the reciprocal. (Contributed by Jim Kingdon, 8-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴↑-1) = (1 / 𝐴))
 
8-Jun-2020expineg2 9485 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
 
8-Jun-2020expnegap0 9484 Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
 
8-Jun-2020expinnval 9479 Value of exponentiation to positive integer powers. (Contributed by Jim Kingdon, 8-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
 
7-Jun-2020zob 10291 Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
(𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
7-Jun-2020expival 9478 Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))))
 
7-Jun-2020expivallem 9477 Lemma for expival 9478. If we take a complex number apart from zero and raise it to a positive integer power, the result is apart from zero. (Contributed by Jim Kingdon, 7-Jun-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) # 0)
 
7-Jun-2020df-iexp 9476 Define exponentiation to nonnegative integer powers. This definition is not meant to be used directly; instead, exp0 9480 and expp1 9483 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts. 10-Jun-2005: The definition was extended to include zero exponents, so that 0↑0 = 1 per the convention of Definition 10-4.1 of [Gleason] p. 134. 4-Jun-2014: The definition was extended to include negative integer exponents. The case 𝑥 = 0, 𝑦 < 0 gives the value (1 / 0), so we will avoid this case in our theorems. (Contributed by Jim Kingdon, 7-Jun-2020.)
↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦)))))
 
7-Jun-2020halfge0 8247 One-half is not negative. (Contributed by AV, 7-Jun-2020.)
0 ≤ (1 / 2)
 
4-Jun-2020nn0ob 10308 Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
(𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
4-Jun-2020iseqfveq 9450 Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝑀( + , 𝐺, 𝑆)‘𝑁))
 
3-Jun-2020iseqfeq2 9449 Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺, 𝑆))
 
3-Jun-2020iseqfveq2 9448 Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
(𝜑𝐾 ∈ (ℤ𝑀))    &   (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝑁 ∈ (ℤ𝐾))    &   ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))
 
2-Jun-2020nn0o 10307 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
 
2-Jun-2020nno 10306 An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
 
2-Jun-2020nn0o1gt2 10305 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
 
2-Jun-20203halfnz 8444 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
¬ (3 / 2) ∈ ℤ
 
1-Jun-2020iseqcl 9443 Closure properties of the recursive sequence builder. (Contributed by Jim Kingdon, 1-Jun-2020.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) ∈ 𝑆)
 
1-Jun-2020fzdcel 9059 Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (𝑀...𝑁))
 
1-Jun-2020fztri3or 9058 Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑀𝐾 ∈ (𝑀...𝑁) ∨ 𝑁 < 𝐾))
 
1-Jun-2020zdclt 8425 Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
 
31-May-2020iseqp1 9445 Value of the sequence builder function at a successor. (Contributed by Jim Kingdon, 31-May-2020.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁) + (𝐹‘(𝑁 + 1))))
 
31-May-2020iseq1 9442 Value of the sequence builder function at its initial value. (Contributed by Jim Kingdon, 31-May-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
 
31-May-2020iseqovex 9439 Closure of a function used in proving sequence builder theorems. This can be thought of as a lemma for the small number of sequence builder theorems which need it. (Contributed by Jim Kingdon, 31-May-2020.)
((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
 
31-May-2020frecuzrdgcl 9415 Closure law for the recursive definition generator on upper integers. See comment in frec2uz0d 9401 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 31-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇𝐵) ∈ 𝑆)
 
30-May-2020nn0enne 10302 A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
 
30-May-2020iseqfn 9441 The sequence builder function is a function. (Contributed by Jim Kingdon, 30-May-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑆𝑉)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ𝑀))
 
30-May-2020iseqval 9440 Value of the sequence builder function. (Contributed by Jim Kingdon, 30-May-2020.)
𝑅 = frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → seq𝑀( + , 𝐹, 𝑆) = ran 𝑅)
 
30-May-2020nfiseq 9438 Hypothesis builder for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
𝑥𝑀    &   𝑥 +    &   𝑥𝐹    &   𝑥𝑆       𝑥seq𝑀( + , 𝐹, 𝑆)
 
30-May-2020iseqeq4 9437 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
(𝑆 = 𝑇 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇))
 
30-May-2020iseqeq3 9436 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
(𝐹 = 𝐺 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐺, 𝑆))
 
30-May-2020iseqeq2 9435 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
( + = 𝑄 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀(𝑄, 𝐹, 𝑆))
 
30-May-2020iseqeq1 9434 Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
(𝑀 = 𝑁 → seq𝑀( + , 𝐹, 𝑆) = seq𝑁( + , 𝐹, 𝑆))
 
30-May-2020nffrec 6005 Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
𝑥𝐹    &   𝑥𝐴       𝑥frec(𝐹, 𝐴)
 
30-May-2020freceq2 6003 Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
(𝐴 = 𝐵 → frec(𝐹, 𝐴) = frec(𝐹, 𝐵))
 
30-May-2020freceq1 6002 Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
(𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))
 
29-May-2020df-iseq 9432 Define a general-purpose operation that builds a recursive sequence (i.e. a function on the positive integers or some other upper integer set) whose value at an index is a function of its previous value and the value of an input sequence at that index. This definition is complicated, but fortunately it is not intended to be used directly. Instead, the only purpose of this definition is to provide us with an object that has the properties expressed by iseq1 9442 and iseqp1 9445. Typically, those are the main theorems that would be used in practice.

The first operand in the parentheses is the operation that is applied to the previous value and the value of the input sequence (second operand). The operand to the left of the parenthesis is the integer to start from. For example, for the operation +, an input sequence 𝐹 with values 1, 1/2, 1/4, 1/8,... would be transformed into the output sequence seq1( + , 𝐹, ℚ) with values 1, 3/2, 7/4, 15/8,.., so that (seq1( + , 𝐹, ℚ)‘1) = 1, (seq1( + , 𝐹, ℚ)‘2) = 3/2, etc. In other words, seq𝑀( + , 𝐹, ℚ) transforms a sequence 𝐹 into an infinite series.

Internally, the frec function generates as its values a set of ordered pairs starting at 𝑀, (𝐹𝑀)⟩, with the first member of each pair incremented by one in each successive value. So, the range of frec is exactly the sequence we want, and we just extract the range and throw away the domain.

(Contributed by Jim Kingdon, 29-May-2020.)

seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
 
28-May-2020frecuzrdgsuc 9417 Successor value of a recursive definition generator on upper integers. See comment in frec2uz0d 9401 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 28-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑇‘(𝐵 + 1)) = (𝐵𝐹(𝑇𝐵)))
 
27-May-2020frecuzrdg0 9416 Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 9401 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 27-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       (𝜑 → (𝑇𝐶) = 𝐴)
 
27-May-2020frecuzrdgrrn 9410 The function 𝑅 (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 𝑆. (Contributed by Jim Kingdon, 27-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       ((𝜑𝐷 ∈ ω) → (𝑅𝐷) ∈ ((ℤ𝐶) × 𝑆))
 
27-May-2020dffun5r 4934 A way of proving a relation is a function, analogous to mo2r 1993. (Contributed by Jim Kingdon, 27-May-2020.)
((Rel 𝐴 ∧ ∀𝑥𝑧𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 = 𝑧)) → Fun 𝐴)
 
26-May-2020frecuzrdgfn 9414 The recursive definition generator on upper integers is a function. See comment in frec2uz0d 9401 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 26-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝑇 = ran 𝑅)       (𝜑𝑇 Fn (ℤ𝐶))
 
26-May-2020frecuzrdglem 9413 A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝐵 ∈ (ℤ𝐶))       (𝜑 → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
 
26-May-2020frecuzrdgrom 9412 The function 𝑅 (used in the definition of the recursive definition generator on upper integers) is a function defined for all natural numbers. (Contributed by Jim Kingdon, 26-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)       (𝜑𝑅 Fn ω)
 
25-May-2020divlt1lt 8801 A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) < 1 ↔ 𝐴 < 𝐵))
 
25-May-2020freccl 6016 Closure for finite recursion. (Contributed by Jim Kingdon, 25-May-2020.)
(𝜑 → ∀𝑧(𝐹𝑧) ∈ V)    &   (𝜑𝐴𝑆)    &   ((𝜑𝑧𝑆) → (𝐹𝑧) ∈ 𝑆)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆)
 
24-May-2020mod2eq1n2dvds 10279 An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
(𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
 
24-May-2020frec2uzrdg 9411 A helper lemma for the value of a recursive definition generator on upper integers (typically either or 0) with characteristic function 𝐹(𝑥, 𝑦) and initial value 𝐴. This lemma shows that evaluating 𝑅 at an element of ω gives an ordered pair whose first element is the index (translated from ω to (ℤ𝐶)). See comment in frec2uz0d 9401 which describes 𝐺 and the index translation. (Contributed by Jim Kingdon, 24-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝑆𝑉)    &   (𝜑𝐴𝑆)    &   ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)    &   𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝑅𝐵) = ⟨(𝐺𝐵), (2nd ‘(𝑅𝐵))⟩)
 
24-May-2020eluz2gt1 8689 An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
(𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
 
24-May-2020xp1d2m1eqxm1d2 8283 A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
(𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2))
 
21-May-2020fzofig 9424 Half-open integer sets are finite. (Contributed by Jim Kingdon, 21-May-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) ∈ Fin)
 
21-May-2020fzfigd 9423 Deduction form of fzfig 9422. (Contributed by Jim Kingdon, 21-May-2020.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀...𝑁) ∈ Fin)
 
19-May-2020fzfig 9422 A finite interval of integers is finite. (Contributed by Jim Kingdon, 19-May-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ Fin)
 
19-May-2020frechashgf1o 9421 𝐺 maps ω one-to-one onto 0. (Contributed by Jim Kingdon, 19-May-2020.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       𝐺:ω–1-1-onto→ℕ0
 
19-May-2020ssfiexmid 6361 If any subset of a finite set is finite, excluded middle follows. One direction of Theorem 2.1 of [Bauer], p. 485. (Contributed by Jim Kingdon, 19-May-2020.)
𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)       (𝜑 ∨ ¬ 𝜑)
 
19-May-2020enm 6317 A set equinumerous to an inhabited set is inhabited. (Contributed by Jim Kingdon, 19-May-2020.)
((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦𝐵)
 
18-May-2020frecfzen2 9420 The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Jim Kingdon, 18-May-2020.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) ≈ (𝐺‘((𝑁 + 1) − 𝑀)))
 
18-May-2020frecfzennn 9419 The cardinality of a finite set of sequential integers. (See frec2uz0d 9401 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))
 
17-May-2020frec2uzisod 9409 𝐺 (see frec2uz0d 9401) is an isomorphism from natural ordinals to upper integers. (Contributed by Jim Kingdon, 17-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑𝐺 Isom E , < (ω, (ℤ𝐶)))
 
17-May-2020frec2uzf1od 9408 𝐺 (see frec2uz0d 9401) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
 
17-May-2020frec2uzrand 9407 Range of 𝐺 (see frec2uz0d 9401). (Contributed by Jim Kingdon, 17-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → ran 𝐺 = (ℤ𝐶))
 
16-May-2020frec2uzlt2d 9406 The mapping 𝐺 (see frec2uz0d 9401) preserves order. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝐴𝐵 ↔ (𝐺𝐴) < (𝐺𝐵)))
 
16-May-2020frec2uzltd 9405 Less-than relation for 𝐺 (see frec2uz0d 9401). (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)    &   (𝜑𝐵 ∈ ω)       (𝜑 → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
 
16-May-2020frec2uzuzd 9404 The value 𝐺 (see frec2uz0d 9401) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)       (𝜑 → (𝐺𝐴) ∈ (ℤ𝐶))
 
16-May-2020frec2uzsucd 9403 The value of 𝐺 (see frec2uz0d 9401) at a successor. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)       (𝜑 → (𝐺‘suc 𝐴) = ((𝐺𝐴) + 1))
 
16-May-2020frec2uzzd 9402 The value of 𝐺 (see frec2uz0d 9401) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)    &   (𝜑𝐴 ∈ ω)       (𝜑 → (𝐺𝐴) ∈ ℤ)
 
16-May-2020frec2uz0d 9401 The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers 0 or 1 for the upper integers ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (Contributed by Jim Kingdon, 16-May-2020.)
(𝜑𝐶 ∈ ℤ)    &   𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)       (𝜑 → (𝐺‘∅) = 𝐶)
 
15-May-2020nntri3 6098 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-May-2020.)
((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ (¬ 𝐴𝐵 ∧ ¬ 𝐵𝐴)))
 
14-May-2020rdgifnon2 5990 The recursive definition generator is a function on ordinal numbers. (Contributed by Jim Kingdon, 14-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
 
14-May-2020rdgtfr 5984 The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
 
13-May-2020frecfnom 6009 The function generated by finite recursive definition generation is a function on omega. (Contributed by Jim Kingdon, 13-May-2020.)
((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → frec(𝐹, 𝐴) Fn ω)
 
13-May-2020frecabex 6007 The class abstraction from df-frec 6001 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
(𝜑𝑆𝑉)    &   (𝜑 → ∀𝑦(𝐹𝑦) ∈ V)    &   (𝜑𝐴𝑊)       (𝜑 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑆 = suc 𝑚𝑥 ∈ (𝐹‘(𝑆𝑚))) ∨ (dom 𝑆 = ∅ ∧ 𝑥𝐴))} ∈ V)
 
8-May-2020tfr0 5960 Transfinite recursion at the empty set. (Contributed by Jim Kingdon, 8-May-2020.)
𝐹 = recs(𝐺)       ((𝐺‘∅) ∈ 𝑉 → (𝐹‘∅) = (𝐺‘∅))
 
7-May-2020frec0g 6006 The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
(𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
 
3-May-2020dcned 2251 Decidable equality implies decidable negated equality. (Contributed by Jim Kingdon, 3-May-2020.)
(𝜑DECID 𝐴 = 𝐵)       (𝜑DECID 𝐴𝐵)
 
2-May-2020ax-arch 7095 Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for real and complex numbers, justified by theorem axarch 7057.

This axiom should not be used directly; instead use arch 8285 (which is the same, but stated in terms of and <). (Contributed by Jim Kingdon, 2-May-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
 
30-Apr-2020ltexnqi 6599 Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.)
(𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
 
26-Apr-2020pitonnlem1p1 7014 Lemma for pitonn 7016. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴P → [⟨(𝐴 +P (1P +P 1P)), (1P +P 1P)⟩] ~R = [⟨(𝐴 +P 1P), 1P⟩] ~R )
 
26-Apr-2020addnqpr1 6752 Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 6751. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴Q → ⟨{𝑙𝑙 <Q (𝐴 +Q 1Q)}, {𝑢 ∣ (𝐴 +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P 1P))
 
26-Apr-2020addpinq1 6654 Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴N → [⟨(𝐴 +N 1𝑜), 1𝑜⟩] ~Q = ([⟨𝐴, 1𝑜⟩] ~Q +Q 1Q))
 
26-Apr-2020nnnq 6612 The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴N → [⟨𝐴, 1𝑜⟩] ~QQ)
 
24-Apr-2020pitonnlem2 7015 Lemma for pitonn 7016. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
(𝐾N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝐾, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐾, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨(𝐾 +N 1𝑜), 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
 
24-Apr-2020pitonnlem1 7013 Lemma for pitonn 7016. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
⟨[⟨(⟨{𝑙𝑙 <Q [⟨1𝑜, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨1𝑜, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
 
23-Apr-2020archsr 6958 For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R is the embedding of the positive integer 𝑥 into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴R → ∃𝑥N 𝐴 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
 
23-Apr-2020nnprlu 6743 The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴N → ⟨{𝑙𝑙 <Q [⟨𝐴, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝐴, 1𝑜⟩] ~Q <Q 𝑢}⟩ ∈ P)
 
22-Apr-2020axarch 7057 Archimedean axiom. The Archimedean property is more naturally stated once we have defined . Unless we find another way to state it, we'll just use the right hand side of dfnn2 8041 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7095. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

(𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
 
22-Apr-2020pitonn 7016 Mapping from N to . (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑁, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑁, 1𝑜⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
 
22-Apr-2020archpr 6833 For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer 𝑥 is embedded into the reals as described at nnprlu 6743. (Contributed by Jim Kingdon, 22-Apr-2020.)
(𝐴P → ∃𝑥N 𝐴<P ⟨{𝑙𝑙 <Q [⟨𝑥, 1𝑜⟩] ~Q }, {𝑢 ∣ [⟨𝑥, 1𝑜⟩] ~Q <Q 𝑢}⟩)
 
20-Apr-2020fzo0m 9200 A half-open integer range based at 0 is inhabited precisely if the upper bound is a positive integer. (Contributed by Jim Kingdon, 20-Apr-2020.)
(∃𝑥 𝑥 ∈ (0..^𝐴) ↔ 𝐴 ∈ ℕ)
 
20-Apr-2020fzom 9173 A half-open integer interval is inhabited iff it contains its left endpoint. (Contributed by Jim Kingdon, 20-Apr-2020.)
(∃𝑥 𝑥 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝑀..^𝑁))
 
18-Apr-2020eluzdc 8697 Membership of an integer in an upper set of integers is decidable. (Contributed by Jim Kingdon, 18-Apr-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 ∈ (ℤ𝑀))
 
17-Apr-2020zlelttric 8396 Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐵 < 𝐴))
 
16-Apr-2020fznlem 9060 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 → (𝑀...𝑁) = ∅))
 
15-Apr-2020fzm 9057 Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.)
(∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ𝑀))
 
15-Apr-2020xpdom3m 6331 A set is dominated by its Cartesian product with an inhabited set. Exercise 6 of [Suppes] p. 98. (Contributed by Jim Kingdon, 15-Apr-2020.)
((𝐴𝑉𝐵𝑊 ∧ ∃𝑥 𝑥𝐵) → 𝐴 ≼ (𝐴 × 𝐵))
 
13-Apr-2020snfig 6314 A singleton is finite. (Contributed by Jim Kingdon, 13-Apr-2020.)
(𝐴𝑉 → {𝐴} ∈ Fin)
 
13-Apr-2020en1bg 6303 A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.)
(𝐴𝑉 → (𝐴 ≈ 1𝑜𝐴 = { 𝐴}))
 
10-Apr-2020negm 8700 The image under negation of an inhabited set of reals is inhabited. (Contributed by Jim Kingdon, 10-Apr-2020.)
((𝐴 ⊆ ℝ ∧ ∃𝑥 𝑥𝐴) → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
 
8-Apr-2020zleloe 8398 Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
 
7-Apr-2020zdcle 8424 Integer is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴𝐵)
 
5-Apr-2020faccld 9663 Closure of the factorial function, deduction version of faccl 9662. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑁 ∈ ℕ0)       (𝜑 → (!‘𝑁) ∈ ℕ)
 
5-Apr-2020divge1 8800 The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵) → 1 ≤ (𝐵 / 𝐴))
 
4-Apr-2020ioorebasg 8998 Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,))
 
30-Mar-2020icc0r 8949 An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → (𝐴[,]𝐵) = ∅))
 
30-Mar-2020ubioog 8937 An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝐵 ∈ (𝐴(,)𝐵))
 
30-Mar-2020lbioog 8936 An open interval does not contain its left endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ¬ 𝐴 ∈ (𝐴(,)𝐵))
 
29-Mar-2020iooidg 8932 An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
(𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅)
 
27-Mar-2020zletric 8395 Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐵𝐴))
 
26-Mar-20204z 8381 4 is an integer. (Contributed by BJ, 26-Mar-2020.)
4 ∈ ℤ
 
25-Mar-2020elfzmlbm 9142 Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
(𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ∈ (0...(𝑁𝑀)))
 
25-Mar-2020elfz0add 9134 An element of a finite set of sequential nonnegative integers is an element of an extended finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝑁 ∈ (0...𝐴) → 𝑁 ∈ (0...(𝐴 + 𝐵))))
 
25-Mar-20202eluzge0 8663 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.)
2 ∈ (ℤ‘0)
 
23-Mar-2020rpnegap 8766 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (𝐴 ∈ ℝ+ ⊻ -𝐴 ∈ ℝ+))
 
23-Mar-2020reapltxor 7689 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
 
22-Mar-2020rpcnap0 8754 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 # 0))
 
22-Mar-2020rpreap0 8752 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 # 0))
 
22-Mar-2020rpap0 8750 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
(𝐴 ∈ ℝ+𝐴 # 0)
 
20-Mar-2020qapne 8724 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 # 𝐵𝐴𝐵))
 
20-Mar-2020divap1d 7888 If two complex numbers are apart, their quotient is apart from one. (Contributed by Jim Kingdon, 20-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴 / 𝐵) # 1)
 
20-Mar-2020apmul1 7876 Multiplication of both sides of complex apartness by a complex number apart from zero. (Contributed by Jim Kingdon, 20-Mar-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶)))
 
19-Mar-2020divfnzn 8706 Division restricted to ℤ × ℕ is a function. Given excluded middle, it would be easy to prove this for ℂ × (ℂ ∖ {0}). The key difference is that an element of is apart from zero, whereas being an element of ℂ ∖ {0} implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
 
19-Mar-2020div2negapd 7892 Quotient of two negatives. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵))
 
19-Mar-2020divneg2apd 7891 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵))
 
19-Mar-2020divnegapd 7890 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
 
19-Mar-2020divap0bd 7889 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0))
 
19-Mar-2020diveqap0ad 7887 A fraction of complex numbers is zero iff its numerator is. Deduction form of diveqap0 7770. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0))
 
19-Mar-2020diveqap1ad 7886 The quotient of two complex numbers is one iff they are equal. Deduction form of diveqap1 7793. Generalization of diveqap1d 7885. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))
 
19-Mar-2020diveqap1d 7885 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑 → (𝐴 / 𝐵) = 1)       (𝜑𝐴 = 𝐵)
 
19-Mar-2020diveqap0d 7884 If a ratio is zero, the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑 → (𝐴 / 𝐵) = 0)       (𝜑𝐴 = 0)
 
15-Mar-2020nneoor 8449 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
 
14-Mar-2020zltlen 8426 Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 7730 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
14-Mar-2020zdceq 8423 Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
 
14-Mar-2020zapne 8422 Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 # 𝑁𝑀𝑁))
 
14-Mar-2020zltnle 8397 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
 
14-Mar-2020ztri3or 8394 Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
 
14-Mar-2020ztri3or0 8393 Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
(𝑁 ∈ ℤ → (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
 
14-Mar-2020zaddcllemneg 8390 Lemma for zaddcl 8391. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
 
14-Mar-2020zaddcllempos 8388 Lemma for zaddcl 8391. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
 
14-Mar-2020dcne 2256 Decidable equality expressed in terms of . Basically the same as df-dc 776. (Contributed by Jim Kingdon, 14-Mar-2020.)
(DECID 𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐴𝐵))
 
9-Mar-2020dvdsmultr1d 10234 Natural deduction form of dvdsmultr1 10233. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)       (𝜑𝐾 ∥ (𝑀 · 𝑁))
 
9-Mar-2020dvds2subd 10231 Natural deduction form of dvds2sub 10230. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝐾𝑁)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑𝐾 ∥ (𝑀𝑁))
 
9-Mar-20202muliap0 8255 2 · i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
(2 · i) # 0
 
9-Mar-2020iap0 8254 The imaginary unit i is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
i # 0
 
9-Mar-20202ap0 8132 The number 2 is apart from zero. (Contributed by Jim Kingdon, 9-Mar-2020.)
2 # 0
 
9-Mar-20201ne0 8107 1 ≠ 0. See aso 1ap0 7690. (Contributed by Jim Kingdon, 9-Mar-2020.)
1 ≠ 0
 
9-Mar-2020redivclapi 7867 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐵 # 0       (𝐴 / 𝐵) ∈ ℝ
 
9-Mar-2020redivclapzi 7866 Closure law for division of reals. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℝ)
 
9-Mar-2020rerecclapi 7865 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ    &   𝐴 # 0       (1 / 𝐴) ∈ ℝ
 
9-Mar-2020rerecclapzi 7864 Closure law for reciprocal. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℝ       (𝐴 # 0 → (1 / 𝐴) ∈ ℝ)
 
9-Mar-2020divdivdivapi 7863 Division of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0    &   𝐶 # 0       ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))
 
9-Mar-2020divadddivapi 7862 Addition of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0       ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))
 
9-Mar-2020divmul13api 7861 Swap denominators of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0       ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷))
 
9-Mar-2020divmuldivapi 7860 Multiplication of two ratios. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ    &   𝐵 # 0    &   𝐷 # 0       ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷))
 
9-Mar-2020div11api 7859 One-to-one relationship for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)
 
9-Mar-2020div23api 7858 A commutative/associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)
 
9-Mar-2020divdirapi 7857 Distribution of division over addition. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))
 
9-Mar-2020divassapi 7856 An associative law for division. (Contributed by Jim Kingdon, 9-Mar-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))
 
8-Mar-2020nnap0 8068 A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝐴 ∈ ℕ → 𝐴 # 0)
 
8-Mar-2020divdivap2d 7909 Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))
 
8-Mar-2020divdivap1d 7908 Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
 
8-Mar-2020dmdcanap2d 7907 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶))
 
8-Mar-2020dmdcanapd 7906 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶))

  Copyright terms: Public domain W3C HTML validation [external]