Intuitionistic Logic Explorer Home Intuitionistic Logic Explorer
Bibliographic Cross-References
 
Mirrors  >  Home  >  ILE Home  >  Bibliographic Cross-References

Bibliographic Cross-References   This table collects in one place the bibliographic references made in the Intuitionistic Logic Explorer's axiom, definition, and theorem Descriptions. If you are studying a particular reference, this list can be handy for finding out where any corresponding Metamath theorems might be located. Keep in mind that we usually give only one reference for a theorem that may appear in several books, so it can also be useful to browse the Related Theorems around a theorem of interest.

Bibliographic Cross-Reference for the Intuitionistic Logic Explorer
Bibliographic Reference DescriptionIntuitionistic Logic Explorer Page(s)
[ than ] equality." ([Geuvers], p. 1Partness is more basic expap0 9506
[AczelRathjen], p. 183Chapter 20ax-setind 4280
[Apostol] p. 18Theorem I.1addcan 7288  addcan2d 7293  addcan2i 7291  addcand 7292  addcani 7290
[Apostol] p. 18Theorem I.2negeu 7299
[Apostol] p. 18Theorem I.3negsub 7356  negsubd 7425  negsubi 7386
[Apostol] p. 18Theorem I.4negneg 7358  negnegd 7410  negnegi 7378
[Apostol] p. 18Theorem I.5subdi 7489  subdid 7518  subdii 7511  subdir 7490  subdird 7519  subdiri 7512
[Apostol] p. 18Theorem I.6mul01 7493  mul01d 7497  mul01i 7495  mul02 7491  mul02d 7496  mul02i 7494
[Apostol] p. 18Theorem I.9divrecapd 7880
[Apostol] p. 18Theorem I.10recrecapi 7832
[Apostol] p. 18Theorem I.12mul2neg 7502  mul2negd 7517  mul2negi 7510  mulneg1 7499  mulneg1d 7515  mulneg1i 7508
[Apostol] p. 18Theorem I.15divdivdivap 7801
[Apostol] p. 20Axiom 7rpaddcl 8757  rpaddcld 8789  rpmulcl 8758  rpmulcld 8790
[Apostol] p. 20Axiom 90nrp 8767
[Apostol] p. 20Theorem I.17lttri 7215
[Apostol] p. 20Theorem I.18ltadd1d 7638  ltadd1dd 7656  ltadd1i 7603
[Apostol] p. 20Theorem I.19ltmul1 7692  ltmul1a 7691  ltmul1i 7998  ltmul1ii 8006  ltmul2 7934  ltmul2d 8816  ltmul2dd 8830  ltmul2i 8001
[Apostol] p. 20Theorem I.210lt1 7236
[Apostol] p. 20Theorem I.23lt0neg1 7572  lt0neg1d 7616  ltneg 7566  ltnegd 7623  ltnegi 7594
[Apostol] p. 20Theorem I.25lt2add 7549  lt2addd 7667  lt2addi 7611
[Apostol] p. 20Definition of positive numbersdf-rp 8735
[Apostol] p. 21Exercise 4recgt0 7928  recgt0d 8012  recgt0i 7984  recgt0ii 7985
[Apostol] p. 22Definition of integersdf-z 8352
[Apostol] p. 22Definition of rationalsdf-q 8705
[Apostol] p. 24Theorem I.26supeuti 6407
[Apostol] p. 26Theorem I.29arch 8285
[Apostol] p. 28Exercise 2btwnz 8466
[Apostol] p. 28Exercise 3nnrecl 8286
[Apostol] p. 28Exercise 6qbtwnre 9265
[Apostol] p. 28Exercise 10(a)zeneo 10270  zneo 8448
[Apostol] p. 29Theorem I.35resqrtth 9917  sqrtthi 10005
[Apostol] p. 34Theorem I.36 (principle of mathematical induction)peano5nni 8042
[Apostol] p. 363Remarkabsgt0api 10032
[Apostol] p. 363Exampleabssubd 10079  abssubi 10036
[ApostolNT] p. 14Definitiondf-dvds 10196
[ApostolNT] p. 14Theorem 1.1(a)iddvds 10208
[ApostolNT] p. 14Theorem 1.1(b)dvdstr 10232
[ApostolNT] p. 14Theorem 1.1(c)dvds2ln 10228
[ApostolNT] p. 14Theorem 1.1(d)dvdscmul 10222
[ApostolNT] p. 14Theorem 1.1(e)dvdscmulr 10224
[ApostolNT] p. 14Theorem 1.1(f)1dvds 10209
[ApostolNT] p. 14Theorem 1.1(g)dvds0 10210
[ApostolNT] p. 14Theorem 1.1(h)0dvds 10215
[ApostolNT] p. 14Theorem 1.1(i)dvdsleabs 10245
[ApostolNT] p. 14Theorem 1.1(j)dvdsabseq 10247
[ApostolNT] p. 14Theorem 1.1(k)divconjdvds 10249
[ApostolNT] p. 15Definitiondfgcd2 10403
[ApostolNT] p. 16Definitionisprm2 10499
[ApostolNT] p. 16Theorem 1.5coprmdvds 10474
[ApostolNT] p. 16Theorem 1.4(a)gcdcom 10365
[ApostolNT] p. 16Theorem 1.4(b)gcdass 10404
[ApostolNT] p. 16Theorem 1.4(c)absmulgcd 10406
[ApostolNT] p. 16Theorem 1.4(d)1gcd1 10378
[ApostolNT] p. 16Theorem 1.4(d)2gcdid0 10371
[ApostolNT] p. 17Theorem 1.8coprm 10523
[ApostolNT] p. 17Theorem 1.9euclemma 10525
[ApostolNT] p. 19Theorem 1.14divalg 10324
[ApostolNT] p. 20Theorem 1.15eucialg 10441
[ApostolNT] p. 104Definitioncongr 10482
[ApostolNT] p. 106Remarkdvdsval3 10199
[ApostolNT] p. 106Definitionmoddvds 10204
[ApostolNT] p. 107Example 2mod2eq0even 10277
[ApostolNT] p. 107Example 3mod2eq1n2dvds 10279
[ApostolNT] p. 107Example 4zmod1congr 9343
[ApostolNT] p. 107Theorem 5.2(b)modqmul12d 9380
[ApostolNT] p. 108Theorem 5.3modmulconst 10227
[ApostolNT] p. 109Theorem 5.4cncongr1 10485
[ApostolNT] p. 109Theorem 5.4 "Cancellation law"cncongr 10487
[Bauer] p. 482Section 1.2pm2.01 578  pm2.65 617
[Bauer] p. 483Theorem 1.3acexmid 5531  onsucelsucexmidlem 4272
[Bauer], p. 483Definitionn0rf 3260
[Bauer], p. 485Theorem 2.1ssfiexmid 6361
[BauerTaylor], p. 32Lemma 6.16prarloclem 6691
[BauerTaylor], p. 50Lemma 11.4subhalfnqq 6604
[BauerTaylor], p. 52Proposition 11.15prarloc 6693
[BauerTaylor], p. 53Lemma 11.16addclpr 6727  addlocpr 6726
[BauerTaylor], p. 55Proposition 12.7appdivnq 6753
[BauerTaylor], p. 56Lemma 12.8prmuloc 6756
[BauerTaylor], p. 56Lemma 12.9mullocpr 6761
[BellMachover] p. 36Lemma 10.3idALT 20
[BellMachover] p. 97Definition 10.1df-eu 1944
[BellMachover] p. 460Notationdf-mo 1945
[BellMachover] p. 460Definitionmo3 1995  mo3h 1994
[BellMachover] p. 462Theorem 1.1bm1.1 2066
[BellMachover] p. 463Theorem 1.3iibm1.3ii 3899
[BellMachover] p. 466Axiom Powaxpow3 3951
[BellMachover] p. 466Axiom Unionaxun2 4190
[BellMachover] p. 469Theorem 2.2(i)ordirr 4285
[BellMachover] p. 469Theorem 2.2(iii)onelon 4139
[BellMachover] p. 469Theorem 2.2(vii)ordn2lp 4288
[BellMachover] p. 471Problem 2.5(ii)bm2.5ii 4240
[BellMachover] p. 471Definition of Limdf-ilim 4124
[BellMachover] p. 472Axiom Infzfinf2 4330
[BellMachover] p. 473Theorem 2.8limom 4354
[Bobzien] p. 116Statement T3stoic3 1360
[Bobzien] p. 117Statement T2stoic2a 1358
[Bobzien] p. 117Statement T4stoic4a 1361
[BourbakiEns] p. Proposition 8fcof1 5443  fcofo 5444
[BourbakiTop1] p. Remarkxnegmnf 8896  xnegpnf 8895
[BourbakiTop1] p. Remark rexneg 8897
[ChoquetDD] p. 2Definition of mappingdf-mpt 3841
[Crosilla] p. Axiom 1ax-ext 2063
[Crosilla] p. Axiom 2ax-pr 3964
[Crosilla] p. Axiom 3ax-un 4188
[Crosilla] p. Axiom 4ax-nul 3904
[Crosilla] p. Axiom 5ax-iinf 4329
[Crosilla] p. Axiom 6ru 2814
[Crosilla] p. Axiom 8ax-pow 3948
[Crosilla] p. Axiom 9ax-setind 4280
[Crosilla], p. Axiom 6ax-sep 3896
[Crosilla], p. Axiom 7ax-coll 3893
[Crosilla], p. Axiom 7'repizf 3894
[Crosilla], p. Theorem is statedordtriexmid 4265
[Crosilla], p. Axiom of choice implies instancesacexmid 5531
[Crosilla], p. Definition of ordinaldf-iord 4121
[Crosilla], p. Theorem "Foundation implies instances of EM"regexmid 4278
[Eisenberg] p. 67Definition 5.3df-dif 2975
[Eisenberg] p. 82Definition 6.3df-iom 4332
[Enderton] p. 18Axiom of Empty Setaxnul 3903
[Enderton] p. 19Definitiondf-tp 3406
[Enderton] p. 26Exercise 5unissb 3631
[Enderton] p. 26Exercise 10pwel 3973
[Enderton] p. 28Exercise 7(b)pwunim 4041
[Enderton] p. 30Theorem "Distributive laws"iinin1m 3747  iinin2m 3746  iunin1 3742  iunin2 3741
[Enderton] p. 31Theorem "De Morgan's laws"iindif2m 3745  iundif2ss 3743
[Enderton] p. 33Exercise 23iinuniss 3758
[Enderton] p. 33Exercise 25iununir 3759
[Enderton] p. 33Exercise 24(a)iinpw 3763
[Enderton] p. 33Exercise 24(b)iunpw 4229  iunpwss 3764
[Enderton] p. 38Exercise 6(a)unipw 3972
[Enderton] p. 38Exercise 6(b)pwuni 3963
[Enderton] p. 41Lemma 3Dopeluu 4200  rnex 4617  rnexg 4615
[Enderton] p. 41Exercise 8dmuni 4563  rnuni 4755
[Enderton] p. 42Definition of a functiondffun7 4948  dffun8 4949
[Enderton] p. 43Definition of function valuefunfvdm2 5258
[Enderton] p. 43Definition of single-rootedfuncnv 4980
[Enderton] p. 44Definition (d)dfima2 4690  dfima3 4691
[Enderton] p. 47Theorem 3Hfvco2 5263
[Enderton] p. 50Theorem 3K(a)imauni 5421
[Enderton] p. 53Exercise 21coass 4859
[Enderton] p. 53Exercise 27dmco 4849
[Enderton] p. 53Exercise 14(a)funin 4990
[Enderton] p. 53Exercise 22(a)imass2 4721
[Enderton] p. 56Theorem 3Merref 6149
[Enderton] p. 57Lemma 3Nerthi 6175
[Enderton] p. 57Definitiondf-ec 6131
[Enderton] p. 58Definitiondf-qs 6135
[Enderton] p. 60Theorem 3Qth3q 6234  th3qcor 6233  th3qlem1 6231  th3qlem2 6232
[Enderton] p. 61Exercise 35df-ec 6131
[Enderton] p. 65Exercise 56(a)dmun 4560
[Enderton] p. 68Definition of successordf-suc 4126
[Enderton] p. 71Definitiondf-tr 3876  dftr4 3880
[Enderton] p. 72Theorem 4Eunisuc 4168  unisucg 4169
[Enderton] p. 73Exercise 6unisuc 4168  unisucg 4169
[Enderton] p. 73Exercise 5(a)truni 3889
[Enderton] p. 73Exercise 5(b)trint 3890
[Enderton] p. 79Theorem 4I(A1)nna0 6076
[Enderton] p. 79Theorem 4I(A2)nnasuc 6078  onasuc 6069
[Enderton] p. 79Definition of operation valuedf-ov 5535
[Enderton] p. 80Theorem 4J(A1)nnm0 6077
[Enderton] p. 80Theorem 4J(A2)nnmsuc 6079  onmsuc 6075
[Enderton] p. 81Theorem 4K(1)nnaass 6087
[Enderton] p. 81Theorem 4K(2)nna0r 6080  nnacom 6086
[Enderton] p. 81Theorem 4K(3)nndi 6088
[Enderton] p. 81Theorem 4K(4)nnmass 6089
[Enderton] p. 81Theorem 4K(5)nnmcom 6091
[Enderton] p. 82Exercise 16nnm0r 6081  nnmsucr 6090
[Enderton] p. 88Exercise 23nnaordex 6123
[Enderton] p. 129Definitiondf-en 6245
[Enderton] p. 134Theorem (Pigeonhole Principle)phpm 6351
[Enderton] p. 136Corollary 6Enneneq 6343
[Enderton] p. 144Corollary 6Kundif2ss 3319
[Enderton] p. 145Figure 38ffoss 5178
[Enderton] p. 145Definitiondf-dom 6246
[Enderton] p. 146Example 1domen 6255  domeng 6256
[Enderton] p. 146Example 3nndomo 6350
[Enderton] p. 149Theorem 6L(c)xpdom1 6332  xpdom1g 6330  xpdom2g 6329
[Enderton] p. 168Definitiondf-po 4051
[Enderton] p. 192Theorem 7M(a)oneli 4183
[Enderton] p. 192Theorem 7M(b)ontr1 4144
[Enderton] p. 192Theorem 7M(c)onirri 4286
[Enderton] p. 193Corollary 7N(b)0elon 4147
[Enderton] p. 193Corollary 7N(c)onsuci 4260
[Enderton] p. 193Corollary 7N(d)ssonunii 4233
[Enderton] p. 194Remarkonprc 4295
[Enderton] p. 194Exercise 16suc11 4301
[Enderton] p. 197Definitiondf-card 6449
[Enderton] p. 200Exercise 25tfis 4324
[Enderton] p. 206Theorem 7X(b)en2lp 4297
[Enderton] p. 207Exercise 34opthreg 4299
[Enderton] p. 208Exercise 35suc11g 4300
[Geuvers], p. 6Lemma 2.13mulap0r 7715
[Geuvers], p. 6Lemma 2.15mulap0 7744
[Geuvers], p. 9Lemma 2.35msqge0 7716
[Geuvers], p. 9Definition 3.1(2)ax-arch 7095
[Geuvers], p. 10Lemma 3.9maxcom 10089
[Geuvers], p. 10Lemma 3.10maxle1 10097  maxle2 10098
[Geuvers], p. 10Lemma 3.11maxleast 10099
[Geuvers], p. 10Lemma 3.12maxleb 10102
[Geuvers], p. 11Definition 3.13dfabsmax 10103
[Geuvers], p. 17Definition 6.1df-ap 7682
[Gleason] p. 117Proposition 9-2.1df-enq 6537  enqer 6548
[Gleason] p. 117Proposition 9-2.2df-1nqqs 6541  df-nqqs 6538
[Gleason] p. 117Proposition 9-2.3df-plpq 6534  df-plqqs 6539
[Gleason] p. 119Proposition 9-2.4df-mpq 6535  df-mqqs 6540
[Gleason] p. 119Proposition 9-2.5df-rq 6542
[Gleason] p. 119Proposition 9-2.6ltexnqq 6598
[Gleason] p. 120Proposition 9-2.6(i)halfnq 6601  ltbtwnnq 6606  ltbtwnnqq 6605
[Gleason] p. 120Proposition 9-2.6(ii)ltanqg 6590
[Gleason] p. 120Proposition 9-2.6(iii)ltmnqg 6591
[Gleason] p. 123Proposition 9-3.5addclpr 6727
[Gleason] p. 123Proposition 9-3.5(i)addassprg 6769
[Gleason] p. 123Proposition 9-3.5(ii)addcomprg 6768
[Gleason] p. 123Proposition 9-3.5(iii)ltaddpr 6787
[Gleason] p. 123Proposition 9-3.5(iv)ltexpri 6803
[Gleason] p. 123Proposition 9-3.5(v)ltaprg 6809  ltaprlem 6808
[Gleason] p. 123Proposition 9-3.5(vi)addcanprg 6806
[Gleason] p. 124Proposition 9-3.7mulclpr 6762
[Gleason] p. 124Theorem 9-3.7(iv)1idpr 6782
[Gleason] p. 124Proposition 9-3.7(i)mulassprg 6771
[Gleason] p. 124Proposition 9-3.7(ii)mulcomprg 6770
[Gleason] p. 124Proposition 9-3.7(iii)distrprg 6778
[Gleason] p. 124Proposition 9-3.7(v)recexpr 6828
[Gleason] p. 126Proposition 9-4.1df-enr 6903  enrer 6912
[Gleason] p. 126Proposition 9-4.2df-0r 6908  df-1r 6909  df-nr 6904
[Gleason] p. 126Proposition 9-4.3df-mr 6906  df-plr 6905  negexsr 6949  recexsrlem 6951
[Gleason] p. 127Proposition 9-4.4df-ltr 6907
[Gleason] p. 130Proposition 10-1.3creui 8037  creur 8036  cru 7702
[Gleason] p. 130Definition 10-1.1(v)ax-cnre 7087  axcnre 7047
[Gleason] p. 132Definition 10-3.1crim 9745  crimd 9864  crimi 9824  crre 9744  crred 9863  crrei 9823
[Gleason] p. 132Definition 10-3.2remim 9747  remimd 9829
[Gleason] p. 133Definition 10.36absval2 9943  absval2d 10071  absval2i 10030
[Gleason] p. 133Proposition 10-3.4(a)cjadd 9771  cjaddd 9852  cjaddi 9819
[Gleason] p. 133Proposition 10-3.4(c)cjmul 9772  cjmuld 9853  cjmuli 9820
[Gleason] p. 133Proposition 10-3.4(e)cjcj 9770  cjcjd 9830  cjcji 9802
[Gleason] p. 133Proposition 10-3.4(f)cjre 9769  cjreb 9753  cjrebd 9833  cjrebi 9805  cjred 9858  rere 9752  rereb 9750  rerebd 9832  rerebi 9804  rered 9856
[Gleason] p. 133Proposition 10-3.4(h)addcj 9778  addcjd 9844  addcji 9814
[Gleason] p. 133Proposition 10-3.7(a)absval 9887
[Gleason] p. 133Proposition 10-3.7(b)abscj 9938  abscjd 10076  abscji 10034
[Gleason] p. 133Proposition 10-3.7(c)abs00 9950  abs00d 10072  abs00i 10031  absne0d 10073
[Gleason] p. 133Proposition 10-3.7(d)releabs 9982  releabsd 10077  releabsi 10035
[Gleason] p. 133Proposition 10-3.7(f)absmul 9955  absmuld 10080  absmuli 10037
[Gleason] p. 133Proposition 10-3.7(g)sqabsadd 9941  sqabsaddi 10038
[Gleason] p. 133Proposition 10-3.7(h)abstri 9990  abstrid 10082  abstrii 10041
[Gleason] p. 134Definition 10-4.10exp0e1 9481  df-iexp 9476  exp0 9480  expp1 9483  expp1d 9606
[Gleason] p. 135Proposition 10-4.2(a)expadd 9518  expaddd 9607
[Gleason] p. 135Proposition 10-4.2(b)expmul 9521  expmuld 9608
[Gleason] p. 135Proposition 10-4.2(c)mulexp 9515  mulexpd 9620
[Gleason] p. 141Definition 11-2.1fzval 9031
[Gleason] p. 168Proposition 12-2.1(a)climadd 10164
[Gleason] p. 168Proposition 12-2.1(b)climsub 10166
[Gleason] p. 168Proposition 12-2.1(c)climmul 10165
[Gleason] p. 171Corollary 12-2.2climmulc2 10169
[Gleason] p. 172Corollary 12-2.5climrecl 10162
[Gleason] p. 172Proposition 12-2.4(c)climabs 10158  climcj 10159  climim 10161  climre 10160
[Gleason] p. 173Definition 12-3.1df-ltxr 7158  df-xr 7157  ltxr 8849
[Gleason] p. 180Theorem 12-5.3climcau 10184
[Gleason] p. 217Lemma 13-4.1btwnzge0 9302
[Gleason] p. 243Proposition 14-4.16addcn2 10149  mulcn2 10151  subcn2 10150
[Gleason] p. 295Remarkbcval3 9678  bcval4 9679
[Gleason] p. 295Equation 2bcpasc 9693
[Gleason] p. 295Definition of binomial coefficientbcval 9676  df-bc 9675
[Gleason] p. 296Remarkbcn0 9682  bcnn 9684
[Hamilton] p. 31Example 2.7(a)idALT 20
[Hamilton] p. 73Rule 1ax-mp 7
[Hamilton] p. 74Rule 2ax-gen 1378
[Heyting] p. 127Axiom #1ax1hfs 10786
[Hitchcock] p. 5Rule A3mptnan 1354
[Hitchcock] p. 5Rule A4mptxor 1355
[Hitchcock] p. 5Rule A5mtpxor 1357
[HoTT], p. Theorem 7.2.6nndceq 6100
[HoTT], p. Section 11.2.1df-iltp 6660  df-imp 6659  df-iplp 6658  df-reap 7675
[HoTT], p. Theorem 11.2.12cauappcvgpr 6852
[HoTT], p. Corollary 11.4.3conventions 10559
[HoTT], p. Corollary 11.2.13axcaucvg 7066  caucvgpr 6872  caucvgprpr 6902  caucvgsr 6978
[HoTT], p. Definition 11.2.1df-inp 6656
[HoTT], p. Proposition 11.2.3df-iso 4052  ltpopr 6785  ltsopr 6786
[HoTT], p. Definition 11.2.7(v)apsym 7706  reapcotr 7698  reapirr 7677
[HoTT], p. Definition 11.2.7(vi)0lt1 7236  gt0add 7673  leadd1 7534  lelttr 7199  lemul1a 7936  lenlt 7187  ltadd1 7533  ltletr 7200  ltmul1 7692  reaplt 7688
[Jech] p. 4Definition of classcv 1283  cvjust 2076
[Jech] p. 78Noteopthprc 4409
[KalishMontague] p. 81Note 1ax-i9 1463
[Kreyszig] p. 12Equation 5muleqadd 7758
[Kunen] p. 10Axiom 0a9e 1626
[Kunen] p. 12Axiom 6zfrep6 3895
[KuratowskiMostowski] p. 109Section. Eq. 14iuniin 3688
[Levy] p. 338Axiomdf-clab 2068  df-clel 2077  df-cleq 2074
[Lopez-Astorga] p. 12Rule 1mptnan 1354
[Lopez-Astorga] p. 12Rule 2mptxor 1355
[Lopez-Astorga] p. 12Rule 3mtpxor 1357
[Margaris] p. 40Rule Cexlimiv 1529
[Margaris] p. 49Axiom A1ax-1 5
[Margaris] p. 49Axiom A2ax-2 6
[Margaris] p. 49Axiom A3condc 782
[Margaris] p. 49Definitiondfbi2 380  dfordc 824  exalim 1431
[Margaris] p. 51Theorem 1idALT 20
[Margaris] p. 56Theorem 3syld 44
[Margaris] p. 60Theorem 8mth8 611
[Margaris] p. 89Theorem 19.219.2 1569  r19.2m 3329
[Margaris] p. 89Theorem 19.319.3 1486  19.3h 1485  rr19.3v 2733
[Margaris] p. 89Theorem 19.5alcom 1407
[Margaris] p. 89Theorem 19.6alexdc 1550  alexim 1576
[Margaris] p. 89Theorem 19.7alnex 1428
[Margaris] p. 89Theorem 19.819.8a 1522  spsbe 1763
[Margaris] p. 89Theorem 19.919.9 1575  19.9h 1574  19.9v 1792  exlimd 1528
[Margaris] p. 89Theorem 19.11excom 1594  excomim 1593
[Margaris] p. 89Theorem 19.1219.12 1595  r19.12 2466
[Margaris] p. 90Theorem 19.14exnalim 1577
[Margaris] p. 90Theorem 19.15albi 1397  ralbi 2489
[Margaris] p. 90Theorem 19.1619.16 1487
[Margaris] p. 90Theorem 19.1719.17 1488
[Margaris] p. 90Theorem 19.18exbi 1535  rexbi 2490
[Margaris] p. 90Theorem 19.1919.19 1596
[Margaris] p. 90Theorem 19.20alim 1386  alimd 1454  alimdh 1396  alimdv 1800  ralimdaa 2428  ralimdv 2430  ralimdva 2429  sbcimdv 2879
[Margaris] p. 90Theorem 19.2119.21-2 1597  19.21 1515  19.21bi 1490  19.21h 1489  19.21ht 1513  19.21t 1514  19.21v 1794  alrimd 1541  alrimdd 1540  alrimdh 1408  alrimdv 1797  alrimi 1455  alrimih 1398  alrimiv 1795  alrimivv 1796  r19.21 2437  r19.21be 2452  r19.21bi 2449  r19.21t 2436  r19.21v 2438  ralrimd 2439  ralrimdv 2440  ralrimdva 2441  ralrimdvv 2445  ralrimdvva 2446  ralrimi 2432  ralrimiv 2433  ralrimiva 2434  ralrimivv 2442  ralrimivva 2443  ralrimivvva 2444  ralrimivw 2435  rexlimi 2470
[Margaris] p. 90Theorem 19.222alimdv 1802  2eximdv 1803  exim 1530  eximd 1543  eximdh 1542  eximdv 1801  rexim 2455  reximdai 2459  reximddv 2464  reximddv2 2465  reximdv 2462  reximdv2 2460  reximdva 2463  reximdvai 2461  reximi2 2457
[Margaris] p. 90Theorem 19.2319.23 1608  19.23bi 1523  19.23h 1427  19.23ht 1426  19.23t 1607  19.23v 1804  19.23vv 1805  exlimd2 1526  exlimdh 1527  exlimdv 1740  exlimdvv 1818  exlimi 1525  exlimih 1524  exlimiv 1529  exlimivv 1817  r19.23 2468  r19.23v 2469  rexlimd 2474  rexlimdv 2476  rexlimdv3a 2479  rexlimdva 2477  rexlimdvaa 2478  rexlimdvv 2483  rexlimdvva 2484  rexlimdvw 2480  rexlimiv 2471  rexlimiva 2472  rexlimivv 2482
[Margaris] p. 90Theorem 19.24i19.24 1570
[Margaris] p. 90Theorem 19.2519.25 1557
[Margaris] p. 90Theorem 19.2619.26-2 1411  19.26-3an 1412  19.26 1410  r19.26-2 2486  r19.26-3 2487  r19.26 2485  r19.26m 2488
[Margaris] p. 90Theorem 19.2719.27 1493  19.27h 1492  19.27v 1820  r19.27av 2492  r19.27m 3336  r19.27mv 3337
[Margaris] p. 90Theorem 19.2819.28 1495  19.28h 1494  19.28v 1821  r19.28av 2493  r19.28m 3331  r19.28mv 3334  rr19.28v 2734
[Margaris] p. 90Theorem 19.2919.29 1551  19.29r 1552  19.29r2 1553  19.29x 1554  r19.29 2494  r19.29d2r 2499  r19.29r 2495
[Margaris] p. 90Theorem 19.3019.30dc 1558
[Margaris] p. 90Theorem 19.3119.31r 1611
[Margaris] p. 90Theorem 19.3219.32dc 1609  19.32r 1610  r19.32r 2501  r19.32vdc 2503  r19.32vr 2502
[Margaris] p. 90Theorem 19.3319.33 1413  19.33b2 1560  19.33bdc 1561
[Margaris] p. 90Theorem 19.3419.34 1614
[Margaris] p. 90Theorem 19.3519.35-1 1555  19.35i 1556
[Margaris] p. 90Theorem 19.3619.36-1 1603  19.36aiv 1822  19.36i 1602  r19.36av 2505
[Margaris] p. 90Theorem 19.3719.37-1 1604  19.37aiv 1605  r19.37 2506  r19.37av 2507
[Margaris] p. 90Theorem 19.3819.38 1606
[Margaris] p. 90Theorem 19.39i19.39 1571
[Margaris] p. 90Theorem 19.4019.40-2 1563  19.40 1562  r19.40 2508
[Margaris] p. 90Theorem 19.4119.41 1616  19.41h 1615  19.41v 1823  19.41vv 1824  19.41vvv 1825  19.41vvvv 1826  r19.41 2509  r19.41v 2510
[Margaris] p. 90Theorem 19.4219.42 1618  19.42h 1617  19.42v 1827  19.42vv 1829  19.42vvv 1830  19.42vvvv 1831  r19.42v 2511
[Margaris] p. 90Theorem 19.4319.43 1559  r19.43 2512
[Margaris] p. 90Theorem 19.4419.44 1612  r19.44av 2513
[Margaris] p. 90Theorem 19.4519.45 1613  r19.45av 2514  r19.45mv 3335
[Margaris] p. 110Exercise 2(b)eu1 1966
[Megill] p. 444Axiom C5ax-17 1459
[Megill] p. 445Lemma L12alequcom 1448  ax-10 1436
[Megill] p. 446Lemma L17equtrr 1636
[Megill] p. 446Lemma L19hbnae 1649
[Megill] p. 447Remark 9.1df-sb 1686  sbid 1697
[Megill] p. 448Scheme C5'ax-4 1440
[Megill] p. 448Scheme C6'ax-7 1377
[Megill] p. 448Scheme C8'ax-8 1435
[Megill] p. 448Scheme C9'ax-i12 1438
[Megill] p. 448Scheme C11'ax-10o 1644
[Megill] p. 448Scheme C12'ax-13 1444
[Megill] p. 448Scheme C13'ax-14 1445
[Megill] p. 448Scheme C15'ax-11o 1744
[Megill] p. 448Scheme C16'ax-16 1735
[Megill] p. 448Theorem 9.4dral1 1658  dral2 1659  drex1 1719  drex2 1660  drsb1 1720  drsb2 1762
[Megill] p. 449Theorem 9.7sbcom2 1904  sbequ 1761  sbid2v 1913
[Megill] p. 450Example in Appendixhba1 1473
[Mendelson] p. 36Lemma 1.8idALT 20
[Mendelson] p. 69Axiom 4rspsbc 2896  rspsbca 2897  stdpc4 1698
[Mendelson] p. 69Axiom 5ra5 2902  stdpc5 1516
[Mendelson] p. 81Rule Cexlimiv 1529
[Mendelson] p. 95Axiom 6stdpc6 1631
[Mendelson] p. 95Axiom 7stdpc7 1693
[Mendelson] p. 231Exercise 4.10(k)inv1 3280
[Mendelson] p. 231Exercise 4.10(l)unv 3281
[Mendelson] p. 231Exercise 4.10(n)inssun 3204
[Mendelson] p. 231Exercise 4.10(o)df-nul 3252
[Mendelson] p. 231Exercise 4.10(q)inssddif 3205
[Mendelson] p. 231Exercise 4.10(s)ddifnel 3103
[Mendelson] p. 231Definition of unionunssin 3203
[Mendelson] p. 235Exercise 4.12(c)univ 4225
[Mendelson] p. 235Exercise 4.12(d)pwv 3600
[Mendelson] p. 235Exercise 4.12(j)pwin 4037
[Mendelson] p. 235Exercise 4.12(k)pwunss 4038
[Mendelson] p. 235Exercise 4.12(l)pwssunim 4039
[Mendelson] p. 235Exercise 4.12(n)uniin 3621
[Mendelson] p. 235Exercise 4.12(p)reli 4483
[Mendelson] p. 235Exercise 4.12(t)relssdmrn 4861
[Mendelson] p. 246Definition of successordf-suc 4126
[Mendelson] p. 254Proposition 4.22(c)xpsnen 6318  xpsneng 6319
[Mendelson] p. 254Proposition 4.22(d)xpcomen 6324  xpcomeng 6325
[Mendelson] p. 254Proposition 4.22(e)xpassen 6327
[Mendelson] p. 255Exercise 4.39endisj 6321
[Mendelson] p. 266Proposition 4.34(a)oa1suc 6070
[Monk1] p. 26Theorem 2.8(vii)ssin 3188
[Monk1] p. 33Theorem 3.2(i)ssrel 4446
[Monk1] p. 33Theorem 3.2(ii)eqrel 4447
[Monk1] p. 34Definition 3.3df-opab 3840
[Monk1] p. 36Theorem 3.7(i)coi1 4856  coi2 4857
[Monk1] p. 36Theorem 3.8(v)dm0 4567  rn0 4606
[Monk1] p. 36Theorem 3.7(ii)cnvi 4748
[Monk1] p. 37Theorem 3.13(i)relxp 4465
[Monk1] p. 37Theorem 3.13(x)dmxpm 4573  rnxpm 4772
[Monk1] p. 37Theorem 3.13(ii)0xp 4438  xp0 4763
[Monk1] p. 38Theorem 3.16(ii)ima0 4704
[Monk1] p. 38Theorem 3.16(viii)imai 4701
[Monk1] p. 39Theorem 3.17imaexg 4700
[Monk1] p. 39Theorem 3.16(xi)imassrn 4699
[Monk1] p. 41Theorem 4.3(i)fnopfv 5318  funfvop 5300
[Monk1] p. 42Theorem 4.3(ii)funopfvb 5238
[Monk1] p. 42Theorem 4.4(iii)fvelima 5246
[Monk1] p. 43Theorem 4.6funun 4964
[Monk1] p. 43Theorem 4.8(iv)dff13 5428  dff13f 5430
[Monk1] p. 46Theorem 4.15(v)funex 5405  funrnex 5761
[Monk1] p. 50Definition 5.4fniunfv 5422
[Monk1] p. 52Theorem 5.12(ii)op2ndb 4824
[Monk1] p. 52Theorem 5.11(viii)ssint 3652
[Monk1] p. 52Definition 5.13 (i)1stval2 5802  df-1st 5787
[Monk1] p. 52Definition 5.13 (ii)2ndval2 5803  df-2nd 5788
[Monk2] p. 105Axiom C4ax-5 1376
[Monk2] p. 105Axiom C7ax-8 1435
[Monk2] p. 105Axiom C8ax-11 1437  ax-11o 1744
[Monk2] p. 105Axiom (C8)ax11v 1748
[Monk2] p. 109Lemma 12ax-7 1377
[Monk2] p. 109Lemma 15equvin 1784  equvini 1681  eqvinop 3998
[Monk2] p. 113Axiom C5-1ax-17 1459
[Monk2] p. 113Axiom C5-2ax6b 1581
[Monk2] p. 113Axiom C5-3ax-7 1377
[Monk2] p. 114Lemma 22hba1 1473
[Monk2] p. 114Lemma 23hbia1 1484  nfia1 1512
[Monk2] p. 114Lemma 24hba2 1483  nfa2 1511
[Moschovakis] p. 2Chapter 2 df-stab 773  dftest 855
[Quine] p. 16Definition 2.1df-clab 2068  rabid 2529
[Quine] p. 17Definition 2.1''dfsb7 1908
[Quine] p. 18Definition 2.7df-cleq 2074
[Quine] p. 19Definition 2.9df-v 2603
[Quine] p. 34Theorem 5.1abeq2 2187
[Quine] p. 35Theorem 5.2abid2 2199  abid2f 2243
[Quine] p. 40Theorem 6.1sb5 1808
[Quine] p. 40Theorem 6.2sb56 1806  sb6 1807
[Quine] p. 41Theorem 6.3df-clel 2077
[Quine] p. 41Theorem 6.4eqid 2081
[Quine] p. 41Theorem 6.5eqcom 2083
[Quine] p. 42Theorem 6.6df-sbc 2816
[Quine] p. 42Theorem 6.7dfsbcq 2817  dfsbcq2 2818
[Quine] p. 43Theorem 6.8vex 2604
[Quine] p. 43Theorem 6.9isset 2605
[Quine] p. 44Theorem 7.3spcgf 2680  spcgv 2685  spcimgf 2678
[Quine] p. 44Theorem 6.11spsbc 2826  spsbcd 2827
[Quine] p. 44Theorem 6.12elex 2610
[Quine] p. 44Theorem 6.13elab 2738  elabg 2739  elabgf 2736
[Quine] p. 44Theorem 6.14noel 3255
[Quine] p. 48Theorem 7.2snprc 3457
[Quine] p. 48Definition 7.1df-pr 3405  df-sn 3404
[Quine] p. 49Theorem 7.4snss 3516  snssg 3522
[Quine] p. 49Theorem 7.5prss 3541  prssg 3542
[Quine] p. 49Theorem 7.6prid1 3498  prid1g 3496  prid2 3499  prid2g 3497  snid 3425  snidg 3423
[Quine] p. 51Theorem 7.12snexg 3956  snexprc 3958
[Quine] p. 51Theorem 7.13prexg 3966
[Quine] p. 53Theorem 8.2unisn 3617  unisng 3618
[Quine] p. 53Theorem 8.3uniun 3620
[Quine] p. 54Theorem 8.6elssuni 3629
[Quine] p. 54Theorem 8.7uni0 3628
[Quine] p. 56Theorem 8.17uniabio 4897
[Quine] p. 56Definition 8.18dfiota2 4888
[Quine] p. 57Theorem 8.19iotaval 4898
[Quine] p. 57Theorem 8.22iotanul 4902
[Quine] p. 58Theorem 8.23euiotaex 4903
[Quine] p. 58Definition 9.1df-op 3407
[Quine] p. 61Theorem 9.5opabid 4012  opelopab 4026  opelopaba 4021  opelopabaf 4028  opelopabf 4029  opelopabg 4023  opelopabga 4018  oprabid 5557
[Quine] p. 64Definition 9.11df-xp 4369
[Quine] p. 64Definition 9.12df-cnv 4371
[Quine] p. 64Definition 9.15df-id 4048
[Quine] p. 65Theorem 10.3fun0 4977
[Quine] p. 65Theorem 10.4funi 4952
[Quine] p. 65Theorem 10.5funsn 4968  funsng 4966
[Quine] p. 65Definition 10.1df-fun 4924
[Quine] p. 65Definition 10.2args 4714  dffv4g 5195
[Quine] p. 68Definition 10.11df-fv 4930  fv2 5193
[Quine] p. 124Theorem 17.3nn0opth2 9651  nn0opth2d 9650  nn0opthd 9649
[Quine] p. 284Axiom 39(vi)funimaex 5004  funimaexg 5003
[Sanford] p. 39Rule 3mtpxor 1357
[Sanford] p. 39Rule 4mptxor 1355
[Sanford] p. 40Rule 1mptnan 1354
[Schechter] p. 51Definition of antisymmetryintasym 4729
[Schechter] p. 51Definition of irreflexivityintirr 4731
[Schechter] p. 51Definition of symmetrycnvsym 4728
[Schechter] p. 51Definition of transitivitycotr 4726
[Stoll] p. 13Definition of symmetric differencesymdif1 3229
[Stoll] p. 16Exercise 4.40dif 3315  dif0 3314
[Stoll] p. 16Exercise 4.8difdifdirss 3327
[Stoll] p. 19Theorem 5.2(13)undm 3222
[Stoll] p. 19Theorem 5.2(13')indmss 3223
[Stoll] p. 20Remarkinvdif 3206
[Stoll] p. 25Definition of ordered tripledf-ot 3408
[Stoll] p. 43Definitionuniiun 3731
[Stoll] p. 44Definitionintiin 3732
[Stoll] p. 45Definitiondf-iin 3681
[Stoll] p. 45Definition indexed uniondf-iun 3680
[Stoll] p. 176Theorem 3.4(27)imandc 819
[Stoll] p. 262Example 4.1symdif1 3229
[Suppes] p. 22Theorem 2eq0 3266
[Suppes] p. 22Theorem 4eqss 3014  eqssd 3016  eqssi 3015
[Suppes] p. 23Theorem 5ss0 3284  ss0b 3283
[Suppes] p. 23Theorem 6sstr 3007
[Suppes] p. 25Theorem 12elin 3155  elun 3113
[Suppes] p. 26Theorem 15inidm 3175
[Suppes] p. 26Theorem 16in0 3279
[Suppes] p. 27Theorem 23unidm 3115
[Suppes] p. 27Theorem 24un0 3278
[Suppes] p. 27Theorem 25ssun1 3135
[Suppes] p. 27Theorem 26ssequn1 3142
[Suppes] p. 27Theorem 27unss 3146
[Suppes] p. 27Theorem 28indir 3213
[Suppes] p. 27Theorem 29undir 3214
[Suppes] p. 28Theorem 32difid 3312  difidALT 3313
[Suppes] p. 29Theorem 33difin 3201
[Suppes] p. 29Theorem 34indif 3207
[Suppes] p. 29Theorem 35undif1ss 3318
[Suppes] p. 29Theorem 36difun2 3322
[Suppes] p. 29Theorem 37difin0 3317
[Suppes] p. 29Theorem 38disjdif 3316
[Suppes] p. 29Theorem 39difundi 3216
[Suppes] p. 29Theorem 40difindiss 3218
[Suppes] p. 30Theorem 41nalset 3908
[Suppes] p. 39Theorem 61uniss 3622
[Suppes] p. 39Theorem 65uniop 4010
[Suppes] p. 41Theorem 70intsn 3671
[Suppes] p. 42Theorem 71intpr 3668  intprg 3669
[Suppes] p. 42Theorem 73op1stb 4227  op1stbg 4228
[Suppes] p. 42Theorem 78intun 3667
[Suppes] p. 44Definition 15(a)dfiun2 3712  dfiun2g 3710
[Suppes] p. 44Definition 15(b)dfiin2 3713
[Suppes] p. 47Theorem 86elpw 3388  elpw2 3932  elpw2g 3931  elpwg 3390
[Suppes] p. 47Theorem 87pwid 3396
[Suppes] p. 47Theorem 89pw0 3532
[Suppes] p. 48Theorem 90pwpw0ss 3596
[Suppes] p. 52Theorem 101xpss12 4463
[Suppes] p. 52Theorem 102xpindi 4489  xpindir 4490
[Suppes] p. 52Theorem 103xpundi 4414  xpundir 4415
[Suppes] p. 54Theorem 105elirrv 4291
[Suppes] p. 58Theorem 2relss 4445
[Suppes] p. 59Theorem 4eldm 4550  eldm2 4551  eldm2g 4549  eldmg 4548
[Suppes] p. 59Definition 3df-dm 4373
[Suppes] p. 60Theorem 6dmin 4561
[Suppes] p. 60Theorem 8rnun 4752
[Suppes] p. 60Theorem 9rnin 4753
[Suppes] p. 60Definition 4dfrn2 4541
[Suppes] p. 61Theorem 11brcnv 4536  brcnvg 4534
[Suppes] p. 62Equation 5elcnv 4530  elcnv2 4531
[Suppes] p. 62Theorem 12relcnv 4723
[Suppes] p. 62Theorem 15cnvin 4751
[Suppes] p. 62Theorem 16cnvun 4749
[Suppes] p. 63Theorem 20co02 4854
[Suppes] p. 63Theorem 21dmcoss 4619
[Suppes] p. 63Definition 7df-co 4372
[Suppes] p. 64Theorem 26cnvco 4538
[Suppes] p. 64Theorem 27coass 4859
[Suppes] p. 65Theorem 31resundi 4643
[Suppes] p. 65Theorem 34elima 4693  elima2 4694  elima3 4695  elimag 4692
[Suppes] p. 65Theorem 35imaundi 4756
[Suppes] p. 66Theorem 40dminss 4758
[Suppes] p. 66Theorem 41imainss 4759
[Suppes] p. 67Exercise 11cnvxp 4762
[Suppes] p. 81Definition 34dfec2 6132
[Suppes] p. 82Theorem 72elec 6168  elecg 6167
[Suppes] p. 82Theorem 73erth 6173  erth2 6174
[Suppes] p. 92Theorem 1enref 6268  enrefg 6267
[Suppes] p. 92Theorem 2ensym 6284  ensymb 6283  ensymi 6285
[Suppes] p. 92Theorem 3entr 6287
[Suppes] p. 92Theorem 4unen 6316
[Suppes] p. 94Theorem 15endom 6266
[Suppes] p. 94Theorem 16ssdomg 6281
[Suppes] p. 94Theorem 17domtr 6288
[Suppes] p. 98Exercise 4fundmen 6309  fundmeng 6310
[Suppes] p. 98Exercise 6xpdom3m 6331
[Suppes] p. 130Definition 3df-tr 3876
[Suppes] p. 132Theorem 9ssonuni 4232
[Suppes] p. 134Definition 6df-suc 4126
[Suppes] p. 136Theorem Schema 22findes 4344  finds 4341  finds1 4343  finds2 4342
[Suppes] p. 162Definition 5df-ltnqqs 6543  df-ltpq 6536
[Suppes] p. 228Theorem Schema 61onintss 4145
[TakeutiZaring] p. 8Axiom 1ax-ext 2063
[TakeutiZaring] p. 13Definition 4.5df-cleq 2074
[TakeutiZaring] p. 13Proposition 4.6df-clel 2077
[TakeutiZaring] p. 13Proposition 4.9cvjust 2076
[TakeutiZaring] p. 13Proposition 4.7(3)eqtr 2098
[TakeutiZaring] p. 14Definition 4.16df-oprab 5536
[TakeutiZaring] p. 14Proposition 4.14ru 2814
[TakeutiZaring] p. 15Exercise 1elpr 3419  elpr2 3420  elprg 3418
[TakeutiZaring] p. 15Exercise 2elsn 3414  elsn2 3428  elsn2g 3427  elsng 3413  velsn 3415
[TakeutiZaring] p. 15Exercise 3elop 3986
[TakeutiZaring] p. 15Exercise 4sneq 3409  sneqr 3552
[TakeutiZaring] p. 15Definition 5.1dfpr2 3417  dfsn2 3412
[TakeutiZaring] p. 16Axiom 3uniex 4192
[TakeutiZaring] p. 16Exercise 6opth 3992
[TakeutiZaring] p. 16Exercise 8rext 3970
[TakeutiZaring] p. 16Corollary 5.8unex 4194  unexg 4196
[TakeutiZaring] p. 16Definition 5.3dftp2 3441
[TakeutiZaring] p. 16Definition 5.5df-uni 3602
[TakeutiZaring] p. 16Definition 5.6df-in 2979  df-un 2977
[TakeutiZaring] p. 16Proposition 5.7unipr 3615  uniprg 3616
[TakeutiZaring] p. 17Axiom 4pwex 3953  pwexg 3954
[TakeutiZaring] p. 17Exercise 1eltp 3440
[TakeutiZaring] p. 17Exercise 5elsuc 4161  elsucg 4159  sstr2 3006
[TakeutiZaring] p. 17Exercise 6uncom 3116
[TakeutiZaring] p. 17Exercise 7incom 3158
[TakeutiZaring] p. 17Exercise 8unass 3129
[TakeutiZaring] p. 17Exercise 9inass 3176
[TakeutiZaring] p. 17Exercise 10indi 3211
[TakeutiZaring] p. 17Exercise 11undi 3212
[TakeutiZaring] p. 17Definition 5.9dfss2 2988
[TakeutiZaring] p. 17Definition 5.10df-pw 3384
[TakeutiZaring] p. 18Exercise 7unss2 3143
[TakeutiZaring] p. 18Exercise 9df-ss 2986  sseqin2 3185
[TakeutiZaring] p. 18Exercise 10ssid 3018
[TakeutiZaring] p. 18Exercise 12inss1 3186  inss2 3187
[TakeutiZaring] p. 18Exercise 13nssr 3057
[TakeutiZaring] p. 18Exercise 15unieq 3610
[TakeutiZaring] p. 18Exercise 18sspwb 3971
[TakeutiZaring] p. 18Exercise 19pweqb 3978
[TakeutiZaring] p. 20Definitiondf-rab 2357
[TakeutiZaring] p. 20Corollary 5.160ex 3905
[TakeutiZaring] p. 20Definition 5.12df-dif 2975
[TakeutiZaring] p. 20Definition 5.14dfnul2 3253
[TakeutiZaring] p. 20Proposition 5.15difid 3312  difidALT 3313
[TakeutiZaring] p. 20Proposition 5.17(1)n0rf 3260
[TakeutiZaring] p. 21Theorem 5.22setind 4282
[TakeutiZaring] p. 21Definition 5.20df-v 2603
[TakeutiZaring] p. 21Proposition 5.21vprc 3909
[TakeutiZaring] p. 22Exercise 10ss 3282
[TakeutiZaring] p. 22Exercise 3ssex 3915  ssexg 3917
[TakeutiZaring] p. 22Exercise 4inex1 3912
[TakeutiZaring] p. 22Exercise 5ruv 4293
[TakeutiZaring] p. 22Exercise 6elirr 4284
[TakeutiZaring] p. 22Exercise 7ssdif0im 3308
[TakeutiZaring] p. 22Exercise 11difdif 3097
[TakeutiZaring] p. 22Exercise 13undif3ss 3225
[TakeutiZaring] p. 22Exercise 14difss 3098
[TakeutiZaring] p. 22Exercise 15sscon 3106
[TakeutiZaring] p. 22Definition 4.15(3)df-ral 2353
[TakeutiZaring] p. 22Definition 4.15(4)df-rex 2354
[TakeutiZaring] p. 23Proposition 6.2xpex 4471  xpexg 4470  xpexgALT 5780
[TakeutiZaring] p. 23Definition 6.4(1)df-rel 4370
[TakeutiZaring] p. 23Definition 6.4(2)fun2cnv 4983
[TakeutiZaring] p. 24Definition 6.4(3)f1cnvcnv 5120  fun11 4986
[TakeutiZaring] p. 24Definition 6.4(4)dffun4 4933  svrelfun 4984
[TakeutiZaring] p. 24Definition 6.5(1)dfdm3 4540
[TakeutiZaring] p. 24Definition 6.5(2)dfrn3 4542
[TakeutiZaring] p. 24Definition 6.6(1)df-res 4375
[TakeutiZaring] p. 24Definition 6.6(2)df-ima 4376
[TakeutiZaring] p. 24Definition 6.6(3)df-co 4372
[TakeutiZaring] p. 25Exercise 2cnvcnvss 4795  dfrel2 4791
[TakeutiZaring] p. 25Exercise 3xpss 4464
[TakeutiZaring] p. 25Exercise 5relun 4472
[TakeutiZaring] p. 25Exercise 6reluni 4478
[TakeutiZaring] p. 25Exercise 9inxp 4488
[TakeutiZaring] p. 25Exercise 12relres 4657
[TakeutiZaring] p. 25Exercise 13opelres 4635  opelresg 4637
[TakeutiZaring] p. 25Exercise 14dmres 4650
[TakeutiZaring] p. 25Exercise 15resss 4653
[TakeutiZaring] p. 25Exercise 17resabs1 4658
[TakeutiZaring] p. 25Exercise 18funres 4961
[TakeutiZaring] p. 25Exercise 24relco 4839
[TakeutiZaring] p. 25Exercise 29funco 4960
[TakeutiZaring] p. 25Exercise 30f1co 5121
[TakeutiZaring] p. 26Definition 6.10eu2 1985
[TakeutiZaring] p. 26Definition 6.11df-fv 4930  fv3 5218
[TakeutiZaring] p. 26Corollary 6.8(1)cnvex 4876  cnvexg 4875
[TakeutiZaring] p. 26Corollary 6.8(2)dmex 4616  dmexg 4614
[TakeutiZaring] p. 26Corollary 6.8(3)rnex 4617  rnexg 4615
[TakeutiZaring] p. 27Corollary 6.13funfvex 5212
[TakeutiZaring] p. 27Theorem 6.12(1)tz6.12-1 5221  tz6.12 5222  tz6.12c 5224
[TakeutiZaring] p. 27Theorem 6.12(2)tz6.12-2 5189
[TakeutiZaring] p. 27Definition 6.15(1)df-fn 4925
[TakeutiZaring] p. 27Definition 6.15(3)df-f 4926
[TakeutiZaring] p. 27Definition 6.15(4)df-fo 4928  wfo 4920
[TakeutiZaring] p. 27Definition 6.15(5)df-f1 4927  wf1 4919
[TakeutiZaring] p. 27Definition 6.15(6)df-f1o 4929  wf1o 4921
[TakeutiZaring] p. 28Exercise 4eqfnfv 5286  eqfnfv2 5287  eqfnfv2f 5290
[TakeutiZaring] p. 28Exercise 5fvco 5264
[TakeutiZaring] p. 28Theorem 6.16(1)fnex 5404  fnexALT 5760
[TakeutiZaring] p. 28Proposition 6.17resfunexg 5403  resfunexgALT 5757
[TakeutiZaring] p. 29Exercise 9funimaex 5004  funimaexg 5003
[TakeutiZaring] p. 29Definition 6.18df-br 3786
[TakeutiZaring] p. 30Definition 6.21eliniseg 4715  iniseg 4717
[TakeutiZaring] p. 30Definition 6.22df-eprel 4044
[TakeutiZaring] p. 32Definition 6.28df-isom 4931
[TakeutiZaring] p. 33Proposition 6.30(1)isoid 5470
[TakeutiZaring] p. 33Proposition 6.30(2)isocnv 5471
[TakeutiZaring] p. 33Proposition 6.30(3)isotr 5476
[TakeutiZaring] p. 33Proposition 6.31(2)isoini 5477
[TakeutiZaring] p. 34Proposition 6.33f1oiso 5485
[TakeutiZaring] p. 35Notationwtr 3875
[TakeutiZaring] p. 35Theorem 7.2tz7.2 4109
[TakeutiZaring] p. 35Definition 7.1dftr3 3879
[TakeutiZaring] p. 36Proposition 7.4ordwe 4318
[TakeutiZaring] p. 36Proposition 7.6ordelord 4136
[TakeutiZaring] p. 37Proposition 7.9ordin 4140
[TakeutiZaring] p. 38Corollary 7.15ordsson 4236
[TakeutiZaring] p. 38Definition 7.11df-on 4123
[TakeutiZaring] p. 38Proposition 7.12ordon 4230
[TakeutiZaring] p. 38Proposition 7.13onprc 4295
[TakeutiZaring] p. 39Theorem 7.17tfi 4323
[TakeutiZaring] p. 40Exercise 7dftr2 3877
[TakeutiZaring] p. 40Exercise 11unon 4255
[TakeutiZaring] p. 40Proposition 7.19ssorduni 4231
[TakeutiZaring] p. 40Proposition 7.20elssuni 3629
[TakeutiZaring] p. 41Definition 7.22df-suc 4126
[TakeutiZaring] p. 41Proposition 7.23sssucid 4170  sucidg 4171
[TakeutiZaring] p. 41Proposition 7.24suceloni 4245
[TakeutiZaring] p. 42Exercise 1df-ilim 4124
[TakeutiZaring] p. 42Exercise 8onsucssi 4250  ordelsuc 4249
[TakeutiZaring] p. 42Proposition 7.30(1)peano1 4335
[TakeutiZaring] p. 42Proposition 7.30(2)peano2 4336
[TakeutiZaring] p. 42Proposition 7.30(3)peano3 4337
[TakeutiZaring] p. 43Axiom 7omex 4334
[TakeutiZaring] p. 43Theorem 7.32ordom 4347
[TakeutiZaring] p. 43Corollary 7.31find 4340
[TakeutiZaring] p. 43Proposition 7.30(4)peano4 4338
[TakeutiZaring] p. 43Proposition 7.30(5)peano5 4339
[TakeutiZaring] p. 44Exercise 2int0 3650
[TakeutiZaring] p. 44Exercise 3trintssm 3891
[TakeutiZaring] p. 44Exercise 4intss1 3651
[TakeutiZaring] p. 44Exercise 6onintonm 4261
[TakeutiZaring] p. 44Definition 7.35df-int 3637
[TakeutiZaring] p. 47Lemma 1tfrlem1 5946
[TakeutiZaring] p. 47Theorem 7.41(1)tfri1 5974  tfri1d 5972
[TakeutiZaring] p. 47Theorem 7.41(2)tfri2 5975  tfri2d 5973
[TakeutiZaring] p. 47Theorem 7.41(3)tfri3 5976
[TakeutiZaring] p. 50Exercise 3smoiso 5940
[TakeutiZaring] p. 50Definition 7.46df-smo 5924
[TakeutiZaring] p. 56Definition 8.1oasuc 6067
[TakeutiZaring] p. 57Proposition 8.2oacl 6063
[TakeutiZaring] p. 57Proposition 8.3oa0 6060
[TakeutiZaring] p. 57Proposition 8.16omcl 6064
[TakeutiZaring] p. 58Proposition 8.4nnaord 6105  nnaordi 6104
[TakeutiZaring] p. 59Proposition 8.6iunss2 3723  uniss2 3632
[TakeutiZaring] p. 59Proposition 8.9nnacl 6082
[TakeutiZaring] p. 62Exercise 5oaword1 6073
[TakeutiZaring] p. 62Definition 8.15om0 6061  omsuc 6074
[TakeutiZaring] p. 63Proposition 8.17nnmcl 6083
[TakeutiZaring] p. 63Proposition 8.19nnmord 6113  nnmordi 6112
[TakeutiZaring] p. 67Definition 8.30oei0 6062
[TakeutiZaring] p. 85Proposition 10.6(3)cardonle 6456
[TakeutiZaring] p. 88Exercise 1en0 6298
[TakeutiZaring] p. 90Proposition 10.20nneneq 6343
[TakeutiZaring] p. 90Corollary 10.21(1)php5 6344
[TakeutiZaring] p. 91Definition 10.29df-fin 6247  isfi 6264
[TakeutiZaring] p. 92Proposition 10.33(2)xpdom2 6328
[Tarski] p. 67Axiom B5ax-4 1440
[Tarski] p. 68Lemma 6equid 1629
[Tarski] p. 69Lemma 7equcomi 1632
[Tarski] p. 70Lemma 14spim 1666  spime 1669  spimeh 1667  spimh 1665
[Tarski] p. 70Lemma 16ax-11 1437  ax-11o 1744  ax11i 1642
[Tarski] p. 70Lemmas 16 and 17sb6 1807
[Tarski] p. 77Axiom B6 (p. 75) of system S2ax-17 1459
[Tarski] p. 77Axiom B8 (p. 75) of system S2ax-13 1444  ax-14 1445
[WhiteheadRussell] p. 96Axiom *1.3olc 664
[WhiteheadRussell] p. 96Axiom *1.4pm1.4 678
[WhiteheadRussell] p. 96Axiom *1.2 (Taut)pm1.2 705
[WhiteheadRussell] p. 96Axiom *1.5 (Assoc)pm1.5 714
[WhiteheadRussell] p. 97Axiom *1.6 (Sum)orim2 735
[WhiteheadRussell] p. 100Theorem *2.01pm2.01 578
[WhiteheadRussell] p. 100Theorem *2.02ax-1 5
[WhiteheadRussell] p. 100Theorem *2.03con2 604
[WhiteheadRussell] p. 100Theorem *2.04pm2.04 81
[WhiteheadRussell] p. 100Theorem *2.05imim2 54
[WhiteheadRussell] p. 100Theorem *2.06imim1 75
[WhiteheadRussell] p. 101Theorem *2.1pm2.1dc 778
[WhiteheadRussell] p. 101Theorem *2.06barbara 2039  syl 14
[WhiteheadRussell] p. 101Theorem *2.07pm2.07 688
[WhiteheadRussell] p. 101Theorem *2.08id 19  idALT 20
[WhiteheadRussell] p. 101Theorem *2.11exmiddc 777
[WhiteheadRussell] p. 101Theorem *2.12notnot 591
[WhiteheadRussell] p. 101Theorem *2.13pm2.13dc 812
[WhiteheadRussell] p. 102Theorem *2.14notnotrdc 784
[WhiteheadRussell] p. 102Theorem *2.15con1dc 786
[WhiteheadRussell] p. 103Theorem *2.16con3 603
[WhiteheadRussell] p. 103Theorem *2.17condc 782
[WhiteheadRussell] p. 103Theorem *2.18pm2.18dc 783
[WhiteheadRussell] p. 104Theorem *2.2orc 665
[WhiteheadRussell] p. 104Theorem *2.3pm2.3 724
[WhiteheadRussell] p. 104Theorem *2.21pm2.21 579
[WhiteheadRussell] p. 104Theorem *2.24pm2.24 583
[WhiteheadRussell] p. 104Theorem *2.25pm2.25dc 825
[WhiteheadRussell] p. 104Theorem *2.26pm2.26dc 846
[WhiteheadRussell] p. 104Theorem *2.27pm2.27 39
[WhiteheadRussell] p. 104Theorem *2.31pm2.31 717
[WhiteheadRussell] p. 105Theorem *2.32pm2.32 718
[WhiteheadRussell] p. 105Theorem *2.36pm2.36 750
[WhiteheadRussell] p. 105Theorem *2.37pm2.37 751
[WhiteheadRussell] p. 105Theorem *2.38pm2.38 749
[WhiteheadRussell] p. 105Definition *2.33df-3or 920
[WhiteheadRussell] p. 106Theorem *2.4pm2.4 727
[WhiteheadRussell] p. 106Theorem *2.41pm2.41 725
[WhiteheadRussell] p. 106Theorem *2.42pm2.42 726
[WhiteheadRussell] p. 106Theorem *2.43pm2.43 52
[WhiteheadRussell] p. 106Theorem *2.45pm2.45 689
[WhiteheadRussell] p. 106Theorem *2.46pm2.46 690
[WhiteheadRussell] p. 107Theorem *2.5pm2.5dc 796
[WhiteheadRussell] p. 107Theorem *2.6pm2.6dc 792
[WhiteheadRussell] p. 107Theorem *2.47pm2.47 691
[WhiteheadRussell] p. 107Theorem *2.48pm2.48 692
[WhiteheadRussell] p. 107Theorem *2.49pm2.49 693
[WhiteheadRussell] p. 107Theorem *2.51pm2.51 613
[WhiteheadRussell] p. 107Theorem *2.52pm2.52 614
[WhiteheadRussell] p. 107Theorem *2.53pm2.53 673
[WhiteheadRussell] p. 107Theorem *2.54pm2.54dc 823
[WhiteheadRussell] p. 107Theorem *2.55orel1 676
[WhiteheadRussell] p. 107Theorem *2.56orel2 677
[WhiteheadRussell] p. 107Theorem *2.61pm2.61dc 795
[WhiteheadRussell] p. 107Theorem *2.62pm2.62 699
[WhiteheadRussell] p. 107Theorem *2.63pm2.63 746
[WhiteheadRussell] p. 107Theorem *2.64pm2.64 747
[WhiteheadRussell] p. 107Theorem *2.65pm2.65 617
[WhiteheadRussell] p. 107Theorem *2.67pm2.67-2 666  pm2.67 694
[WhiteheadRussell] p. 107Theorem *2.521pm2.521dc 797
[WhiteheadRussell] p. 107Theorem *2.621pm2.621 698
[WhiteheadRussell] p. 108Theorem *2.8pm2.8 756
[WhiteheadRussell] p. 108Theorem *2.68pm2.68dc 826
[WhiteheadRussell] p. 108Theorem *2.69looinvdc 854
[WhiteheadRussell] p. 108Theorem *2.73pm2.73 752
[WhiteheadRussell] p. 108Theorem *2.74pm2.74 753
[WhiteheadRussell] p. 108Theorem *2.75pm2.75 755
[WhiteheadRussell] p. 108Theorem *2.76pm2.76 754
[WhiteheadRussell] p. 108Theorem *2.77ax-2 6
[WhiteheadRussell] p. 108Theorem *2.81pm2.81 757
[WhiteheadRussell] p. 108Theorem *2.82pm2.82 758
[WhiteheadRussell] p. 108Theorem *2.83pm2.83 76
[WhiteheadRussell] p. 108Theorem *2.85pm2.85dc 844
[WhiteheadRussell] p. 108Theorem *2.86pm2.86 99
[WhiteheadRussell] p. 111Theorem *3.1pm3.1 703
[WhiteheadRussell] p. 111Theorem *3.2pm3.2 137
[WhiteheadRussell] p. 111Theorem *3.11pm3.11dc 898
[WhiteheadRussell] p. 111Theorem *3.12pm3.12dc 899
[WhiteheadRussell] p. 111Theorem *3.13pm3.13dc 900
[WhiteheadRussell] p. 111Theorem *3.14pm3.14 702
[WhiteheadRussell] p. 111Theorem *3.21pm3.21 260
[WhiteheadRussell] p. 111Theorem *3.22pm3.22 261
[WhiteheadRussell] p. 111Theorem *3.24pm3.24 659
[WhiteheadRussell] p. 112Theorem *3.35pm3.35 339
[WhiteheadRussell] p. 112Theorem *3.3 (Exp)pm3.3 257
[WhiteheadRussell] p. 112Theorem *3.31 (Imp)pm3.31 258
[WhiteheadRussell] p. 112Theorem *3.26 (Simp)simpl 107  simplimdc 790
[WhiteheadRussell] p. 112Theorem *3.27 (Simp)simpr 108  simprimdc 789
[WhiteheadRussell] p. 112Theorem *3.33 (Syll)pm3.33 337
[WhiteheadRussell] p. 112Theorem *3.34 (Syll)pm3.34 338
[WhiteheadRussell] p. 112Theorem *3.37 (Transp)pm3.37 821
[WhiteheadRussell] p. 113Fact)pm3.45 561
[WhiteheadRussell] p. 113Theorem *3.4pm3.4 326
[WhiteheadRussell] p. 113Theorem *3.41pm3.41 324
[WhiteheadRussell] p. 113Theorem *3.42pm3.42 325
[WhiteheadRussell] p. 113Theorem *3.44jao 704  pm3.44 667
[WhiteheadRussell] p. 113Theorem *3.47prth 336
[WhiteheadRussell] p. 113Theorem *3.43 (Comp)pm3.43 566
[WhiteheadRussell] p. 114Theorem *3.48pm3.48 731
[WhiteheadRussell] p. 116Theorem *4.1con34bdc 798
[WhiteheadRussell] p. 117Theorem *4.2biid 169
[WhiteheadRussell] p. 117Theorem *4.13notnotbdc 799
[WhiteheadRussell] p. 117Theorem *4.14pm4.14dc 820
[WhiteheadRussell] p. 117Theorem *4.15pm4.15 822
[WhiteheadRussell] p. 117Theorem *4.21bicom 138
[WhiteheadRussell] p. 117Theorem *4.22biantr 893  bitr 455
[WhiteheadRussell] p. 117Theorem *4.24pm4.24 387
[WhiteheadRussell] p. 117Theorem *4.25oridm 706  pm4.25 707
[WhiteheadRussell] p. 118Theorem *4.3ancom 262
[WhiteheadRussell] p. 118Theorem *4.4andi 764
[WhiteheadRussell] p. 118Theorem *4.31orcom 679
[WhiteheadRussell] p. 118Theorem *4.32anass 393
[WhiteheadRussell] p. 118Theorem *4.33orass 716
[WhiteheadRussell] p. 118Theorem *4.36anbi1 453
[WhiteheadRussell] p. 118Theorem *4.37orbi1 738
[WhiteheadRussell] p. 118Theorem *4.38pm4.38 569
[WhiteheadRussell] p. 118Theorem *4.39pm4.39 768
[WhiteheadRussell] p. 118Definition *4.34df-3an 921
[WhiteheadRussell] p. 119Theorem *4.41ordi 762
[WhiteheadRussell] p. 119Theorem *4.42pm4.42r 912
[WhiteheadRussell] p. 119Theorem *4.43pm4.43 890
[WhiteheadRussell] p. 119Theorem *4.44pm4.44 728
[WhiteheadRussell] p. 119Theorem *4.45orabs 760  pm4.45 730  pm4.45im 327
[WhiteheadRussell] p. 119Theorem *10.2219.26 1410
[WhiteheadRussell] p. 120Theorem *4.5anordc 897
[WhiteheadRussell] p. 120Theorem *4.6imordc 829  imorr 830
[WhiteheadRussell] p. 120Theorem *4.7anclb 312
[WhiteheadRussell] p. 120Theorem *4.51ianordc 832
[WhiteheadRussell] p. 120Theorem *4.52pm4.52im 836
[WhiteheadRussell] p. 120Theorem *4.53pm4.53r 837
[WhiteheadRussell] p. 120Theorem *4.54pm4.54dc 838
[WhiteheadRussell] p. 120Theorem *4.55pm4.55dc 879
[WhiteheadRussell] p. 120Theorem *4.56ioran 701  pm4.56 839
[WhiteheadRussell] p. 120Theorem *4.57orandc 880  oranim 840
[WhiteheadRussell] p. 120Theorem *4.61annimim 815
[WhiteheadRussell] p. 120Theorem *4.62pm4.62dc 831
[WhiteheadRussell] p. 120Theorem *4.63pm4.63dc 813
[WhiteheadRussell] p. 120Theorem *4.64pm4.64dc 834
[WhiteheadRussell] p. 120Theorem *4.65pm4.65r 816
[WhiteheadRussell] p. 120Theorem *4.66pm4.66dc 835
[WhiteheadRussell] p. 120Theorem *4.67pm4.67dc 814
[WhiteheadRussell] p. 120Theorem *4.71pm4.71 381  pm4.71d 385  pm4.71i 383  pm4.71r 382  pm4.71rd 386  pm4.71ri 384
[WhiteheadRussell] p. 121Theorem *4.72pm4.72 769
[WhiteheadRussell] p. 121Theorem *4.73iba 294
[WhiteheadRussell] p. 121Theorem *4.74biorf 695
[WhiteheadRussell] p. 121Theorem *4.76jcab 567  pm4.76 568
[WhiteheadRussell] p. 121Theorem *4.77jaob 663  pm4.77 745
[WhiteheadRussell] p. 121Theorem *4.78pm4.78i 841
[WhiteheadRussell] p. 121Theorem *4.79pm4.79dc 842
[WhiteheadRussell] p. 122Theorem *4.8pm4.8 655
[WhiteheadRussell] p. 122Theorem *4.81pm4.81dc 847
[WhiteheadRussell] p. 122Theorem *4.82pm4.82 891
[WhiteheadRussell] p. 122Theorem *4.83pm4.83dc 892
[WhiteheadRussell] p. 122Theorem *4.84imbi1 234
[WhiteheadRussell] p. 122Theorem *4.85imbi2 235
[WhiteheadRussell] p. 122Theorem *4.86bibi1 238
[WhiteheadRussell] p. 122Theorem *4.87bi2.04 246  impexp 259  pm4.87 523
[WhiteheadRussell] p. 123Theorem *5.1pm5.1 565
[WhiteheadRussell] p. 123Theorem *5.11pm5.11dc 848
[WhiteheadRussell] p. 123Theorem *5.12pm5.12dc 849
[WhiteheadRussell] p. 123Theorem *5.13pm5.13dc 851
[WhiteheadRussell] p. 123Theorem *5.14pm5.14dc 850
[WhiteheadRussell] p. 124Theorem *5.15pm5.15dc 1320
[WhiteheadRussell] p. 124Theorem *5.16pm5.16 770
[WhiteheadRussell] p. 124Theorem *5.17pm5.17dc 843
[WhiteheadRussell] p. 124Theorem *5.18nbbndc 1325  pm5.18dc 810
[WhiteheadRussell] p. 124Theorem *5.19pm5.19 654
[WhiteheadRussell] p. 124Theorem *5.21pm5.21 643
[WhiteheadRussell] p. 124Theorem *5.22xordc 1323
[WhiteheadRussell] p. 124Theorem *5.23dfbi3dc 1328
[WhiteheadRussell] p. 124Theorem *5.24pm5.24dc 1329
[WhiteheadRussell] p. 124Theorem *5.25dfor2dc 827
[WhiteheadRussell] p. 125Theorem *5.3pm5.3 458
[WhiteheadRussell] p. 125Theorem *5.4pm5.4 247
[WhiteheadRussell] p. 125Theorem *5.5pm5.5 240
[WhiteheadRussell] p. 125Theorem *5.6pm5.6dc 868  pm5.6r 869
[WhiteheadRussell] p. 125Theorem *5.7pm5.7dc 895
[WhiteheadRussell] p. 125Theorem *5.31pm5.31 340
[WhiteheadRussell] p. 125Theorem *5.32pm5.32 440
[WhiteheadRussell] p. 125Theorem *5.33pm5.33 573
[WhiteheadRussell] p. 125Theorem *5.35pm5.35 859
[WhiteheadRussell] p. 125Theorem *5.36pm5.36 574
[WhiteheadRussell] p. 125Theorem *5.41imdi 248  pm5.41 249
[WhiteheadRussell] p. 125Theorem *5.42pm5.42 313
[WhiteheadRussell] p. 125Theorem *5.44pm5.44 867
[WhiteheadRussell] p. 125Theorem *5.53pm5.53 748
[WhiteheadRussell] p. 125Theorem *5.54pm5.54dc 860
[WhiteheadRussell] p. 125Theorem *5.55pm5.55dc 852
[WhiteheadRussell] p. 125Theorem *5.61pm5.61 740
[WhiteheadRussell] p. 125Theorem *5.62pm5.62dc 886
[WhiteheadRussell] p. 125Theorem *5.63pm5.63dc 887
[WhiteheadRussell] p. 125Theorem *5.71pm5.71dc 902
[WhiteheadRussell] p. 125Theorem *5.501pm5.501 242
[WhiteheadRussell] p. 126Theorem *5.74pm5.74 177
[WhiteheadRussell] p. 126Theorem *5.75pm5.75 903
[WhiteheadRussell] p. 150Theorem *10.3alsyl 1566
[WhiteheadRussell] p. 160Theorem *11.21alrot3 1414
[WhiteheadRussell] p. 163Theorem *11.4219.40-2 1563
[WhiteheadRussell] p. 164Theorem *11.53pm11.53 1816
[WhiteheadRussell] p. 175Definition *14.02df-eu 1944
[WhiteheadRussell] p. 178Theorem *13.18pm13.18 2326
[WhiteheadRussell] p. 178Theorem *13.181pm13.181 2327
[WhiteheadRussell] p. 178Theorem *13.183pm13.183 2732
[WhiteheadRussell] p. 185Theorem *14.121sbeqalb 2870
[WhiteheadRussell] p. 190Theorem *14.22iota4 4905
[WhiteheadRussell] p. 191Theorem *14.23iota4an 4906
[WhiteheadRussell] p. 192Theorem *14.26eupick 2020  eupickbi 2023
[WhiteheadRussell] p. 235Definition *30.01df-fv 4930
[WhiteheadRussell] p. 360Theorem *54.43pm54.43 6459

  This page was last updated on 14-Aug-2016.
Copyright terms: Public domain
W3C HTML validation [external]