MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Theorems
RefDescription
a1ii 1 (_Note_: This inference r...
idi 2 This inference, which requ...
mp2 9 A double modus ponens infe...
mp2b 10 A double modus ponens infe...
a1i 11 Inference introducing an a...
2a1i 12 Inference introducing two ...
mp1i 13 Inference detaching an ant...
a2i 14 Inference distributing an ...
mpd 15 A modus ponens deduction. ...
imim2i 16 Inference adding common an...
syl 17 An inference version of th...
3syl 18 Inference chaining two syl...
4syl 19 Inference chaining three s...
mpi 20 A nested modus ponens infe...
mpisyl 21 A syllogism combined with ...
id 22 Principle of identity. Th...
idALT 23 Alternate proof of ~ id . ...
idd 24 Principle of identity ~ id...
a1d 25 Deduction introducing an e...
2a1d 26 Deduction introducing two ...
a1i13 27 Add two antecedents to a w...
2a1 28 A double form of ~ ax-1 . ...
a2d 29 Deduction distributing an ...
sylcom 30 Syllogism inference with c...
syl5com 31 Syllogism inference with c...
com12 32 Inference that swaps (comm...
syl11 33 A syllogism inference. Co...
syl5 34 A syllogism rule of infere...
syl6 35 A syllogism rule of infere...
syl56 36 Combine ~ syl5 and ~ syl6 ...
syl6com 37 Syllogism inference with c...
mpcom 38 Modus ponens inference wit...
syli 39 Syllogism inference with c...
syl2im 40 Replace two antecedents. ...
syl2imc 41 A commuted version of ~ sy...
pm2.27 42 This theorem, called "Asse...
mpdd 43 A nested modus ponens dedu...
mpid 44 A nested modus ponens dedu...
mpdi 45 A nested modus ponens dedu...
mpii 46 A doubly nested modus pone...
syld 47 Syllogism deduction. Dedu...
syldc 48 Syllogism deduction. Comm...
mp2d 49 A double modus ponens dedu...
a1dd 50 Double deduction introduci...
2a1dd 51 Double deduction introduci...
pm2.43i 52 Inference absorbing redund...
pm2.43d 53 Deduction absorbing redund...
pm2.43a 54 Inference absorbing redund...
pm2.43b 55 Inference absorbing redund...
pm2.43 56 Absorption of redundant an...
imim2d 57 Deduction adding nested an...
imim2 58 A closed form of syllogism...
embantd 59 Deduction embedding an ant...
3syld 60 Triple syllogism deduction...
sylsyld 61 A double syllogism inferen...
imim12i 62 Inference joining two impl...
imim1i 63 Inference adding common co...
imim3i 64 Inference adding three nes...
sylc 65 A syllogism inference comb...
syl3c 66 A syllogism inference comb...
syl6mpi 67 A syllogism inference. (C...
mpsyl 68 Modus ponens combined with...
mpsylsyld 69 Modus ponens combined with...
syl6c 70 Inference combining ~ syl6...
syl6ci 71 A syllogism inference comb...
syldd 72 Nested syllogism deduction...
syl5d 73 A nested syllogism deducti...
syl7 74 A syllogism rule of infere...
syl6d 75 A nested syllogism deducti...
syl8 76 A syllogism rule of infere...
syl9 77 A nested syllogism inferen...
syl9r 78 A nested syllogism inferen...
syl10 79 A nested syllogism inferen...
a1ddd 80 Triple deduction introduci...
imim12d 81 Deduction combining antece...
imim1d 82 Deduction adding nested co...
imim1 83 A closed form of syllogism...
pm2.83 84 Theorem *2.83 of [Whitehea...
peirceroll 85 Over minimal implicational...
com23 86 Commutation of antecedents...
com3r 87 Commutation of antecedents...
com13 88 Commutation of antecedents...
com3l 89 Commutation of antecedents...
pm2.04 90 Swap antecedents. Theorem...
com34 91 Commutation of antecedents...
com4l 92 Commutation of antecedents...
com4t 93 Commutation of antecedents...
com4r 94 Commutation of antecedents...
com24 95 Commutation of antecedents...
com14 96 Commutation of antecedents...
com45 97 Commutation of antecedents...
com35 98 Commutation of antecedents...
com25 99 Commutation of antecedents...
com5l 100 Commutation of antecedents...
com15 101 Commutation of antecedents...
com52l 102 Commutation of antecedents...
com52r 103 Commutation of antecedents...
com5r 104 Commutation of antecedents...
imim12 105 Closed form of ~ imim12i a...
jarr 106 Elimination of a nested an...
pm2.86d 107 Deduction associated with ...
pm2.86 108 Converse of axiom ~ ax-2 ....
pm2.86i 109 Inference associated with ...
loolin 110 The Linearity Axiom of the...
loowoz 111 An alternate for the Linea...
con4 112 Alias for ~ ax-3 to be use...
con4i 113 Inference associated with ...
con4d 114 Deduction associated with ...
mt4 115 The rule of modus tollens....
pm2.21i 116 A contradiction implies an...
pm2.24ii 117 A contradiction implies an...
pm2.21d 118 A contradiction implies an...
pm2.21ddALT 119 Alternate proof of ~ pm2.2...
pm2.21 120 From a wff and its negatio...
pm2.24 121 Theorem *2.24 of [Whitehea...
pm2.18 122 Proof by contradiction. T...
pm2.18i 123 Inference associated with ...
pm2.18d 124 Deduction based on reducti...
notnotr 125 Double negation eliminatio...
notnotri 126 Inference associated with ...
notnotriOLD 127 Obsolete proof of ~ notnot...
notnotrd 128 Deduction associated with ...
con2d 129 A contraposition deduction...
con2 130 Contraposition. Theorem *...
mt2d 131 Modus tollens deduction. ...
mt2i 132 Modus tollens inference. ...
nsyl3 133 A negated syllogism infere...
con2i 134 A contraposition inference...
nsyl 135 A negated syllogism infere...
notnot 136 Double negation introducti...
notnoti 137 Inference associated with ...
notnotd 138 Deduction associated with ...
con1d 139 A contraposition deduction...
mt3d 140 Modus tollens deduction. ...
mt3i 141 Modus tollens inference. ...
nsyl2 142 A negated syllogism infere...
con1 143 Contraposition. Theorem *...
con1i 144 A contraposition inference...
con4iOLD 145 Obsolete proof of ~ con4i ...
pm2.24i 146 Inference associated with ...
pm2.24d 147 Deduction form of ~ pm2.24...
con3d 148 A contraposition deduction...
con3 149 Contraposition. Theorem *...
con3i 150 A contraposition inference...
con3rr3 151 Rotate through consequent ...
mt4d 152 Modus tollens deduction. ...
mt4i 153 Modus tollens inference. ...
nsyld 154 A negated syllogism deduct...
nsyli 155 A negated syllogism infere...
nsyl4 156 A negated syllogism infere...
pm3.2im 157 Theorem *3.2 of [Whitehead...
mth8 158 Theorem 8 of [Margaris] p....
jc 159 Deduction joining the cons...
impi 160 An importation inference. ...
expi 161 An exportation inference. ...
simprim 162 Simplification. Similar t...
simplim 163 Simplification. Similar t...
pm2.5 164 Theorem *2.5 of [Whitehead...
pm2.51 165 Theorem *2.51 of [Whitehea...
pm2.521 166 Theorem *2.521 of [Whitehe...
pm2.52 167 Theorem *2.52 of [Whitehea...
expt 168 Exportation theorem ~ ex e...
impt 169 Importation theorem ~ imp ...
pm2.61d 170 Deduction eliminating an a...
pm2.61d1 171 Inference eliminating an a...
pm2.61d2 172 Inference eliminating an a...
ja 173 Inference joining the ante...
jad 174 Deduction form of ~ ja . ...
jarl 175 Elimination of a nested an...
pm2.61i 176 Inference eliminating an a...
pm2.61ii 177 Inference eliminating two ...
pm2.61nii 178 Inference eliminating two ...
pm2.61iii 179 Inference eliminating thre...
pm2.01 180 Reductio ad absurdum. The...
pm2.01d 181 Deduction based on reducti...
pm2.6 182 Theorem *2.6 of [Whitehead...
pm2.61 183 Theorem *2.61 of [Whitehea...
pm2.65 184 Theorem *2.65 of [Whitehea...
pm2.65i 185 Inference rule for proof b...
pm2.21dd 186 A contradiction implies an...
pm2.65d 187 Deduction rule for proof b...
mto 188 The rule of modus tollens....
mtod 189 Modus tollens deduction. ...
mtoi 190 Modus tollens inference. ...
mt2 191 A rule similar to modus to...
mt3 192 A rule similar to modus to...
peirce 193 Peirce's axiom. This odd-...
looinv 194 The Inversion Axiom of the...
bijust 195 Theorem used to justify de...
impbi 198 Property of the biconditio...
impbii 199 Infer an equivalence from ...
impbidd 200 Deduce an equivalence from...
impbid21d 201 Deduce an equivalence from...
impbid 202 Deduce an equivalence from...
dfbi1 203 Relate the biconditional c...
dfbi1ALT 204 Alternate proof of ~ dfbi1...
biimp 205 Property of the biconditio...
biimpi 206 Infer an implication from ...
sylbi 207 A mixed syllogism inferenc...
sylib 208 A mixed syllogism inferenc...
sylbb 209 A mixed syllogism inferenc...
biimpr 210 Property of the biconditio...
bicom1 211 Commutative law for the bi...
bicom 212 Commutative law for the bi...
bicomd 213 Commute two sides of a bic...
bicomi 214 Inference from commutative...
impbid1 215 Infer an equivalence from ...
impbid2 216 Infer an equivalence from ...
impcon4bid 217 A variation on ~ impbid wi...
biimpri 218 Infer a converse implicati...
biimpd 219 Deduce an implication from...
mpbi 220 An inference from a bicond...
mpbir 221 An inference from a bicond...
mpbid 222 A deduction from a bicondi...
mpbii 223 An inference from a nested...
sylibr 224 A mixed syllogism inferenc...
sylbir 225 A mixed syllogism inferenc...
sylbbr 226 A mixed syllogism inferenc...
sylbb1 227 A mixed syllogism inferenc...
sylbb2 228 A mixed syllogism inferenc...
sylibd 229 A syllogism deduction. (C...
sylbid 230 A syllogism deduction. (C...
mpbidi 231 A deduction from a bicondi...
syl5bi 232 A mixed syllogism inferenc...
syl5bir 233 A mixed syllogism inferenc...
syl5ib 234 A mixed syllogism inferenc...
syl5ibcom 235 A mixed syllogism inferenc...
syl5ibr 236 A mixed syllogism inferenc...
syl5ibrcom 237 A mixed syllogism inferenc...
biimprd 238 Deduce a converse implicat...
biimpcd 239 Deduce a commuted implicat...
biimprcd 240 Deduce a converse commuted...
syl6ib 241 A mixed syllogism inferenc...
syl6ibr 242 A mixed syllogism inferenc...
syl6bi 243 A mixed syllogism inferenc...
syl6bir 244 A mixed syllogism inferenc...
syl7bi 245 A mixed syllogism inferenc...
syl8ib 246 A syllogism rule of infere...
mpbird 247 A deduction from a bicondi...
mpbiri 248 An inference from a nested...
sylibrd 249 A syllogism deduction. (C...
sylbird 250 A syllogism deduction. (C...
biid 251 Principle of identity for ...
biidd 252 Principle of identity with...
pm5.1im 253 Two propositions are equiv...
2th 254 Two truths are equivalent....
2thd 255 Two truths are equivalent ...
ibi 256 Inference that converts a ...
ibir 257 Inference that converts a ...
ibd 258 Deduction that converts a ...
pm5.74 259 Distribution of implicatio...
pm5.74i 260 Distribution of implicatio...
pm5.74ri 261 Distribution of implicatio...
pm5.74d 262 Distribution of implicatio...
pm5.74rd 263 Distribution of implicatio...
bitri 264 An inference from transiti...
bitr2i 265 An inference from transiti...
bitr3i 266 An inference from transiti...
bitr4i 267 An inference from transiti...
bitrd 268 Deduction form of ~ bitri ...
bitr2d 269 Deduction form of ~ bitr2i...
bitr3d 270 Deduction form of ~ bitr3i...
bitr4d 271 Deduction form of ~ bitr4i...
syl5bb 272 A syllogism inference from...
syl5rbb 273 A syllogism inference from...
syl5bbr 274 A syllogism inference from...
syl5rbbr 275 A syllogism inference from...
syl6bb 276 A syllogism inference from...
syl6rbb 277 A syllogism inference from...
syl6bbr 278 A syllogism inference from...
syl6rbbr 279 A syllogism inference from...
3imtr3i 280 A mixed syllogism inferenc...
3imtr4i 281 A mixed syllogism inferenc...
3imtr3d 282 More general version of ~ ...
3imtr4d 283 More general version of ~ ...
3imtr3g 284 More general version of ~ ...
3imtr4g 285 More general version of ~ ...
3bitri 286 A chained inference from t...
3bitrri 287 A chained inference from t...
3bitr2i 288 A chained inference from t...
3bitr2ri 289 A chained inference from t...
3bitr3i 290 A chained inference from t...
3bitr3ri 291 A chained inference from t...
3bitr4i 292 A chained inference from t...
3bitr4ri 293 A chained inference from t...
3bitrd 294 Deduction from transitivit...
3bitrrd 295 Deduction from transitivit...
3bitr2d 296 Deduction from transitivit...
3bitr2rd 297 Deduction from transitivit...
3bitr3d 298 Deduction from transitivit...
3bitr3rd 299 Deduction from transitivit...
3bitr4d 300 Deduction from transitivit...
3bitr4rd 301 Deduction from transitivit...
3bitr3g 302 More general version of ~ ...
3bitr4g 303 More general version of ~ ...
notnotb 304 Double negation. Theorem ...
notnotdOLD 305 Obsolete proof of ~ notnot...
con34b 306 A biconditional form of co...
con4bid 307 A contraposition deduction...
notbid 308 Deduction negating both si...
notbi 309 Contraposition. Theorem *...
notbii 310 Negate both sides of a log...
con4bii 311 A contraposition inference...
mtbi 312 An inference from a bicond...
mtbir 313 An inference from a bicond...
mtbid 314 A deduction from a bicondi...
mtbird 315 A deduction from a bicondi...
mtbii 316 An inference from a bicond...
mtbiri 317 An inference from a bicond...
sylnib 318 A mixed syllogism inferenc...
sylnibr 319 A mixed syllogism inferenc...
sylnbi 320 A mixed syllogism inferenc...
sylnbir 321 A mixed syllogism inferenc...
xchnxbi 322 Replacement of a subexpres...
xchnxbir 323 Replacement of a subexpres...
xchbinx 324 Replacement of a subexpres...
xchbinxr 325 Replacement of a subexpres...
imbi2i 326 Introduce an antecedent to...
bibi2i 327 Inference adding a bicondi...
bibi1i 328 Inference adding a bicondi...
bibi12i 329 The equivalence of two equ...
imbi2d 330 Deduction adding an antece...
imbi1d 331 Deduction adding a consequ...
bibi2d 332 Deduction adding a bicondi...
bibi1d 333 Deduction adding a bicondi...
imbi12d 334 Deduction joining two equi...
bibi12d 335 Deduction joining two equi...
imbi12 336 Closed form of ~ imbi12i ....
imbi1 337 Theorem *4.84 of [Whitehea...
imbi2 338 Theorem *4.85 of [Whitehea...
imbi1i 339 Introduce a consequent to ...
imbi12i 340 Join two logical equivalen...
bibi1 341 Theorem *4.86 of [Whitehea...
bitr3 342 Closed nested implication ...
con2bi 343 Contraposition. Theorem *...
con2bid 344 A contraposition deduction...
con1bid 345 A contraposition deduction...
con1bii 346 A contraposition inference...
con2bii 347 A contraposition inference...
con1b 348 Contraposition. Bidirecti...
con2b 349 Contraposition. Bidirecti...
biimt 350 A wff is equivalent to its...
pm5.5 351 Theorem *5.5 of [Whitehead...
a1bi 352 Inference rule introducing...
mt2bi 353 A false consequent falsifi...
mtt 354 Modus-tollens-like theorem...
imnot 355 If a proposition is false,...
pm5.501 356 Theorem *5.501 of [Whitehe...
ibib 357 Implication in terms of im...
ibibr 358 Implication in terms of im...
tbt 359 A wff is equivalent to its...
nbn2 360 The negation of a wff is e...
bibif 361 Transfer negation via an e...
nbn 362 The negation of a wff is e...
nbn3 363 Transfer falsehood via equ...
pm5.21im 364 Two propositions are equiv...
2false 365 Two falsehoods are equival...
2falsed 366 Two falsehoods are equival...
pm5.21ni 367 Two propositions implying ...
pm5.21nii 368 Eliminate an antecedent im...
pm5.21ndd 369 Eliminate an antecedent im...
bija 370 Combine antecedents into a...
pm5.18 371 Theorem *5.18 of [Whitehea...
xor3 372 Two ways to express "exclu...
nbbn 373 Move negation outside of b...
biass 374 Associative law for the bi...
pm5.19 375 Theorem *5.19 of [Whitehea...
bi2.04 376 Logical equivalence of com...
pm5.4 377 Antecedent absorption impl...
imdi 378 Distributive law for impli...
pm5.41 379 Theorem *5.41 of [Whitehea...
pm4.8 380 Theorem *4.8 of [Whitehead...
pm4.81 381 Theorem *4.81 of [Whitehea...
imim21b 382 Simplify an implication be...
pm4.64 387 Theorem *4.64 of [Whitehea...
pm2.53 388 Theorem *2.53 of [Whitehea...
pm2.54 389 Theorem *2.54 of [Whitehea...
ori 390 Infer implication from dis...
orri 391 Infer disjunction from imp...
ord 392 Deduce implication from di...
orrd 393 Deduce disjunction from im...
jaoi 394 Inference disjoining the a...
jaod 395 Deduction disjoining the a...
mpjaod 396 Eliminate a disjunction in...
orel1 397 Elimination of disjunction...
orel2 398 Elimination of disjunction...
olc 399 Introduction of a disjunct...
orc 400 Introduction of a disjunct...
pm1.4 401 Axiom *1.4 of [WhiteheadRu...
orcom 402 Commutative law for disjun...
orcomd 403 Commutation of disjuncts i...
orcoms 404 Commutation of disjuncts i...
orci 405 Deduction introducing a di...
olci 406 Deduction introducing a di...
orcd 407 Deduction introducing a di...
olcd 408 Deduction introducing a di...
orcs 409 Deduction eliminating disj...
olcs 410 Deduction eliminating disj...
pm2.07 411 Theorem *2.07 of [Whitehea...
pm2.45 412 Theorem *2.45 of [Whitehea...
pm2.46 413 Theorem *2.46 of [Whitehea...
pm2.47 414 Theorem *2.47 of [Whitehea...
pm2.48 415 Theorem *2.48 of [Whitehea...
pm2.49 416 Theorem *2.49 of [Whitehea...
pm2.67-2 417 Slight generalization of T...
pm2.67 418 Theorem *2.67 of [Whitehea...
pm2.25 419 Theorem *2.25 of [Whitehea...
biorf 420 A wff is equivalent to its...
biortn 421 A wff is equivalent to its...
biorfi 422 A wff is equivalent to its...
biorfiOLD 423 Obsolete proof of ~ biorfi...
pm2.621 424 Theorem *2.621 of [Whitehe...
pm2.62 425 Theorem *2.62 of [Whitehea...
pm2.68 426 Theorem *2.68 of [Whitehea...
dfor2 427 Logical 'or' expressed in ...
imor 428 Implication in terms of di...
imori 429 Infer disjunction from imp...
imorri 430 Infer implication from dis...
exmid 431 Law of excluded middle, al...
exmidd 432 Law of excluded middle in ...
pm2.1 433 Theorem *2.1 of [Whitehead...
pm2.13 434 Theorem *2.13 of [Whitehea...
pm4.62 435 Theorem *4.62 of [Whitehea...
pm4.66 436 Theorem *4.66 of [Whitehea...
pm4.63 437 Theorem *4.63 of [Whitehea...
imnan 438 Express implication in ter...
imnani 439 Infer implication from neg...
iman 440 Express implication in ter...
annim 441 Express conjunction in ter...
pm4.61 442 Theorem *4.61 of [Whitehea...
pm4.65 443 Theorem *4.65 of [Whitehea...
pm4.67 444 Theorem *4.67 of [Whitehea...
imp 445 Importation inference. (C...
impcom 446 Importation inference with...
impd 447 Importation deduction. (C...
imp31 448 An importation inference. ...
imp32 449 An importation inference. ...
ex 450 Exportation inference. (T...
expcom 451 Exportation inference with...
expd 452 Exportation deduction. (C...
expdimp 453 A deduction version of exp...
expcomd 454 Deduction form of ~ expcom...
expdcom 455 Commuted form of ~ expd . ...
impancom 456 Mixed importation/commutat...
con3dimp 457 Variant of ~ con3d with im...
pm2.01da 458 Deduction based on reducti...
pm2.18da 459 Deduction based on reducti...
pm3.3 460 Theorem *3.3 (Exp) of [Whi...
pm3.31 461 Theorem *3.31 (Imp) of [Wh...
impexp 462 Import-export theorem. Pa...
pm3.2 463 Join antecedents with conj...
pm3.21 464 Join antecedents with conj...
pm3.22 465 Theorem *3.22 of [Whitehea...
ancom 466 Commutative law for conjun...
ancomd 467 Commutation of conjuncts i...
ancomst 468 Closed form of ~ ancoms . ...
ancoms 469 Inference commuting conjun...
ancomsd 470 Deduction commuting conjun...
pm3.2i 471 Infer conjunction of premi...
pm3.43i 472 Nested conjunction of ante...
simpl 473 Elimination of a conjunct....
simpli 474 Inference eliminating a co...
simpld 475 Deduction eliminating a co...
simplbi 476 Deduction eliminating a co...
simpr 477 Elimination of a conjunct....
simpri 478 Inference eliminating a co...
simprd 479 Deduction eliminating a co...
simprbi 480 Deduction eliminating a co...
adantr 481 Inference adding a conjunc...
adantl 482 Inference adding a conjunc...
adantld 483 Deduction adding a conjunc...
adantrd 484 Deduction adding a conjunc...
impel 485 An inference for implicati...
mpan9 486 Modus ponens conjoining di...
syldan 487 A syllogism deduction with...
sylan 488 A syllogism inference. (C...
sylanb 489 A syllogism inference. (C...
sylanbr 490 A syllogism inference. (C...
sylan2 491 A syllogism inference. (C...
sylan2b 492 A syllogism inference. (C...
sylan2br 493 A syllogism inference. (C...
syl2an 494 A double syllogism inferen...
syl2anr 495 A double syllogism inferen...
syl2anb 496 A double syllogism inferen...
syl2anbr 497 A double syllogism inferen...
syland 498 A syllogism deduction. (C...
sylan2d 499 A syllogism deduction. (C...
syl2and 500 A syllogism deduction. (C...
biimpa 501 Importation inference from...
biimpar 502 Importation inference from...
biimpac 503 Importation inference from...
biimparc 504 Importation inference from...
animorl 505 Conjunction implies disjun...
animorr 506 Conjunction implies disjun...
animorlr 507 Conjunction implies disjun...
animorrl 508 Conjunction implies disjun...
ianor 509 Negated conjunction in ter...
anor 510 Conjunction in terms of di...
ioran 511 Negated disjunction in ter...
pm4.52 512 Theorem *4.52 of [Whitehea...
pm4.53 513 Theorem *4.53 of [Whitehea...
pm4.54 514 Theorem *4.54 of [Whitehea...
pm4.55 515 Theorem *4.55 of [Whitehea...
pm4.56 516 Theorem *4.56 of [Whitehea...
oran 517 Disjunction in terms of co...
pm4.57 518 Theorem *4.57 of [Whitehea...
pm3.1 519 Theorem *3.1 of [Whitehead...
pm3.11 520 Theorem *3.11 of [Whitehea...
pm3.12 521 Theorem *3.12 of [Whitehea...
pm3.13 522 Theorem *3.13 of [Whitehea...
pm3.14 523 Theorem *3.14 of [Whitehea...
iba 524 Introduction of antecedent...
ibar 525 Introduction of antecedent...
biantru 526 A wff is equivalent to its...
biantrur 527 A wff is equivalent to its...
biantrud 528 A wff is equivalent to its...
biantrurd 529 A wff is equivalent to its...
mpbirand 530 Detach truth from conjunct...
jaao 531 Inference conjoining and d...
jaoa 532 Inference disjoining and c...
pm3.44 533 Theorem *3.44 of [Whitehea...
jao 534 Disjunction of antecedents...
pm1.2 535 Axiom *1.2 of [WhiteheadRu...
oridm 536 Idempotent law for disjunc...
pm4.25 537 Theorem *4.25 of [Whitehea...
orim12i 538 Disjoin antecedents and co...
orim1i 539 Introduce disjunct to both...
orim2i 540 Introduce disjunct to both...
orbi2i 541 Inference adding a left di...
orbi1i 542 Inference adding a right d...
orbi12i 543 Infer the disjunction of t...
pm1.5 544 Axiom *1.5 (Assoc) of [Whi...
or12 545 Swap two disjuncts. (Cont...
orass 546 Associative law for disjun...
pm2.31 547 Theorem *2.31 of [Whitehea...
pm2.32 548 Theorem *2.32 of [Whitehea...
or32 549 A rearrangement of disjunc...
or4 550 Rearrangement of 4 disjunc...
or42 551 Rearrangement of 4 disjunc...
orordi 552 Distribution of disjunctio...
orordir 553 Distribution of disjunctio...
jca 554 Deduce conjunction of the ...
jcad 555 Deduction conjoining the c...
jca2 556 Inference conjoining the c...
jca31 557 Join three consequents. (...
jca32 558 Join three consequents. (...
jcai 559 Deduction replacing implic...
jctil 560 Inference conjoining a the...
jctir 561 Inference conjoining a the...
jccir 562 Inference conjoining a con...
jccil 563 Inference conjoining a con...
jctl 564 Inference conjoining a the...
jctr 565 Inference conjoining a the...
jctild 566 Deduction conjoining a the...
jctird 567 Deduction conjoining a the...
syl6an 568 A syllogism deduction comb...
ancl 569 Conjoin antecedent to left...
anclb 570 Conjoin antecedent to left...
pm5.42 571 Theorem *5.42 of [Whitehea...
ancr 572 Conjoin antecedent to righ...
ancrb 573 Conjoin antecedent to righ...
ancli 574 Deduction conjoining antec...
ancri 575 Deduction conjoining antec...
ancld 576 Deduction conjoining antec...
ancrd 577 Deduction conjoining antec...
anc2l 578 Conjoin antecedent to left...
anc2r 579 Conjoin antecedent to righ...
anc2li 580 Deduction conjoining antec...
anc2ri 581 Deduction conjoining antec...
pm3.41 582 Theorem *3.41 of [Whitehea...
pm3.42 583 Theorem *3.42 of [Whitehea...
pm3.4 584 Conjunction implies implic...
pm4.45im 585 Conjunction with implicati...
anim12d 586 Conjoin antecedents and co...
anim12d1 587 Variant of ~ anim12d where...
anim1d 588 Add a conjunct to right of...
anim2d 589 Add a conjunct to left of ...
anim12i 590 Conjoin antecedents and co...
anim12ci 591 Variant of ~ anim12i with ...
anim1i 592 Introduce conjunct to both...
anim2i 593 Introduce conjunct to both...
anim12ii 594 Conjoin antecedents and co...
prth 595 Conjoin antecedents and co...
pm2.3 596 Theorem *2.3 of [Whitehead...
pm2.41 597 Theorem *2.41 of [Whitehea...
pm2.42 598 Theorem *2.42 of [Whitehea...
pm2.4 599 Theorem *2.4 of [Whitehead...
pm2.65da 600 Deduction rule for proof b...
pm4.44 601 Theorem *4.44 of [Whitehea...
pm4.14 602 Theorem *4.14 of [Whitehea...
pm3.37 603 Theorem *3.37 (Transp) of ...
nan 604 Theorem to move a conjunct...
pm4.15 605 Theorem *4.15 of [Whitehea...
pm4.78 606 Implication distributes ov...
pm4.79 607 Theorem *4.79 of [Whitehea...
pm4.87 608 Theorem *4.87 of [Whitehea...
pm3.33 609 Theorem *3.33 (Syll) of [W...
pm3.34 610 Theorem *3.34 (Syll) of [W...
pm3.35 611 Conjunctive detachment. T...
pm5.31 612 Theorem *5.31 of [Whitehea...
imp4b 613 An importation inference. ...
imp4a 614 An importation inference. ...
imp4aOLD 615 Obsolete proof of ~ imp4a ...
imp4bOLD 616 Obsolete proof of ~ imp4b ...
imp4c 617 An importation inference. ...
imp4d 618 An importation inference. ...
imp41 619 An importation inference. ...
imp42 620 An importation inference. ...
imp43 621 An importation inference. ...
imp44 622 An importation inference. ...
imp45 623 An importation inference. ...
imp5a 624 An importation inference. ...
imp5d 625 An importation inference. ...
imp5g 626 An importation inference. ...
imp55 627 An importation inference. ...
imp511 628 An importation inference. ...
expimpd 629 Exportation followed by a ...
exp31 630 An exportation inference. ...
exp32 631 An exportation inference. ...
exp4b 632 An exportation inference. ...
exp4a 633 An exportation inference. ...
exp4aOLD 634 Obsolete proof of ~ exp4a ...
exp4bOLD 635 Obsolete proof of ~ exp4b ...
exp4c 636 An exportation inference. ...
exp4d 637 An exportation inference. ...
exp41 638 An exportation inference. ...
exp42 639 An exportation inference. ...
exp43 640 An exportation inference. ...
exp44 641 An exportation inference. ...
exp45 642 An exportation inference. ...
expr 643 Export a wff from a right ...
exp5c 644 An exportation inference. ...
exp5j 645 An exportation inference. ...
exp5l 646 An exportation inference. ...
exp53 647 An exportation inference. ...
expl 648 Export a wff from a left c...
impr 649 Import a wff into a right ...
impl 650 Export a wff from a left c...
impac 651 Importation with conjuncti...
exbiri 652 Inference form of ~ exbir ...
simprbda 653 Deduction eliminating a co...
simplbda 654 Deduction eliminating a co...
simplbi2 655 Deduction eliminating a co...
simplbi2comt 656 Closed form of ~ simplbi2c...
simplbi2com 657 A deduction eliminating a ...
simpl2im 658 Implication from an elimin...
simplbiim 659 Implication from an elimin...
dfbi2 660 A theorem similar to the s...
dfbi 661 Definition ~ df-bi rewritt...
pm4.71 662 Implication in terms of bi...
pm4.71r 663 Implication in terms of bi...
pm4.71i 664 Inference converting an im...
pm4.71ri 665 Inference converting an im...
pm4.71d 666 Deduction converting an im...
pm4.71rd 667 Deduction converting an im...
pm5.32 668 Distribution of implicatio...
pm5.32i 669 Distribution of implicatio...
pm5.32ri 670 Distribution of implicatio...
pm5.32d 671 Distribution of implicatio...
pm5.32rd 672 Distribution of implicatio...
pm5.32da 673 Distribution of implicatio...
biadan2 674 Add a conjunction to an eq...
pm4.24 675 Theorem *4.24 of [Whitehea...
anidm 676 Idempotent law for conjunc...
anidms 677 Inference from idempotent ...
anidmdbi 678 Conjunction idempotence wi...
anasss 679 Associative law for conjun...
anassrs 680 Associative law for conjun...
anass 681 Associative law for conjun...
sylanl1 682 A syllogism inference. (C...
sylanl2 683 A syllogism inference. (C...
sylanr1 684 A syllogism inference. (C...
sylanr2 685 A syllogism inference. (C...
sylani 686 A syllogism inference. (C...
sylan2i 687 A syllogism inference. (C...
syl2ani 688 A syllogism inference. (C...
sylan9 689 Nested syllogism inference...
sylan9r 690 Nested syllogism inference...
mtand 691 A modus tollens deduction....
mtord 692 A modus tollens deduction ...
syl2anc 693 Syllogism inference combin...
sylancl 694 Syllogism inference combin...
sylancr 695 Syllogism inference combin...
sylanblc 696 Syllogism inference combin...
sylanblrc 697 Syllogism inference combin...
sylanbrc 698 Syllogism inference. (Con...
sylancb 699 A syllogism inference comb...
sylancbr 700 A syllogism inference comb...
sylancom 701 Syllogism inference with c...
mpdan 702 An inference based on modu...
mpancom 703 An inference based on modu...
mpidan 704 A deduction which "stacks"...
hypstkdOLD 705 Obsolete proof of ~ mpidan...
mpan 706 An inference based on modu...
mpan2 707 An inference based on modu...
mp2an 708 An inference based on modu...
mp4an 709 An inference based on modu...
mpan2d 710 A deduction based on modus...
mpand 711 A deduction based on modus...
mpani 712 An inference based on modu...
mpan2i 713 An inference based on modu...
mp2ani 714 An inference based on modu...
mp2and 715 A deduction based on modus...
mpanl1 716 An inference based on modu...
mpanl2 717 An inference based on modu...
mpanl12 718 An inference based on modu...
mpanr1 719 An inference based on modu...
mpanr2 720 An inference based on modu...
mpanr12 721 An inference based on modu...
mpanlr1 722 An inference based on modu...
pm5.74da 723 Distribution of implicatio...
pm4.45 724 Theorem *4.45 of [Whitehea...
imdistan 725 Distribution of implicatio...
imdistani 726 Distribution of implicatio...
imdistanri 727 Distribution of implicatio...
imdistand 728 Distribution of implicatio...
imdistanda 729 Distribution of implicatio...
anbi2i 730 Introduce a left conjunct ...
anbi1i 731 Introduce a right conjunct...
anbi2ci 732 Variant of ~ anbi2i with c...
anbi12i 733 Conjoin both sides of two ...
anbi12ci 734 Variant of ~ anbi12i with ...
syldanl 735 A syllogism deduction with...
sylan9bb 736 Nested syllogism inference...
sylan9bbr 737 Nested syllogism inference...
orbi2d 738 Deduction adding a left di...
orbi1d 739 Deduction adding a right d...
anbi2d 740 Deduction adding a left co...
anbi1d 741 Deduction adding a right c...
orbi1 742 Theorem *4.37 of [Whitehea...
anbi1 743 Introduce a right conjunct...
anbi2 744 Introduce a left conjunct ...
bitr 745 Theorem *4.22 of [Whitehea...
orbi12d 746 Deduction joining two equi...
anbi12d 747 Deduction joining two equi...
pm5.3 748 Theorem *5.3 of [Whitehead...
pm5.61 749 Theorem *5.61 of [Whitehea...
adantll 750 Deduction adding a conjunc...
adantlr 751 Deduction adding a conjunc...
adantrl 752 Deduction adding a conjunc...
adantrr 753 Deduction adding a conjunc...
adantlll 754 Deduction adding a conjunc...
adantllr 755 Deduction adding a conjunc...
adantlrl 756 Deduction adding a conjunc...
adantlrr 757 Deduction adding a conjunc...
adantrll 758 Deduction adding a conjunc...
adantrlr 759 Deduction adding a conjunc...
adantrrl 760 Deduction adding a conjunc...
adantrrr 761 Deduction adding a conjunc...
ad2antrr 762 Deduction adding two conju...
ad2antlr 763 Deduction adding two conju...
ad2antrl 764 Deduction adding two conju...
ad2antll 765 Deduction adding conjuncts...
ad3antrrr 766 Deduction adding three con...
ad3antlr 767 Deduction adding three con...
ad4antr 768 Deduction adding 4 conjunc...
ad4antlr 769 Deduction adding 4 conjunc...
ad5antr 770 Deduction adding 5 conjunc...
ad5antlr 771 Deduction adding 5 conjunc...
ad6antr 772 Deduction adding 6 conjunc...
ad6antlr 773 Deduction adding 6 conjunc...
ad7antr 774 Deduction adding 7 conjunc...
ad7antlr 775 Deduction adding 7 conjunc...
ad8antr 776 Deduction adding 8 conjunc...
ad8antlr 777 Deduction adding 8 conjunc...
ad9antr 778 Deduction adding 9 conjunc...
ad9antlr 779 Deduction adding 9 conjunc...
ad10antr 780 Deduction adding 10 conjun...
ad10antlr 781 Deduction adding 10 conjun...
ad2ant2l 782 Deduction adding two conju...
ad2ant2r 783 Deduction adding two conju...
ad2ant2lr 784 Deduction adding two conju...
ad2ant2rl 785 Deduction adding two conju...
adantl3r 786 Deduction adding 1 conjunc...
adantl4r 787 Deduction adding 1 conjunc...
adantl5r 788 Deduction adding 1 conjunc...
adantl6r 789 Deduction adding 1 conjunc...
simpll 790 Simplification of a conjun...
simplld 791 Deduction form of ~ simpll...
simplr 792 Simplification of a conjun...
simplrd 793 Deduction eliminating a do...
simprl 794 Simplification of a conjun...
simprld 795 Deduction eliminating a do...
simprr 796 Simplification of a conjun...
simprrd 797 Deduction form of ~ simprr...
simplll 798 Simplification of a conjun...
simpllr 799 Simplification of a conjun...
simplrl 800 Simplification of a conjun...
simplrr 801 Simplification of a conjun...
simprll 802 Simplification of a conjun...
simprlr 803 Simplification of a conjun...
simprrl 804 Simplification of a conjun...
simprrr 805 Simplification of a conjun...
simp-4l 806 Simplification of a conjun...
simp-4r 807 Simplification of a conjun...
simp-5l 808 Simplification of a conjun...
simp-5r 809 Simplification of a conjun...
simp-6l 810 Simplification of a conjun...
simp-6r 811 Simplification of a conjun...
simp-7l 812 Simplification of a conjun...
simp-7r 813 Simplification of a conjun...
simp-8l 814 Simplification of a conjun...
simp-8r 815 Simplification of a conjun...
simp-9l 816 Simplification of a conjun...
simp-9r 817 Simplification of a conjun...
simp-10l 818 Simplification of a conjun...
simp-10r 819 Simplification of a conjun...
simp-11l 820 Simplification of a conjun...
simp-11r 821 Simplification of a conjun...
jaob 822 Disjunction of antecedents...
adant423OLD 823 Obsolete as of 2-Oct-2021....
jaoian 824 Inference disjoining the a...
jao1i 825 Add a disjunct in the ante...
jaodan 826 Deduction disjoining the a...
mpjaodan 827 Eliminate a disjunction in...
pm4.77 828 Theorem *4.77 of [Whitehea...
pm2.63 829 Theorem *2.63 of [Whitehea...
pm2.64 830 Theorem *2.64 of [Whitehea...
pm2.61ian 831 Elimination of an antecede...
pm2.61dan 832 Elimination of an antecede...
pm2.61ddan 833 Elimination of two anteced...
pm2.61dda 834 Elimination of two anteced...
condan 835 Proof by contradiction. (...
abai 836 Introduce one conjunct as ...
pm5.53 837 Theorem *5.53 of [Whitehea...
an12 838 Swap two conjuncts. Note ...
an32 839 A rearrangement of conjunc...
an13 840 A rearrangement of conjunc...
an31 841 A rearrangement of conjunc...
bianass 842 An inference to merge two ...
an12s 843 Swap two conjuncts in ante...
ancom2s 844 Inference commuting a nest...
an13s 845 Swap two conjuncts in ante...
an32s 846 Swap two conjuncts in ante...
ancom1s 847 Inference commuting a nest...
an31s 848 Swap two conjuncts in ante...
anass1rs 849 Commutative-associative la...
anabs1 850 Absorption into embedded c...
anabs5 851 Absorption into embedded c...
anabs7 852 Absorption into embedded c...
a2and 853 Deduction distributing a c...
anabsan 854 Absorption of antecedent w...
anabss1 855 Absorption of antecedent i...
anabss4 856 Absorption of antecedent i...
anabss5 857 Absorption of antecedent i...
anabsi5 858 Absorption of antecedent i...
anabsi6 859 Absorption of antecedent i...
anabsi7 860 Absorption of antecedent i...
anabsi8 861 Absorption of antecedent i...
anabss7 862 Absorption of antecedent i...
anabsan2 863 Absorption of antecedent w...
anabss3 864 Absorption of antecedent i...
an4 865 Rearrangement of 4 conjunc...
an42 866 Rearrangement of 4 conjunc...
an43 867 Rearrangement of 4 conjunc...
an3 868 A rearrangement of conjunc...
an4s 869 Inference rearranging 4 co...
an42s 870 Inference rearranging 4 co...
anandi 871 Distribution of conjunctio...
anandir 872 Distribution of conjunctio...
anandis 873 Inference that undistribut...
anandirs 874 Inference that undistribut...
syl2an2 875 ~ syl2an with antecedents ...
syl2an2r 876 ~ syl2anr with antecedents...
impbida 877 Deduce an equivalence from...
pm3.48 878 Theorem *3.48 of [Whitehea...
pm3.45 879 Theorem *3.45 (Fact) of [W...
im2anan9 880 Deduction joining nested i...
im2anan9r 881 Deduction joining nested i...
anim12dan 882 Conjoin antecedents and co...
orim12d 883 Disjoin antecedents and co...
orim1d 884 Disjoin antecedents and co...
orim2d 885 Disjoin antecedents and co...
orim2 886 Axiom *1.6 (Sum) of [White...
pm2.38 887 Theorem *2.38 of [Whitehea...
pm2.36 888 Theorem *2.36 of [Whitehea...
pm2.37 889 Theorem *2.37 of [Whitehea...
pm2.73 890 Theorem *2.73 of [Whitehea...
pm2.74 891 Theorem *2.74 of [Whitehea...
orimdi 892 Disjunction distributes ov...
pm2.76 893 Theorem *2.76 of [Whitehea...
pm2.75 894 Theorem *2.75 of [Whitehea...
pm2.8 895 Theorem *2.8 of [Whitehead...
pm2.81 896 Theorem *2.81 of [Whitehea...
pm2.82 897 Theorem *2.82 of [Whitehea...
pm2.85 898 Theorem *2.85 of [Whitehea...
pm3.2ni 899 Infer negated disjunction ...
orabs 900 Absorption of redundant in...
oranabs 901 Absorb a disjunct into a c...
pm5.1 902 Two propositions are equiv...
pm5.21 903 Two propositions are equiv...
norbi 904 If neither of two proposit...
nbior 905 If two propositions are no...
pm3.43 906 Theorem *3.43 (Comp) of [W...
jcab 907 Distributive law for impli...
ordi 908 Distributive law for disju...
ordir 909 Distributive law for disju...
pm4.76 910 Theorem *4.76 of [Whitehea...
andi 911 Distributive law for conju...
andir 912 Distributive law for conju...
orddi 913 Double distributive law fo...
anddi 914 Double distributive law fo...
pm4.39 915 Theorem *4.39 of [Whitehea...
pm4.38 916 Theorem *4.38 of [Whitehea...
bi2anan9 917 Deduction joining two equi...
bi2anan9r 918 Deduction joining two equi...
bi2bian9 919 Deduction joining two bico...
pm4.72 920 Implication in terms of bi...
imimorb 921 Simplify an implication be...
pm5.33 922 Theorem *5.33 of [Whitehea...
pm5.36 923 Theorem *5.36 of [Whitehea...
bianabs 924 Absorb a hypothesis into t...
oibabs 925 Absorption of disjunction ...
pm3.24 926 Law of noncontradiction. ...
pm2.26 927 Theorem *2.26 of [Whitehea...
pm5.11 928 Theorem *5.11 of [Whitehea...
pm5.12 929 Theorem *5.12 of [Whitehea...
pm5.14 930 Theorem *5.14 of [Whitehea...
pm5.13 931 Theorem *5.13 of [Whitehea...
pm5.17 932 Theorem *5.17 of [Whitehea...
pm5.15 933 Theorem *5.15 of [Whitehea...
pm5.16 934 Theorem *5.16 of [Whitehea...
xor 935 Two ways to express "exclu...
nbi2 936 Two ways to express "exclu...
xordi 937 Conjunction distributes ov...
biort 938 A wff disjoined with truth...
pm5.55 939 Theorem *5.55 of [Whitehea...
ornld 940 Selecting one statement fr...
pm5.21nd 941 Eliminate an antecedent im...
pm5.35 942 Theorem *5.35 of [Whitehea...
pm5.54 943 Theorem *5.54 of [Whitehea...
baib 944 Move conjunction outside o...
baibr 945 Move conjunction outside o...
rbaibr 946 Move conjunction outside o...
rbaib 947 Move conjunction outside o...
baibd 948 Move conjunction outside o...
rbaibd 949 Move conjunction outside o...
pm5.44 950 Theorem *5.44 of [Whitehea...
pm5.6 951 Conjunction in antecedent ...
orcanai 952 Change disjunction in cons...
mpbiran 953 Detach truth from conjunct...
mpbiran2 954 Detach truth from conjunct...
mpbir2an 955 Detach a conjunction of tr...
mpbi2and 956 Detach a conjunction of tr...
mpbir2and 957 Detach a conjunction of tr...
pm5.62 958 Theorem *5.62 of [Whitehea...
pm5.63 959 Theorem *5.63 of [Whitehea...
intnan 960 Introduction of conjunct i...
intnanr 961 Introduction of conjunct i...
intnand 962 Introduction of conjunct i...
intnanrd 963 Introduction of conjunct i...
niabn 964 Miscellaneous inference re...
ninba 965 Miscellaneous inference re...
bianfi 966 A wff conjoined with false...
bianfd 967 A wff conjoined with false...
pm4.43 968 Theorem *4.43 of [Whitehea...
pm4.82 969 Theorem *4.82 of [Whitehea...
pm4.83 970 Theorem *4.83 of [Whitehea...
pclem6 971 Negation inferred from emb...
biantr 972 A transitive law of equiva...
orbidi 973 Disjunction distributes ov...
biluk 974 Lukasiewicz's shortest axi...
pm5.7 975 Disjunction distributes ov...
bigolden 976 Dijkstra-Scholten's Golden...
pm5.71 977 Theorem *5.71 of [Whitehea...
pm5.75 978 Theorem *5.75 of [Whitehea...
pm5.75OLD 979 Obsolete proof of ~ pm5.75...
bimsc1 980 Removal of conjunct from o...
ecase2d 981 Deduction for elimination ...
ecase3 982 Inference for elimination ...
ecase 983 Inference for elimination ...
ecase3d 984 Deduction for elimination ...
ecased 985 Deduction for elimination ...
ecase3ad 986 Deduction for elimination ...
ccase 987 Inference for combining ca...
ccased 988 Deduction for combining ca...
ccase2 989 Inference for combining ca...
4cases 990 Inference eliminating two ...
4casesdan 991 Deduction eliminating two ...
cases 992 Case disjunction according...
cases2 993 Case disjunction according...
dfbi3 994 An alternate definition of...
dfbi3OLD 995 Obsolete proof of ~ dfbi3 ...
pm5.24 996 Theorem *5.24 of [Whitehea...
4exmid 997 The disjunction of the fou...
4exmidOLD 998 Obsolete proof of ~ 4exmid...
consensus 999 The consensus theorem. Th...
dedlem0a 1000 Lemma for an alternate ver...
dedlem0b 1001 Lemma for an alternate ver...
dedlema 1002 Lemma for weak deduction t...
dedlemb 1003 Lemma for weak deduction t...
pm4.42 1004 Theorem *4.42 of [Whitehea...
prlem1 1005 A specialized lemma for se...
prlem2 1006 A specialized lemma for se...
oplem1 1007 A specialized lemma for se...
dn1 1008 A single axiom for Boolean...
bianir 1009 A closed form of ~ mpbir ,...
jaoi2 1010 Inference removing a negat...
jaoi3 1011 Inference separating a dis...
dfifp2 1014 Alternate definition of th...
dfifp3 1015 Alternate definition of th...
dfifp4 1016 Alternate definition of th...
dfifp5 1017 Alternate definition of th...
dfifp6 1018 Alternate definition of th...
dfifp7 1019 Alternate definition of th...
anifp 1020 The conditional operator i...
ifpor 1021 The conditional operator i...
ifpn 1022 Conditional operator for t...
ifptru 1023 Value of the conditional o...
ifpfal 1024 Value of the conditional o...
ifpid 1025 Value of the conditional o...
casesifp 1026 Version of ~ cases express...
ifpbi123d 1027 Equality deduction for con...
ifpimpda 1028 Separation of the values o...
1fpid3 1029 The value of the condition...
elimh 1030 Hypothesis builder for the...
dedt 1031 The weak deduction theorem...
con3ALT 1032 Proof of ~ con3 from its a...
elimhOLD 1033 Old version of ~ elimh . ...
dedtOLD 1034 Old version of ~ dedt . O...
con3OLD 1035 Old version of ~ con3ALT ....
3orass 1040 Associative law for triple...
3orel1 1041 Partial elimination of a t...
3anass 1042 Associative law for triple...
3anrot 1043 Rotation law for triple co...
3orrot 1044 Rotation law for triple di...
3ancoma 1045 Commutation law for triple...
3orcoma 1046 Commutation law for triple...
3ancomb 1047 Commutation law for triple...
3orcomb 1048 Commutation law for triple...
3anrev 1049 Reversal law for triple co...
3anan32 1050 Convert triple conjunction...
3anan12 1051 Convert triple conjunction...
anandi3 1052 Distribution of triple con...
anandi3r 1053 Distribution of triple con...
3anor 1054 Triple conjunction express...
3ianor 1055 Negated triple conjunction...
3ioran 1056 Negated triple disjunction...
3oran 1057 Triple disjunction in term...
3simpa 1058 Simplification of triple c...
3simpb 1059 Simplification of triple c...
3simpc 1060 Simplification of triple c...
simp1 1061 Simplification of triple c...
simp2 1062 Simplification of triple c...
simp3 1063 Simplification of triple c...
simpl1 1064 Simplification rule. (Con...
simpl2 1065 Simplification rule. (Con...
simpl3 1066 Simplification rule. (Con...
simpr1 1067 Simplification rule. (Con...
simpr2 1068 Simplification rule. (Con...
simpr3 1069 Simplification rule. (Con...
simp1i 1070 Infer a conjunct from a tr...
simp2i 1071 Infer a conjunct from a tr...
simp3i 1072 Infer a conjunct from a tr...
simp1d 1073 Deduce a conjunct from a t...
simp2d 1074 Deduce a conjunct from a t...
simp3d 1075 Deduce a conjunct from a t...
simp1bi 1076 Deduce a conjunct from a t...
simp2bi 1077 Deduce a conjunct from a t...
simp3bi 1078 Deduce a conjunct from a t...
3adant1 1079 Deduction adding a conjunc...
3adant2 1080 Deduction adding a conjunc...
3adant3 1081 Deduction adding a conjunc...
3ad2ant1 1082 Deduction adding conjuncts...
3ad2ant2 1083 Deduction adding conjuncts...
3ad2ant3 1084 Deduction adding conjuncts...
simp1l 1085 Simplification of triple c...
simp1r 1086 Simplification of triple c...
simp2l 1087 Simplification of triple c...
simp2r 1088 Simplification of triple c...
simp3l 1089 Simplification of triple c...
simp3r 1090 Simplification of triple c...
simp11 1091 Simplification of doubly t...
simp12 1092 Simplification of doubly t...
simp13 1093 Simplification of doubly t...
simp21 1094 Simplification of doubly t...
simp22 1095 Simplification of doubly t...
simp23 1096 Simplification of doubly t...
simp31 1097 Simplification of doubly t...
simp32 1098 Simplification of doubly t...
simp33 1099 Simplification of doubly t...
simpll1 1100 Simplification of conjunct...
simpll2 1101 Simplification of conjunct...
simpll3 1102 Simplification of conjunct...
simplr1 1103 Simplification of conjunct...
simplr2 1104 Simplification of conjunct...
simplr3 1105 Simplification of conjunct...
simprl1 1106 Simplification of conjunct...
simprl2 1107 Simplification of conjunct...
simprl3 1108 Simplification of conjunct...
simprr1 1109 Simplification of conjunct...
simprr2 1110 Simplification of conjunct...
simprr3 1111 Simplification of conjunct...
simpl1l 1112 Simplification of conjunct...
simpl1r 1113 Simplification of conjunct...
simpl2l 1114 Simplification of conjunct...
simpl2r 1115 Simplification of conjunct...
simpl3l 1116 Simplification of conjunct...
simpl3r 1117 Simplification of conjunct...
simpr1l 1118 Simplification of conjunct...
simpr1r 1119 Simplification of conjunct...
simpr2l 1120 Simplification of conjunct...
simpr2r 1121 Simplification of conjunct...
simpr3l 1122 Simplification of conjunct...
simpr3r 1123 Simplification of conjunct...
simp1ll 1124 Simplification of conjunct...
simp1lr 1125 Simplification of conjunct...
simp1rl 1126 Simplification of conjunct...
simp1rr 1127 Simplification of conjunct...
simp2ll 1128 Simplification of conjunct...
simp2lr 1129 Simplification of conjunct...
simp2rl 1130 Simplification of conjunct...
simp2rr 1131 Simplification of conjunct...
simp3ll 1132 Simplification of conjunct...
simp3lr 1133 Simplification of conjunct...
simp3rl 1134 Simplification of conjunct...
simp3rr 1135 Simplification of conjunct...
simpl11 1136 Simplification of conjunct...
simpl12 1137 Simplification of conjunct...
simpl13 1138 Simplification of conjunct...
simpl21 1139 Simplification of conjunct...
simpl22 1140 Simplification of conjunct...
simpl23 1141 Simplification of conjunct...
simpl31 1142 Simplification of conjunct...
simpl32 1143 Simplification of conjunct...
simpl33 1144 Simplification of conjunct...
simpr11 1145 Simplification of conjunct...
simpr12 1146 Simplification of conjunct...
simpr13 1147 Simplification of conjunct...
simpr21 1148 Simplification of conjunct...
simpr22 1149 Simplification of conjunct...
simpr23 1150 Simplification of conjunct...
simpr31 1151 Simplification of conjunct...
simpr32 1152 Simplification of conjunct...
simpr33 1153 Simplification of conjunct...
simp1l1 1154 Simplification of conjunct...
simp1l2 1155 Simplification of conjunct...
simp1l3 1156 Simplification of conjunct...
simp1r1 1157 Simplification of conjunct...
simp1r2 1158 Simplification of conjunct...
simp1r3 1159 Simplification of conjunct...
simp2l1 1160 Simplification of conjunct...
simp2l2 1161 Simplification of conjunct...
simp2l3 1162 Simplification of conjunct...
simp2r1 1163 Simplification of conjunct...
simp2r2 1164 Simplification of conjunct...
simp2r3 1165 Simplification of conjunct...
simp3l1 1166 Simplification of conjunct...
simp3l2 1167 Simplification of conjunct...
simp3l3 1168 Simplification of conjunct...
simp3r1 1169 Simplification of conjunct...
simp3r2 1170 Simplification of conjunct...
simp3r3 1171 Simplification of conjunct...
simp11l 1172 Simplification of conjunct...
simp11r 1173 Simplification of conjunct...
simp12l 1174 Simplification of conjunct...
simp12r 1175 Simplification of conjunct...
simp13l 1176 Simplification of conjunct...
simp13r 1177 Simplification of conjunct...
simp21l 1178 Simplification of conjunct...
simp21r 1179 Simplification of conjunct...
simp22l 1180 Simplification of conjunct...
simp22r 1181 Simplification of conjunct...
simp23l 1182 Simplification of conjunct...
simp23r 1183 Simplification of conjunct...
simp31l 1184 Simplification of conjunct...
simp31r 1185 Simplification of conjunct...
simp32l 1186 Simplification of conjunct...
simp32r 1187 Simplification of conjunct...
simp33l 1188 Simplification of conjunct...
simp33r 1189 Simplification of conjunct...
simp111 1190 Simplification of conjunct...
simp112 1191 Simplification of conjunct...
simp113 1192 Simplification of conjunct...
simp121 1193 Simplification of conjunct...
simp122 1194 Simplification of conjunct...
simp123 1195 Simplification of conjunct...
simp131 1196 Simplification of conjunct...
simp132 1197 Simplification of conjunct...
simp133 1198 Simplification of conjunct...
simp211 1199 Simplification of conjunct...
simp212 1200 Simplification of conjunct...
simp213 1201 Simplification of conjunct...
simp221 1202 Simplification of conjunct...
simp222 1203 Simplification of conjunct...
simp223 1204 Simplification of conjunct...
simp231 1205 Simplification of conjunct...
simp232 1206 Simplification of conjunct...
simp233 1207 Simplification of conjunct...
simp311 1208 Simplification of conjunct...
simp312 1209 Simplification of conjunct...
simp313 1210 Simplification of conjunct...
simp321 1211 Simplification of conjunct...
simp322 1212 Simplification of conjunct...
simp323 1213 Simplification of conjunct...
simp331 1214 Simplification of conjunct...
simp332 1215 Simplification of conjunct...
simp333 1216 Simplification of conjunct...
3adantl1 1217 Deduction adding a conjunc...
3adantl2 1218 Deduction adding a conjunc...
3adantl3 1219 Deduction adding a conjunc...
3adantr1 1220 Deduction adding a conjunc...
3adantr2 1221 Deduction adding a conjunc...
3adantr3 1222 Deduction adding a conjunc...
3ad2antl1 1223 Deduction adding conjuncts...
3ad2antl2 1224 Deduction adding conjuncts...
3ad2antl3 1225 Deduction adding conjuncts...
3ad2antr1 1226 Deduction adding conjuncts...
3ad2antr2 1227 Deduction adding conjuncts...
3ad2antr3 1228 Deduction adding conjuncts...
3anibar 1229 Remove a hypothesis from t...
3mix1 1230 Introduction in triple dis...
3mix2 1231 Introduction in triple dis...
3mix3 1232 Introduction in triple dis...
3mix1i 1233 Introduction in triple dis...
3mix2i 1234 Introduction in triple dis...
3mix3i 1235 Introduction in triple dis...
3mix1d 1236 Deduction introducing trip...
3mix2d 1237 Deduction introducing trip...
3mix3d 1238 Deduction introducing trip...
3pm3.2i 1239 Infer conjunction of premi...
pm3.2an3 1240 Version of ~ pm3.2 for a t...
pm3.2an3OLD 1241 Obsolete proof of ~ pm3.2a...
3jca 1242 Join consequents with conj...
3jcad 1243 Deduction conjoining the c...
mpbir3an 1244 Detach a conjunction of tr...
mpbir3and 1245 Detach a conjunction of tr...
syl3anbrc 1246 Syllogism inference. (Con...
3anim123i 1247 Join antecedents and conse...
3anim1i 1248 Add two conjuncts to antec...
3anim2i 1249 Add two conjuncts to antec...
3anim3i 1250 Add two conjuncts to antec...
3anbi123i 1251 Join 3 biconditionals with...
3orbi123i 1252 Join 3 biconditionals with...
3anbi1i 1253 Inference adding two conju...
3anbi2i 1254 Inference adding two conju...
3anbi3i 1255 Inference adding two conju...
3imp 1256 Importation inference. (C...
3imp31 1257 The importation inference ...
3imp231 1258 Importation inference. (C...
3impa 1259 Importation from double to...
3impb 1260 Importation from double to...
3impia 1261 Importation to triple conj...
3impib 1262 Importation to triple conj...
ex3 1263 Apply ~ ex to a hypothesis...
3exp 1264 Exportation inference. (C...
3expa 1265 Exportation from triple to...
3expb 1266 Exportation from triple to...
3expia 1267 Exportation from triple co...
3expib 1268 Exportation from triple co...
3com12 1269 Commutation in antecedent....
3com13 1270 Commutation in antecedent....
3com23 1271 Commutation in antecedent....
3coml 1272 Commutation in antecedent....
3comr 1273 Commutation in antecedent....
3adant3r1 1274 Deduction adding a conjunc...
3adant3r2 1275 Deduction adding a conjunc...
3adant3r3 1276 Deduction adding a conjunc...
3imp21 1277 The importation inference ...
3imp3i2an 1278 An elimination deduction. ...
3an1rs 1279 Swap conjuncts. (Contribu...
3imp1 1280 Importation to left triple...
3impd 1281 Importation deduction for ...
3imp2 1282 Importation to right tripl...
3exp1 1283 Exportation from left trip...
3expd 1284 Exportation deduction for ...
3exp2 1285 Exportation from right tri...
exp5o 1286 A triple exportation infer...
exp516 1287 A triple exportation infer...
exp520 1288 A triple exportation infer...
3impexp 1289 Version of ~ impexp for a ...
3anassrs 1290 Associative law for conjun...
3an4anass 1291 Associative law for four c...
ad4ant13 1292 Deduction adding conjuncts...
ad4ant14 1293 Deduction adding conjuncts...
ad4ant123 1294 Deduction adding conjuncts...
ad4ant124 1295 Deduction adding conjuncts...
ad4ant134 1296 Deduction adding conjuncts...
ad4ant23 1297 Deduction adding conjuncts...
ad4ant24 1298 Deduction adding conjuncts...
ad4ant234 1299 Deduction adding conjuncts...
ad5ant12 1300 Deduction adding conjuncts...
ad5ant13 1301 Deduction adding conjuncts...
ad5ant14 1302 Deduction adding conjuncts...
ad5ant15 1303 Deduction adding conjuncts...
ad5ant23 1304 Deduction adding conjuncts...
ad5ant24 1305 Deduction adding conjuncts...
ad5ant25 1306 Deduction adding conjuncts...
ad5ant245 1307 Deduction adding conjuncts...
ad5ant234 1308 Deduction adding conjuncts...
ad5ant235 1309 Deduction adding conjuncts...
ad5ant123 1310 Deduction adding conjuncts...
ad5ant124 1311 Deduction adding conjuncts...
ad5ant125 1312 Deduction adding conjuncts...
ad5ant134 1313 Deduction adding conjuncts...
ad5ant135 1314 Deduction adding conjuncts...
ad5ant145 1315 Deduction adding conjuncts...
ad5ant1345 1316 Deduction adding conjuncts...
ad5ant2345 1317 Deduction adding conjuncts...
3adant1l 1318 Deduction adding a conjunc...
3adant1r 1319 Deduction adding a conjunc...
3adant2l 1320 Deduction adding a conjunc...
3adant2r 1321 Deduction adding a conjunc...
3adant3l 1322 Deduction adding a conjunc...
3adant3r 1323 Deduction adding a conjunc...
syl12anc 1324 Syllogism combined with co...
syl21anc 1325 Syllogism combined with co...
syl3anc 1326 Syllogism combined with co...
syl22anc 1327 Syllogism combined with co...
syl13anc 1328 Syllogism combined with co...
syl31anc 1329 Syllogism combined with co...
syl112anc 1330 Syllogism combined with co...
syl121anc 1331 Syllogism combined with co...
syl211anc 1332 Syllogism combined with co...
syl23anc 1333 Syllogism combined with co...
syl32anc 1334 Syllogism combined with co...
syl122anc 1335 Syllogism combined with co...
syl212anc 1336 Syllogism combined with co...
syl221anc 1337 Syllogism combined with co...
syl113anc 1338 Syllogism combined with co...
syl131anc 1339 Syllogism combined with co...
syl311anc 1340 Syllogism combined with co...
syl33anc 1341 Syllogism combined with co...
syl222anc 1342 Syllogism combined with co...
syl123anc 1343 Syllogism combined with co...
syl132anc 1344 Syllogism combined with co...
syl213anc 1345 Syllogism combined with co...
syl231anc 1346 Syllogism combined with co...
syl312anc 1347 Syllogism combined with co...
syl321anc 1348 Syllogism combined with co...
syl133anc 1349 Syllogism combined with co...
syl313anc 1350 Syllogism combined with co...
syl331anc 1351 Syllogism combined with co...
syl223anc 1352 Syllogism combined with co...
syl232anc 1353 Syllogism combined with co...
syl322anc 1354 Syllogism combined with co...
syl233anc 1355 Syllogism combined with co...
syl323anc 1356 Syllogism combined with co...
syl332anc 1357 Syllogism combined with co...
syl333anc 1358 A syllogism inference comb...
syl3an1 1359 A syllogism inference. (C...
syl3an2 1360 A syllogism inference. (C...
syl3an3 1361 A syllogism inference. (C...
syl3an1b 1362 A syllogism inference. (C...
syl3an2b 1363 A syllogism inference. (C...
syl3an3b 1364 A syllogism inference. (C...
syl3an1br 1365 A syllogism inference. (C...
syl3an2br 1366 A syllogism inference. (C...
syl3an3br 1367 A syllogism inference. (C...
syl3an 1368 A triple syllogism inferen...
syl3anb 1369 A triple syllogism inferen...
syl3anbr 1370 A triple syllogism inferen...
syld3an3 1371 A syllogism inference. (C...
syld3an1 1372 A syllogism inference. (C...
syld3an2 1373 A syllogism inference. (C...
syl3anl1 1374 A syllogism inference. (C...
syl3anl2 1375 A syllogism inference. (C...
syl3anl3 1376 A syllogism inference. (C...
syl3anl 1377 A triple syllogism inferen...
syl3anr1 1378 A syllogism inference. (C...
syl3anr2 1379 A syllogism inference. (C...
syl3anr3 1380 A syllogism inference. (C...
3impdi 1381 Importation inference (und...
3impdir 1382 Importation inference (und...
3anidm12 1383 Inference from idempotent ...
3anidm13 1384 Inference from idempotent ...
3anidm23 1385 Inference from idempotent ...
syl2an3an 1386 ~ syl3an with antecedents ...
syl2an23an 1387 Deduction related to ~ syl...
3ori 1388 Infer implication from tri...
3jao 1389 Disjunction of three antec...
3jaob 1390 Disjunction of three antec...
3jaoi 1391 Disjunction of three antec...
3jaod 1392 Disjunction of three antec...
3jaoian 1393 Disjunction of three antec...
3jaodan 1394 Disjunction of three antec...
mpjao3dan 1395 Eliminate a three-way disj...
3jaao 1396 Inference conjoining and d...
syl3an9b 1397 Nested syllogism inference...
3orbi123d 1398 Deduction joining 3 equiva...
3anbi123d 1399 Deduction joining 3 equiva...
3anbi12d 1400 Deduction conjoining and a...
3anbi13d 1401 Deduction conjoining and a...
3anbi23d 1402 Deduction conjoining and a...
3anbi1d 1403 Deduction adding conjuncts...
3anbi2d 1404 Deduction adding conjuncts...
3anbi3d 1405 Deduction adding conjuncts...
3anim123d 1406 Deduction joining 3 implic...
3orim123d 1407 Deduction joining 3 implic...
an6 1408 Rearrangement of 6 conjunc...
3an6 1409 Analogue of ~ an4 for trip...
3or6 1410 Analogue of ~ or4 for trip...
mp3an1 1411 An inference based on modu...
mp3an2 1412 An inference based on modu...
mp3an3 1413 An inference based on modu...
mp3an12 1414 An inference based on modu...
mp3an13 1415 An inference based on modu...
mp3an23 1416 An inference based on modu...
mp3an1i 1417 An inference based on modu...
mp3anl1 1418 An inference based on modu...
mp3anl2 1419 An inference based on modu...
mp3anl3 1420 An inference based on modu...
mp3anr1 1421 An inference based on modu...
mp3anr2 1422 An inference based on modu...
mp3anr3 1423 An inference based on modu...
mp3an 1424 An inference based on modu...
mpd3an3 1425 An inference based on modu...
mpd3an23 1426 An inference based on modu...
mp3and 1427 A deduction based on modus...
mp3an12i 1428 ~ mp3an with antecedents i...
mp3an2i 1429 ~ mp3an with antecedents i...
mp3an3an 1430 ~ mp3an with antecedents i...
mp3an2ani 1431 An elimination deduction. ...
biimp3a 1432 Infer implication from a l...
biimp3ar 1433 Infer implication from a l...
3anandis 1434 Inference that undistribut...
3anandirs 1435 Inference that undistribut...
ecase23d 1436 Deduction for elimination ...
3ecase 1437 Inference for elimination ...
3bior1fd 1438 A disjunction is equivalen...
3bior1fand 1439 A disjunction is equivalen...
3bior2fd 1440 A wff is equivalent to its...
3biant1d 1441 A conjunction is equivalen...
intn3an1d 1442 Introduction of a triple c...
intn3an2d 1443 Introduction of a triple c...
intn3an3d 1444 Introduction of a triple c...
an3andi 1445 Distribution of conjunctio...
an33rean 1446 Rearrange a 9-fold conjunc...
nanan 1449 Write 'and' in terms of 'n...
nancom 1450 The 'nand' operator commut...
nannan 1451 Lemma for handling nested ...
nanim 1452 Show equivalence between i...
nannot 1453 Show equivalence between n...
nanbi 1454 Show equivalence between t...
nanbi1 1455 Introduce a right anti-con...
nanbi2 1456 Introduce a left anti-conj...
nanbi12 1457 Join two logical equivalen...
nanbi1i 1458 Introduce a right anti-con...
nanbi2i 1459 Introduce a left anti-conj...
nanbi12i 1460 Join two logical equivalen...
nanbi1d 1461 Introduce a right anti-con...
nanbi2d 1462 Introduce a left anti-conj...
nanbi12d 1463 Join two logical equivalen...
xnor 1466 Two ways to write XNOR. (C...
xorcom 1467 The connector ` \/_ ` is c...
xorass 1468 The connector ` \/_ ` is a...
excxor 1469 This tautology shows that ...
xor2 1470 Two ways to express "exclu...
xoror 1471 XOR implies OR. (Contribut...
xornan 1472 XOR implies NAND. (Contrib...
xornan2 1473 XOR implies NAND (written ...
xorneg2 1474 The connector ` \/_ ` is n...
xorneg1 1475 The connector ` \/_ ` is n...
xorneg 1476 The connector ` \/_ ` is u...
xorbi12i 1477 Equality property for XOR....
xorbi12d 1478 Equality property for XOR....
anxordi 1479 Conjunction distributes ov...
xorexmid 1480 Exclusive-or variant of th...
trujust 1485 Soundness justification th...
tru 1487 The truth value ` T. ` is ...
fal 1490 The truth value ` F. ` is ...
dftru2 1491 An alternate definition of...
trut 1492 A proposition is equivalen...
trud 1493 Eliminate ` T. ` as an ant...
tbtru 1494 A proposition is equivalen...
nbfal 1495 The negation of a proposit...
bitru 1496 A theorem is equivalent to...
bifal 1497 A contradiction is equival...
falim 1498 The truth value ` F. ` imp...
falimd 1499 The truth value ` F. ` imp...
a1tru 1500 Anything implies ` T. ` . ...
truan 1501 True can be removed from a...
dfnot 1502 Given falsum ` F. ` , we c...
inegd 1503 Negation introduction rule...
efald 1504 Deduction based on reducti...
pm2.21fal 1505 If a wff and its negation ...
truantru 1506 A ` /\ ` identity. (Contr...
truanfal 1507 A ` /\ ` identity. (Contr...
falantru 1508 A ` /\ ` identity. (Contr...
falanfal 1509 A ` /\ ` identity. (Contr...
truortru 1510 A ` \/ ` identity. (Contr...
truorfal 1511 A ` \/ ` identity. (Contr...
falortru 1512 A ` \/ ` identity. (Contr...
falorfal 1513 A ` \/ ` identity. (Contr...
truimtru 1514 A ` -> ` identity. (Contr...
truimfal 1515 A ` -> ` identity. (Contr...
falimtru 1516 A ` -> ` identity. (Contr...
falimfal 1517 A ` -> ` identity. (Contr...
nottru 1518 A ` -. ` identity. (Contr...
notfal 1519 A ` -. ` identity. (Contr...
trubitru 1520 A ` <-> ` identity. (Cont...
falbitru 1521 A ` <-> ` identity. (Cont...
trubifal 1522 A ` <-> ` identity. (Cont...
falbifal 1523 A ` <-> ` identity. (Cont...
trunantru 1524 A ` -/\ ` identity. (Cont...
trunanfal 1525 A ` -/\ ` identity. (Cont...
falnantru 1526 A ` -/\ ` identity. (Cont...
falnanfal 1527 A ` -/\ ` identity. (Cont...
truxortru 1528 A ` \/_ ` identity. (Cont...
truxorfal 1529 A ` \/_ ` identity. (Cont...
falxortru 1530 A ` \/_ ` identity. (Cont...
falxorfal 1531 A ` \/_ ` identity. (Cont...
hadbi123d 1534 Equality theorem for the a...
hadbi123i 1535 Equality theorem for the a...
hadass 1536 Associative law for the ad...
hadbi 1537 The adder sum is the same ...
hadcoma 1538 Commutative law for the ad...
hadcomb 1539 Commutative law for the ad...
hadrot 1540 Rotation law for the adder...
hadnot 1541 The adder sum distributes ...
had1 1542 If the first input is true...
had0 1543 If the first input is fals...
hadifp 1544 The value of the adder sum...
cador 1547 The adder carry in disjunc...
cadan 1548 The adder carry in conjunc...
cadbi123d 1549 Equality theorem for the a...
cadbi123i 1550 Equality theorem for the a...
cadcoma 1551 Commutative law for the ad...
cadcomb 1552 Commutative law for the ad...
cadrot 1553 Rotation law for the adder...
cadnot 1554 The adder carry distribute...
cad1 1555 If one input is true, then...
cad0 1556 If one input is false, the...
cadifp 1557 The value of the carry is,...
cad11 1558 If (at least) two inputs a...
cadtru 1559 The adder carry is true as...
minimp 1560 A single axiom for minimal...
minimp-sylsimp 1561 Derivation of sylsimp ( ~ ...
minimp-ax1 1562 Derivation of ~ ax-1 from ...
minimp-ax2c 1563 Derivation of a commuted f...
minimp-ax2 1564 Derivation of ~ ax-2 from ...
minimp-pm2.43 1565 Derivation of ~ pm2.43 (al...
meredith 1566 Carew Meredith's sole axio...
merlem1 1567 Step 3 of Meredith's proof...
merlem2 1568 Step 4 of Meredith's proof...
merlem3 1569 Step 7 of Meredith's proof...
merlem4 1570 Step 8 of Meredith's proof...
merlem5 1571 Step 11 of Meredith's proo...
merlem6 1572 Step 12 of Meredith's proo...
merlem7 1573 Between steps 14 and 15 of...
merlem8 1574 Step 15 of Meredith's proo...
merlem9 1575 Step 18 of Meredith's proo...
merlem10 1576 Step 19 of Meredith's proo...
merlem11 1577 Step 20 of Meredith's proo...
merlem12 1578 Step 28 of Meredith's proo...
merlem13 1579 Step 35 of Meredith's proo...
luk-1 1580 1 of 3 axioms for proposit...
luk-2 1581 2 of 3 axioms for proposit...
luk-3 1582 3 of 3 axioms for proposit...
luklem1 1583 Used to rederive standard ...
luklem2 1584 Used to rederive standard ...
luklem3 1585 Used to rederive standard ...
luklem4 1586 Used to rederive standard ...
luklem5 1587 Used to rederive standard ...
luklem6 1588 Used to rederive standard ...
luklem7 1589 Used to rederive standard ...
luklem8 1590 Used to rederive standard ...
ax1 1591 Standard propositional axi...
ax2 1592 Standard propositional axi...
ax3 1593 Standard propositional axi...
nic-dfim 1594 Define implication in term...
nic-dfneg 1595 Define negation in terms o...
nic-mp 1596 Derive Nicod's rule of mod...
nic-mpALT 1597 A direct proof of ~ nic-mp...
nic-ax 1598 Nicod's axiom derived from...
nic-axALT 1599 A direct proof of ~ nic-ax...
nic-imp 1600 Inference for ~ nic-mp usi...
nic-idlem1 1601 Lemma for ~ nic-id . (Con...
nic-idlem2 1602 Lemma for ~ nic-id . Infe...
nic-id 1603 Theorem ~ id expressed wit...
nic-swap 1604 The connector ` -/\ ` is s...
nic-isw1 1605 Inference version of ~ nic...
nic-isw2 1606 Inference for swapping nes...
nic-iimp1 1607 Inference version of ~ nic...
nic-iimp2 1608 Inference version of ~ nic...
nic-idel 1609 Inference to remove the tr...
nic-ich 1610 Chained inference. (Contr...
nic-idbl 1611 Double the terms. Since d...
nic-bijust 1612 Biconditional justificatio...
nic-bi1 1613 Inference to extract one s...
nic-bi2 1614 Inference to extract the o...
nic-stdmp 1615 Derive the standard modus ...
nic-luk1 1616 Proof of ~ luk-1 from ~ ni...
nic-luk2 1617 Proof of ~ luk-2 from ~ ni...
nic-luk3 1618 Proof of ~ luk-3 from ~ ni...
lukshef-ax1 1619 This alternative axiom for...
lukshefth1 1620 Lemma for ~ renicax . (Co...
lukshefth2 1621 Lemma for ~ renicax . (Co...
renicax 1622 A rederivation of ~ nic-ax...
tbw-bijust 1623 Justification for ~ tbw-ne...
tbw-negdf 1624 The definition of negation...
tbw-ax1 1625 The first of four axioms i...
tbw-ax2 1626 The second of four axioms ...
tbw-ax3 1627 The third of four axioms i...
tbw-ax4 1628 The fourth of four axioms ...
tbwsyl 1629 Used to rederive the Lukas...
tbwlem1 1630 Used to rederive the Lukas...
tbwlem2 1631 Used to rederive the Lukas...
tbwlem3 1632 Used to rederive the Lukas...
tbwlem4 1633 Used to rederive the Lukas...
tbwlem5 1634 Used to rederive the Lukas...
re1luk1 1635 ~ luk-1 derived from the T...
re1luk2 1636 ~ luk-2 derived from the T...
re1luk3 1637 ~ luk-3 derived from the T...
merco1 1638 A single axiom for proposi...
merco1lem1 1639 Used to rederive the Tarsk...
retbwax4 1640 ~ tbw-ax4 rederived from ~...
retbwax2 1641 ~ tbw-ax2 rederived from ~...
merco1lem2 1642 Used to rederive the Tarsk...
merco1lem3 1643 Used to rederive the Tarsk...
merco1lem4 1644 Used to rederive the Tarsk...
merco1lem5 1645 Used to rederive the Tarsk...
merco1lem6 1646 Used to rederive the Tarsk...
merco1lem7 1647 Used to rederive the Tarsk...
retbwax3 1648 ~ tbw-ax3 rederived from ~...
merco1lem8 1649 Used to rederive the Tarsk...
merco1lem9 1650 Used to rederive the Tarsk...
merco1lem10 1651 Used to rederive the Tarsk...
merco1lem11 1652 Used to rederive the Tarsk...
merco1lem12 1653 Used to rederive the Tarsk...
merco1lem13 1654 Used to rederive the Tarsk...
merco1lem14 1655 Used to rederive the Tarsk...
merco1lem15 1656 Used to rederive the Tarsk...
merco1lem16 1657 Used to rederive the Tarsk...
merco1lem17 1658 Used to rederive the Tarsk...
merco1lem18 1659 Used to rederive the Tarsk...
retbwax1 1660 ~ tbw-ax1 rederived from ~...
merco2 1661 A single axiom for proposi...
mercolem1 1662 Used to rederive the Tarsk...
mercolem2 1663 Used to rederive the Tarsk...
mercolem3 1664 Used to rederive the Tarsk...
mercolem4 1665 Used to rederive the Tarsk...
mercolem5 1666 Used to rederive the Tarsk...
mercolem6 1667 Used to rederive the Tarsk...
mercolem7 1668 Used to rederive the Tarsk...
mercolem8 1669 Used to rederive the Tarsk...
re1tbw1 1670 ~ tbw-ax1 rederived from ~...
re1tbw2 1671 ~ tbw-ax2 rederived from ~...
re1tbw3 1672 ~ tbw-ax3 rederived from ~...
re1tbw4 1673 ~ tbw-ax4 rederived from ~...
rb-bijust 1674 Justification for ~ rb-imd...
rb-imdf 1675 The definition of implicat...
anmp 1676 Modus ponens for ` \/ ` ` ...
rb-ax1 1677 The first of four axioms i...
rb-ax2 1678 The second of four axioms ...
rb-ax3 1679 The third of four axioms i...
rb-ax4 1680 The fourth of four axioms ...
rbsyl 1681 Used to rederive the Lukas...
rblem1 1682 Used to rederive the Lukas...
rblem2 1683 Used to rederive the Lukas...
rblem3 1684 Used to rederive the Lukas...
rblem4 1685 Used to rederive the Lukas...
rblem5 1686 Used to rederive the Lukas...
rblem6 1687 Used to rederive the Lukas...
rblem7 1688 Used to rederive the Lukas...
re1axmp 1689 ~ ax-mp derived from Russe...
re2luk1 1690 ~ luk-1 derived from Russe...
re2luk2 1691 ~ luk-2 derived from Russe...
re2luk3 1692 ~ luk-3 derived from Russe...
mptnan 1693 Modus ponendo tollens 1, o...
mptxor 1694 Modus ponendo tollens 2, o...
mtpor 1695 Modus tollendo ponens (inc...
mtpxor 1696 Modus tollendo ponens (ori...
stoic1a 1697 Stoic logic Thema 1 (part ...
stoic1b 1698 Stoic logic Thema 1 (part ...
stoic2a 1699 Stoic logic Thema 2 versio...
stoic2b 1700 Stoic logic Thema 2 versio...
stoic3 1701 Stoic logic Thema 3. Stat...
stoic4a 1702 Stoic logic Thema 4 versio...
stoic4b 1703 Stoic logic Thema 4 versio...
alnex 1706 Theorem 19.7 of [Margaris]...
eximal 1707 A utility theorem. An int...
nf2 1711 Alternate definition of no...
nf3 1712 Alternate definition of no...
nf4 1713 Alternate definition of no...
nfi 1714 Deduce that ` x ` is not f...
nfri 1715 Consequence of the definit...
nfd 1716 Deduce that ` x ` is not f...
nfrd 1717 Consequence of the definit...
nftht 1718 Closed form of ~ nfth . (...
nfntht 1719 Closed form of ~ nfnth . ...
nfntht2 1720 Closed form of ~ nfnth . ...
gen2 1723 Generalization applied twi...
mpg 1724 Modus ponens combined with...
mpgbi 1725 Modus ponens on biconditio...
mpgbir 1726 Modus ponens on biconditio...
nfth 1727 No variable is (effectivel...
nfnth 1728 No variable is (effectivel...
hbth 1729 No variable is (effectivel...
nftru 1730 The true constant has no f...
nex 1731 Generalization rule for ne...
nffal 1732 The false constant has no ...
sptruw 1733 Version of ~ sp when ` ph ...
nfiOLD 1734 Obsolete proof of ~ nf5i a...
nfthOLD 1735 Obsolete proof of ~ nfth a...
nfnthOLD 1736 Obsolete proof of ~ nfnth ...
alim 1738 Restatement of Axiom ~ ax-...
alimi 1739 Inference quantifying both...
2alimi 1740 Inference doubly quantifyi...
ala1 1741 Add an antecedent in a uni...
al2im 1742 Closed form of ~ al2imi . ...
al2imi 1743 Inference quantifying ante...
alanimi 1744 Variant of ~ al2imi with c...
alimdh 1745 Deduction form of Theorem ...
albi 1746 Theorem 19.15 of [Margaris...
albii 1747 Inference adding universal...
2albii 1748 Inference adding two unive...
sylgt 1749 Closed form of ~ sylg . (...
sylg 1750 A syllogism combined with ...
alrimih 1751 Inference form of Theorem ...
hbxfrbi 1752 A utility lemma to transfe...
alex 1753 Universal quantifier in te...
exnal 1754 Theorem 19.14 of [Margaris...
2nalexn 1755 Part of theorem *11.5 in [...
2exnaln 1756 Theorem *11.22 in [Whitehe...
2nexaln 1757 Theorem *11.25 in [Whitehe...
alimex 1758 A utility theorem. An int...
aleximi 1759 A variant of ~ al2imi : in...
alexbii 1760 Biconditional form of ~ al...
exim 1761 Theorem 19.22 of [Margaris...
eximi 1762 Inference adding existenti...
2eximi 1763 Inference adding two exist...
eximii 1764 Inference associated with ...
exa1 1765 Add an antecedent in an ex...
19.38 1766 Theorem 19.38 of [Margaris...
19.38a 1767 Under a non-freeness hypot...
19.38b 1768 Under a non-freeness hypot...
imnang 1769 Quantified implication in ...
alinexa 1770 A transformation of quanti...
alexn 1771 A relationship between two...
2exnexn 1772 Theorem *11.51 in [Whitehe...
exbi 1773 Theorem 19.18 of [Margaris...
exbii 1774 Inference adding existenti...
2exbii 1775 Inference adding two exist...
3exbii 1776 Inference adding three exi...
nfbiit 1777 Equivalence theorem for th...
nfbii 1778 Equality theorem for the n...
nfxfr 1779 A utility lemma to transfe...
nfxfrd 1780 A utility lemma to transfe...
nfnbi 1781 A variable is non-free in ...
nfnt 1782 If a variable is non-free ...
nfntOLDOLD 1783 Obsolete proof of ~ nfnt a...
nfn 1784 Inference associated with ...
nfnd 1785 Deduction associated with ...
exanali 1786 A transformation of quanti...
exancom 1787 Commutation of conjunction...
exan 1788 Place a conjunct in the sc...
exanOLD 1789 Obsolete proof of ~ exan a...
alrimdh 1790 Deduction form of Theorem ...
eximdh 1791 Deduction from Theorem 19....
nexdh 1792 Deduction for generalizati...
albidh 1793 Formula-building rule for ...
exbidh 1794 Formula-building rule for ...
exsimpl 1795 Simplification of an exist...
exsimpr 1796 Simplification of an exist...
19.40 1797 Theorem 19.40 of [Margaris...
19.26 1798 Theorem 19.26 of [Margaris...
19.26-2 1799 Theorem ~ 19.26 with two q...
19.26-3an 1800 Theorem ~ 19.26 with tripl...
19.29 1801 Theorem 19.29 of [Margaris...
19.29r 1802 Variation of ~ 19.29 . (C...
19.29r2 1803 Variation of ~ 19.29r with...
19.29x 1804 Variation of ~ 19.29 with ...
19.35 1805 Theorem 19.35 of [Margaris...
19.35i 1806 Inference associated with ...
19.35ri 1807 Inference associated with ...
19.25 1808 Theorem 19.25 of [Margaris...
19.30 1809 Theorem 19.30 of [Margaris...
19.43 1810 Theorem 19.43 of [Margaris...
19.43OLD 1811 Obsolete proof of ~ 19.43 ...
19.33 1812 Theorem 19.33 of [Margaris...
19.33b 1813 The antecedent provides a ...
19.40-2 1814 Theorem *11.42 in [Whitehe...
19.40b 1815 The antecedent provides a ...
albiim 1816 Split a biconditional and ...
2albiim 1817 Split a biconditional and ...
exintrbi 1818 Add/remove a conjunct in t...
exintr 1819 Introduce a conjunct in th...
alsyl 1820 Universally quantified and...
nfimt 1821 Closed form of ~ nfim and ...
nfimt2 1822 Closed form of ~ nfim and ...
nfimd 1823 If in a context ` x ` is n...
nfimdOLDOLD 1824 Obsolete proof of ~ nfimd ...
nfim 1825 If ` x ` is not free in ` ...
nfand 1826 If in a context ` x ` is n...
nf3and 1827 Deduction form of bound-va...
nfan 1828 If ` x ` is not free in ` ...
nfanOLD 1829 Obsolete proof of ~ nfan a...
nfnan 1830 If ` x ` is not free in ` ...
nf3an 1831 If ` x ` is not free in ` ...
nfbid 1832 If in a context ` x ` is n...
nfbi 1833 If ` x ` is not free in ` ...
nfor 1834 If ` x ` is not free in ` ...
nf3or 1835 If ` x ` is not free in ` ...
nfbiiOLD 1836 Obsolete proof of ~ nfbii ...
nfxfrOLD 1837 Obsolete proof of ~ nfxfr ...
nfxfrdOLD 1838 Obsolete proof of ~ nfxfrd...
ax5d 1840 ~ ax-5 with antecedent. U...
ax5e 1841 A rephrasing of ~ ax-5 usi...
ax5ea 1842 If a formula holds for som...
nfv 1843 If ` x ` is not present in...
nfvd 1844 ~ nfv with antecedent. Us...
alimdv 1845 Deduction form of Theorem ...
eximdv 1846 Deduction form of Theorem ...
2alimdv 1847 Deduction form of Theorem ...
2eximdv 1848 Deduction form of Theorem ...
albidv 1849 Formula-building rule for ...
exbidv 1850 Formula-building rule for ...
2albidv 1851 Formula-building rule for ...
2exbidv 1852 Formula-building rule for ...
3exbidv 1853 Formula-building rule for ...
4exbidv 1854 Formula-building rule for ...
alrimiv 1855 Inference form of Theorem ...
alrimivv 1856 Inference form of Theorem ...
alrimdv 1857 Deduction form of Theorem ...
exlimiv 1858 Inference form of Theorem ...
exlimiiv 1859 Inference associated with ...
exlimivv 1860 Inference form of Theorem ...
exlimdv 1861 Deduction form of Theorem ...
exlimdvv 1862 Deduction form of Theorem ...
exlimddv 1863 Existential elimination ru...
nexdv 1864 Deduction for generalizati...
nexdvOLD 1865 Obsolete proof of ~ nexdv ...
2ax5 1866 Quantification of two vari...
stdpc5v 1867 Version of ~ stdpc5 with a...
19.21v 1868 Version of ~ 19.21 with a ...
19.32v 1869 Version of ~ 19.32 with a ...
19.31v 1870 Version of ~ 19.31 with a ...
nfvOLD 1871 Obsolete proof of ~ nfv as...
nfvdOLD 1872 Obsolete proof of ~ nfvd a...
nfdvOLD 1873 Obsolete proof of ~ nf5dv ...
weq 1874 Extend wff definition to i...
equs3 1875 Lemma used in proofs of su...
speimfw 1876 Specialization, with addit...
speimfwALT 1877 Alternate proof of ~ speim...
spimfw 1878 Specialization, with addit...
ax12i 1879 Inference that has ~ ax-12...
sbequ2 1882 An equality theorem for su...
sb1 1883 One direction of a simplif...
spsbe 1884 A specialization theorem. ...
sbequ8 1885 Elimination of equality fr...
sbimi 1886 Infer substitution into an...
sbbii 1887 Infer substitution into bo...
ax6v 1889 Axiom B7 of [Tarski] p. 75...
ax6ev 1890 At least one individual ex...
exiftru 1891 Rule of existential genera...
19.2 1892 Theorem 19.2 of [Margaris]...
19.2d 1893 Deduction associated with ...
19.8w 1894 Weak version of ~ 19.8a an...
19.8v 1895 Version of ~ 19.8a with a ...
19.9v 1896 Version of ~ 19.9 with a d...
19.3v 1897 Version of ~ 19.3 with a d...
spvw 1898 Version of ~ sp when ` x `...
19.39 1899 Theorem 19.39 of [Margaris...
19.24 1900 Theorem 19.24 of [Margaris...
19.34 1901 Theorem 19.34 of [Margaris...
19.23v 1902 Version of ~ 19.23 with a ...
19.23vv 1903 Theorem ~ 19.23v extended ...
19.36v 1904 Version of ~ 19.36 with a ...
19.36iv 1905 Inference associated with ...
pm11.53v 1906 Version of ~ pm11.53 with ...
19.12vvv 1907 Version of ~ 19.12vv with ...
19.27v 1908 Version of ~ 19.27 with a ...
19.28v 1909 Version of ~ 19.28 with a ...
19.37v 1910 Version of ~ 19.37 with a ...
19.37iv 1911 Inference associated with ...
19.44v 1912 Version of ~ 19.44 with a ...
19.45v 1913 Version of ~ 19.45 with a ...
19.41v 1914 Version of ~ 19.41 with a ...
19.41vv 1915 Version of ~ 19.41 with tw...
19.41vvv 1916 Version of ~ 19.41 with th...
19.41vvvv 1917 Version of ~ 19.41 with fo...
19.42v 1918 Version of ~ 19.42 with a ...
exdistr 1919 Distribution of existentia...
19.42vv 1920 Version of ~ 19.42 with tw...
19.42vvv 1921 Version of ~ 19.42 with th...
exdistr2 1922 Distribution of existentia...
3exdistr 1923 Distribution of existentia...
4exdistr 1924 Distribution of existentia...
spimeh 1925 Existential introduction, ...
spimw 1926 Specialization. Lemma 8 o...
spimvw 1927 Specialization. Lemma 8 o...
spnfw 1928 Weak version of ~ sp . Us...
spfalw 1929 Version of ~ sp when ` ph ...
equs4v 1930 Version of ~ equs4 with a ...
equsalvw 1931 Version of ~ equsalv with ...
equsexvw 1932 Version of ~ equsexv with ...
cbvaliw 1933 Change bound variable. Us...
cbvalivw 1934 Change bound variable. Us...
ax7v 1936 Weakened version of ~ ax-7...
ax7v1 1937 First of two weakened vers...
ax7v2 1938 Second of two weakened ver...
equid 1939 Identity law for equality....
nfequid 1940 Bound-variable hypothesis ...
equcomiv 1941 Weaker form of ~ equcomi w...
ax6evr 1942 A commuted form of ~ ax6ev...
ax7 1943 Proof of ~ ax-7 from ~ ax7...
equcomi 1944 Commutative law for equali...
equcom 1945 Commutative law for equali...
equcomd 1946 Deduction form of ~ equcom...
equcoms 1947 An inference commuting equ...
equtr 1948 A transitive law for equal...
equtrr 1949 A transitive law for equal...
equeuclr 1950 Commuted version of ~ eque...
equeucl 1951 Equality is a left-Euclide...
equequ1 1952 An equivalence law for equ...
equequ2 1953 An equivalence law for equ...
equtr2 1954 Equality is a left-Euclide...
equequ2OLD 1955 Obsolete proof of ~ equequ...
equtr2OLD 1956 Obsolete proof of ~ equtr2...
stdpc6 1957 One of the two equality ax...
stdpc7 1958 One of the two equality ax...
equvinv 1959 A variable introduction la...
equviniva 1960 A modified version of the ...
equvinivOLD 1961 The forward implication of...
equvinvOLD 1962 Obsolete version of ~ equv...
equvelv 1963 A specialized version of ~...
ax13b 1964 An equivalence between two...
spfw 1965 Weak version of ~ sp . Us...
spfwOLD 1966 Obsolete proof of ~ spfw a...
spw 1967 Weak version of the specia...
cbvalw 1968 Change bound variable. Us...
cbvalvw 1969 Change bound variable. Us...
cbvexvw 1970 Change bound variable. Us...
alcomiw 1971 Weak version of ~ alcom . ...
hbn1fw 1972 Weak version of ~ ax-10 fr...
hbn1w 1973 Weak version of ~ hbn1 . ...
hba1w 1974 Weak version of ~ hba1 . ...
hba1wOLD 1975 Obsolete proof of ~ hba1w ...
hbe1w 1976 Weak version of ~ hbe1 . ...
hbalw 1977 Weak version of ~ hbal . ...
spaev 1978 A special instance of ~ sp...
cbvaev 1979 Change bound variable in a...
aevlem0 1980 Lemma for ~ aevlem . Inst...
aevlem 1981 Lemma for ~ aev and ~ axc1...
aeveq 1982 The antecedent ` A. x x = ...
aev 1983 A "distinctor elimination"...
hbaevg 1984 Generalization of ~ hbaev ...
hbaev 1985 Version of ~ hbae with a D...
aev2 1986 A version of ~ aev with tw...
aev2ALT 1987 Alternate proof of ~ aev2 ...
axc11nlemOLD2 1988 Lemma for ~ axc11n . Chan...
aevlemOLD 1989 Old proof of ~ aevlem . O...
wel 1991 Extend wff definition to i...
ax8v 1993 Weakened version of ~ ax-8...
ax8v1 1994 First of two weakened vers...
ax8v2 1995 Second of two weakened ver...
ax8 1996 Proof of ~ ax-8 from ~ ax8...
elequ1 1997 An identity law for the no...
cleljust 1998 When the class variables i...
ax9v 2000 Weakened version of ~ ax-9...
ax9v1 2001 First of two weakened vers...
ax9v2 2002 Second of two weakened ver...
ax9 2003 Proof of ~ ax-9 from ~ ax9...
elequ2 2004 An identity law for the no...
ax6dgen 2005 Tarski's system uses the w...
ax10w 2006 Weak version of ~ ax-10 fr...
ax11w 2007 Weak version of ~ ax-11 fr...
ax11dgen 2008 Degenerate instance of ~ a...
ax12wlem 2009 Lemma for weak version of ...
ax12w 2010 Weak version of ~ ax-12 fr...
ax12dgen 2011 Degenerate instance of ~ a...
ax12wdemo 2012 Example of an application ...
ax13w 2013 Weak version (principal in...
ax13dgen1 2014 Degenerate instance of ~ a...
ax13dgen2 2015 Degenerate instance of ~ a...
ax13dgen3 2016 Degenerate instance of ~ a...
ax13dgen4 2017 Degenerate instance of ~ a...
ax13dgen4OLD 2018 Obsolete proof of ~ ax13dg...
hbn1 2020 Alias for ~ ax-10 to be us...
hbe1 2021 The setvar ` x ` is not fr...
hbe1a 2022 Dual statement of ~ hbe1 ....
nf5-1 2023 One direction of ~ nf5 can...
nf5i 2024 Deduce that ` x ` is not f...
nf5dv 2025 Apply the definition of no...
nf5dh 2026 Deduce that ` x ` is not f...
nfe1 2027 The setvar ` x ` is not fr...
nfa1 2028 The setvar ` x ` is not fr...
nfna1 2029 A convenience theorem part...
nfia1 2030 Lemma 23 of [Monk2] p. 114...
nfnf1 2031 The setvar ` x ` is not fr...
modal-5 2032 The analogue in our predic...
nfe1OLD 2033 Obsolete proof of ~ nfe1 a...
alcoms 2035 Swap quantifiers in an ant...
hbal 2036 If ` x ` is not free in ` ...
alcom 2037 Theorem 19.5 of [Margaris]...
alrot3 2038 Theorem *11.21 in [Whitehe...
alrot4 2039 Rotate four universal quan...
nfa2 2040 Lemma 24 of [Monk2] p. 114...
hbald 2041 Deduction form of bound-va...
excom 2042 Theorem 19.11 of [Margaris...
excomim 2043 One direction of Theorem 1...
excom13 2044 Swap 1st and 3rd existenti...
exrot3 2045 Rotate existential quantif...
exrot4 2046 Rotate existential quantif...
ax12v 2048 This is essentially axiom ...
ax12v2 2049 It is possible to remove a...
ax12vOLD 2050 Obsolete proof of ~ ax12v2...
ax12vOLDOLD 2051 Obsolete proof of ~ ax12v ...
19.8a 2052 If a wff is true, it is tr...
sp 2053 Specialization. A univers...
spi 2054 Inference rule reversing g...
sps 2055 Generalization of antecede...
2sp 2056 A double specialization (s...
spsd 2057 Deduction generalizing ant...
19.2g 2058 Theorem 19.2 of [Margaris]...
19.21bi 2059 Inference form of ~ 19.21 ...
19.21bbi 2060 Inference removing double ...
19.23bi 2061 Inference form of Theorem ...
nexr 2062 Inference associated with ...
qexmid 2063 Quantified excluded middle...
nf5r 2064 Consequence of the definit...
nf5ri 2065 Consequence of the definit...
nf5rd 2066 Consequence of the definit...
nfim1 2067 A closed form of ~ nfim . ...
nfan1 2068 A closed form of ~ nfan . ...
19.3 2069 A wff may be quantified wi...
19.9d 2070 A deduction version of one...
19.9t 2071 A closed version of ~ 19.9...
19.9 2072 A wff may be existentially...
19.21t 2073 Closed form of Theorem 19....
19.21tOLDOLD 2074 Obsolete proof of ~ 19.21t...
19.21 2075 Theorem 19.21 of [Margaris...
stdpc5 2076 An axiom scheme of standar...
stdpc5OLD 2077 Obsolete proof of ~ stdpc5...
19.21-2 2078 Version of ~ 19.21 with tw...
19.23t 2079 Closed form of Theorem 197...
19.23 2080 Theorem 19.23 of [Margaris...
alimd 2081 Deduction form of Theorem ...
alrimi 2082 Inference form of Theorem ...
alrimdd 2083 Deduction form of Theorem ...
alrimd 2084 Deduction form of Theorem ...
eximd 2085 Deduction form of Theorem ...
exlimi 2086 Inference associated with ...
exlimd 2087 Deduction form of Theorem ...
exlimdd 2088 Existential elimination ru...
nexd 2089 Deduction for generalizati...
albid 2090 Formula-building rule for ...
exbid 2091 Formula-building rule for ...
nfbidf 2092 An equality theorem for ef...
19.16 2093 Theorem 19.16 of [Margaris...
19.17 2094 Theorem 19.17 of [Margaris...
19.27 2095 Theorem 19.27 of [Margaris...
19.28 2096 Theorem 19.28 of [Margaris...
19.19 2097 Theorem 19.19 of [Margaris...
19.36 2098 Theorem 19.36 of [Margaris...
19.36i 2099 Inference associated with ...
19.37 2100 Theorem 19.37 of [Margaris...
19.32 2101 Theorem 19.32 of [Margaris...
19.31 2102 Theorem 19.31 of [Margaris...
19.41 2103 Theorem 19.41 of [Margaris...
19.42-1 2104 One direction of ~ 19.42 ....
19.42 2105 Theorem 19.42 of [Margaris...
19.44 2106 Theorem 19.44 of [Margaris...
19.45 2107 Theorem 19.45 of [Margaris...
equsalv 2108 Version of ~ equsal with a...
equsexv 2109 Version of ~ equsex with a...
sbequ1 2110 An equality theorem for su...
sbequ12 2111 An equality theorem for su...
sbequ12r 2112 An equality theorem for su...
sbequ12a 2113 An equality theorem for su...
sbid 2114 An identity theorem for su...
spimv1 2115 Version of ~ spim with a d...
nf5 2116 Alternate definition of ~ ...
nf6 2117 An alternate definition of...
nf5d 2118 Deduce that ` x ` is not f...
nf5di 2119 Since the converse holds b...
19.9h 2120 A wff may be existentially...
19.21h 2121 Theorem 19.21 of [Margaris...
19.23h 2122 Theorem 19.23 of [Margaris...
equsalhw 2123 Weaker version of ~ equsal...
equsexhv 2124 Version of ~ equsexh with ...
hbim1 2125 A closed form of ~ hbim . ...
hbimd 2126 Deduction form of bound-va...
hbim 2127 If ` x ` is not free in ` ...
hban 2128 If ` x ` is not free in ` ...
hb3an 2129 If ` x ` is not free in ` ...
axc4 2130 Show that the original axi...
axc4i 2131 Inference version of ~ axc...
axc7 2132 Show that the original axi...
axc7e 2133 Abbreviated version of ~ a...
axc16g 2134 Generalization of ~ axc16 ...
axc16 2135 Proof of older axiom ~ ax-...
axc16gb 2136 Biconditional strengthenin...
axc16nf 2137 If ~ dtru is false, then t...
axc11v 2138 Version of ~ axc11 with a ...
axc11rv 2139 Version of ~ axc11r with a...
axc11rvOLD 2140 Obsolete proof of ~ axc11r...
axc11vOLD 2141 Obsolete proof of ~ axc11v...
modal-b 2142 The analogue in our predic...
19.9ht 2143 A closed version of ~ 19.9...
hbnt 2144 Closed theorem version of ...
hbntOLD 2145 Obsolete proof of ~ hbnt a...
hbn 2146 If ` x ` is not free in ` ...
hbnd 2147 Deduction form of bound-va...
exlimih 2148 Inference associated with ...
exlimdh 2149 Deduction form of Theorem ...
sb56 2150 Two equivalent ways of exp...
hba1 2151 The setvar ` x ` is not fr...
hbexOLD 2152 Obsolete proof of ~ hbex a...
nfal 2153 If ` x ` is not free in ` ...
nfex 2154 If ` x ` is not free in ` ...
nfexOLD 2155 Obsolete proof of ~ nfex a...
hbex 2156 If ` x ` is not free in ` ...
nfa1OLD 2157 Obsolete proof of ~ nfa1 a...
nfnf 2158 If ` x ` is not free in ` ...
nfnf1OLD 2159 Obsolete proof of ~ nfnf1 ...
axc11nlemOLD 2160 Obsolete proof of ~ axc11n...
axc16gOLD 2161 Obsolete proof of ~ axc16g...
aevOLD 2162 Obsolete proof of ~ aev as...
axc16nfOLD 2163 Obsolete proof of ~ axc16n...
19.12 2164 Theorem 19.12 of [Margaris...
nfald 2165 Deduction form of ~ nfal ....
nfaldOLD 2166 Obsolete proof of ~ nfald ...
nfexd 2167 If ` x ` is not free in ` ...
nfa2OLD 2168 Obsolete proof of ~ nfa2 a...
exanOLDOLD 2169 Obsolete proof of ~ exan a...
aaan 2170 Rearrange universal quanti...
eeor 2171 Rearrange existential quan...
cbv3v 2172 Version of ~ cbv3 with a d...
dvelimhw 2173 Proof of ~ dvelimh without...
cbv3hv 2174 Version of ~ cbv3h with a ...
cbvalv1 2175 Version of ~ cbval with a ...
cbvexv1 2176 Version of ~ cbvex with a ...
equs5aALT 2177 Alternate proof of ~ equs5...
equs5eALT 2178 Alternate proof of ~ equs5...
pm11.53 2179 Theorem *11.53 in [Whitehe...
19.12vv 2180 Special case of ~ 19.12 wh...
eean 2181 Rearrange existential quan...
eeanv 2182 Rearrange existential quan...
eeeanv 2183 Rearrange existential quan...
ee4anv 2184 Rearrange existential quan...
cleljustALT 2185 Alternate proof of ~ clelj...
cleljustALT2 2186 Alternate proof of ~ clelj...
axc11r 2187 Same as ~ axc11 but with r...
nfrOLD 2188 Obsolete proof of ~ nf5r a...
nfriOLD 2189 Obsolete proof of ~ nf5ri ...
nfrdOLD 2190 Obsolete proof of ~ nf5rd ...
alimdOLD 2191 Obsolete proof of ~ alimd ...
alrimiOLD 2192 Obsolete proof of ~ alrimi...
nfdOLD 2193 Obsolete proof of ~ nf5d a...
nfdhOLD 2194 Obsolete proof of ~ nf5dh ...
alrimddOLD 2195 Obsolete proof of ~ alrimd...
alrimdOLD 2196 Obsolete proof of ~ alrimd...
eximdOLD 2197 Obsolete proof of ~ eximd ...
nexdOLD 2198 Obsolete proof of ~ nexd a...
albidOLD 2199 Obsolete proof of ~ albid ...
exbidOLD 2200 Obsolete proof of ~ exbid ...
nfbidfOLD 2201 Obsolete proof of ~ nfbidf...
19.3OLD 2202 Obsolete proof of ~ 19.3 a...
19.9dOLD 2203 Obsolete proof of ~ 19.9d ...
19.9tOLD 2204 Obsolete proof of ~ 19.9t ...
19.9OLD 2205 Obsolete proof of ~ 19.9 a...
19.9hOLD 2206 Obsolete proof of ~ 19.9h ...
nfa1OLDOLD 2207 Obsolete proof of ~ nfa1 a...
nfnf1OLDOLD 2208 Obsolete proof of ~ nfnf1 ...
nfntOLD 2209 Obsolete proof of ~ nfnt a...
nfnOLD 2210 Obsolete proof of ~ nfn as...
nfndOLD 2211 Obsolete proof of ~ nfnd a...
19.21t-1OLD 2212 One direction of the bi-co...
19.21tOLD 2213 Obsolete proof of ~ 19.21t...
19.21OLD 2214 Obsolete proof of ~ 19.21 ...
19.21-2OLD 2215 Obsolete proof of ~ 19.21-...
19.21hOLD 2216 Obsolete proof of ~ 19.21h...
stdpc5OLDOLD 2217 Obsolete proof of ~ stdpc5...
19.23tOLD 2218 Obsolete proof of ~ 19.23t...
19.23OLD 2219 Obsolete proof of ~ 19.23 ...
19.23hOLD 2220 Obsolete proof of ~ 19.23h...
exlimiOLD 2221 Obsolete proof of ~ exlimi...
exlimihOLD 2222 Obsolete proof of ~ exlimi...
exlimdOLD 2223 Obsolete proof of ~ exlimd...
exlimdhOLD 2224 Obsolete proof of ~ exlimd...
nfdiOLD 2225 Obsolete proof of ~ nf5di ...
nfimdOLD 2226 Obsolete proof of ~ nfimd ...
hbim1OLD 2227 Obsolete proof of ~ hbim a...
nfim1OLD 2228 Obsolete proof of ~ nfim1 ...
nfimOLD 2229 Obsolete proof of ~ nfim a...
hbimdOLD 2230 Obsolete proof of ~ hbimd ...
hbimOLD 2231 Obsolete proof of ~ hbim a...
nfandOLD 2232 Obsolete proof of ~ nfand ...
nf3andOLD 2233 Obsolete proof of ~ nf3and...
19.27OLD 2234 Obsolete proof of ~ 19.27 ...
19.28OLD 2235 Obsolete proof of ~ 19.28 ...
nfan1OLD 2236 Obsolete proof of ~ nfan1 ...
nfanOLDOLD 2237 Obsolete proof of ~ nfan a...
nfnanOLD 2238 Obsolete proof of ~ nfnan ...
nf3anOLD 2239 Obsolete proof of ~ nf3an ...
hbanOLD 2240 Obsolete proof of ~ hban a...
hb3anOLD 2241 Obsolete proof of ~ hb3an ...
nfbidOLD 2242 Obsolete proof of ~ nfbid ...
nfbiOLD 2243 Obsolete proof of ~ nfbi a...
nforOLD 2244 Obsolete proof of ~ nfor a...
nf3orOLD 2245 Obsolete proof of ~ nf3or ...
ax13v 2247 A weaker version of ~ ax-1...
ax13lem1 2248 A version of ~ ax13v with ...
ax13 2249 Derive ~ ax-13 from ~ ax13...
ax6e 2250 At least one individual ex...
ax6 2251 Theorem showing that ~ ax-...
axc10 2252 Show that the original axi...
spimt 2253 Closed theorem form of ~ s...
spim 2254 Specialization, using impl...
spimed 2255 Deduction version of ~ spi...
spime 2256 Existential introduction, ...
spimv 2257 A version of ~ spim with a...
spimvALT 2258 Alternate proof of ~ spimv...
spimev 2259 Distinct-variable version ...
spv 2260 Specialization, using impl...
spei 2261 Inference from existential...
chvar 2262 Implicit substitution of `...
chvarv 2263 Implicit substitution of `...
chvarvOLD 2264 Obsolete proof of ~ chvarv...
cbv3 2265 Rule used to change bound ...
cbv3h 2266 Rule used to change bound ...
cbv1 2267 Rule used to change bound ...
cbv1h 2268 Rule used to change bound ...
cbv2h 2269 Rule used to change bound ...
cbv2 2270 Rule used to change bound ...
cbval 2271 Rule used to change bound ...
cbvex 2272 Rule used to change bound ...
cbvalv 2273 Rule used to change bound ...
cbvalvOLD 2274 Obsolete proof of ~ cbvalv...
cbvexv 2275 Rule used to change bound ...
cbvexvOLD 2276 Obsolete proof of ~ cbvexv...
cbvald 2277 Deduction used to change b...
cbvexd 2278 Deduction used to change b...
cbval2 2279 Rule used to change bound ...
cbvex2 2280 Rule used to change bound ...
cbvaldva 2281 Rule used to change the bo...
cbvaldvaOLD 2282 Obsolete proof of ~ cbvald...
cbvexdva 2283 Rule used to change the bo...
cbvexdvaOLD 2284 Obsolete proof of ~ cbvexd...
cbval2v 2285 Rule used to change bound ...
cbval2vOLD 2286 Obsolete proof of ~ cbval2...
cbvex2v 2287 Rule used to change bound ...
cbvex2vOLD 2288 Obsolete proof of ~ cbvex2...
cbvex4v 2289 Rule used to change bound ...
equs4 2290 Lemma used in proofs of im...
equsal 2291 An equivalence related to ...
equsex 2292 An equivalence related to ...
equsexALT 2293 Alternate proof of ~ equse...
equsalh 2294 An equivalence related to ...
equsexh 2295 An equivalence related to ...
ax13lem2 2296 Lemma for ~ nfeqf2 . This...
nfeqf2 2297 An equation between setvar...
dveeq2 2298 Quantifier introduction wh...
nfeqf1 2299 An equation between setvar...
dveeq1 2300 Quantifier introduction wh...
nfeqf 2301 A variable is effectively ...
axc9 2302 Derive set.mm's original ~...
axc15 2303 Derivation of set.mm's ori...
ax12 2304 Rederivation of axiom ~ ax...
ax13ALT 2305 Alternate proof of ~ ax13 ...
axc11nlemALT 2306 Alternate version of ~ axc...
axc11n 2307 Derive set.mm's original ~...
axc11nOLD 2308 Obsolete proof of ~ axc11n...
axc11nOLDOLD 2309 Old proof of ~ axc11n . O...
axc11nALT 2310 Alternate proof of ~ axc11...
aecom 2311 Commutation law for identi...
aecoms 2312 A commutation rule for ide...
naecoms 2313 A commutation rule for dis...
axc11 2314 Show that ~ ax-c11 can be ...
hbae 2315 All variables are effectiv...
nfae 2316 All variables are effectiv...
hbnae 2317 All variables are effectiv...
nfnae 2318 All variables are effectiv...
hbnaes 2319 Rule that applies ~ hbnae ...
aevlemALTOLD 2320 Older alternate version of...
aevALTOLD 2321 Older alternate proof of ~...
axc16i 2322 Inference with ~ axc16 as ...
axc16nfALT 2323 Alternate proof of ~ axc16...
dral2 2324 Formula-building lemma for...
dral1 2325 Formula-building lemma for...
dral1ALT 2326 Alternate proof of ~ dral1...
drex1 2327 Formula-building lemma for...
drex2 2328 Formula-building lemma for...
drnf1 2329 Formula-building lemma for...
drnf2 2330 Formula-building lemma for...
nfald2 2331 Variation on ~ nfald which...
nfexd2 2332 Variation on ~ nfexd which...
exdistrf 2333 Distribution of existentia...
dvelimf 2334 Version of ~ dvelimv witho...
dvelimdf 2335 Deduction form of ~ dvelim...
dvelimh 2336 Version of ~ dvelim withou...
dvelim 2337 This theorem can be used t...
dvelimv 2338 Similar to ~ dvelim with f...
dvelimnf 2339 Version of ~ dvelim using ...
dveeq2ALT 2340 Alternate proof of ~ dveeq...
ax12OLD 2341 Obsolete proof of ~ ax12 a...
ax12v2OLD 2342 Obsolete proof of ~ ax12v ...
ax12a2OLD 2343 Obsolete proof of ~ ax12v ...
axc15OLD 2344 Obsolete proof of ~ axc15 ...
ax12b 2345 A bidirectional version of...
equvini 2346 A variable introduction la...
equvel 2347 A variable elimination law...
equs5a 2348 A property related to subs...
equs5e 2349 A property related to subs...
equs45f 2350 Two ways of expressing sub...
equs5 2351 Lemma used in proofs of su...
sb2 2352 One direction of a simplif...
stdpc4 2353 The specialization axiom o...
2stdpc4 2354 A double specialization us...
sb3 2355 One direction of a simplif...
sb4 2356 One direction of a simplif...
sb4a 2357 A version of ~ sb4 that do...
sb4b 2358 Simplified definition of s...
hbsb2 2359 Bound-variable hypothesis ...
nfsb2 2360 Bound-variable hypothesis ...
hbsb2a 2361 Special case of a bound-va...
sb4e 2362 One direction of a simplif...
hbsb2e 2363 Special case of a bound-va...
hbsb3 2364 If ` y ` is not free in ` ...
nfs1 2365 If ` y ` is not free in ` ...
axc16ALT 2366 Alternate proof of ~ axc16...
axc16gALT 2367 Alternate proof of ~ axc16...
equsb1 2368 Substitution applied to an...
equsb2 2369 Substitution applied to an...
dveel1 2370 Quantifier introduction wh...
dveel2 2371 Quantifier introduction wh...
axc14 2372 Axiom ~ ax-c14 is redundan...
dfsb2 2373 An alternate definition of...
dfsb3 2374 An alternate definition of...
sbequi 2375 An equality theorem for su...
sbequ 2376 An equality theorem for su...
drsb1 2377 Formula-building lemma for...
drsb2 2378 Formula-building lemma for...
sbft 2379 Substitution has no effect...
sbf 2380 Substitution for a variabl...
sbh 2381 Substitution for a variabl...
sbf2 2382 Substitution has no effect...
nfs1f 2383 If ` x ` is not free in ` ...
sb6x 2384 Equivalence involving subs...
sb6f 2385 Equivalence for substituti...
sb5f 2386 Equivalence for substituti...
sbequ5 2387 Substitution does not chan...
sbequ6 2388 Substitution does not chan...
nfsb4t 2389 A variable not free remain...
nfsb4 2390 A variable not free remain...
sbn 2391 Negation inside and outsid...
sbi1 2392 Removal of implication fro...
sbi2 2393 Introduction of implicatio...
spsbim 2394 Specialization of implicat...
sbim 2395 Implication inside and out...
sbrim 2396 Substitution with a variab...
sblim 2397 Substitution with a variab...
sbor 2398 Logical OR inside and outs...
sban 2399 Conjunction inside and out...
sb3an 2400 Conjunction inside and out...
sbbi 2401 Equivalence inside and out...
spsbbi 2402 Specialization of bicondit...
sbbid 2403 Deduction substituting bot...
sblbis 2404 Introduce left bicondition...
sbrbis 2405 Introduce right biconditio...
sbrbif 2406 Introduce right biconditio...
sbequ8ALT 2407 Alternate proof of ~ sbequ...
sbie 2408 Conversion of implicit sub...
sbied 2409 Conversion of implicit sub...
sbiedv 2410 Conversion of implicit sub...
sbcom3 2411 Substituting ` y ` for ` x...
sbco 2412 A composition law for subs...
sbid2 2413 An identity law for substi...
sbidm 2414 An idempotent law for subs...
sbco2 2415 A composition law for subs...
sbco2d 2416 A composition law for subs...
sbco3 2417 A composition law for subs...
sbcom 2418 A commutativity law for su...
sbt 2419 A substitution into a theo...
sbtrt 2420 Partially closed form of ~...
sbtr 2421 A partial converse to ~ sb...
sb5rf 2422 Reversed substitution. (C...
sb6rf 2423 Reversed substitution. (C...
sb8 2424 Substitution of variable i...
sb8e 2425 Substitution of variable i...
sb9 2426 Commutation of quantificat...
sb9i 2427 Commutation of quantificat...
ax12vALT 2428 Alternate proof of ~ ax12v...
sb6 2429 Equivalence for substituti...
sb5 2430 Equivalence for substituti...
equsb3lem 2431 Lemma for ~ equsb3 . (Con...
equsb3 2432 Substitution applied to an...
equsb3ALT 2433 Alternate proof of ~ equsb...
elsb3 2434 Substitution applied to an...
elsb4 2435 Substitution applied to an...
hbs1 2436 The setvar ` x ` is not fr...
nfs1v 2437 The setvar ` x ` is not fr...
sbhb 2438 Two ways of expressing " `...
sbnf2 2439 Two ways of expressing " `...
nfsb 2440 If ` z ` is not free in ` ...
hbsb 2441 If ` z ` is not free in ` ...
nfsbd 2442 Deduction version of ~ nfs...
2sb5 2443 Equivalence for double sub...
2sb6 2444 Equivalence for double sub...
sbcom2 2445 Commutativity law for subs...
sbcom4 2446 Commutativity law for subs...
pm11.07 2447 Axiom *11.07 in [Whitehead...
sb6a 2448 Equivalence for substituti...
2ax6elem 2449 We can always find values ...
2ax6e 2450 We can always find values ...
2sb5rf 2451 Reversed double substituti...
2sb6rf 2452 Reversed double substituti...
sb7f 2453 This version of ~ dfsb7 do...
sb7h 2454 This version of ~ dfsb7 do...
dfsb7 2455 An alternate definition of...
sb10f 2456 Hao Wang's identity axiom ...
sbid2v 2457 An identity law for substi...
sbelx 2458 Elimination of substitutio...
sbel2x 2459 Elimination of double subs...
sbal1 2460 A theorem used in eliminat...
sbal2 2461 Move quantifier in and out...
sbal 2462 Move universal quantifier ...
sbex 2463 Move existential quantifie...
sbalv 2464 Quantify with new variable...
sbco4lem 2465 Lemma for ~ sbco4 . It re...
sbco4 2466 Two ways of exchanging two...
2sb8e 2467 An equivalent expression f...
exsb 2468 An equivalent expression f...
2exsb 2469 An equivalent expression f...
eujust 2472 A soundness justification ...
eujustALT 2473 Alternate proof of ~ eujus...
euequ1 2476 Equality has existential u...
mo2v 2477 Alternate definition of "a...
euf 2478 A version of the existenti...
mo2 2479 Alternate definition of "a...
nfeu1 2480 Bound-variable hypothesis ...
nfmo1 2481 Bound-variable hypothesis ...
nfeud2 2482 Bound-variable hypothesis ...
nfmod2 2483 Bound-variable hypothesis ...
nfeud 2484 Deduction version of ~ nfe...
nfmod 2485 Bound-variable hypothesis ...
nfeu 2486 Bound-variable hypothesis ...
nfmo 2487 Bound-variable hypothesis ...
eubid 2488 Formula-building rule for ...
mobid 2489 Formula-building rule for ...
eubidv 2490 Formula-building rule for ...
mobidv 2491 Formula-building rule for ...
eubii 2492 Introduce uniqueness quant...
mobii 2493 Formula-building rule for ...
euex 2494 Existential uniqueness imp...
exmo 2495 Something exists or at mos...
eu5 2496 Uniqueness in terms of "at...
exmoeu2 2497 Existence implies "at most...
eu3v 2498 An alternate way to expres...
eumo 2499 Existential uniqueness imp...
eumoi 2500 "At most one" inferred fro...
moabs 2501 Absorption of existence co...
exmoeu 2502 Existence in terms of "at ...
sb8eu 2503 Variable substitution in u...
sb8mo 2504 Variable substitution for ...
cbveu 2505 Rule used to change bound ...
cbvmo 2506 Rule used to change bound ...
mo3 2507 Alternate definition of "a...
mo 2508 Equivalent definitions of ...
eu2 2509 An alternate way of defini...
eu1 2510 An alternate way to expres...
euexALT 2511 Alternate proof of ~ euex ...
euor 2512 Introduce a disjunct into ...
euorv 2513 Introduce a disjunct into ...
euor2 2514 Introduce or eliminate a d...
sbmo 2515 Substitution into "at most...
mo4f 2516 "At most one" expressed us...
mo4 2517 "At most one" expressed us...
eu4 2518 Uniqueness using implicit ...
moim 2519 "At most one" reverses imp...
moimi 2520 "At most one" reverses imp...
moa1 2521 If an implication holds fo...
euimmo 2522 Uniqueness implies "at mos...
euim 2523 Add existential uniqueness...
moan 2524 "At most one" is still the...
moani 2525 "At most one" is still tru...
moor 2526 "At most one" is still the...
mooran1 2527 "At most one" imports disj...
mooran2 2528 "At most one" exports disj...
moanim 2529 Introduction of a conjunct...
euan 2530 Introduction of a conjunct...
moanimv 2531 Introduction of a conjunct...
moanmo 2532 Nested "at most one" quant...
moaneu 2533 Nested "at most one" and u...
euanv 2534 Introduction of a conjunct...
mopick 2535 "At most one" picks a vari...
eupick 2536 Existential uniqueness "pi...
eupicka 2537 Version of ~ eupick with c...
eupickb 2538 Existential uniqueness "pi...
eupickbi 2539 Theorem *14.26 in [Whitehe...
mopick2 2540 "At most one" can show the...
moexex 2541 "At most one" double quant...
moexexv 2542 "At most one" double quant...
2moex 2543 Double quantification with...
2euex 2544 Double quantification with...
2eumo 2545 Double quantification with...
2eu2ex 2546 Double existential uniquen...
2moswap 2547 A condition allowing swap ...
2euswap 2548 A condition allowing swap ...
2exeu 2549 Double existential uniquen...
2mo2 2550 This theorem extends the i...
2mo 2551 Two equivalent expressions...
2mos 2552 Double "exists at most one...
2eu1 2553 Double existential uniquen...
2eu2 2554 Double existential uniquen...
2eu3 2555 Double existential uniquen...
2eu4 2556 This theorem provides us w...
2eu5 2557 An alternate definition of...
2eu6 2558 Two equivalent expressions...
2eu7 2559 Two equivalent expressions...
2eu8 2560 Two equivalent expressions...
exists1 2561 Two ways to express "only ...
exists2 2562 A condition implying that ...
barbara 2563 "Barbara", one of the fund...
celarent 2564 "Celarent", one of the syl...
darii 2565 "Darii", one of the syllog...
ferio 2566 "Ferio" ("Ferioque"), one ...
barbari 2567 "Barbari", one of the syll...
celaront 2568 "Celaront", one of the syl...
cesare 2569 "Cesare", one of the syllo...
camestres 2570 "Camestres", one of the sy...
festino 2571 "Festino", one of the syll...
baroco 2572 "Baroco", one of the syllo...
cesaro 2573 "Cesaro", one of the syllo...
camestros 2574 "Camestros", one of the sy...
datisi 2575 "Datisi", one of the syllo...
disamis 2576 "Disamis", one of the syll...
ferison 2577 "Ferison", one of the syll...
bocardo 2578 "Bocardo", one of the syll...
felapton 2579 "Felapton", one of the syl...
darapti 2580 "Darapti", one of the syll...
calemes 2581 "Calemes", one of the syll...
dimatis 2582 "Dimatis", one of the syll...
fresison 2583 "Fresison", one of the syl...
calemos 2584 "Calemos", one of the syll...
fesapo 2585 "Fesapo", one of the syllo...
bamalip 2586 "Bamalip", one of the syll...
axia1 2587 Left 'and' elimination (in...
axia2 2588 Right 'and' elimination (i...
axia3 2589 'And' introduction (intuit...
axin1 2590 'Not' introduction (intuit...
axin2 2591 'Not' elimination (intuiti...
axio 2592 Definition of 'or' (intuit...
axi4 2593 Specialization (intuitioni...
axi5r 2594 Converse of ax-c4 (intuiti...
axial 2595 The setvar ` x ` is not fr...
axie1 2596 The setvar ` x ` is not fr...
axie2 2597 A key property of existent...
axi9 2598 Axiom of existence (intuit...
axi10 2599 Axiom of Quantifier Substi...
axi12 2600 Axiom of Quantifier Introd...
axbnd 2601 Axiom of Bundling (intuiti...
axext2 2603 The Axiom of Extensionalit...
axext3 2604 A generalization of the Ax...
axext3ALT 2605 Alternate proof of ~ axext...
axext4 2606 A bidirectional version of...
bm1.1 2607 Any set defined by a prope...
abid 2610 Simplification of class ab...
hbab1 2611 Bound-variable hypothesis ...
nfsab1 2612 Bound-variable hypothesis ...
hbab 2613 Bound-variable hypothesis ...
nfsab 2614 Bound-variable hypothesis ...
dfcleq 2616 The same as ~ df-cleq with...
cvjust 2617 Every set is a class. Pro...
eqriv 2619 Infer equality of classes ...
eqrdv 2620 Deduce equality of classes...
eqrdav 2621 Deduce equality of classes...
eqid 2622 Law of identity (reflexivi...
eqidd 2623 Class identity law with an...
eqeq1d 2624 Deduction from equality to...
eqeq1dALT 2625 Shorter proof of ~ eqeq1d ...
eqeq1 2626 Equality implies equivalen...
eqeq1i 2627 Inference from equality to...
eqcomd 2628 Deduction from commutative...
eqcom 2629 Commutative law for class ...
eqcoms 2630 Inference applying commuta...
eqcomi 2631 Inference from commutative...
eqeq2d 2632 Deduction from equality to...
eqeq2 2633 Equality implies equivalen...
eqeq2i 2634 Inference from equality to...
eqeq12 2635 Equality relationship amon...
eqeq12i 2636 A useful inference for sub...
eqeq12d 2637 A useful inference for sub...
eqeqan12d 2638 A useful inference for sub...
eqeqan12dALT 2639 Alternate proof of ~ eqeqa...
eqeqan12rd 2640 A useful inference for sub...
eqtr 2641 Transitive law for class e...
eqtr2 2642 A transitive law for class...
eqtr3 2643 A transitive law for class...
eqtri 2644 An equality transitivity i...
eqtr2i 2645 An equality transitivity i...
eqtr3i 2646 An equality transitivity i...
eqtr4i 2647 An equality transitivity i...
3eqtri 2648 An inference from three ch...
3eqtrri 2649 An inference from three ch...
3eqtr2i 2650 An inference from three ch...
3eqtr2ri 2651 An inference from three ch...
3eqtr3i 2652 An inference from three ch...
3eqtr3ri 2653 An inference from three ch...
3eqtr4i 2654 An inference from three ch...
3eqtr4ri 2655 An inference from three ch...
eqtrd 2656 An equality transitivity d...
eqtr2d 2657 An equality transitivity d...
eqtr3d 2658 An equality transitivity e...
eqtr4d 2659 An equality transitivity e...
3eqtrd 2660 A deduction from three cha...
3eqtrrd 2661 A deduction from three cha...
3eqtr2d 2662 A deduction from three cha...
3eqtr2rd 2663 A deduction from three cha...
3eqtr3d 2664 A deduction from three cha...
3eqtr3rd 2665 A deduction from three cha...
3eqtr4d 2666 A deduction from three cha...
3eqtr4rd 2667 A deduction from three cha...
syl5eq 2668 An equality transitivity d...
syl5req 2669 An equality transitivity d...
syl5eqr 2670 An equality transitivity d...
syl5reqr 2671 An equality transitivity d...
syl6eq 2672 An equality transitivity d...
syl6req 2673 An equality transitivity d...
syl6eqr 2674 An equality transitivity d...
syl6reqr 2675 An equality transitivity d...
sylan9eq 2676 An equality transitivity d...
sylan9req 2677 An equality transitivity d...
sylan9eqr 2678 An equality transitivity d...
3eqtr3g 2679 A chained equality inferen...
3eqtr3a 2680 A chained equality inferen...
3eqtr4g 2681 A chained equality inferen...
3eqtr4a 2682 A chained equality inferen...
eq2tri 2683 A compound transitive infe...
eleq1w 2684 Weaker version of ~ eleq1 ...
eleq2w 2685 Weaker version of ~ eleq2 ...
eleq1d 2686 Deduction from equality to...
eleq2d 2687 Deduction from equality to...
eleq2dALT 2688 Alternate proof of ~ eleq2...
eleq1 2689 Equality implies equivalen...
eleq2 2690 Equality implies equivalen...
eleq12 2691 Equality implies equivalen...
eleq1i 2692 Inference from equality to...
eleq2i 2693 Inference from equality to...
eleq12i 2694 Inference from equality to...
eleq12d 2695 Deduction from equality to...
eleq1a 2696 A transitive-type law rela...
eqeltri 2697 Substitution of equal clas...
eqeltrri 2698 Substitution of equal clas...
eleqtri 2699 Substitution of equal clas...
eleqtrri 2700 Substitution of equal clas...
eqeltrd 2701 Substitution of equal clas...
eqeltrrd 2702 Deduction that substitutes...
eleqtrd 2703 Deduction that substitutes...
eleqtrrd 2704 Deduction that substitutes...
syl5eqel 2705 A membership and equality ...
syl5eqelr 2706 A membership and equality ...
syl5eleq 2707 A membership and equality ...
syl5eleqr 2708 A membership and equality ...
syl6eqel 2709 A membership and equality ...
syl6eqelr 2710 A membership and equality ...
syl6eleq 2711 A membership and equality ...
syl6eleqr 2712 A membership and equality ...
3eltr3i 2713 Substitution of equal clas...
3eltr4i 2714 Substitution of equal clas...
3eltr3d 2715 Substitution of equal clas...
3eltr4d 2716 Substitution of equal clas...
3eltr3g 2717 Substitution of equal clas...
3eltr4g 2718 Substitution of equal clas...
eleq2s 2719 Substitution of equal clas...
eqneltrd 2720 If a class is not an eleme...
eqneltrrd 2721 If a class is not an eleme...
neleqtrd 2722 If a class is not an eleme...
neleqtrrd 2723 If a class is not an eleme...
cleqh 2724 Establish equality between...
nelneq 2725 A way of showing two class...
nelneq2 2726 A way of showing two class...
eqsb3lem 2727 Lemma for ~ eqsb3 . (Cont...
eqsb3 2728 Substitution applied to an...
clelsb3 2729 Substitution applied to an...
hbxfreq 2730 A utility lemma to transfe...
hblem 2731 Change the free variable o...
abeq2 2732 Equality of a class variab...
abeq1 2733 Equality of a class variab...
abeq2d 2734 Equality of a class variab...
abeq2i 2735 Equality of a class variab...
abeq1i 2736 Equality of a class variab...
abbi 2737 Equivalent wff's correspon...
abbi2i 2738 Equality of a class variab...
abbii 2739 Equivalent wff's yield equ...
abbid 2740 Equivalent wff's yield equ...
abbidv 2741 Equivalent wff's yield equ...
abbi2dv 2742 Deduction from a wff to a ...
abbi1dv 2743 Deduction from a wff to a ...
abid1 2744 Every class is equal to a ...
abid2 2745 A simplification of class ...
cbvab 2746 Rule used to change bound ...
cbvabv 2747 Rule used to change bound ...
clelab 2748 Membership of a class vari...
clabel 2749 Membership of a class abst...
sbab 2750 The right-hand side of the...
nfcjust 2752 Justification theorem for ...
nfci 2754 Deduce that a class ` A ` ...
nfcii 2755 Deduce that a class ` A ` ...
nfcr 2756 Consequence of the not-fre...
nfcrii 2757 Consequence of the not-fre...
nfcri 2758 Consequence of the not-fre...
nfcd 2759 Deduce that a class ` A ` ...
nfceqdf 2760 An equality theorem for ef...
nfceqi 2761 Equality theorem for class...
nfcxfr 2762 A utility lemma to transfe...
nfcxfrd 2763 A utility lemma to transfe...
nfcv 2764 If ` x ` is disjoint from ...
nfcvd 2765 If ` x ` is disjoint from ...
nfab1 2766 Bound-variable hypothesis ...
nfnfc1 2767 The setvar ` x ` is bound ...
clelsb3f 2768 Substitution applied to an...
nfab 2769 Bound-variable hypothesis ...
nfaba1 2770 Bound-variable hypothesis ...
nfcrd 2771 Consequence of the not-fre...
nfeqd 2772 Hypothesis builder for equ...
nfeld 2773 Hypothesis builder for ele...
nfnfc 2774 Hypothesis builder for ` F...
nfnfcALT 2775 Alternate proof of ~ nfnfc...
nfeq 2776 Hypothesis builder for equ...
nfel 2777 Hypothesis builder for ele...
nfeq1 2778 Hypothesis builder for equ...
nfel1 2779 Hypothesis builder for ele...
nfeq2 2780 Hypothesis builder for equ...
nfel2 2781 Hypothesis builder for ele...
drnfc1 2782 Formula-building lemma for...
drnfc2 2783 Formula-building lemma for...
nfabd2 2784 Bound-variable hypothesis ...
nfabd 2785 Bound-variable hypothesis ...
dvelimdc 2786 Deduction form of ~ dvelim...
dvelimc 2787 Version of ~ dvelim for cl...
nfcvf 2788 If ` x ` and ` y ` are dis...
nfcvf2 2789 If ` x ` and ` y ` are dis...
cleqf 2790 Establish equality between...
abid2f 2791 A simplification of class ...
abeq2f 2792 Equality of a class variab...
sbabel 2793 Theorem to move a substitu...
neii 2796 Inference associated with ...
neir 2797 Inference associated with ...
nne 2798 Negation of inequality. (...
neneqd 2799 Deduction eliminating ineq...
neneq 2800 From inequality to non equ...
neqned 2801 If it is not the case that...
neqne 2802 From non equality to inequ...
neirr 2803 No class is unequal to its...
exmidne 2804 Excluded middle with equal...
eqneqall 2805 A contradiction concerning...
nonconne 2806 Law of noncontradiction wi...
necon3ad 2807 Contrapositive law deducti...
necon3bd 2808 Contrapositive law deducti...
necon2ad 2809 Contrapositive inference f...
necon2bd 2810 Contrapositive inference f...
necon1ad 2811 Contrapositive deduction f...
necon1bd 2812 Contrapositive deduction f...
necon4ad 2813 Contrapositive inference f...
necon4bd 2814 Contrapositive inference f...
necon3d 2815 Contrapositive law deducti...
necon1d 2816 Contrapositive law deducti...
necon2d 2817 Contrapositive inference f...
necon4d 2818 Contrapositive inference f...
necon3ai 2819 Contrapositive inference f...
necon3bi 2820 Contrapositive inference f...
necon1ai 2821 Contrapositive inference f...
necon1bi 2822 Contrapositive inference f...
necon2ai 2823 Contrapositive inference f...
necon2bi 2824 Contrapositive inference f...
necon4ai 2825 Contrapositive inference f...
necon3i 2826 Contrapositive inference f...
necon1i 2827 Contrapositive inference f...
necon2i 2828 Contrapositive inference f...
necon4i 2829 Contrapositive inference f...
necon3abid 2830 Deduction from equality to...
necon3bbid 2831 Deduction from equality to...
necon1abid 2832 Contrapositive deduction f...
necon1bbid 2833 Contrapositive inference f...
necon4abid 2834 Contrapositive law deducti...
necon4bbid 2835 Contrapositive law deducti...
necon2abid 2836 Contrapositive deduction f...
necon2bbid 2837 Contrapositive deduction f...
necon3bid 2838 Deduction from equality to...
necon4bid 2839 Contrapositive law deducti...
necon3abii 2840 Deduction from equality to...
necon3bbii 2841 Deduction from equality to...
necon1abii 2842 Contrapositive inference f...
necon1bbii 2843 Contrapositive inference f...
necon2abii 2844 Contrapositive inference f...
necon2bbii 2845 Contrapositive inference f...
necon3bii 2846 Inference from equality to...
necom 2847 Commutation of inequality....
necomi 2848 Inference from commutative...
necomd 2849 Deduction from commutative...
nesym 2850 Characterization of inequa...
nesymi 2851 Inference associated with ...
nesymir 2852 Inference associated with ...
neeq1d 2853 Deduction for inequality. ...
neeq2d 2854 Deduction for inequality. ...
neeq12d 2855 Deduction for inequality. ...
neeq1 2856 Equality theorem for inequ...
neeq2 2857 Equality theorem for inequ...
neeq1i 2858 Inference for inequality. ...
neeq2i 2859 Inference for inequality. ...
neeq12i 2860 Inference for inequality. ...
eqnetrd 2861 Substitution of equal clas...
eqnetrrd 2862 Substitution of equal clas...
neeqtrd 2863 Substitution of equal clas...
eqnetri 2864 Substitution of equal clas...
eqnetrri 2865 Substitution of equal clas...
neeqtri 2866 Substitution of equal clas...
neeqtrri 2867 Substitution of equal clas...
neeqtrrd 2868 Substitution of equal clas...
syl5eqner 2869 A chained equality inferen...
3netr3d 2870 Substitution of equality i...
3netr4d 2871 Substitution of equality i...
3netr3g 2872 Substitution of equality i...
3netr4g 2873 Substitution of equality i...
nebi 2874 Contraposition law for ine...
pm13.18 2875 Theorem *13.18 in [Whitehe...
pm13.181 2876 Theorem *13.181 in [Whiteh...
pm2.61ine 2877 Inference eliminating an i...
pm2.21ddne 2878 A contradiction implies an...
pm2.61ne 2879 Deduction eliminating an i...
pm2.61dne 2880 Deduction eliminating an i...
pm2.61dane 2881 Deduction eliminating an i...
pm2.61da2ne 2882 Deduction eliminating two ...
pm2.61da3ne 2883 Deduction eliminating thre...
pm2.61iine 2884 Equality version of ~ pm2....
neor 2885 Logical OR with an equalit...
neanior 2886 A De Morgan's law for ineq...
ne3anior 2887 A De Morgan's law for ineq...
neorian 2888 A De Morgan's law for ineq...
nemtbir 2889 An inference from an inequ...
nelne1 2890 Two classes are different ...
nelne2 2891 Two classes are different ...
nelelne 2892 Two classes are different ...
neneor 2893 If two classes are differe...
nfne 2894 Bound-variable hypothesis ...
nfned 2895 Bound-variable hypothesis ...
nabbi 2896 Not equivalent wff's corre...
neli 2899 Inference associated with ...
nelir 2900 Inference associated with ...
neleq12d 2901 Equality theorem for negat...
neleq1 2902 Equality theorem for negat...
neleq2 2903 Equality theorem for negat...
nfnel 2904 Bound-variable hypothesis ...
nfneld 2905 Bound-variable hypothesis ...
nnel 2906 Negation of negated member...
elnelne1 2907 Two classes are different ...
elnelne2 2908 Two classes are different ...
nelcon3d 2909 Contrapositive law deducti...
elnelall 2910 A contradiction concerning...
pm2.61danel 2911 Deduction eliminating an e...
rgen 2922 Generalization rule for re...
ralel 2923 All elements of a class ar...
rgenw 2924 Generalization rule for re...
rgen2w 2925 Generalization rule for re...
mprg 2926 Modus ponens combined with...
mprgbir 2927 Modus ponens on biconditio...
alral 2928 Universal quantification i...
rsp 2929 Restricted specialization....
rspa 2930 Restricted specialization....
rspec 2931 Specialization rule for re...
r19.21bi 2932 Inference from Theorem 19....
r19.21be 2933 Inference from Theorem 19....
rspec2 2934 Specialization rule for re...
rspec3 2935 Specialization rule for re...
rsp2 2936 Restricted specialization,...
r2allem 2937 Lemma factoring out common...
r2alf 2938 Double restricted universa...
r2al 2939 Double restricted universa...
r3al 2940 Triple restricted universa...
nfra1 2941 The setvar ` x ` is not fr...
hbra1 2942 The setvar ` x ` is not fr...
hbral 2943 Bound-variable hypothesis ...
nfrald 2944 Deduction version of ~ nfr...
nfral 2945 Bound-variable hypothesis ...
nfra2 2946 Similar to Lemma 24 of [Mo...
ral2imi 2947 Inference quantifying ante...
ralim 2948 Distribution of restricted...
ralimi2 2949 Inference quantifying both...
ralimia 2950 Inference quantifying both...
ralimiaa 2951 Inference quantifying both...
ralimi 2952 Inference quantifying both...
2ralimi 2953 Inference quantifying both...
hbralrimi 2954 Inference from Theorem 19....
r19.21t 2955 Restricted quantifier vers...
r19.21 2956 Restricted quantifier vers...
ralrimi 2957 Inference from Theorem 19....
ralimdaa 2958 Deduction quantifying both...
ralrimd 2959 Inference from Theorem 19....
r19.21v 2960 Restricted quantifier vers...
ralimdv2 2961 Inference quantifying both...
ralimdva 2962 Deduction quantifying both...
ralimdv 2963 Deduction quantifying both...
ralimdvva 2964 Deduction doubly quantifyi...
ralrimiv 2965 Inference from Theorem 19....
ralrimiva 2966 Inference from Theorem 19....
ralrimivw 2967 Inference from Theorem 19....
ralrimdv 2968 Inference from Theorem 19....
ralrimdva 2969 Inference from Theorem 19....
ralrimivv 2970 Inference from Theorem 19....
ralrimivva 2971 Inference from Theorem 19....
ralrimivvva 2972 Inference from Theorem 19....
ralrimdvv 2973 Inference from Theorem 19....
ralrimdvva 2974 Inference from Theorem 19....
rgen2 2975 Generalization rule for re...
rgen3 2976 Generalization rule for re...
rgen2a 2977 Generalization rule for re...
ralbii2 2978 Inference adding different...
ralbiia 2979 Inference adding restricte...
ralbii 2980 Inference adding restricte...
2ralbii 2981 Inference adding two restr...
ralbida 2982 Formula-building rule for ...
ralbid 2983 Formula-building rule for ...
ralbidv2 2984 Formula-building rule for ...
ralbidva 2985 Formula-building rule for ...
ralbidv 2986 Formula-building rule for ...
2ralbida 2987 Formula-building rule for ...
2ralbidva 2988 Formula-building rule for ...
2ralbidv 2989 Formula-building rule for ...
raleqbii 2990 Equality deduction for res...
raln 2991 Restricted universally qua...
ralnex 2992 Relationship between restr...
ralnexOLD 2993 Obsolete proof of ~ ralnex...
dfral2 2994 Relationship between restr...
rexnal 2995 Relationship between restr...
dfrex2 2996 Relationship between restr...
ralinexa 2997 A transformation of restri...
rexanali 2998 A transformation of restri...
nrexralim 2999 Negation of a complex pred...
nrex 3000 Inference adding restricte...
nrexdv 3001 Deduction adding restricte...
rexex 3002 Restricted existence impli...
rspe 3003 Restricted specialization....
rsp2e 3004 Restricted specialization....
nfre1 3005 The setvar ` x ` is not fr...
nfrexd 3006 Deduction version of ~ nfr...
nfrex 3007 Bound-variable hypothesis ...
rexim 3008 Theorem 19.22 of [Margaris...
reximia 3009 Inference quantifying both...
reximi2 3010 Inference quantifying both...
reximi 3011 Inference quantifying both...
reximdai 3012 Deduction from Theorem 19....
reximd2a 3013 Deduction quantifying both...
reximdv2 3014 Deduction quantifying both...
reximdvai 3015 Deduction quantifying both...
reximdv 3016 Deduction from Theorem 19....
reximdva 3017 Deduction quantifying both...
reximddv 3018 Deduction from Theorem 19....
reximdvva 3019 Deduction doubly quantifyi...
reximddv2 3020 Double deduction from Theo...
r19.23t 3021 Closed theorem form of ~ r...
r19.23 3022 Restricted quantifier vers...
r19.23v 3023 Restricted quantifier vers...
rexlimi 3024 Restricted quantifier vers...
rexlimd2 3025 Version of ~ rexlimd with ...
rexlimd 3026 Deduction form of ~ rexlim...
rexlimiv 3027 Inference from Theorem 19....
rexlimiva 3028 Inference from Theorem 19....
rexlimivw 3029 Weaker version of ~ rexlim...
rexlimdv 3030 Inference from Theorem 19....
rexlimdva 3031 Inference from Theorem 19....
rexlimdvaa 3032 Inference from Theorem 19....
rexlimdv3a 3033 Inference from Theorem 19....
rexlimdvw 3034 Inference from Theorem 19....
rexlimddv 3035 Restricted existential eli...
rexlimivv 3036 Inference from Theorem 19....
rexlimdvv 3037 Inference from Theorem 19....
rexlimdvva 3038 Inference from Theorem 19....
rexbii2 3039 Inference adding different...
rexbiia 3040 Inference adding restricte...
rexbii 3041 Inference adding restricte...
2rexbii 3042 Inference adding two restr...
rexnal2 3043 Relationship between two r...
rexnal3 3044 Relationship between three...
ralnex2 3045 Relationship between two r...
ralnex3 3046 Relationship between three...
rexbida 3047 Formula-building rule for ...
rexbidv2 3048 Formula-building rule for ...
rexbidva 3049 Formula-building rule for ...
rexbidvaALT 3050 Alternate proof of ~ rexbi...
rexbid 3051 Formula-building rule for ...
rexbidv 3052 Formula-building rule for ...
rexbidvALT 3053 Alternate proof of ~ rexbi...
rexeqbii 3054 Equality deduction for res...
2rexbiia 3055 Inference adding two restr...
2rexbidva 3056 Formula-building rule for ...
2rexbidv 3057 Formula-building rule for ...
rexralbidv 3058 Formula-building rule for ...
r2exlem 3059 Lemma factoring out common...
r2exf 3060 Double restricted existent...
r2ex 3061 Double restricted existent...
risset 3062 Two ways to say " ` A ` be...
r19.12 3063 Restricted quantifier vers...
r19.26 3064 Restricted quantifier vers...
r19.26-2 3065 Restricted quantifier vers...
r19.26-3 3066 Version of ~ r19.26 with t...
r19.26m 3067 Version of ~ 19.26 and ~ r...
ralbi 3068 Distribute a restricted un...
ralbiim 3069 Split a biconditional and ...
r19.27v 3070 Restricted quantitifer ver...
r19.28v 3071 Restricted quantifier vers...
r19.29 3072 Restricted quantifier vers...
r19.29r 3073 Restricted quantifier vers...
r19.29imd 3074 Theorem 19.29 of [Margaris...
r19.29af2 3075 A commonly used pattern ba...
r19.29af 3076 A commonly used pattern ba...
r19.29an 3077 A commonly used pattern ba...
r19.29a 3078 A commonly used pattern ba...
2r19.29 3079 Theorem ~ r19.29 with two ...
r19.29d2r 3080 Theorem 19.29 of [Margaris...
r19.29vva 3081 A commonly used pattern ba...
r19.30 3082 Restricted quantifier vers...
r19.32v 3083 Restricted quantifier vers...
r19.35 3084 Restricted quantifier vers...
r19.36v 3085 Restricted quantifier vers...
r19.37 3086 Restricted quantifier vers...
r19.37v 3087 Restricted quantifier vers...
r19.40 3088 Restricted quantifier vers...
r19.41v 3089 Restricted quantifier vers...
r19.41 3090 Restricted quantifier vers...
r19.41vv 3091 Version of ~ r19.41v with ...
r19.42v 3092 Restricted quantifier vers...
r19.43 3093 Restricted quantifier vers...
r19.44v 3094 One direction of a restric...
r19.45v 3095 Restricted quantifier vers...
ralcomf 3096 Commutation of restricted ...
rexcomf 3097 Commutation of restricted ...
ralcom 3098 Commutation of restricted ...
rexcom 3099 Commutation of restricted ...
ralcom13 3100 Swap first and third restr...
rexcom13 3101 Swap first and third restr...
ralrot3 3102 Rotate three restricted un...
rexrot4 3103 Rotate four restricted exi...
ralcom2 3104 Commutation of restricted ...
ralcom3 3105 A commutation law for rest...
reean 3106 Rearrange restricted exist...
reeanv 3107 Rearrange restricted exist...
3reeanv 3108 Rearrange three restricted...
2ralor 3109 Distribute restricted univ...
nfreu1 3110 The setvar ` x ` is not fr...
nfrmo1 3111 The setvar ` x ` is not fr...
nfreud 3112 Deduction version of ~ nfr...
nfrmod 3113 Deduction version of ~ nfr...
nfreu 3114 Bound-variable hypothesis ...
nfrmo 3115 Bound-variable hypothesis ...
rabid 3116 An "identity" law of concr...
rabidim1 3117 Membership in a restricted...
rabid2 3118 An "identity" law for rest...
rabid2f 3119 An "identity" law for rest...
rabbi 3120 Equivalent wff's correspon...
rabswap 3121 Swap with a membership rel...
nfrab1 3122 The abstraction variable i...
nfrab 3123 A variable not free in a w...
reubida 3124 Formula-building rule for ...
reubidva 3125 Formula-building rule for ...
reubidv 3126 Formula-building rule for ...
reubiia 3127 Formula-building rule for ...
reubii 3128 Formula-building rule for ...
rmobida 3129 Formula-building rule for ...
rmobidva 3130 Formula-building rule for ...
rmobidv 3131 Formula-building rule for ...
rmobiia 3132 Formula-building rule for ...
rmobii 3133 Formula-building rule for ...
raleqf 3134 Equality theorem for restr...
rexeqf 3135 Equality theorem for restr...
reueq1f 3136 Equality theorem for restr...
rmoeq1f 3137 Equality theorem for restr...
raleq 3138 Equality theorem for restr...
rexeq 3139 Equality theorem for restr...
reueq1 3140 Equality theorem for restr...
rmoeq1 3141 Equality theorem for restr...
raleqi 3142 Equality inference for res...
rexeqi 3143 Equality inference for res...
raleqdv 3144 Equality deduction for res...
rexeqdv 3145 Equality deduction for res...
raleqbi1dv 3146 Equality deduction for res...
rexeqbi1dv 3147 Equality deduction for res...
reueqd 3148 Equality deduction for res...
rmoeqd 3149 Equality deduction for res...
raleqbid 3150 Equality deduction for res...
rexeqbid 3151 Equality deduction for res...
raleqbidv 3152 Equality deduction for res...
rexeqbidv 3153 Equality deduction for res...
raleqbidva 3154 Equality deduction for res...
rexeqbidva 3155 Equality deduction for res...
raleleq 3156 All elements of a class ar...
raleleqALT 3157 Alternate proof of ~ ralel...
mormo 3158 Unrestricted "at most one"...
reu5 3159 Restricted uniqueness in t...
reurex 3160 Restricted unique existenc...
reurmo 3161 Restricted existential uni...
rmo5 3162 Restricted "at most one" i...
nrexrmo 3163 Nonexistence implies restr...
reueubd 3164 Restricted existential uni...
cbvralf 3165 Rule used to change bound ...
cbvrexf 3166 Rule used to change bound ...
cbvral 3167 Rule used to change bound ...
cbvrex 3168 Rule used to change bound ...
cbvreu 3169 Change the bound variable ...
cbvrmo 3170 Change the bound variable ...
cbvralv 3171 Change the bound variable ...
cbvrexv 3172 Change the bound variable ...
cbvreuv 3173 Change the bound variable ...
cbvrmov 3174 Change the bound variable ...
cbvraldva2 3175 Rule used to change the bo...
cbvrexdva2 3176 Rule used to change the bo...
cbvraldva 3177 Rule used to change the bo...
cbvrexdva 3178 Rule used to change the bo...
cbvral2v 3179 Change bound variables of ...
cbvrex2v 3180 Change bound variables of ...
cbvral3v 3181 Change bound variables of ...
cbvralsv 3182 Change bound variable by u...
cbvrexsv 3183 Change bound variable by u...
sbralie 3184 Implicit to explicit subst...
rabbiia 3185 Equivalent wff's yield equ...
rabbidva2 3186 Equivalent wff's yield equ...
rabbia2 3187 Equivalent wff's yield equ...
rabbidva 3188 Equivalent wff's yield equ...
rabbidv 3189 Equivalent wff's yield equ...
rabeqf 3190 Equality theorem for restr...
rabeqif 3191 Equality theorem for restr...
rabeq 3192 Equality theorem for restr...
rabeqi 3193 Equality theorem for restr...
rabeqdv 3194 Equality of restricted cla...
rabeqbidv 3195 Equality of restricted cla...
rabeqbidva 3196 Equality of restricted cla...
rabeq2i 3197 Inference rule from equali...
cbvrab 3198 Rule to change the bound v...
cbvrabv 3199 Rule to change the bound v...
vjust 3201 Soundness justification th...
vex 3203 All setvar variables are s...
eqvf 3204 The universe contains ever...
eqv 3205 The universe contains ever...
abv 3206 The class of sets verifyin...
isset 3207 Two ways to say " ` A ` is...
issetf 3208 A version of ~ isset that ...
isseti 3209 A way to say " ` A ` is a ...
issetri 3210 A way to say " ` A ` is a ...
eqvisset 3211 A class equal to a variabl...
elex 3212 If a class is a member of ...
elexi 3213 If a class is a member of ...
elexd 3214 If a class is a member of ...
elisset 3215 An element of a class exis...
elex2 3216 If a class contains anothe...
elex22 3217 If two classes each contai...
prcnel 3218 A proper class doesn't bel...
ralv 3219 A universal quantifier res...
rexv 3220 An existential quantifier ...
reuv 3221 A uniqueness quantifier re...
rmov 3222 A uniqueness quantifier re...
rabab 3223 A class abstraction restri...
ralcom4 3224 Commutation of restricted ...
rexcom4 3225 Commutation of restricted ...
rexcom4a 3226 Specialized existential co...
rexcom4b 3227 Specialized existential co...
ceqsalt 3228 Closed theorem version of ...
ceqsralt 3229 Restricted quantifier vers...
ceqsalg 3230 A representation of explic...
ceqsalgALT 3231 Alternate proof of ~ ceqsa...
ceqsal 3232 A representation of explic...
ceqsalv 3233 A representation of explic...
ceqsralv 3234 Restricted quantifier vers...
gencl 3235 Implicit substitution for ...
2gencl 3236 Implicit substitution for ...
3gencl 3237 Implicit substitution for ...
cgsexg 3238 Implicit substitution infe...
cgsex2g 3239 Implicit substitution infe...
cgsex4g 3240 An implicit substitution i...
ceqsex 3241 Elimination of an existent...
ceqsexv 3242 Elimination of an existent...
ceqsexv2d 3243 Elimination of an existent...
ceqsex2 3244 Elimination of two existen...
ceqsex2v 3245 Elimination of two existen...
ceqsex3v 3246 Elimination of three exist...
ceqsex4v 3247 Elimination of four existe...
ceqsex6v 3248 Elimination of six existen...
ceqsex8v 3249 Elimination of eight exist...
gencbvex 3250 Change of bound variable u...
gencbvex2 3251 Restatement of ~ gencbvex ...
gencbval 3252 Change of bound variable u...
sbhypf 3253 Introduce an explicit subs...
vtoclgft 3254 Closed theorem form of ~ v...
vtoclgftOLD 3255 Obsolete proof of ~ vtoclg...
vtocldf 3256 Implicit substitution of a...
vtocld 3257 Implicit substitution of a...
vtoclf 3258 Implicit substitution of a...
vtocl 3259 Implicit substitution of a...
vtoclALT 3260 Alternate proof of ~ vtocl...
vtocl2 3261 Implicit substitution of c...
vtocl3 3262 Implicit substitution of c...
vtoclb 3263 Implicit substitution of a...
vtoclgf 3264 Implicit substitution of a...
vtoclg1f 3265 Version of ~ vtoclgf with ...
vtoclg 3266 Implicit substitution of a...
vtoclbg 3267 Implicit substitution of a...
vtocl2gf 3268 Implicit substitution of a...
vtocl3gf 3269 Implicit substitution of a...
vtocl2g 3270 Implicit substitution of 2...
vtoclgaf 3271 Implicit substitution of a...
vtoclga 3272 Implicit substitution of a...
vtocl2gaf 3273 Implicit substitution of 2...
vtocl2ga 3274 Implicit substitution of 2...
vtocl3gaf 3275 Implicit substitution of 3...
vtocl3ga 3276 Implicit substitution of 3...
vtocl4g 3277 Implicit substitution of 4...
vtocl4ga 3278 Implicit substitution of 4...
vtocleg 3279 Implicit substitution of a...
vtoclegft 3280 Implicit substitution of a...
vtoclef 3281 Implicit substitution of a...
vtocle 3282 Implicit substitution of a...
vtoclri 3283 Implicit substitution of a...
spcimgft 3284 A closed version of ~ spci...
spcgft 3285 A closed version of ~ spcg...
spcimgf 3286 Rule of specialization, us...
spcimegf 3287 Existential specialization...
spcgf 3288 Rule of specialization, us...
spcegf 3289 Existential specialization...
spcimdv 3290 Restricted specialization,...
spcdv 3291 Rule of specialization, us...
spcimedv 3292 Restricted existential spe...
spcgv 3293 Rule of specialization, us...
spcegv 3294 Existential specialization...
spc2egv 3295 Existential specialization...
spc2gv 3296 Specialization with two qu...
spc3egv 3297 Existential specialization...
spc3gv 3298 Specialization with three ...
spcv 3299 Rule of specialization, us...
spcev 3300 Existential specialization...
spc2ev 3301 Existential specialization...
rspct 3302 A closed version of ~ rspc...
rspc 3303 Restricted specialization,...
rspce 3304 Restricted existential spe...
rspcv 3305 Restricted specialization,...
rspccv 3306 Restricted specialization,...
rspcva 3307 Restricted specialization,...
rspccva 3308 Restricted specialization,...
rspcev 3309 Restricted existential spe...
rspcimdv 3310 Restricted specialization,...
rspcimedv 3311 Restricted existential spe...
rspcdv 3312 Restricted specialization,...
rspcedv 3313 Restricted existential spe...
rspcebdv 3314 Restricted existential spe...
rspcda 3315 Restricted specialization,...
rspcdva 3316 Restricted specialization,...
rspcedvd 3317 Restricted existential spe...
rspcedeq1vd 3318 Restricted existential spe...
rspcedeq2vd 3319 Restricted existential spe...
rspc2 3320 Restricted specialization ...
rspc2gv 3321 Restricted specialization ...
rspc2v 3322 2-variable restricted spec...
rspc2va 3323 2-variable restricted spec...
rspc2ev 3324 2-variable restricted exis...
rspc3v 3325 3-variable restricted spec...
rspc3ev 3326 3-variable restricted exis...
ralxpxfr2d 3327 Transfer a universal quant...
rexraleqim 3328 Statement following from e...
eqvincg 3329 A variable introduction la...
eqvinc 3330 A variable introduction la...
eqvincf 3331 A variable introduction la...
alexeqg 3332 Two ways to express substi...
ceqex 3333 Equality implies equivalen...
ceqsexg 3334 A representation of explic...
ceqsexgv 3335 Elimination of an existent...
ceqsrexv 3336 Elimination of a restricte...
ceqsrexbv 3337 Elimination of a restricte...
ceqsrex2v 3338 Elimination of a restricte...
clel2 3339 An alternate definition of...
clel3g 3340 An alternate definition of...
clel3 3341 An alternate definition of...
clel4 3342 An alternate definition of...
clel5 3343 Alternate definition of cl...
pm13.183 3344 Compare theorem *13.183 in...
rr19.3v 3345 Restricted quantifier vers...
rr19.28v 3346 Restricted quantifier vers...
elabgt 3347 Membership in a class abst...
elabgf 3348 Membership in a class abst...
elabf 3349 Membership in a class abst...
elab 3350 Membership in a class abst...
elabg 3351 Membership in a class abst...
elabd 3352 Explicit demonstration the...
elab2g 3353 Membership in a class abst...
elab2 3354 Membership in a class abst...
elab4g 3355 Membership in a class abst...
elab3gf 3356 Membership in a class abst...
elab3g 3357 Membership in a class abst...
elab3 3358 Membership in a class abst...
elrabi 3359 Implication for the member...
elrabf 3360 Membership in a restricted...
rabtru 3361 Abstract builder using the...
elrab3t 3362 Membership in a restricted...
elrab 3363 Membership in a restricted...
elrab3 3364 Membership in a restricted...
elrabd 3365 Membership in a restricted...
elrab2 3366 Membership in a class abst...
ralab 3367 Universal quantification o...
ralrab 3368 Universal quantification o...
rexab 3369 Existential quantification...
rexrab 3370 Existential quantification...
ralab2 3371 Universal quantification o...
ralrab2 3372 Universal quantification o...
rexab2 3373 Existential quantification...
rexrab2 3374 Existential quantification...
abidnf 3375 Identity used to create cl...
dedhb 3376 A deduction theorem for co...
eqeu 3377 A condition which implies ...
eueq 3378 Equality has existential u...
eueq1 3379 Equality has existential u...
eueq2 3380 Equality has existential u...
eueq3 3381 Equality has existential u...
moeq 3382 There is at most one set e...
moeq3 3383 "At most one" property of ...
mosub 3384 "At most one" remains true...
mo2icl 3385 Theorem for inferring "at ...
mob2 3386 Consequence of "at most on...
moi2 3387 Consequence of "at most on...
mob 3388 Equality implied by "at mo...
moi 3389 Equality implied by "at mo...
morex 3390 Derive membership from uni...
euxfr2 3391 Transfer existential uniqu...
euxfr 3392 Transfer existential uniqu...
euind 3393 Existential uniqueness via...
reu2 3394 A way to express restricte...
reu6 3395 A way to express restricte...
reu3 3396 A way to express restricte...
reu6i 3397 A condition which implies ...
eqreu 3398 A condition which implies ...
rmo4 3399 Restricted "at most one" u...
reu4 3400 Restricted uniqueness usin...
reu7 3401 Restricted uniqueness usin...
reu8 3402 Restricted uniqueness usin...
reu2eqd 3403 Deduce equality from restr...
reueq 3404 Equality has existential u...
rmoeq 3405 Equality's restricted exis...
rmoan 3406 Restricted "at most one" s...
rmoim 3407 Restricted "at most one" i...
rmoimia 3408 Restricted "at most one" i...
rmoimi2 3409 Restricted "at most one" i...
2reuswap 3410 A condition allowing swap ...
reuind 3411 Existential uniqueness via...
2rmorex 3412 Double restricted quantifi...
2reu5lem1 3413 Lemma for ~ 2reu5 . Note ...
2reu5lem2 3414 Lemma for ~ 2reu5 . (Cont...
2reu5lem3 3415 Lemma for ~ 2reu5 . This ...
2reu5 3416 Double restricted existent...
nelrdva 3417 Deduce negative membership...
cdeqi 3420 Deduce conditional equalit...
cdeqri 3421 Property of conditional eq...
cdeqth 3422 Deduce conditional equalit...
cdeqnot 3423 Distribute conditional equ...
cdeqal 3424 Distribute conditional equ...
cdeqab 3425 Distribute conditional equ...
cdeqal1 3426 Distribute conditional equ...
cdeqab1 3427 Distribute conditional equ...
cdeqim 3428 Distribute conditional equ...
cdeqcv 3429 Conditional equality for s...
cdeqeq 3430 Distribute conditional equ...
cdeqel 3431 Distribute conditional equ...
nfcdeq 3432 If we have a conditional e...
nfccdeq 3433 Variation of ~ nfcdeq for ...
ru 3434 Russell's Paradox. Propos...
dfsbcq 3437 Proper substitution of a c...
dfsbcq2 3438 This theorem, which is sim...
sbsbc 3439 Show that ~ df-sb and ~ df...
sbceq1d 3440 Equality theorem for class...
sbceq1dd 3441 Equality theorem for class...
sbceqbid 3442 Equality theorem for class...
sbc8g 3443 This is the closest we can...
sbc2or 3444 The disjunction of two equ...
sbcex 3445 By our definition of prope...
sbceq1a 3446 Equality theorem for class...
sbceq2a 3447 Equality theorem for class...
spsbc 3448 Specialization: if a formu...
spsbcd 3449 Specialization: if a formu...
sbcth 3450 A substitution into a theo...
sbcthdv 3451 Deduction version of ~ sbc...
sbcid 3452 An identity theorem for su...
nfsbc1d 3453 Deduction version of ~ nfs...
nfsbc1 3454 Bound-variable hypothesis ...
nfsbc1v 3455 Bound-variable hypothesis ...
nfsbcd 3456 Deduction version of ~ nfs...
nfsbc 3457 Bound-variable hypothesis ...
sbcco 3458 A composition law for clas...
sbcco2 3459 A composition law for clas...
sbc5 3460 An equivalence for class s...
sbc6g 3461 An equivalence for class s...
sbc6 3462 An equivalence for class s...
sbc7 3463 An equivalence for class s...
cbvsbc 3464 Change bound variables in ...
cbvsbcv 3465 Change the bound variable ...
sbciegft 3466 Conversion of implicit sub...
sbciegf 3467 Conversion of implicit sub...
sbcieg 3468 Conversion of implicit sub...
sbcie2g 3469 Conversion of implicit sub...
sbcie 3470 Conversion of implicit sub...
sbciedf 3471 Conversion of implicit sub...
sbcied 3472 Conversion of implicit sub...
sbcied2 3473 Conversion of implicit sub...
elrabsf 3474 Membership in a restricted...
eqsbc3 3475 Substitution applied to an...
sbcng 3476 Move negation in and out o...
sbcimg 3477 Distribution of class subs...
sbcan 3478 Distribution of class subs...
sbcor 3479 Distribution of class subs...
sbcbig 3480 Distribution of class subs...
sbcn1 3481 Move negation in and out o...
sbcim1 3482 Distribution of class subs...
sbcbi1 3483 Distribution of class subs...
sbcbi2 3484 Substituting into equivale...
sbcal 3485 Move universal quantifier ...
sbcex2 3486 Move existential quantifie...
sbceqal 3487 Set theory version of ~ sb...
sbeqalb 3488 Theorem *14.121 in [Whiteh...
sbcbid 3489 Formula-building deduction...
sbcbidv 3490 Formula-building deduction...
sbcbii 3491 Formula-building inference...
eqsbc3r 3492 ~ eqsbc3 with setvar varia...
eqsbc3rOLD 3493 Obsolete proof of ~ eqsbc3...
sbc3an 3494 Distribution of class subs...
sbcel1v 3495 Class substitution into a ...
sbcel2gv 3496 Class substitution into a ...
sbcel21v 3497 Class substitution into a ...
sbcimdv 3498 Substitution analogue of T...
sbcimdvOLD 3499 Obsolete proof of ~ sbcimd...
sbctt 3500 Substitution for a variabl...
sbcgf 3501 Substitution for a variabl...
sbc19.21g 3502 Substitution for a variabl...
sbcg 3503 Substitution for a variabl...
sbc2iegf 3504 Conversion of implicit sub...
sbc2ie 3505 Conversion of implicit sub...
sbc2iedv 3506 Conversion of implicit sub...
sbc3ie 3507 Conversion of implicit sub...
sbccomlem 3508 Lemma for ~ sbccom . (Con...
sbccom 3509 Commutative law for double...
sbcralt 3510 Interchange class substitu...
sbcrext 3511 Interchange class substitu...
sbcrextOLD 3512 Obsolete proof of ~ sbcrex...
sbcralg 3513 Interchange class substitu...
sbcrex 3514 Interchange class substitu...
sbcreu 3515 Interchange class substitu...
reu8nf 3516 Restricted uniqueness usin...
sbcabel 3517 Interchange class substitu...
rspsbc 3518 Restricted quantifier vers...
rspsbca 3519 Restricted quantifier vers...
rspesbca 3520 Existence form of ~ rspsbc...
spesbc 3521 Existence form of ~ spsbc ...
spesbcd 3522 form of ~ spsbc . (Contri...
sbcth2 3523 A substitution into a theo...
ra4v 3524 Version of ~ ra4 with a dv...
ra4 3525 Restricted quantifier vers...
rmo2 3526 Alternate definition of re...
rmo2i 3527 Condition implying restric...
rmo3 3528 Restricted "at most one" u...
rmob 3529 Consequence of "at most on...
rmoi 3530 Consequence of "at most on...
rmob2 3531 Consequence of "restricted...
rmoi2 3532 Consequence of "restricted...
csb2 3535 Alternate expression for t...
csbeq1 3536 Analogue of ~ dfsbcq for p...
csbeq2 3537 Substituting into equivale...
cbvcsb 3538 Change bound variables in ...
cbvcsbv 3539 Change the bound variable ...
csbeq1d 3540 Equality deduction for pro...
csbid 3541 Analogue of ~ sbid for pro...
csbeq1a 3542 Equality theorem for prope...
csbco 3543 Composition law for chaine...
csbtt 3544 Substitution doesn't affec...
csbconstgf 3545 Substitution doesn't affec...
csbconstg 3546 Substitution doesn't affec...
nfcsb1d 3547 Bound-variable hypothesis ...
nfcsb1 3548 Bound-variable hypothesis ...
nfcsb1v 3549 Bound-variable hypothesis ...
nfcsbd 3550 Deduction version of ~ nfc...
nfcsb 3551 Bound-variable hypothesis ...
csbhypf 3552 Introduce an explicit subs...
csbiebt 3553 Conversion of implicit sub...
csbiedf 3554 Conversion of implicit sub...
csbieb 3555 Bidirectional conversion b...
csbiebg 3556 Bidirectional conversion b...
csbiegf 3557 Conversion of implicit sub...
csbief 3558 Conversion of implicit sub...
csbie 3559 Conversion of implicit sub...
csbied 3560 Conversion of implicit sub...
csbied2 3561 Conversion of implicit sub...
csbie2t 3562 Conversion of implicit sub...
csbie2 3563 Conversion of implicit sub...
csbie2g 3564 Conversion of implicit sub...
cbvralcsf 3565 A more general version of ...
cbvrexcsf 3566 A more general version of ...
cbvreucsf 3567 A more general version of ...
cbvrabcsf 3568 A more general version of ...
cbvralv2 3569 Rule used to change the bo...
cbvrexv2 3570 Rule used to change the bo...
difjust 3576 Soundness justification th...
unjust 3578 Soundness justification th...
injust 3580 Soundness justification th...
dfin5 3582 Alternate definition for t...
dfdif2 3583 Alternate definition of cl...
eldif 3584 Expansion of membership in...
eldifd 3585 If a class is in one class...
eldifad 3586 If a class is in the diffe...
eldifbd 3587 If a class is in the diffe...
dfss 3589 Variant of subclass defini...
dfss2 3591 Alternate definition of th...
dfss3 3592 Alternate definition of su...
dfss6 3593 Alternate definition of su...
dfss2f 3594 Equivalence for subclass r...
dfss3f 3595 Equivalence for subclass r...
nfss 3596 If ` x ` is not free in ` ...
ssel 3597 Membership relationships f...
ssel2 3598 Membership relationships f...
sseli 3599 Membership inference from ...
sselii 3600 Membership inference from ...
sseldi 3601 Membership inference from ...
sseld 3602 Membership deduction from ...
sselda 3603 Membership deduction from ...
sseldd 3604 Membership inference from ...
ssneld 3605 If a class is not in anoth...
ssneldd 3606 If an element is not in a ...
ssriv 3607 Inference rule based on su...
ssrd 3608 Deduction rule based on su...
ssrdv 3609 Deduction rule based on su...
sstr2 3610 Transitivity of subclasses...
sstr 3611 Transitivity of subclasses...
sstri 3612 Subclass transitivity infe...
sstrd 3613 Subclass transitivity dedu...
syl5ss 3614 Subclass transitivity dedu...
syl6ss 3615 Subclass transitivity dedu...
sylan9ss 3616 A subclass transitivity de...
sylan9ssr 3617 A subclass transitivity de...
eqss 3618 The subclass relationship ...
eqssi 3619 Infer equality from two su...
eqssd 3620 Equality deduction from tw...
sssseq 3621 If a class is a subclass o...
eqrd 3622 Deduce equality of classes...
eqrdOLD 3623 Obsolete proof of ~ eqrd a...
ssid 3624 Any class is a subclass of...
ssv 3625 Any class is a subclass of...
sseq1 3626 Equality theorem for subcl...
sseq2 3627 Equality theorem for the s...
sseq12 3628 Equality theorem for the s...
sseq1i 3629 An equality inference for ...
sseq2i 3630 An equality inference for ...
sseq12i 3631 An equality inference for ...
sseq1d 3632 An equality deduction for ...
sseq2d 3633 An equality deduction for ...
sseq12d 3634 An equality deduction for ...
eqsstri 3635 Substitution of equality i...
eqsstr3i 3636 Substitution of equality i...
sseqtri 3637 Substitution of equality i...
sseqtr4i 3638 Substitution of equality i...
eqsstrd 3639 Substitution of equality i...
eqsstr3d 3640 Substitution of equality i...
sseqtrd 3641 Substitution of equality i...
sseqtr4d 3642 Substitution of equality i...
3sstr3i 3643 Substitution of equality i...
3sstr4i 3644 Substitution of equality i...
3sstr3g 3645 Substitution of equality i...
3sstr4g 3646 Substitution of equality i...
3sstr3d 3647 Substitution of equality i...
3sstr4d 3648 Substitution of equality i...
syl5eqss 3649 A chained subclass and equ...
syl5eqssr 3650 A chained subclass and equ...
syl6sseq 3651 A chained subclass and equ...
syl6sseqr 3652 A chained subclass and equ...
syl5sseq 3653 Subclass transitivity dedu...
syl5sseqr 3654 Subclass transitivity dedu...
syl6eqss 3655 A chained subclass and equ...
syl6eqssr 3656 A chained subclass and equ...
eqimss 3657 Equality implies the subcl...
eqimss2 3658 Equality implies the subcl...
eqimssi 3659 Infer subclass relationshi...
eqimss2i 3660 Infer subclass relationshi...
nssne1 3661 Two classes are different ...
nssne2 3662 Two classes are different ...
nss 3663 Negation of subclass relat...
nelss 3664 Demonstrate by witnesses t...
ssrexf 3665 restricted existential qua...
ssralv 3666 Quantification restricted ...
ssrexv 3667 Existential quantification...
ralss 3668 Restricted universal quant...
rexss 3669 Restricted existential qua...
ss2ab 3670 Class abstractions in a su...
abss 3671 Class abstraction in a sub...
ssab 3672 Subclass of a class abstra...
ssabral 3673 The relation for a subclas...
ss2abi 3674 Inference of abstraction s...
ss2abdv 3675 Deduction of abstraction s...
abssdv 3676 Deduction of abstraction s...
abssi 3677 Inference of abstraction s...
ss2rab 3678 Restricted abstraction cla...
rabss 3679 Restricted class abstracti...
ssrab 3680 Subclass of a restricted c...
ssrabdv 3681 Subclass of a restricted c...
rabssdv 3682 Subclass of a restricted c...
ss2rabdv 3683 Deduction of restricted ab...
ss2rabi 3684 Inference of restricted ab...
rabss2 3685 Subclass law for restricte...
ssab2 3686 Subclass relation for the ...
ssrab2 3687 Subclass relation for a re...
ssrab3 3688 Subclass relation for a re...
ssrabeq 3689 If the restricting class o...
rabssab 3690 A restricted class is a su...
uniiunlem 3691 A subset relationship usef...
dfpss2 3692 Alternate definition of pr...
dfpss3 3693 Alternate definition of pr...
psseq1 3694 Equality theorem for prope...
psseq2 3695 Equality theorem for prope...
psseq1i 3696 An equality inference for ...
psseq2i 3697 An equality inference for ...
psseq12i 3698 An equality inference for ...
psseq1d 3699 An equality deduction for ...
psseq2d 3700 An equality deduction for ...
psseq12d 3701 An equality deduction for ...
pssss 3702 A proper subclass is a sub...
pssne 3703 Two classes in a proper su...
pssssd 3704 Deduce subclass from prope...
pssned 3705 Proper subclasses are uneq...
sspss 3706 Subclass in terms of prope...
pssirr 3707 Proper subclass is irrefle...
pssn2lp 3708 Proper subclass has no 2-c...
sspsstri 3709 Two ways of stating tricho...
ssnpss 3710 Partial trichotomy law for...
psstr 3711 Transitive law for proper ...
sspsstr 3712 Transitive law for subclas...
psssstr 3713 Transitive law for subclas...
psstrd 3714 Proper subclass inclusion ...
sspsstrd 3715 Transitivity involving sub...
psssstrd 3716 Transitivity involving sub...
npss 3717 A class is not a proper su...
ssnelpss 3718 A subclass missing a membe...
ssnelpssd 3719 Subclass inclusion with on...
ssexnelpss 3720 If there is an element of ...
difeq1 3721 Equality theorem for class...
difeq2 3722 Equality theorem for class...
difeq12 3723 Equality theorem for class...
difeq1i 3724 Inference adding differenc...
difeq2i 3725 Inference adding differenc...
difeq12i 3726 Equality inference for cla...
difeq1d 3727 Deduction adding differenc...
difeq2d 3728 Deduction adding differenc...
difeq12d 3729 Equality deduction for cla...
difeqri 3730 Inference from membership ...
nfdif 3731 Bound-variable hypothesis ...
eldifi 3732 Implication of membership ...
eldifn 3733 Implication of membership ...
elndif 3734 A set does not belong to a...
neldif 3735 Implication of membership ...
difdif 3736 Double class difference. ...
difss 3737 Subclass relationship for ...
difssd 3738 A difference of two classe...
difss2 3739 If a class is contained in...
difss2d 3740 If a class is contained in...
ssdifss 3741 Preservation of a subclass...
ddif 3742 Double complement under un...
ssconb 3743 Contraposition law for sub...
sscon 3744 Contraposition law for sub...
ssdif 3745 Difference law for subsets...
ssdifd 3746 If ` A ` is contained in `...
sscond 3747 If ` A ` is contained in `...
ssdifssd 3748 If ` A ` is contained in `...
ssdif2d 3749 If ` A ` is contained in `...
raldifb 3750 Restricted universal quant...
complss 3751 Complementation reverses i...
compleq 3752 Two classes are equal if a...
elun 3753 Expansion of membership in...
elunnel1 3754 A member of a union that i...
uneqri 3755 Inference from membership ...
unidm 3756 Idempotent law for union o...
uncom 3757 Commutative law for union ...
equncom 3758 If a class equals the unio...
equncomi 3759 Inference form of ~ equnco...
uneq1 3760 Equality theorem for the u...
uneq2 3761 Equality theorem for the u...
uneq12 3762 Equality theorem for the u...
uneq1i 3763 Inference adding union to ...
uneq2i 3764 Inference adding union to ...
uneq12i 3765 Equality inference for the...
uneq1d 3766 Deduction adding union to ...
uneq2d 3767 Deduction adding union to ...
uneq12d 3768 Equality deduction for the...
nfun 3769 Bound-variable hypothesis ...
unass 3770 Associative law for union ...
un12 3771 A rearrangement of union. ...
un23 3772 A rearrangement of union. ...
un4 3773 A rearrangement of the uni...
unundi 3774 Union distributes over its...
unundir 3775 Union distributes over its...
ssun1 3776 Subclass relationship for ...
ssun2 3777 Subclass relationship for ...
ssun3 3778 Subclass law for union of ...
ssun4 3779 Subclass law for union of ...
elun1 3780 Membership law for union o...
elun2 3781 Membership law for union o...
unss1 3782 Subclass law for union of ...
ssequn1 3783 A relationship between sub...
unss2 3784 Subclass law for union of ...
unss12 3785 Subclass law for union of ...
ssequn2 3786 A relationship between sub...
unss 3787 The union of two subclasse...
unssi 3788 An inference showing the u...
unssd 3789 A deduction showing the un...
unssad 3790 If ` ( A u. B ) ` is conta...
unssbd 3791 If ` ( A u. B ) ` is conta...
ssun 3792 A condition that implies i...
rexun 3793 Restricted existential qua...
ralunb 3794 Restricted quantification ...
ralun 3795 Restricted quantification ...
elin 3796 Expansion of membership in...
elini 3797 Membership in an intersect...
elind 3798 Deduce membership in an in...
elinel1 3799 Membership in an intersect...
elinel2 3800 Membership in an intersect...
elin2 3801 Membership in a class defi...
elin1d 3802 Elementhood in the first s...
elin2d 3803 Elementhood in the first s...
elin3 3804 Membership in a class defi...
incom 3805 Commutative law for inters...
ineqri 3806 Inference from membership ...
ineq1 3807 Equality theorem for inter...
ineq2 3808 Equality theorem for inter...
ineq12 3809 Equality theorem for inter...
ineq1i 3810 Equality inference for int...
ineq2i 3811 Equality inference for int...
ineq12i 3812 Equality inference for int...
ineq1d 3813 Equality deduction for int...
ineq2d 3814 Equality deduction for int...
ineq12d 3815 Equality deduction for int...
ineqan12d 3816 Equality deduction for int...
sseqin2 3817 A relationship between sub...
dfss1OLD 3818 Obsolete as of 22-Jul-2021...
dfss5OLD 3819 Obsolete as of 22-Jul-2021...
nfin 3820 Bound-variable hypothesis ...
rabbi2dva 3821 Deduction from a wff to a ...
inidm 3822 Idempotent law for interse...
inass 3823 Associative law for inters...
in12 3824 A rearrangement of interse...
in32 3825 A rearrangement of interse...
in13 3826 A rearrangement of interse...
in31 3827 A rearrangement of interse...
inrot 3828 Rotate the intersection of...
in4 3829 Rearrangement of intersect...
inindi 3830 Intersection distributes o...
inindir 3831 Intersection distributes o...
sseqin2OLD 3832 Obsolete proof of ~ sseqin...
inss1 3833 The intersection of two cl...
inss2 3834 The intersection of two cl...
ssin 3835 Subclass of intersection. ...
ssini 3836 An inference showing that ...
ssind 3837 A deduction showing that a...
ssrin 3838 Add right intersection to ...
sslin 3839 Add left intersection to s...
ss2in 3840 Intersection of subclasses...
ssinss1 3841 Intersection preserves sub...
inss 3842 Inclusion of an intersecti...
symdifcom 3845 Symmetric difference commu...
symdifeq1 3846 Equality theorem for symme...
symdifeq2 3847 Equality theorem for symme...
nfsymdif 3848 Hypothesis builder for sym...
elsymdif 3849 Membership in a symmetric ...
elsymdifxor 3850 Membership in a symmetric ...
dfsymdif2 3851 Alternate definition of th...
symdif2 3852 Two ways to express symmet...
symdifass 3853 Symmetric difference assoc...
unabs 3854 Absorption law for union. ...
inabs 3855 Absorption law for interse...
nssinpss 3856 Negation of subclass expre...
nsspssun 3857 Negation of subclass expre...
dfss4 3858 Subclass defined in terms ...
dfun2 3859 An alternate definition of...
dfin2 3860 An alternate definition of...
difin 3861 Difference with intersecti...
ssdifim 3862 Implication of a class dif...
ssdifsym 3863 Symmetric class difference...
dfss5 3864 Alternate definition of su...
dfun3 3865 Union defined in terms of ...
dfin3 3866 Intersection defined in te...
dfin4 3867 Alternate definition of th...
invdif 3868 Intersection with universa...
indif 3869 Intersection with class di...
indif2 3870 Bring an intersection in a...
indif1 3871 Bring an intersection in a...
indifcom 3872 Commutation law for inters...
indi 3873 Distributive law for inter...
undi 3874 Distributive law for union...
indir 3875 Distributive law for inter...
undir 3876 Distributive law for union...
unineq 3877 Infer equality from equali...
uneqin 3878 Equality of union and inte...
difundi 3879 Distributive law for class...
difundir 3880 Distributive law for class...
difindi 3881 Distributive law for class...
difindir 3882 Distributive law for class...
indifdir 3883 Distribute intersection ov...
difdif2 3884 Class difference by a clas...
undm 3885 De Morgan's law for union....
indm 3886 De Morgan's law for inters...
difun1 3887 A relationship involving d...
undif3 3888 An equality involving clas...
undif3OLD 3889 Obsolete proof of ~ undif3...
difin2 3890 Represent a class differen...
dif32 3891 Swap second and third argu...
difabs 3892 Absorption-like law for cl...
dfsymdif3 3893 Alternate definition of th...
unab 3894 Union of two class abstrac...
inab 3895 Intersection of two class ...
difab 3896 Difference of two class ab...
notab 3897 A class builder defined by...
unrab 3898 Union of two restricted cl...
inrab 3899 Intersection of two restri...
inrab2 3900 Intersection with a restri...
difrab 3901 Difference of two restrict...
dfrab3 3902 Alternate definition of re...
dfrab2 3903 Alternate definition of re...
notrab 3904 Complementation of restric...
dfrab3ss 3905 Restricted class abstracti...
rabun2 3906 Abstraction restricted to ...
reuss2 3907 Transfer uniqueness to a s...
reuss 3908 Transfer uniqueness to a s...
reuun1 3909 Transfer uniqueness to a s...
reuun2 3910 Transfer uniqueness to a s...
reupick 3911 Restricted uniqueness "pic...
reupick3 3912 Restricted uniqueness "pic...
reupick2 3913 Restricted uniqueness "pic...
euelss 3914 Transfer uniqueness of an ...
dfnul2 3917 Alternate definition of th...
dfnul3 3918 Alternate definition of th...
noel 3919 The empty set has no eleme...
n0i 3920 If a set has elements, the...
ne0i 3921 If a set has elements, the...
n0ii 3922 If a set has elements, the...
ne0ii 3923 If a set has elements, the...
vn0 3924 The universal class is not...
eq0f 3925 The empty set has no eleme...
neq0f 3926 A nonempty class has at le...
n0f 3927 A nonempty class has at le...
n0fOLD 3928 Obsolete proof of ~ n0f as...
eq0 3929 The empty set has no eleme...
neq0 3930 A nonempty class has at le...
n0 3931 A nonempty class has at le...
nel0 3932 From the general negation ...
reximdva0 3933 Restricted existence deduc...
rspn0 3934 Specialization for restric...
n0rex 3935 There is an element in a n...
ssn0rex 3936 There is an element in a c...
n0moeu 3937 A case of equivalence of "...
rex0 3938 Vacuous existential quanti...
0el 3939 Membership of the empty se...
n0el 3940 Negated membership of the ...
eqeuel 3941 A condition which implies ...
ssdif0 3942 Subclass expressed in term...
difn0 3943 If the difference of two s...
pssdifn0 3944 A proper subclass has a no...
pssdif 3945 A proper subclass has a no...
difin0ss 3946 Difference, intersection, ...
inssdif0 3947 Intersection, subclass, an...
difid 3948 The difference between a c...
difidALT 3949 Alternate proof of ~ difid...
dif0 3950 The difference between a c...
ab0 3951 The class of sets verifyin...
dfnf5 3952 Characterization of non-fr...
ab0orv 3953 The class builder of a wff...
abn0 3954 Nonempty class abstraction...
rab0 3955 Any restricted class abstr...
rab0OLD 3956 Obsolete proof of ~ rab0 a...
rabeq0 3957 Condition for a restricted...
rabn0 3958 Nonempty restricted class ...
rabn0OLD 3959 Obsolete proof of ~ rabn0 ...
rabeq0OLD 3960 Obsolete proof of ~ rabeq0...
rabxm 3961 Law of excluded middle, in...
rabnc 3962 Law of noncontradiction, i...
elneldisj 3963 The set of elements ` s ` ...
elnelun 3964 The union of the set of el...
elneldisjOLD 3965 Obsolete version of ~ elne...
elnelunOLD 3966 Obsolete version of ~ elne...
un0 3967 The union of a class with ...
in0 3968 The intersection of a clas...
0in 3969 The intersection of the em...
inv1 3970 The intersection of a clas...
unv 3971 The union of a class with ...
0ss 3972 The null set is a subset o...
ss0b 3973 Any subset of the empty se...
ss0 3974 Any subset of the empty se...
sseq0 3975 A subclass of an empty cla...
ssn0 3976 A class with a nonempty su...
0dif 3977 The difference between the...
abf 3978 A class builder with a fal...
eq0rdv 3979 Deduction rule for equalit...
csbprc 3980 The proper substitution of...
csbprcOLD 3981 Obsolete proof of ~ csbprc...
csb0 3982 The proper substitution of...
sbcel12 3983 Distribute proper substitu...
sbceqg 3984 Distribute proper substitu...
sbcnel12g 3985 Distribute proper substitu...
sbcne12 3986 Distribute proper substitu...
sbcel1g 3987 Move proper substitution i...
sbceq1g 3988 Move proper substitution t...
sbcel2 3989 Move proper substitution i...
sbceq2g 3990 Move proper substitution t...
csbeq2d 3991 Formula-building deduction...
csbeq2dv 3992 Formula-building deduction...
csbeq2i 3993 Formula-building inference...
csbcom 3994 Commutative law for double...
sbcnestgf 3995 Nest the composition of tw...
csbnestgf 3996 Nest the composition of tw...
sbcnestg 3997 Nest the composition of tw...
csbnestg 3998 Nest the composition of tw...
sbcco3g 3999 Composition of two substit...
csbco3g 4000 Composition of two class s...
csbnest1g 4001 Nest the composition of tw...
csbidm 4002 Idempotent law for class s...
csbvarg 4003 The proper substitution of...
sbccsb 4004 Substitution into a wff ex...
sbccsb2 4005 Substitution into a wff ex...
rspcsbela 4006 Special case related to ~ ...
sbnfc2 4007 Two ways of expressing " `...
csbab 4008 Move substitution into a c...
csbun 4009 Distribution of class subs...
csbin 4010 Distribute proper substitu...
un00 4011 Two classes are empty iff ...
vss 4012 Only the universal class h...
0pss 4013 The null set is a proper s...
npss0 4014 No set is a proper subset ...
npss0OLD 4015 Obsolete proof of ~ npss0 ...
pssv 4016 Any non-universal class is...
disj 4017 Two ways of saying that tw...
disjr 4018 Two ways of saying that tw...
disj1 4019 Two ways of saying that tw...
reldisj 4020 Two ways of saying that tw...
disj3 4021 Two ways of saying that tw...
disjne 4022 Members of disjoint sets a...
disjel 4023 A set can't belong to both...
disj2 4024 Two ways of saying that tw...
disj4 4025 Two ways of saying that tw...
ssdisj 4026 Intersection with a subcla...
ssdisjOLD 4027 Obsolete proof of ~ ssdisj...
disjpss 4028 A class is a proper subset...
undisj1 4029 The union of disjoint clas...
undisj2 4030 The union of disjoint clas...
ssindif0 4031 Subclass expressed in term...
inelcm 4032 The intersection of classe...
minel 4033 A minimum element of a cla...
minelOLD 4034 Obsolete proof of ~ minel ...
undif4 4035 Distribute union over diff...
disjssun 4036 Subset relation for disjoi...
vdif0 4037 Universal class equality i...
difrab0eq 4038 If the difference between ...
pssnel 4039 A proper subclass has a me...
disjdif 4040 A class and its relative c...
difin0 4041 The difference of a class ...
unvdif 4042 The union of a class and i...
undif1 4043 Absorption of difference b...
undif2 4044 Absorption of difference b...
undifabs 4045 Absorption of difference b...
inundif 4046 The intersection and class...
disjdif2 4047 The difference of a class ...
difun2 4048 Absorption of union by dif...
undif 4049 Union of complementary par...
ssdifin0 4050 A subset of a difference d...
ssdifeq0 4051 A class is a subclass of i...
ssundif 4052 A condition equivalent to ...
difcom 4053 Swap the arguments of a cl...
pssdifcom1 4054 Two ways to express overla...
pssdifcom2 4055 Two ways to express non-co...
difdifdir 4056 Distributive law for class...
uneqdifeq 4057 Two ways to say that ` A `...
uneqdifeqOLD 4058 Obsolete proof of ~ uneqdi...
raldifeq 4059 Equality theorem for restr...
r19.2z 4060 Theorem 19.2 of [Margaris]...
r19.2zb 4061 A response to the notion t...
r19.3rz 4062 Restricted quantification ...
r19.28z 4063 Restricted quantifier vers...
r19.3rzv 4064 Restricted quantification ...
r19.9rzv 4065 Restricted quantification ...
r19.28zv 4066 Restricted quantifier vers...
r19.37zv 4067 Restricted quantifier vers...
r19.45zv 4068 Restricted version of Theo...
r19.44zv 4069 Restricted version of Theo...
r19.27z 4070 Restricted quantifier vers...
r19.27zv 4071 Restricted quantifier vers...
r19.36zv 4072 Restricted quantifier vers...
rzal 4073 Vacuous quantification is ...
rexn0 4074 Restricted existential qua...
ralidm 4075 Idempotent law for restric...
ral0 4076 Vacuous universal quantifi...
rgenzOLD 4077 Obsolete as of 22-Jul-2021...
ralf0 4078 The quantification of a fa...
ralf0OLD 4079 Obsolete proof of ~ ralf0 ...
ralnralall 4080 A contradiction concerning...
falseral0 4081 A false statement can only...
raaan 4082 Rearrange restricted quant...
raaanv 4083 Rearrange restricted quant...
sbss 4084 Set substitution into the ...
sbcssg 4085 Distribute proper substitu...
dfif2 4088 An alternate definition of...
dfif6 4089 An alternate definition of...
ifeq1 4090 Equality theorem for condi...
ifeq2 4091 Equality theorem for condi...
iftrue 4092 Value of the conditional o...
iftruei 4093 Inference associated with ...
iftrued 4094 Value of the conditional o...
iffalse 4095 Value of the conditional o...
iffalsei 4096 Inference associated with ...
iffalsed 4097 Value of the conditional o...
ifnefalse 4098 When values are unequal, b...
ifsb 4099 Distribute a function over...
dfif3 4100 Alternate definition of th...
dfif4 4101 Alternate definition of th...
dfif5 4102 Alternate definition of th...
ifeq12 4103 Equality theorem for condi...
ifeq1d 4104 Equality deduction for con...
ifeq2d 4105 Equality deduction for con...
ifeq12d 4106 Equality deduction for con...
ifbi 4107 Equivalence theorem for co...
ifbid 4108 Equivalence deduction for ...
ifbieq1d 4109 Equivalence/equality deduc...
ifbieq2i 4110 Equivalence/equality infer...
ifbieq2d 4111 Equivalence/equality deduc...
ifbieq12i 4112 Equivalence deduction for ...
ifbieq12d 4113 Equivalence deduction for ...
nfifd 4114 Deduction version of ~ nfi...
nfif 4115 Bound-variable hypothesis ...
ifeq1da 4116 Conditional equality. (Co...
ifeq2da 4117 Conditional equality. (Co...
ifeq12da 4118 Equivalence deduction for ...
ifbieq12d2 4119 Equivalence deduction for ...
ifclda 4120 Conditional closure. (Con...
ifeqda 4121 Separation of the values o...
elimif 4122 Elimination of a condition...
ifbothda 4123 A wff ` th ` containing a ...
ifboth 4124 A wff ` th ` containing a ...
ifid 4125 Identical true and false a...
eqif 4126 Expansion of an equality w...
ifval 4127 Another expression of the ...
elif 4128 Membership in a conditiona...
ifel 4129 Membership of a conditiona...
ifcl 4130 Membership (closure) of a ...
ifcld 4131 Membership (closure) of a ...
ifeqor 4132 The possible values of a c...
ifnot 4133 Negating the first argumen...
ifan 4134 Rewrite a conjunction in a...
ifor 4135 Rewrite a disjunction in a...
2if2 4136 Resolve two nested conditi...
ifcomnan 4137 Commute the conditions in ...
csbif 4138 Distribute proper substitu...
dedth 4139 Weak deduction theorem tha...
dedth2h 4140 Weak deduction theorem eli...
dedth3h 4141 Weak deduction theorem eli...
dedth4h 4142 Weak deduction theorem eli...
dedth2v 4143 Weak deduction theorem for...
dedth3v 4144 Weak deduction theorem for...
dedth4v 4145 Weak deduction theorem for...
elimhyp 4146 Eliminate a hypothesis con...
elimhyp2v 4147 Eliminate a hypothesis con...
elimhyp3v 4148 Eliminate a hypothesis con...
elimhyp4v 4149 Eliminate a hypothesis con...
elimel 4150 Eliminate a membership hyp...
elimdhyp 4151 Version of ~ elimhyp where...
keephyp 4152 Transform a hypothesis ` p...
keephyp2v 4153 Keep a hypothesis containi...
keephyp3v 4154 Keep a hypothesis containi...
keepel 4155 Keep a membership hypothes...
ifex 4156 Conditional operator exist...
ifexg 4157 Conditional operator exist...
pwjust 4159 Soundness justification th...
pweq 4161 Equality theorem for power...
pweqi 4162 Equality inference for pow...
pweqd 4163 Equality deduction for pow...
elpw 4164 Membership in a power clas...
selpw 4165 Setvar variable membership...
elpwg 4166 Membership in a power clas...
elpwd 4167 Membership in a power clas...
elpwi 4168 Subset relation implied by...
elpwb 4169 Characterization of the el...
elpwid 4170 An element of a power clas...
elelpwi 4171 If ` A ` belongs to a part...
nfpw 4172 Bound-variable hypothesis ...
pwidg 4173 Membership of the original...
pwid 4174 A set is a member of its p...
pwss 4175 Subclass relationship for ...
snjust 4176 Soundness justification th...
sneq 4187 Equality theorem for singl...
sneqi 4188 Equality inference for sin...
sneqd 4189 Equality deduction for sin...
dfsn2 4190 Alternate definition of si...
elsng 4191 There is exactly one eleme...
elsn 4192 There is exactly one eleme...
velsn 4193 There is only one element ...
elsni 4194 There is only one element ...
dfpr2 4195 Alternate definition of un...
elprg 4196 A member of an unordered p...
elpri 4197 If a class is an element o...
elpr 4198 A member of an unordered p...
elpr2 4199 A member of an unordered p...
elpr2OLD 4200 Obsolete proof of ~ elpr2 ...
nelpri 4201 If an element doesn't matc...
prneli 4202 If an element doesn't matc...
nelprd 4203 If an element doesn't matc...
eldifpr 4204 Membership in a set with t...
rexdifpr 4205 Restricted existential qua...
snidg 4206 A set is a member of its s...
snidb 4207 A class is a set iff it is...
snid 4208 A set is a member of its s...
vsnid 4209 A setvar variable is a mem...
elsn2g 4210 There is exactly one eleme...
elsn2 4211 There is exactly one eleme...
nelsn 4212 If a class is not equal to...
nelsnOLD 4213 Obsolete proof of ~ nelsn ...
rabeqsn 4214 Conditions for a restricte...
rabsssn 4215 Conditions for a restricte...
ralsnsg 4216 Substitution expressed in ...
rexsns 4217 Restricted existential qua...
ralsng 4218 Substitution expressed in ...
rexsng 4219 Restricted existential qua...
2ralsng 4220 Substitution expressed in ...
exsnrex 4221 There is a set being the e...
ralsn 4222 Convert a quantification o...
rexsn 4223 Restricted existential qua...
elpwunsn 4224 Membership in an extension...
eqoreldif 4225 An element of a set is eit...
eqoreldifOLD 4226 Obsolete proof of ~ eqorel...
eltpg 4227 Members of an unordered tr...
eldiftp 4228 Membership in a set with t...
eltpi 4229 A member of an unordered t...
eltp 4230 A member of an unordered t...
dftp2 4231 Alternate definition of un...
nfpr 4232 Bound-variable hypothesis ...
ifpr 4233 Membership of a conditiona...
ralprg 4234 Convert a quantification o...
rexprg 4235 Convert a quantification o...
raltpg 4236 Convert a quantification o...
rextpg 4237 Convert a quantification o...
ralpr 4238 Convert a quantification o...
rexpr 4239 Convert an existential qua...
raltp 4240 Convert a quantification o...
rextp 4241 Convert a quantification o...
nfsn 4242 Bound-variable hypothesis ...
csbsng 4243 Distribute proper substitu...
csbprg 4244 Distribute proper substitu...
elinsn 4245 If the intersection of two...
disjsn 4246 Intersection with the sing...
disjsn2 4247 Two distinct singletons ar...
disjpr2 4248 Two completely distinct un...
disjpr2OLD 4249 Obsolete proof of ~ disjpr...
disjprsn 4250 The disjoint intersection ...
disjtpsn 4251 The disjoint intersection ...
disjtp2 4252 Two completely distinct un...
snprc 4253 The singleton of a proper ...
snnzb 4254 A singleton is nonempty if...
r19.12sn 4255 Special case of ~ r19.12 w...
rabsn 4256 Condition where a restrict...
rabsnifsb 4257 A restricted class abstrac...
rabsnif 4258 A restricted class abstrac...
rabrsn 4259 A restricted class abstrac...
euabsn2 4260 Another way to express exi...
euabsn 4261 Another way to express exi...
reusn 4262 A way to express restricte...
absneu 4263 Restricted existential uni...
rabsneu 4264 Restricted existential uni...
eusn 4265 Two ways to express " ` A ...
rabsnt 4266 Truth implied by equality ...
prcom 4267 Commutative law for unorde...
preq1 4268 Equality theorem for unord...
preq2 4269 Equality theorem for unord...
preq12 4270 Equality theorem for unord...
preq1i 4271 Equality inference for uno...
preq2i 4272 Equality inference for uno...
preq12i 4273 Equality inference for uno...
preq1d 4274 Equality deduction for uno...
preq2d 4275 Equality deduction for uno...
preq12d 4276 Equality deduction for uno...
tpeq1 4277 Equality theorem for unord...
tpeq2 4278 Equality theorem for unord...
tpeq3 4279 Equality theorem for unord...
tpeq1d 4280 Equality theorem for unord...
tpeq2d 4281 Equality theorem for unord...
tpeq3d 4282 Equality theorem for unord...
tpeq123d 4283 Equality theorem for unord...
tprot 4284 Rotation of the elements o...
tpcoma 4285 Swap 1st and 2nd members o...
tpcomb 4286 Swap 2nd and 3rd members o...
tpass 4287 Split off the first elemen...
qdass 4288 Two ways to write an unord...
qdassr 4289 Two ways to write an unord...
tpidm12 4290 Unordered triple ` { A , A...
tpidm13 4291 Unordered triple ` { A , B...
tpidm23 4292 Unordered triple ` { A , B...
tpidm 4293 Unordered triple ` { A , A...
tppreq3 4294 An unordered triple is an ...
prid1g 4295 An unordered pair contains...
prid2g 4296 An unordered pair contains...
prid1 4297 An unordered pair contains...
prid2 4298 An unordered pair contains...
ifpprsnss 4299 An unordered pair is a sin...
prprc1 4300 A proper class vanishes in...
prprc2 4301 A proper class vanishes in...
prprc 4302 An unordered pair containi...
tpid1 4303 One of the three elements ...
tpid2 4304 One of the three elements ...
tpid3g 4305 Closed theorem form of ~ t...
tpid3gOLD 4306 Obsolete proof of ~ tpid3g...
tpid3 4307 One of the three elements ...
snnzg 4308 The singleton of a set is ...
snnz 4309 The singleton of a set is ...
prnz 4310 A pair containing a set is...
prnzg 4311 A pair containing a set is...
prnzgOLD 4312 Obsolete proof of ~ prnzg ...
tpnz 4313 A triplet containing a set...
tpnzd 4314 A triplet containing a set...
raltpd 4315 Convert a quantification o...
snss 4316 The singleton of an elemen...
eldifsn 4317 Membership in a set with a...
ssdifsn 4318 Subset of a set with an el...
elpwdifsn 4319 A subset of a set is an el...
eldifsni 4320 Membership in a set with a...
neldifsn 4321 The class ` A ` is not in ...
neldifsnd 4322 The class ` A ` is not in ...
rexdifsn 4323 Restricted existential qua...
raldifsni 4324 Rearrangement of a propert...
raldifsnb 4325 Restricted universal quant...
eldifvsn 4326 A set is an element of the...
snssg 4327 The singleton of an elemen...
difsn 4328 An element not in a set ca...
difprsnss 4329 Removal of a singleton fro...
difprsn1 4330 Removal of a singleton fro...
difprsn2 4331 Removal of a singleton fro...
diftpsn3 4332 Removal of a singleton fro...
diftpsn3OLD 4333 Obsolete proof of ~ diftps...
difpr 4334 Removing two elements as p...
tpprceq3 4335 An unordered triple is an ...
tppreqb 4336 An unordered triple is an ...
difsnb 4337 ` ( B \ { A } ) ` equals `...
difsnpss 4338 ` ( B \ { A } ) ` is a pro...
snssi 4339 The singleton of an elemen...
snssd 4340 The singleton of an elemen...
difsnid 4341 If we remove a single elem...
eldifeldifsn 4342 An element of a difference...
pw0 4343 Compute the power set of t...
pwpw0 4344 Compute the power set of t...
snsspr1 4345 A singleton is a subset of...
snsspr2 4346 A singleton is a subset of...
snsstp1 4347 A singleton is a subset of...
snsstp2 4348 A singleton is a subset of...
snsstp3 4349 A singleton is a subset of...
prssg 4350 A pair of elements of a cl...
prss 4351 A pair of elements of a cl...
prssOLD 4352 Obsolete proof of ~ prss a...
prssi 4353 A pair of elements of a cl...
prssd 4354 Deduction version of ~ prs...
prsspwg 4355 An unordered pair belongs ...
ssprss 4356 A pair as subset of a pair...
ssprsseq 4357 A proper pair is a subset ...
sssn 4358 The subsets of a singleton...
ssunsn2 4359 The property of being sand...
ssunsn 4360 Possible values for a set ...
eqsn 4361 Two ways to express that a...
eqsnOLD 4362 Obsolete proof of ~ eqsn a...
issn 4363 A sufficient condition for...
n0snor2el 4364 A nonempty set is either a...
ssunpr 4365 Possible values for a set ...
sspr 4366 The subsets of a pair. (C...
sstp 4367 The subsets of a triple. ...
tpss 4368 A triplet of elements of a...
tpssi 4369 A triple of elements of a ...
sneqrg 4370 Closed form of ~ sneqr . ...
sneqr 4371 If the singletons of two s...
snsssn 4372 If a singleton is a subset...
sneqrgOLD 4373 Obsolete proof of ~ sneqrg...
sneqbg 4374 Two singletons of sets are...
snsspw 4375 The singleton of a class i...
prsspw 4376 An unordered pair belongs ...
preq1b 4377 Biconditional equality lem...
preq2b 4378 Biconditional equality lem...
preqr1 4379 Reverse equality lemma for...
preqr1OLD 4380 Reverse equality lemma for...
preqr2 4381 Reverse equality lemma for...
preq12b 4382 Equality relationship for ...
prel12 4383 Equality of two unordered ...
opthpr 4384 An unordered pair has the ...
preqr1g 4385 Reverse equality lemma for...
preq12bg 4386 Closed form of ~ preq12b ....
prel12g 4387 Closed form of ~ prel12 . ...
prneimg 4388 Two pairs are not equal if...
prnebg 4389 A (proper) pair is not equ...
pr1eqbg 4390 A (proper) pair is equal t...
pr1nebg 4391 A (proper) pair is not equ...
preqsnd 4392 Equivalence for a pair equ...
preqsn 4393 Equivalence for a pair equ...
preqsnOLD 4394 Obsolete proof of ~ preqsn...
elpreqprlem 4395 Lemma for ~ elpreqpr . (C...
elpreqpr 4396 Equality and membership ru...
elpreqprb 4397 A set is an element of an ...
elpr2elpr 4398 For an element ` A ` of an...
dfopif 4399 Rewrite ~ df-op using ` if...
dfopg 4400 Value of the ordered pair ...
dfop 4401 Value of an ordered pair w...
opeq1 4402 Equality theorem for order...
opeq2 4403 Equality theorem for order...
opeq12 4404 Equality theorem for order...
opeq1i 4405 Equality inference for ord...
opeq2i 4406 Equality inference for ord...
opeq12i 4407 Equality inference for ord...
opeq1d 4408 Equality deduction for ord...
opeq2d 4409 Equality deduction for ord...
opeq12d 4410 Equality deduction for ord...
oteq1 4411 Equality theorem for order...
oteq2 4412 Equality theorem for order...
oteq3 4413 Equality theorem for order...
oteq1d 4414 Equality deduction for ord...
oteq2d 4415 Equality deduction for ord...
oteq3d 4416 Equality deduction for ord...
oteq123d 4417 Equality deduction for ord...
nfop 4418 Bound-variable hypothesis ...
nfopd 4419 Deduction version of bound...
csbopg 4420 Distribution of class subs...
opid 4421 The ordered pair ` <. A , ...
ralunsn 4422 Restricted quantification ...
2ralunsn 4423 Double restricted quantifi...
opprc 4424 Expansion of an ordered pa...
opprc1 4425 Expansion of an ordered pa...
opprc2 4426 Expansion of an ordered pa...
oprcl 4427 If an ordered pair has an ...
pwsn 4428 The power set of a singlet...
pwsnALT 4429 Alternate proof of ~ pwsn ...
pwpr 4430 The power set of an unorde...
pwtp 4431 The power set of an unorde...
pwpwpw0 4432 Compute the power set of t...
pwv 4433 The power class of the uni...
prproe 4434 For an element of a proper...
3elpr2eq 4435 If there are three element...
dfuni2 4438 Alternate definition of cl...
eluni 4439 Membership in class union....
eluni2 4440 Membership in class union....
elunii 4441 Membership in class union....
nfuni 4442 Bound-variable hypothesis ...
nfunid 4443 Deduction version of ~ nfu...
unieq 4444 Equality theorem for class...
unieqi 4445 Inference of equality of t...
unieqd 4446 Deduction of equality of t...
eluniab 4447 Membership in union of a c...
elunirab 4448 Membership in union of a c...
unipr 4449 The union of a pair is the...
uniprg 4450 The union of a pair is the...
unisn 4451 A set equals the union of ...
unisng 4452 A set equals the union of ...
unisn3 4453 Union of a singleton in th...
dfnfc2 4454 An alternative statement o...
dfnfc2OLD 4455 Obsolete proof of ~ dfnfc2...
uniun 4456 The class union of the uni...
uniin 4457 The class union of the int...
uniss 4458 Subclass relationship for ...
ssuni 4459 Subclass relationship for ...
ssuniOLD 4460 Obsolete proof of ~ ssuni ...
unissi 4461 Subclass relationship for ...
unissd 4462 Subclass relationship for ...
uni0b 4463 The union of a set is empt...
uni0c 4464 The union of a set is empt...
uni0 4465 The union of the empty set...
csbuni 4466 Distribute proper substitu...
elssuni 4467 An element of a class is a...
unissel 4468 Condition turning a subcla...
unissb 4469 Relationship involving mem...
uniss2 4470 A subclass condition on th...
unidif 4471 If the difference ` A \ B ...
ssunieq 4472 Relationship implying unio...
unimax 4473 Any member of a class is t...
pwuni 4474 A class is a subclass of t...
dfint2 4477 Alternate definition of cl...
inteq 4478 Equality law for intersect...
inteqi 4479 Equality inference for cla...
inteqd 4480 Equality deduction for cla...
elint 4481 Membership in class inters...
elint2 4482 Membership in class inters...
elintg 4483 Membership in class inters...
elintgOLD 4484 Obsolete proof of ~ elintg...
elinti 4485 Membership in class inters...
nfint 4486 Bound-variable hypothesis ...
elintab 4487 Membership in the intersec...
elintrab 4488 Membership in the intersec...
elintrabg 4489 Membership in the intersec...
int0 4490 The intersection of the em...
int0OLD 4491 Obsolete proof of ~ int0 a...
intss1 4492 An element of a class incl...
ssint 4493 Subclass of a class inters...
ssintab 4494 Subclass of the intersecti...
ssintub 4495 Subclass of the least uppe...
ssmin 4496 Subclass of the minimum va...
intmin 4497 Any member of a class is t...
intss 4498 Intersection of subclasses...
intssuni 4499 The intersection of a none...
ssintrab 4500 Subclass of the intersecti...
unissint 4501 If the union of a class is...
intssuni2 4502 Subclass relationship for ...
intminss 4503 Under subset ordering, the...
intmin2 4504 Any set is the smallest of...
intmin3 4505 Under subset ordering, the...
intmin4 4506 Elimination of a conjunct ...
intab 4507 The intersection of a spec...
int0el 4508 The intersection of a clas...
intun 4509 The class intersection of ...
intpr 4510 The intersection of a pair...
intprg 4511 The intersection of a pair...
intsng 4512 Intersection of a singleto...
intsn 4513 The intersection of a sing...
uniintsn 4514 Two ways to express " ` A ...
uniintab 4515 The union and the intersec...
intunsn 4516 Theorem joining a singleto...
rint0 4517 Relative intersection of a...
elrint 4518 Membership in a restricted...
elrint2 4519 Membership in a restricted...
eliun 4524 Membership in indexed unio...
eliin 4525 Membership in indexed inte...
eliuni 4526 Membership in an indexed u...
iuncom 4527 Commutation of indexed uni...
iuncom4 4528 Commutation of union with ...
iunconst 4529 Indexed union of a constan...
iinconst 4530 Indexed intersection of a ...
iuniin 4531 Law combining indexed unio...
iunss1 4532 Subclass theorem for index...
iinss1 4533 Subclass theorem for index...
iuneq1 4534 Equality theorem for index...
iineq1 4535 Equality theorem for index...
ss2iun 4536 Subclass theorem for index...
iuneq2 4537 Equality theorem for index...
iineq2 4538 Equality theorem for index...
iuneq2i 4539 Equality inference for ind...
iineq2i 4540 Equality inference for ind...
iineq2d 4541 Equality deduction for ind...
iuneq2dv 4542 Equality deduction for ind...
iineq2dv 4543 Equality deduction for ind...
iuneq12df 4544 Equality deduction for ind...
iuneq1d 4545 Equality theorem for index...
iuneq12d 4546 Equality deduction for ind...
iuneq2d 4547 Equality deduction for ind...
nfiun 4548 Bound-variable hypothesis ...
nfiin 4549 Bound-variable hypothesis ...
nfiu1 4550 Bound-variable hypothesis ...
nfii1 4551 Bound-variable hypothesis ...
dfiun2g 4552 Alternate definition of in...
dfiin2g 4553 Alternate definition of in...
dfiun2 4554 Alternate definition of in...
dfiin2 4555 Alternate definition of in...
dfiunv2 4556 Define double indexed unio...
cbviun 4557 Rule used to change the bo...
cbviin 4558 Change bound variables in ...
cbviunv 4559 Rule used to change the bo...
cbviinv 4560 Change bound variables in ...
iunss 4561 Subset theorem for an inde...
ssiun 4562 Subset implication for an ...
ssiun2 4563 Identity law for subset of...
ssiun2s 4564 Subset relationship for an...
iunss2 4565 A subclass condition on th...
iunab 4566 The indexed union of a cla...
iunrab 4567 The indexed union of a res...
iunxdif2 4568 Indexed union with a class...
ssiinf 4569 Subset theorem for an inde...
ssiin 4570 Subset theorem for an inde...
iinss 4571 Subset implication for an ...
iinss2 4572 An indexed intersection is...
uniiun 4573 Class union in terms of in...
intiin 4574 Class intersection in term...
iunid 4575 An indexed union of single...
iun0 4576 An indexed union of the em...
0iun 4577 An empty indexed union is ...
0iin 4578 An empty indexed intersect...
viin 4579 Indexed intersection with ...
iunn0 4580 There is a nonempty class ...
iinab 4581 Indexed intersection of a ...
iinrab 4582 Indexed intersection of a ...
iinrab2 4583 Indexed intersection of a ...
iunin2 4584 Indexed union of intersect...
iunin1 4585 Indexed union of intersect...
iinun2 4586 Indexed intersection of un...
iundif2 4587 Indexed union of class dif...
2iunin 4588 Rearrange indexed unions o...
iindif2 4589 Indexed intersection of cl...
iinin2 4590 Indexed intersection of in...
iinin1 4591 Indexed intersection of in...
iinvdif 4592 The indexed intersection o...
elriin 4593 Elementhood in a relative ...
riin0 4594 Relative intersection of a...
riinn0 4595 Relative intersection of a...
riinrab 4596 Relative intersection of a...
symdif0 4597 Symmetric difference with ...
symdifv 4598 Symmetric difference with ...
symdifid 4599 Symmetric difference with ...
iinxsng 4600 A singleton index picks ou...
iinxprg 4601 Indexed intersection with ...
iunxsng 4602 A singleton index picks ou...
iunxsn 4603 A singleton index picks ou...
iunun 4604 Separate a union in an ind...
iunxun 4605 Separate a union in the in...
iunxdif3 4606 An indexed union where som...
iunxprg 4607 A pair index picks out two...
iunxiun 4608 Separate an indexed union ...
iinuni 4609 A relationship involving u...
iununi 4610 A relationship involving u...
sspwuni 4611 Subclass relationship for ...
pwssb 4612 Two ways to express a coll...
elpwpw 4613 Characterization of the el...
pwpwab 4614 The double power class wri...
pwpwssunieq 4615 The class of sets whose un...
elpwuni 4616 Relationship for power cla...
iinpw 4617 The power class of an inte...
iunpwss 4618 Inclusion of an indexed un...
rintn0 4619 Relative intersection of a...
dfdisj2 4622 Alternate definition for d...
disjss2 4623 If each element of a colle...
disjeq2 4624 Equality theorem for disjo...
disjeq2dv 4625 Equality deduction for dis...
disjss1 4626 A subset of a disjoint col...
disjeq1 4627 Equality theorem for disjo...
disjeq1d 4628 Equality theorem for disjo...
disjeq12d 4629 Equality theorem for disjo...
cbvdisj 4630 Change bound variables in ...
cbvdisjv 4631 Change bound variables in ...
nfdisj 4632 Bound-variable hypothesis ...
nfdisj1 4633 Bound-variable hypothesis ...
disjor 4634 Two ways to say that a col...
disjors 4635 Two ways to say that a col...
disji2 4636 Property of a disjoint col...
disji 4637 Property of a disjoint col...
invdisj 4638 If there is a function ` C...
invdisjrab 4639 The restricted class abstr...
disjiun 4640 A disjoint collection yiel...
disjord 4641 Conditions for a collectio...
disjiunb 4642 Two ways to say that a col...
disjiund 4643 Conditions for a collectio...
sndisj 4644 Any collection of singleto...
0disj 4645 Any collection of empty se...
disjxsn 4646 A singleton collection is ...
disjx0 4647 An empty collection is dis...
disjprg 4648 A pair collection is disjo...
disjxiun 4649 An indexed union of a disj...
disjxiunOLD 4650 Obsolete proof of ~ disjxi...
disjxun 4651 The union of two disjoint ...
disjss3 4652 Expand a disjoint collecti...
breq 4655 Equality theorem for binar...
breq1 4656 Equality theorem for a bin...
breq2 4657 Equality theorem for a bin...
breq12 4658 Equality theorem for a bin...
breqi 4659 Equality inference for bin...
breq1i 4660 Equality inference for a b...
breq2i 4661 Equality inference for a b...
breq12i 4662 Equality inference for a b...
breq1d 4663 Equality deduction for a b...
breqd 4664 Equality deduction for a b...
breq2d 4665 Equality deduction for a b...
breq12d 4666 Equality deduction for a b...
breq123d 4667 Equality deduction for a b...
breqdi 4668 Equality deduction for a b...
breqan12d 4669 Equality deduction for a b...
breqan12rd 4670 Equality deduction for a b...
eqnbrtrd 4671 Substitution of equal clas...
nbrne1 4672 Two classes are different ...
nbrne2 4673 Two classes are different ...
eqbrtri 4674 Substitution of equal clas...
eqbrtrd 4675 Substitution of equal clas...
eqbrtrri 4676 Substitution of equal clas...
eqbrtrrd 4677 Substitution of equal clas...
breqtri 4678 Substitution of equal clas...
breqtrd 4679 Substitution of equal clas...
breqtrri 4680 Substitution of equal clas...
breqtrrd 4681 Substitution of equal clas...
3brtr3i 4682 Substitution of equality i...
3brtr4i 4683 Substitution of equality i...
3brtr3d 4684 Substitution of equality i...
3brtr4d 4685 Substitution of equality i...
3brtr3g 4686 Substitution of equality i...
3brtr4g 4687 Substitution of equality i...
syl5eqbr 4688 A chained equality inferen...
syl5eqbrr 4689 A chained equality inferen...
syl5breq 4690 A chained equality inferen...
syl5breqr 4691 A chained equality inferen...
syl6eqbr 4692 A chained equality inferen...
syl6eqbrr 4693 A chained equality inferen...
syl6breq 4694 A chained equality inferen...
syl6breqr 4695 A chained equality inferen...
ssbrd 4696 Deduction from a subclass ...
ssbri 4697 Inference from a subclass ...
nfbrd 4698 Deduction version of bound...
nfbr 4699 Bound-variable hypothesis ...
brab1 4700 Relationship between a bin...
br0 4701 The empty binary relation ...
brne0 4702 If two sets are in a binar...
brun 4703 The union of two binary re...
brin 4704 The intersection of two re...
brdif 4705 The difference of two bina...
sbcbr123 4706 Move substitution in and o...
sbcbr 4707 Move substitution in and o...
sbcbr12g 4708 Move substitution in and o...
sbcbr1g 4709 Move substitution in and o...
sbcbr2g 4710 Move substitution in and o...
brsymdif 4711 Characterization of the sy...
opabss 4714 The collection of ordered ...
opabbid 4715 Equivalent wff's yield equ...
opabbidv 4716 Equivalent wff's yield equ...
opabbii 4717 Equivalent wff's yield equ...
nfopab 4718 Bound-variable hypothesis ...
nfopab1 4719 The first abstraction vari...
nfopab2 4720 The second abstraction var...
cbvopab 4721 Rule used to change bound ...
cbvopabv 4722 Rule used to change bound ...
cbvopab1 4723 Change first bound variabl...
cbvopab2 4724 Change second bound variab...
cbvopab1s 4725 Change first bound variabl...
cbvopab1v 4726 Rule used to change the fi...
cbvopab2v 4727 Rule used to change the se...
unopab 4728 Union of two ordered pair ...
mpteq12f 4731 An equality theorem for th...
mpteq12dva 4732 An equality inference for ...
mpteq12dv 4733 An equality inference for ...
mpteq12d 4734 An equality inference for ...
mpteq12df 4735 An equality theorem for th...
mpteq12 4736 An equality theorem for th...
mpteq1 4737 An equality theorem for th...
mpteq1d 4738 An equality theorem for th...
mpteq1i 4739 An equality theorem for th...
mpteq2ia 4740 An equality inference for ...
mpteq2i 4741 An equality inference for ...
mpteq12i 4742 An equality inference for ...
mpteq2da 4743 Slightly more general equa...
mpteq2dva 4744 Slightly more general equa...
mpteq2dv 4745 An equality inference for ...
nfmpt 4746 Bound-variable hypothesis ...
nfmpt1 4747 Bound-variable hypothesis ...
cbvmptf 4748 Rule to change the bound v...
cbvmpt 4749 Rule to change the bound v...
cbvmptv 4750 Rule to change the bound v...
mptv 4751 Function with universal do...
dftr2 4754 An alternate way of defini...
dftr5 4755 An alternate way of defini...
dftr3 4756 An alternate way of defini...
dftr4 4757 An alternate way of defini...
treq 4758 Equality theorem for the t...
trel 4759 In a transitive class, the...
trel3 4760 In a transitive class, the...
trss 4761 An element of a transitive...
trssOLD 4762 Obsolete proof of ~ trss a...
trin 4763 The intersection of transi...
tr0 4764 The empty set is transitiv...
trv 4765 The universe is transitive...
triun 4766 The indexed union of a cla...
truni 4767 The union of a class of tr...
trint 4768 The intersection of a clas...
trintss 4769 Any nonempty transitive cl...
trintssOLD 4770 Obsolete version of ~ trin...
axrep1 4772 The version of the Axiom o...
axrep2 4773 Axiom of Replacement expre...
axrep3 4774 Axiom of Replacement sligh...
axrep4 4775 A more traditional version...
axrep5 4776 Axiom of Replacement (simi...
zfrepclf 4777 An inference rule based on...
zfrep3cl 4778 An inference rule based on...
zfrep4 4779 A version of Replacement u...
axsep 4780 Separation Scheme, which i...
axsep2 4782 A less restrictive version...
zfauscl 4783 Separation Scheme (Aussond...
bm1.3ii 4784 Convert implication to equ...
ax6vsep 4785 Derive ~ ax6v (a weakened ...
zfnuleu 4786 Show the uniqueness of the...
axnulALT 4787 Alternate proof of ~ axnul...
axnul 4788 The Null Set Axiom of ZF s...
0ex 4790 The Null Set Axiom of ZF s...
sseliALT 4791 Alternate proof of ~ sseli...
csbexg 4792 The existence of proper su...
csbex 4793 The existence of proper su...
unisn2 4794 A version of ~ unisn witho...
nalset 4795 No set contains all sets. ...
vprc 4796 The universal class is not...
nvel 4797 The universal class doesn'...
vnex 4798 The universal class does n...
inex1 4799 Separation Scheme (Aussond...
inex2 4800 Separation Scheme (Aussond...
inex1g 4801 Closed-form, generalized S...
ssex 4802 The subset of a set is als...
ssexi 4803 The subset of a set is als...
ssexg 4804 The subset of a set is als...
ssexd 4805 A subclass of a set is a s...
prcssprc 4806 The superclass of a proper...
sselpwd 4807 Elementhood to a power set...
difexg 4808 Existence of a difference....
difexi 4809 Existence of a difference,...
difexOLD 4810 Obsolete version of ~ dife...
zfausab 4811 Separation Scheme (Aussond...
rabexg 4812 Separation Scheme in terms...
rabex 4813 Separation Scheme in terms...
rabexd 4814 Separation Scheme in terms...
rabex2 4815 Separation Scheme in terms...
rab2ex 4816 A class abstraction based ...
rabex2OLD 4817 Obsolete version of ~ rabe...
rab2exOLD 4818 Obsolete version of ~ rab2...
elssabg 4819 Membership in a class abst...
intex 4820 The intersection of a none...
intnex 4821 If a class intersection is...
intexab 4822 The intersection of a none...
intexrab 4823 The intersection of a none...
iinexg 4824 The existence of a class i...
intabs 4825 Absorption of a redundant ...
inuni 4826 The intersection of a unio...
elpw2g 4827 Membership in a power clas...
elpw2 4828 Membership in a power clas...
elpwi2 4829 Membership in a power clas...
pwnss 4830 The power set of a set is ...
pwne 4831 No set equals its power se...
class2set 4832 Construct, from any class ...
class2seteq 4833 Equality theorem based on ...
0elpw 4834 Every power class contains...
pwne0 4835 A power class is never emp...
0nep0 4836 The empty set and its powe...
0inp0 4837 Something cannot be equal ...
unidif0 4838 The removal of the empty s...
iin0 4839 An indexed intersection of...
notzfaus 4840 In the Separation Scheme ~...
intv 4841 The intersection of the un...
axpweq 4842 Two equivalent ways to exp...
zfpow 4844 Axiom of Power Sets expres...
axpow2 4845 A variant of the Axiom of ...
axpow3 4846 A variant of the Axiom of ...
el 4847 Every set is an element of...
pwex 4848 Power set axiom expressed ...
vpwex 4849 The powerset of a setvar i...
pwexg 4850 Power set axiom expressed ...
abssexg 4851 Existence of a class of su...
snexALT 4852 Alternate proof of ~ snex ...
p0ex 4853 The power set of the empty...
p0exALT 4854 Alternate proof of ~ p0ex ...
pp0ex 4855 The power set of the power...
ord3ex 4856 The ordinal number 3 is a ...
dtru 4857 At least two sets exist (o...
axc16b 4858 This theorem shows that ax...
eunex 4859 Existential uniqueness imp...
eusv1 4860 Two ways to express single...
eusvnf 4861 Even if ` x ` is free in `...
eusvnfb 4862 Two ways to say that ` A (...
eusv2i 4863 Two ways to express single...
eusv2nf 4864 Two ways to express single...
eusv2 4865 Two ways to express single...
reusv1 4866 Two ways to express single...
reusv1OLD 4867 Obsolete proof of ~ reusv1...
reusv2lem1 4868 Lemma for ~ reusv2 . (Con...
reusv2lem2 4869 Lemma for ~ reusv2 . (Con...
reusv2lem2OLD 4870 Obsolete proof of ~ reusv2...
reusv2lem3 4871 Lemma for ~ reusv2 . (Con...
reusv2lem4 4872 Lemma for ~ reusv2 . (Con...
reusv2lem5 4873 Lemma for ~ reusv2 . (Con...
reusv2 4874 Two ways to express single...
reusv3i 4875 Two ways of expressing exi...
reusv3 4876 Two ways to express single...
eusv4 4877 Two ways to express single...
alxfr 4878 Transfer universal quantif...
ralxfrd 4879 Transfer universal quantif...
ralxfrdOLD 4880 Obsolete proof of ~ ralxfr...
rexxfrd 4881 Transfer universal quantif...
ralxfr2d 4882 Transfer universal quantif...
rexxfr2d 4883 Transfer universal quantif...
ralxfrd2 4884 Transfer universal quantif...
rexxfrd2 4885 Transfer existence from a ...
ralxfr 4886 Transfer universal quantif...
ralxfrALT 4887 Alternate proof of ~ ralxf...
rexxfr 4888 Transfer existence from a ...
rabxfrd 4889 Class builder membership a...
rabxfr 4890 Class builder membership a...
reuxfr2d 4891 Transfer existential uniqu...
reuxfr2 4892 Transfer existential uniqu...
reuxfrd 4893 Transfer existential uniqu...
reuxfr 4894 Transfer existential uniqu...
reuhypd 4895 A theorem useful for elimi...
reuhyp 4896 A theorem useful for elimi...
nfnid 4897 A setvar variable is not f...
nfcvb 4898 The "distinctor" expressio...
dtruALT 4899 Alternate proof of ~ dtru ...
dtrucor 4900 Corollary of ~ dtru . Thi...
dtrucor2 4901 The theorem form of the de...
dvdemo1 4902 Demonstration of a theorem...
dvdemo2 4903 Demonstration of a theorem...
zfpair 4904 The Axiom of Pairing of Ze...
axpr 4905 Unabbreviated version of t...
zfpair2 4907 Derive the abbreviated ver...
snex 4908 A singleton is a set. The...
prex 4909 The Axiom of Pairing using...
elALT 4910 Alternate proof of ~ el , ...
dtruALT2 4911 Alternate proof of ~ dtru ...
snelpwi 4912 A singleton of a set belon...
snelpw 4913 A singleton of a set belon...
prelpw 4914 A pair of two sets belongs...
prelpwi 4915 A pair of two sets belongs...
rext 4916 A theorem similar to exten...
sspwb 4917 Classes are subclasses if ...
unipw 4918 A class equals the union o...
univ 4919 The union of the universe ...
pwel 4920 Membership of a power clas...
pwtr 4921 A class is transitive iff ...
ssextss 4922 An extensionality-like pri...
ssext 4923 An extensionality-like pri...
nssss 4924 Negation of subclass relat...
pweqb 4925 Classes are equal if and o...
intid 4926 The intersection of all se...
moabex 4927 "At most one" existence im...
rmorabex 4928 Restricted "at most one" e...
euabex 4929 The abstraction of a wff w...
nnullss 4930 A nonempty class (even if ...
exss 4931 Restricted existence in a ...
opex 4932 An ordered pair of classes...
otex 4933 An ordered triple of class...
elopg 4934 Characterization of the el...
elop 4935 Characterization of the el...
elopOLD 4936 Obsolete version of ~ elop...
opi1 4937 One of the two elements in...
opi2 4938 One of the two elements of...
opeluu 4939 Each member of an ordered ...
op1stb 4940 Extract the first member o...
brv 4941 Two classes are always in ...
opnz 4942 An ordered pair is nonempt...
opnzi 4943 An ordered pair is nonempt...
opth1 4944 Equality of the first memb...
opth 4945 The ordered pair theorem. ...
opthg 4946 Ordered pair theorem. ` C ...
opth1g 4947 Equality of the first memb...
opthg2 4948 Ordered pair theorem. (Co...
opth2 4949 Ordered pair theorem. (Co...
opthneg 4950 Two ordered pairs are not ...
opthne 4951 Two ordered pairs are not ...
otth2 4952 Ordered triple theorem, wi...
otth 4953 Ordered triple theorem. (...
otthg 4954 Ordered triple theorem, cl...
eqvinop 4955 A variable introduction la...
copsexg 4956 Substitution of class ` A ...
copsex2t 4957 Closed theorem form of ~ c...
copsex2g 4958 Implicit substitution infe...
copsex4g 4959 An implicit substitution i...
0nelop 4960 A property of ordered pair...
opwo0id 4961 An ordered pair is equal t...
opeqex 4962 Equivalence of existence i...
oteqex2 4963 Equivalence of existence i...
oteqex 4964 Equivalence of existence i...
opcom 4965 An ordered pair commutes i...
moop2 4966 "At most one" property of ...
opeqsn 4967 Equivalence for an ordered...
opeqpr 4968 Equivalence for an ordered...
snopeqop 4969 Equivalence for an ordered...
propeqop 4970 Equivalence for an ordered...
propssopi 4971 If a pair of ordered pairs...
mosubopt 4972 "At most one" remains true...
mosubop 4973 "At most one" remains true...
euop2 4974 Transfer existential uniqu...
euotd 4975 Prove existential uniquene...
opthwiener 4976 Justification theorem for ...
uniop 4977 The union of an ordered pa...
uniopel 4978 Ordered pair membership is...
otsndisj 4979 The singletons consisting ...
otiunsndisj 4980 The union of singletons co...
iunopeqop 4981 Implication of an ordered ...
opabid 4982 The law of concretion. Sp...
elopab 4983 Membership in a class abst...
opelopabsbALT 4984 The law of concretion in t...
opelopabsb 4985 The law of concretion in t...
brabsb 4986 The law of concretion in t...
opelopabt 4987 Closed theorem form of ~ o...
opelopabga 4988 The law of concretion. Th...
brabga 4989 The law of concretion for ...
opelopab2a 4990 Ordered pair membership in...
opelopaba 4991 The law of concretion. Th...
braba 4992 The law of concretion for ...
opelopabg 4993 The law of concretion. Th...
brabg 4994 The law of concretion for ...
opelopabgf 4995 The law of concretion. Th...
opelopab2 4996 Ordered pair membership in...
opelopab 4997 The law of concretion. Th...
brab 4998 The law of concretion for ...
opelopabaf 4999 The law of concretion. Th...
opelopabf 5000 The law of concretion. Th...
ssopab2 5001 Equivalence of ordered pai...
ssopab2b 5002 Equivalence of ordered pai...
ssopab2i 5003 Inference of ordered pair ...
ssopab2dv 5004 Inference of ordered pair ...
eqopab2b 5005 Equivalence of ordered pai...
opabn0 5006 Nonempty ordered pair clas...
opab0 5007 Empty ordered pair class a...
csbopab 5008 Move substitution into a c...
csbopabgALT 5009 Move substitution into a c...
csbmpt12 5010 Move substitution into a m...
csbmpt2 5011 Move substitution into the...
iunopab 5012 Move indexed union inside ...
elopabr 5013 Membership in a class abst...
elopabran 5014 Membership in a class abst...
rbropapd 5015 Properties of a pair in an...
rbropap 5016 Properties of a pair in a ...
2rbropap 5017 Properties of a pair in a ...
pwin 5018 The power class of the int...
pwunss 5019 The power class of the uni...
pwssun 5020 The power class of the uni...
pwundif 5021 Break up the power class o...
pwun 5022 The power class of the uni...
dfid3 5025 A stronger version of ~ df...
dfid4 5026 The identity function usin...
dfid2 5027 Alternate definition of th...
epelg 5030 The epsilon relation and m...
epelc 5031 The epsilon relationship a...
epel 5032 The epsilon relation and t...
poss 5037 Subset theorem for the par...
poeq1 5038 Equality theorem for parti...
poeq2 5039 Equality theorem for parti...
nfpo 5040 Bound-variable hypothesis ...
nfso 5041 Bound-variable hypothesis ...
pocl 5042 Properties of partial orde...
ispod 5043 Sufficient conditions for ...
swopolem 5044 Perform the substitutions ...
swopo 5045 A strict weak order is a p...
poirr 5046 A partial order relation i...
potr 5047 A partial order relation i...
po2nr 5048 A partial order relation h...
po3nr 5049 A partial order relation h...
po0 5050 Any relation is a partial ...
pofun 5051 A function preserves a par...
sopo 5052 A strict linear order is a...
soss 5053 Subset theorem for the str...
soeq1 5054 Equality theorem for the s...
soeq2 5055 Equality theorem for the s...
sonr 5056 A strict order relation is...
sotr 5057 A strict order relation is...
solin 5058 A strict order relation is...
so2nr 5059 A strict order relation ha...
so3nr 5060 A strict order relation ha...
sotric 5061 A strict order relation sa...
sotrieq 5062 Trichotomy law for strict ...
sotrieq2 5063 Trichotomy law for strict ...
sotr2 5064 A transitivity relation. ...
issod 5065 An irreflexive, transitive...
issoi 5066 An irreflexive, transitive...
isso2i 5067 Deduce strict ordering fro...
so0 5068 Any relation is a strict o...
somo 5069 A totally ordered set has ...
fri 5076 Property of well-founded r...
seex 5077 The ` R ` -preimage of an ...
exse 5078 Any relation on a set is s...
dffr2 5079 Alternate definition of we...
frc 5080 Property of well-founded r...
frss 5081 Subset theorem for the wel...
sess1 5082 Subset theorem for the set...
sess2 5083 Subset theorem for the set...
freq1 5084 Equality theorem for the w...
freq2 5085 Equality theorem for the w...
seeq1 5086 Equality theorem for the s...
seeq2 5087 Equality theorem for the s...
nffr 5088 Bound-variable hypothesis ...
nfse 5089 Bound-variable hypothesis ...
nfwe 5090 Bound-variable hypothesis ...
frirr 5091 A well-founded relation is...
fr2nr 5092 A well-founded relation ha...
fr0 5093 Any relation is well-found...
frminex 5094 If an element of a well-fo...
efrirr 5095 Irreflexivity of the epsil...
efrn2lp 5096 A set founded by epsilon c...
epse 5097 The epsilon relation is se...
tz7.2 5098 Similar to Theorem 7.2 of ...
dfepfr 5099 An alternate way of saying...
epfrc 5100 A subset of an epsilon-fou...
wess 5101 Subset theorem for the wel...
weeq1 5102 Equality theorem for the w...
weeq2 5103 Equality theorem for the w...
wefr 5104 A well-ordering is well-fo...
weso 5105 A well-ordering is a stric...
wecmpep 5106 The elements of an epsilon...
wetrep 5107 An epsilon well-ordering i...
wefrc 5108 A nonempty (possibly prope...
we0 5109 Any relation is a well-ord...
wereu 5110 A subset of a well-ordered...
wereu2 5111 All nonempty (possibly pro...
xpeq1 5128 Equality theorem for Carte...
xpeq2 5129 Equality theorem for Carte...
elxpi 5130 Membership in a Cartesian ...
elxp 5131 Membership in a Cartesian ...
elxp2 5132 Membership in a Cartesian ...
elxp2OLD 5133 Obsolete proof of ~ elxp2 ...
xpeq12 5134 Equality theorem for Carte...
xpeq1i 5135 Equality inference for Car...
xpeq2i 5136 Equality inference for Car...
xpeq12i 5137 Equality inference for Car...
xpeq1d 5138 Equality deduction for Car...
xpeq2d 5139 Equality deduction for Car...
xpeq12d 5140 Equality deduction for Car...
sqxpeqd 5141 Equality deduction for a C...
nfxp 5142 Bound-variable hypothesis ...
0nelxp 5143 The empty set is not a mem...
0nelxpOLD 5144 Obsolete proof of ~ 0nelxp...
0nelelxp 5145 A member of a Cartesian pr...
opelxp 5146 Ordered pair membership in...
brxp 5147 Binary relation on a Carte...
opelxpi 5148 Ordered pair membership in...
opelxpd 5149 Ordered pair membership in...
opelxp1 5150 The first member of an ord...
opelxp2 5151 The second member of an or...
otelxp1 5152 The first member of an ord...
otel3xp 5153 An ordered triple is an el...
rabxp 5154 Membership in a class buil...
brrelex12 5155 A true binary relation on ...
brrelex 5156 A true binary relation on ...
brrelex2 5157 A true binary relation on ...
brrelexi 5158 The first argument of a bi...
brrelex2i 5159 The second argument of a b...
nprrel12 5160 Proper classes are not rel...
nprrel 5161 No proper class is related...
0nelrel 5162 A binary relation does not...
fconstmpt 5163 Representation of a consta...
vtoclr 5164 Variable to class conversi...
opelvvg 5165 Ordered pair membership in...
opelvv 5166 Ordered pair membership in...
opthprc 5167 Justification theorem for ...
brel 5168 Two things in a binary rel...
elxp3 5169 Membership in a Cartesian ...
opeliunxp 5170 Membership in a union of C...
xpundi 5171 Distributive law for Carte...
xpundir 5172 Distributive law for Carte...
xpiundi 5173 Distributive law for Carte...
xpiundir 5174 Distributive law for Carte...
iunxpconst 5175 Membership in a union of C...
xpun 5176 The Cartesian product of t...
elvv 5177 Membership in universal cl...
elvvv 5178 Membership in universal cl...
elvvuni 5179 An ordered pair contains i...
brinxp2 5180 Intersection of binary rel...
brinxp 5181 Intersection of binary rel...
poinxp 5182 Intersection of partial or...
soinxp 5183 Intersection of total orde...
frinxp 5184 Intersection of well-found...
seinxp 5185 Intersection of set-like r...
weinxp 5186 Intersection of well-order...
posn 5187 Partial ordering of a sing...
sosn 5188 Strict ordering on a singl...
frsn 5189 Founded relation on a sing...
wesn 5190 Well-ordering of a singlet...
elopaelxp 5191 Membership in an ordered p...
bropaex12 5192 Two classes related by an ...
opabssxp 5193 An abstraction relation is...
brab2a 5194 The law of concretion for ...
optocl 5195 Implicit substitution of c...
2optocl 5196 Implicit substitution of c...
3optocl 5197 Implicit substitution of c...
opbrop 5198 Ordered pair membership in...
0xp 5199 The Cartesian product with...
csbxp 5200 Distribute proper substitu...
releq 5201 Equality theorem for the r...
releqi 5202 Equality inference for the...
releqd 5203 Equality deduction for the...
nfrel 5204 Bound-variable hypothesis ...
sbcrel 5205 Distribute proper substitu...
relss 5206 Subclass theorem for relat...
ssrel 5207 A subclass relationship de...
ssrelOLD 5208 Obsolete proof of ~ ssrel ...
eqrel 5209 Extensionality principle f...
ssrel2 5210 A subclass relationship de...
relssi 5211 Inference from subclass pr...
relssdv 5212 Deduction from subclass pr...
eqrelriv 5213 Inference from extensional...
eqrelriiv 5214 Inference from extensional...
eqbrriv 5215 Inference from extensional...
eqrelrdv 5216 Deduce equality of relatio...
eqbrrdv 5217 Deduction from extensional...
eqbrrdiv 5218 Deduction from extensional...
eqrelrdv2 5219 A version of ~ eqrelrdv . ...
ssrelrel 5220 A subclass relationship de...
eqrelrel 5221 Extensionality principle f...
elrel 5222 A member of a relation is ...
relsn 5223 A singleton is a relation ...
relsnop 5224 A singleton of an ordered ...
xpss12 5225 Subset theorem for Cartesi...
xpss 5226 A Cartesian product is inc...
relxp 5227 A Cartesian product is a r...
xpss1 5228 Subset relation for Cartes...
xpss2 5229 Subset relation for Cartes...
copsex2gb 5230 Implicit substitution infe...
copsex2ga 5231 Implicit substitution infe...
elopaba 5232 Membership in an ordered p...
xpsspw 5233 A Cartesian product is inc...
unixpss 5234 The double class union of ...
relun 5235 The union of two relations...
relin1 5236 The intersection with a re...
relin2 5237 The intersection with a re...
reldif 5238 A difference cutting down ...
reliun 5239 An indexed union is a rela...
reliin 5240 An indexed intersection is...
reluni 5241 The union of a class is a ...
relint 5242 The intersection of a clas...
rel0 5243 The empty set is a relatio...
nrelv 5244 The universal class is not...
relopabi 5245 A class of ordered pairs i...
relopabiALT 5246 Alternate proof of ~ relop...
relopab 5247 A class of ordered pairs i...
mptrel 5248 The maps-to notation alway...
reli 5249 The identity relation is a...
rele 5250 The membership relation is...
opabid2 5251 A relation expressed as an...
inopab 5252 Intersection of two ordere...
difopab 5253 The difference of two orde...
inxp 5254 The intersection of two Ca...
xpindi 5255 Distributive law for Carte...
xpindir 5256 Distributive law for Carte...
xpiindi 5257 Distributive law for Carte...
xpriindi 5258 Distributive law for Carte...
eliunxp 5259 Membership in a union of C...
opeliunxp2 5260 Membership in a union of C...
raliunxp 5261 Write a double restricted ...
rexiunxp 5262 Write a double restricted ...
ralxp 5263 Universal quantification r...
rexxp 5264 Existential quantification...
exopxfr 5265 Transfer ordered-pair exis...
exopxfr2 5266 Transfer ordered-pair exis...
djussxp 5267 Disjoint union is a subset...
ralxpf 5268 Version of ~ ralxp with bo...
rexxpf 5269 Version of ~ rexxp with bo...
iunxpf 5270 Indexed union on a Cartesi...
opabbi2dv 5271 Deduce equality of a relat...
relop 5272 A necessary and sufficient...
ideqg 5273 For sets, the identity rel...
ideq 5274 For sets, the identity rel...
ididg 5275 A set is identical to itse...
issetid 5276 Two ways of expressing set...
coss1 5277 Subclass theorem for compo...
coss2 5278 Subclass theorem for compo...
coeq1 5279 Equality theorem for compo...
coeq2 5280 Equality theorem for compo...
coeq1i 5281 Equality inference for com...
coeq2i 5282 Equality inference for com...
coeq1d 5283 Equality deduction for com...
coeq2d 5284 Equality deduction for com...
coeq12i 5285 Equality inference for com...
coeq12d 5286 Equality deduction for com...
nfco 5287 Bound-variable hypothesis ...
brcog 5288 Ordered pair membership in...
opelco2g 5289 Ordered pair membership in...
brcogw 5290 Ordered pair membership in...
eqbrrdva 5291 Deduction from extensional...
brco 5292 Binary relation on a compo...
opelco 5293 Ordered pair membership in...
cnvss 5294 Subset theorem for convers...
cnvssOLD 5295 Obsolete proof of ~ cnvss ...
cnveq 5296 Equality theorem for conve...
cnveqi 5297 Equality inference for con...
cnveqd 5298 Equality deduction for con...
elcnv 5299 Membership in a converse. ...
elcnv2 5300 Membership in a converse. ...
nfcnv 5301 Bound-variable hypothesis ...
opelcnvg 5302 Ordered-pair membership in...
brcnvg 5303 The converse of a binary r...
opelcnv 5304 Ordered-pair membership in...
brcnv 5305 The converse of a binary r...
csbcnv 5306 Move class substitution in...
csbcnvgALT 5307 Move class substitution in...
cnvco 5308 Distributive law of conver...
cnvuni 5309 The converse of a class un...
dfdm3 5310 Alternate definition of do...
dfrn2 5311 Alternate definition of ra...
dfrn3 5312 Alternate definition of ra...
elrn2g 5313 Membership in a range. (C...
elrng 5314 Membership in a range. (C...
ssrelrn 5315 If a relation is a subset ...
dfdm4 5316 Alternate definition of do...
dfdmf 5317 Definition of domain, usin...
csbdm 5318 Distribute proper substitu...
eldmg 5319 Domain membership. Theore...
eldm2g 5320 Domain membership. Theore...
eldm 5321 Membership in a domain. T...
eldm2 5322 Membership in a domain. T...
dmss 5323 Subset theorem for domain....
dmeq 5324 Equality theorem for domai...
dmeqi 5325 Equality inference for dom...
dmeqd 5326 Equality deduction for dom...
opeldmd 5327 Membership of first of an ...
opeldm 5328 Membership of first of an ...
breldm 5329 Membership of first of a b...
breldmg 5330 Membership of first of a b...
dmun 5331 The domain of a union is t...
dmin 5332 The domain of an intersect...
dmiun 5333 The domain of an indexed u...
dmuni 5334 The domain of a union. Pa...
dmopab 5335 The domain of a class of o...
dmopabss 5336 Upper bound for the domain...
dmopab3 5337 The domain of a restricted...
opabssxpd 5338 An ordered-pair class abst...
dm0 5339 The domain of the empty se...
dmi 5340 The domain of the identity...
dmv 5341 The domain of the universe...
dm0rn0 5342 An empty domain is equival...
reldm0 5343 A relation is empty iff it...
dmxp 5344 The domain of a Cartesian ...
dmxpid 5345 The domain of a square Car...
dmxpin 5346 The domain of the intersec...
xpid11 5347 The Cartesian product of a...
dmcnvcnv 5348 The domain of the double c...
rncnvcnv 5349 The range of the double co...
elreldm 5350 The first member of an ord...
rneq 5351 Equality theorem for range...
rneqi 5352 Equality inference for ran...
rneqd 5353 Equality deduction for ran...
rnss 5354 Subset theorem for range. ...
brelrng 5355 The second argument of a b...
brelrn 5356 The second argument of a b...
opelrn 5357 Membership of second membe...
releldm 5358 The first argument of a bi...
relelrn 5359 The second argument of a b...
releldmb 5360 Membership in a domain. (...
relelrnb 5361 Membership in a range. (C...
releldmi 5362 The first argument of a bi...
relelrni 5363 The second argument of a b...
dfrnf 5364 Definition of range, using...
elrn2 5365 Membership in a range. (C...
elrn 5366 Membership in a range. (C...
nfdm 5367 Bound-variable hypothesis ...
nfrn 5368 Bound-variable hypothesis ...
dmiin 5369 Domain of an intersection....
rnopab 5370 The range of a class of or...
rnmpt 5371 The range of a function in...
elrnmpt 5372 The range of a function in...
elrnmpt1s 5373 Elementhood in an image se...
elrnmpt1 5374 Elementhood in an image se...
elrnmptg 5375 Membership in the range of...
elrnmpti 5376 Membership in the range of...
rn0 5377 The range of the empty set...
dfiun3g 5378 Alternate definition of in...
dfiin3g 5379 Alternate definition of in...
dfiun3 5380 Alternate definition of in...
dfiin3 5381 Alternate definition of in...
riinint 5382 Express a relative indexed...
relrn0 5383 A relation is empty iff it...
dmrnssfld 5384 The domain and range of a ...
dmcoss 5385 Domain of a composition. ...
rncoss 5386 Range of a composition. (...
dmcosseq 5387 Domain of a composition. ...
dmcoeq 5388 Domain of a composition. ...
rncoeq 5389 Range of a composition. (...
reseq1 5390 Equality theorem for restr...
reseq2 5391 Equality theorem for restr...
reseq1i 5392 Equality inference for res...
reseq2i 5393 Equality inference for res...
reseq12i 5394 Equality inference for res...
reseq1d 5395 Equality deduction for res...
reseq2d 5396 Equality deduction for res...
reseq12d 5397 Equality deduction for res...
nfres 5398 Bound-variable hypothesis ...
csbres 5399 Distribute proper substitu...
res0 5400 A restriction to the empty...
opelres 5401 Ordered pair membership in...
brres 5402 Binary relation on a restr...
dfres3 5403 Alternate definition of re...
opelresg 5404 Ordered pair membership in...
brresg 5405 Binary relation on a restr...
opres 5406 Ordered pair membership in...
resieq 5407 A restricted identity rela...
opelresi 5408 ` <. A , A >. ` belongs to...
resres 5409 The restriction of a restr...
resundi 5410 Distributive law for restr...
resundir 5411 Distributive law for restr...
resindi 5412 Class restriction distribu...
resindir 5413 Class restriction distribu...
inres 5414 Move intersection into cla...
resdifcom 5415 Commutative law for restri...
resiun1 5416 Distribution of restrictio...
resiun1OLD 5417 Obsolete proof of ~ resiun...
resiun2 5418 Distribution of restrictio...
dmres 5419 The domain of a restrictio...
ssdmres 5420 A domain restricted to a s...
dmresexg 5421 The domain of a restrictio...
resss 5422 A class includes its restr...
rescom 5423 Commutative law for restri...
ssres 5424 Subclass theorem for restr...
ssres2 5425 Subclass theorem for restr...
relres 5426 A restriction is a relatio...
resabs1 5427 Absorption law for restric...
resabs1d 5428 Absorption law for restric...
resabs2 5429 Absorption law for restric...
residm 5430 Idempotent law for restric...
resima 5431 A restriction to an image....
resima2 5432 Image under a restricted c...
resima2OLD 5433 Obsolete proof of ~ resima...
xpssres 5434 Restriction of a constant ...
elres 5435 Membership in a restrictio...
elsnres 5436 Membership in restriction ...
relssres 5437 Simplification law for res...
dmressnsn 5438 The domain of a restrictio...
eldmressnsn 5439 The element of the domain ...
eldmeldmressn 5440 An element of the domain (...
resdm 5441 A relation restricted to i...
resexg 5442 The restriction of a set i...
resex 5443 The restriction of a set i...
resindm 5444 When restricting a relatio...
resdmdfsn 5445 Restricting a relation to ...
resopab 5446 Restriction of a class abs...
iss 5447 A subclass of the identity...
resopab2 5448 Restriction of a class abs...
resmpt 5449 Restriction of the mapping...
resmpt3 5450 Unconditional restriction ...
resmptf 5451 Restriction of the mapping...
resmptd 5452 Restriction of the mapping...
dfres2 5453 Alternate definition of th...
mptss 5454 Sufficient condition for i...
opabresid 5455 The restricted identity ex...
mptresid 5456 The restricted identity ex...
dmresi 5457 The domain of a restricted...
restidsing 5458 Restriction of the identit...
restidsingOLD 5459 Obsolete proof of ~ restid...
resid 5460 Any relation restricted to...
imaeq1 5461 Equality theorem for image...
imaeq2 5462 Equality theorem for image...
imaeq1i 5463 Equality theorem for image...
imaeq2i 5464 Equality theorem for image...
imaeq1d 5465 Equality theorem for image...
imaeq2d 5466 Equality theorem for image...
imaeq12d 5467 Equality theorem for image...
dfima2 5468 Alternate definition of im...
dfima3 5469 Alternate definition of im...
elimag 5470 Membership in an image. T...
elima 5471 Membership in an image. T...
elima2 5472 Membership in an image. T...
elima3 5473 Membership in an image. T...
nfima 5474 Bound-variable hypothesis ...
nfimad 5475 Deduction version of bound...
imadmrn 5476 The image of the domain of...
imassrn 5477 The image of a class is a ...
imai 5478 Image under the identity r...
rnresi 5479 The range of the restricte...
resiima 5480 The image of a restriction...
ima0 5481 Image of the empty set. T...
0ima 5482 Image under the empty rela...
csbima12 5483 Move class substitution in...
imadisj 5484 A class whose image under ...
cnvimass 5485 A preimage under any class...
cnvimarndm 5486 The preimage of the range ...
imasng 5487 The image of a singleton. ...
relimasn 5488 The image of a singleton. ...
elrelimasn 5489 Elementhood in the image o...
elimasn 5490 Membership in an image of ...
elimasng 5491 Membership in an image of ...
elimasni 5492 Membership in an image of ...
args 5493 Two ways to express the cl...
eliniseg 5494 Membership in an initial s...
epini 5495 Any set is equal to its pr...
iniseg 5496 An idiom that signifies an...
inisegn0 5497 Nonemptiness of an initial...
dffr3 5498 Alternate definition of we...
dfse2 5499 Alternate definition of se...
imass1 5500 Subset theorem for image. ...
imass2 5501 Subset theorem for image. ...
ndmima 5502 The image of a singleton o...
relcnv 5503 A converse is a relation. ...
relbrcnvg 5504 When ` R ` is a relation, ...
eliniseg2 5505 Eliminate the class existe...
relbrcnv 5506 When ` R ` is a relation, ...
cotrg 5507 Two ways of saying that th...
cotr 5508 Two ways of saying a relat...
issref 5509 Two ways to state a relati...
cnvsym 5510 Two ways of saying a relat...
intasym 5511 Two ways of saying a relat...
asymref 5512 Two ways of saying a relat...
asymref2 5513 Two ways of saying a relat...
intirr 5514 Two ways of saying a relat...
brcodir 5515 Two ways of saying that tw...
codir 5516 Two ways of saying a relat...
qfto 5517 A quantifier-free way of e...
xpidtr 5518 A square Cartesian product...
trin2 5519 The intersection of two tr...
poirr2 5520 A partial order relation i...
trinxp 5521 The relation induced by a ...
soirri 5522 A strict order relation is...
sotri 5523 A strict order relation is...
son2lpi 5524 A strict order relation ha...
sotri2 5525 A transitivity relation. ...
sotri3 5526 A transitivity relation. ...
poleloe 5527 Express "less than or equa...
poltletr 5528 Transitive law for general...
somin1 5529 Property of a minimum in a...
somincom 5530 Commutativity of minimum i...
somin2 5531 Property of a minimum in a...
soltmin 5532 Being less than a minimum,...
cnvopab 5533 The converse of a class ab...
mptcnv 5534 The converse of a mapping ...
cnv0 5535 The converse of the empty ...
cnv0OLD 5536 Obsolete version of ~ cnv0...
cnvi 5537 The converse of the identi...
cnvun 5538 The converse of a union is...
cnvdif 5539 Distributive law for conve...
cnvin 5540 Distributive law for conve...
rnun 5541 Distributive law for range...
rnin 5542 The range of an intersecti...
rniun 5543 The range of an indexed un...
rnuni 5544 The range of a union. Par...
imaundi 5545 Distributive law for image...
imaundir 5546 The image of a union. (Co...
dminss 5547 An upper bound for interse...
imainss 5548 An upper bound for interse...
inimass 5549 The image of an intersecti...
inimasn 5550 The intersection of the im...
cnvxp 5551 The converse of a Cartesia...
xp0 5552 The Cartesian product with...
xpnz 5553 The Cartesian product of n...
xpeq0 5554 At least one member of an ...
xpdisj1 5555 Cartesian products with di...
xpdisj2 5556 Cartesian products with di...
xpsndisj 5557 Cartesian products with tw...
difxp 5558 Difference of Cartesian pr...
difxp1 5559 Difference law for Cartesi...
difxp2 5560 Difference law for Cartesi...
djudisj 5561 Disjoint unions with disjo...
xpdifid 5562 The set of distinct couple...
resdisj 5563 A double restriction to di...
rnxp 5564 The range of a Cartesian p...
dmxpss 5565 The domain of a Cartesian ...
rnxpss 5566 The range of a Cartesian p...
rnxpid 5567 The range of a square Cart...
ssxpb 5568 A Cartesian product subcla...
xp11 5569 The Cartesian product of n...
xpcan 5570 Cancellation law for Carte...
xpcan2 5571 Cancellation law for Carte...
ssrnres 5572 Subset of the range of a r...
rninxp 5573 Range of the intersection ...
dminxp 5574 Domain of the intersection...
imainrect 5575 Image of a relation restri...
xpima 5576 The image by a constant fu...
xpima1 5577 The image by a Cartesian p...
xpima2 5578 The image by a Cartesian p...
xpimasn 5579 The image of a singleton b...
sossfld 5580 The base set of a strict o...
sofld 5581 The base set of a nonempty...
cnvcnv3 5582 The set of all ordered pai...
dfrel2 5583 Alternate definition of re...
dfrel4v 5584 A relation can be expresse...
dfrel4 5585 A relation can be expresse...
cnvcnv 5586 The double converse of a c...
cnvcnvOLD 5587 Obsolete proof of ~ cnvcnv...
cnvcnv2 5588 The double converse of a c...
cnvcnvss 5589 The double converse of a c...
cnveqb 5590 Equality theorem for conve...
cnveq0 5591 A relation empty iff its c...
dfrel3 5592 Alternate definition of re...
dmresv 5593 The domain of a universal ...
rnresv 5594 The range of a universal r...
dfrn4 5595 Range defined in terms of ...
csbrn 5596 Distribute proper substitu...
rescnvcnv 5597 The restriction of the dou...
cnvcnvres 5598 The double converse of the...
imacnvcnv 5599 The image of the double co...
dmsnn0 5600 The domain of a singleton ...
rnsnn0 5601 The range of a singleton i...
dmsn0 5602 The domain of the singleto...
cnvsn0 5603 The converse of the single...
dmsn0el 5604 The domain of a singleton ...
relsn2 5605 A singleton is a relation ...
dmsnopg 5606 The domain of a singleton ...
dmsnopss 5607 The domain of a singleton ...
dmpropg 5608 The domain of an unordered...
dmsnop 5609 The domain of a singleton ...
dmprop 5610 The domain of an unordered...
dmtpop 5611 The domain of an unordered...
cnvcnvsn 5612 Double converse of a singl...
dmsnsnsn 5613 The domain of the singleto...
rnsnopg 5614 The range of a singleton o...
rnpropg 5615 The range of a pair of ord...
rnsnop 5616 The range of a singleton o...
op1sta 5617 Extract the first member o...
cnvsn 5618 Converse of a singleton of...
op2ndb 5619 Extract the second member ...
op2nda 5620 Extract the second member ...
cnvsng 5621 Converse of a singleton of...
opswap 5622 Swap the members of an ord...
cnvresima 5623 An image under the convers...
resdm2 5624 A class restricted to its ...
resdmres 5625 Restriction to the domain ...
resresdm 5626 A restriction by an arbitr...
imadmres 5627 The image of the domain of...
mptpreima 5628 The preimage of a function...
mptiniseg 5629 Converse singleton image o...
dmmpt 5630 The domain of the mapping ...
dmmptss 5631 The domain of a mapping is...
dmmptg 5632 The domain of the mapping ...
relco 5633 A composition is a relatio...
dfco2 5634 Alternate definition of a ...
dfco2a 5635 Generalization of ~ dfco2 ...
coundi 5636 Class composition distribu...
coundir 5637 Class composition distribu...
cores 5638 Restricted first member of...
resco 5639 Associative law for the re...
imaco 5640 Image of the composition o...
rnco 5641 The range of the compositi...
rnco2 5642 The range of the compositi...
dmco 5643 The domain of a compositio...
coeq0 5644 A composition of two relat...
coiun 5645 Composition with an indexe...
cocnvcnv1 5646 A composition is not affec...
cocnvcnv2 5647 A composition is not affec...
cores2 5648 Absorption of a reverse (p...
co02 5649 Composition with the empty...
co01 5650 Composition with the empty...
coi1 5651 Composition with the ident...
coi2 5652 Composition with the ident...
coires1 5653 Composition with a restric...
coass 5654 Associative law for class ...
relcnvtr 5655 A relation is transitive i...
relssdmrn 5656 A relation is included in ...
cnvssrndm 5657 The converse is a subset o...
cossxp 5658 Composition as a subset of...
relrelss 5659 Two ways to describe the s...
unielrel 5660 The membership relation fo...
relfld 5661 The double union of a rela...
relresfld 5662 Restriction of a relation ...
relcoi2 5663 Composition with the ident...
relcoi1 5664 Composition with the ident...
unidmrn 5665 The double union of the co...
relcnvfld 5666 if ` R ` is a relation, it...
dfdm2 5667 Alternate definition of do...
unixp 5668 The double class union of ...
unixp0 5669 A Cartesian product is emp...
unixpid 5670 Field of a square Cartesia...
ressn 5671 Restriction of a class to ...
cnviin 5672 The converse of an interse...
cnvpo 5673 The converse of a partial ...
cnvso 5674 The converse of a strict o...
xpco 5675 Composition of two Cartesi...
xpcoid 5676 Composition of two square ...
elsnxp 5677 Elementhood to a cartesian...
elsnxpOLD 5678 Obsolete proof of ~ elsnxp...
predeq123 5681 Equality theorem for the p...
predeq1 5682 Equality theorem for the p...
predeq2 5683 Equality theorem for the p...
predeq3 5684 Equality theorem for the p...
nfpred 5685 Bound-variable hypothesis ...
predpredss 5686 If ` A ` is a subset of ` ...
predss 5687 The predecessor class of `...
sspred 5688 Another subset/predecessor...
dfpred2 5689 An alternate definition of...
dfpred3 5690 An alternate definition of...
dfpred3g 5691 An alternate definition of...
elpredim 5692 Membership in a predecesso...
elpred 5693 Membership in a predecesso...
elpredg 5694 Membership in a predecesso...
predasetex 5695 The predecessor class exis...
dffr4 5696 Alternate definition of we...
predel 5697 Membership in the predeces...
predpo 5698 Property of the precessor ...
predso 5699 Property of the predecesso...
predbrg 5700 Closed form of ~ elpredim ...
setlikespec 5701 If ` R ` is set-like in ` ...
predidm 5702 Idempotent law for the pre...
predin 5703 Intersection law for prede...
predun 5704 Union law for predecessor ...
preddif 5705 Difference law for predece...
predep 5706 The predecessor under the ...
preddowncl 5707 A property of classes that...
predpoirr 5708 Given a partial ordering, ...
predfrirr 5709 Given a well-founded relat...
pred0 5710 The predecessor class over...
tz6.26 5711 All nonempty (possibly pro...
tz6.26i 5712 All nonempty (possibly pro...
wfi 5713 The Principle of Well-Foun...
wfii 5714 The Principle of Well-Foun...
wfisg 5715 Well-Founded Induction Sch...
wfis 5716 Well-Founded Induction Sch...
wfis2fg 5717 Well-Founded Induction Sch...
wfis2f 5718 Well Founded Induction sch...
wfis2g 5719 Well-Founded Induction Sch...
wfis2 5720 Well Founded Induction sch...
wfis3 5721 Well Founded Induction sch...
ordeq 5730 Equality theorem for the o...
elong 5731 An ordinal number is an or...
elon 5732 An ordinal number is an or...
eloni 5733 An ordinal number has the ...
elon2 5734 An ordinal number is an or...
limeq 5735 Equality theorem for the l...
ordwe 5736 Epsilon well-orders every ...
ordtr 5737 An ordinal class is transi...
ordfr 5738 Epsilon is well-founded on...
ordelss 5739 An element of an ordinal c...
trssord 5740 A transitive subclass of a...
ordirr 5741 Epsilon irreflexivity of o...
nordeq 5742 A member of an ordinal cla...
ordn2lp 5743 An ordinal class cannot be...
tz7.5 5744 A nonempty subclass of an ...
ordelord 5745 An element of an ordinal c...
tron 5746 The class of all ordinal n...
ordelon 5747 An element of an ordinal c...
onelon 5748 An element of an ordinal n...
tz7.7 5749 A transitive class belongs...
ordelssne 5750 For ordinal classes, membe...
ordelpss 5751 For ordinal classes, membe...
ordsseleq 5752 For ordinal classes, inclu...
ordin 5753 The intersection of two or...
onin 5754 The intersection of two or...
ordtri3or 5755 A trichotomy law for ordin...
ordtri1 5756 A trichotomy law for ordin...
ontri1 5757 A trichotomy law for ordin...
ordtri2 5758 A trichotomy law for ordin...
ordtri3 5759 A trichotomy law for ordin...
ordtri3OLD 5760 Obsolete proof of ~ ordtri...
ordtri4 5761 A trichotomy law for ordin...
orddisj 5762 An ordinal class and its s...
onfr 5763 The ordinal class is well-...
onelpss 5764 Relationship between membe...
onsseleq 5765 Relationship between subse...
onelss 5766 An element of an ordinal n...
ordtr1 5767 Transitive law for ordinal...
ordtr2 5768 Transitive law for ordinal...
ordtr3 5769 Transitive law for ordinal...
ordtr3OLD 5770 Obsolete proof of ~ ordtr3...
ontr1 5771 Transitive law for ordinal...
ontr2 5772 Transitive law for ordinal...
ordunidif 5773 The union of an ordinal st...
ordintdif 5774 If ` B ` is smaller than `...
onintss 5775 If a property is true for ...
oneqmini 5776 A way to show that an ordi...
ord0 5777 The empty set is an ordina...
0elon 5778 The empty set is an ordina...
ord0eln0 5779 A nonempty ordinal contain...
on0eln0 5780 An ordinal number contains...
dflim2 5781 An alternate definition of...
inton 5782 The intersection of the cl...
nlim0 5783 The empty set is not a lim...
limord 5784 A limit ordinal is ordinal...
limuni 5785 A limit ordinal is its own...
limuni2 5786 The union of a limit ordin...
0ellim 5787 A limit ordinal contains t...
limelon 5788 A limit ordinal class that...
onn0 5789 The class of all ordinal n...
suceq 5790 Equality of successors. (...
elsuci 5791 Membership in a successor....
elsucg 5792 Membership in a successor....
elsuc2g 5793 Variant of membership in a...
elsuc 5794 Membership in a successor....
elsuc2 5795 Membership in a successor....
nfsuc 5796 Bound-variable hypothesis ...
elelsuc 5797 Membership in a successor....
sucel 5798 Membership of a successor ...
suc0 5799 The successor of the empty...
sucprc 5800 A proper class is its own ...
unisuc 5801 A transitive class is equa...
sssucid 5802 A class is included in its...
sucidg 5803 Part of Proposition 7.23 o...
sucid 5804 A set belongs to its succe...
nsuceq0 5805 No successor is empty. (C...
eqelsuc 5806 A set belongs to the succe...
iunsuc 5807 Inductive definition for t...
suctr 5808 The successor of a transit...
suctrOLD 5809 Obsolete proof of ~ suctr ...
trsuc 5810 A set whose successor belo...
trsucss 5811 A member of the successor ...
ordsssuc 5812 A subset of an ordinal bel...
onsssuc 5813 A subset of an ordinal num...
ordsssuc2 5814 An ordinal subset of an or...
onmindif 5815 When its successor is subt...
ordnbtwn 5816 There is no set between an...
ordnbtwnOLD 5817 Obsolete proof of ~ ordnbt...
onnbtwn 5818 There is no set between an...
sucssel 5819 A set whose successor is a...
orddif 5820 Ordinal derived from its s...
orduniss 5821 An ordinal class includes ...
ordtri2or 5822 A trichotomy law for ordin...
ordtri2or2 5823 A trichotomy law for ordin...
ordtri2or3 5824 A consequence of total ord...
ordelinel 5825 The intersection of two or...
ordelinelOLD 5826 Obsolete proof of ~ ordeli...
ordssun 5827 Property of a subclass of ...
ordequn 5828 The maximum (i.e. union) o...
ordun 5829 The maximum (i.e. union) o...
ordunisssuc 5830 A subclass relationship fo...
suc11 5831 The successor operation be...
onordi 5832 An ordinal number is an or...
ontrci 5833 An ordinal number is a tra...
onirri 5834 An ordinal number is not a...
oneli 5835 A member of an ordinal num...
onelssi 5836 A member of an ordinal num...
onssneli 5837 An ordering law for ordina...
onssnel2i 5838 An ordering law for ordina...
onelini 5839 An element of an ordinal n...
oneluni 5840 An ordinal number equals i...
onunisuci 5841 An ordinal number is equal...
onsseli 5842 Subset is equivalent to me...
onun2i 5843 The union of two ordinal n...
unizlim 5844 An ordinal equal to its ow...
on0eqel 5845 An ordinal number either e...
snsn0non 5846 The singleton of the singl...
onxpdisj 5847 Ordinal numbers and ordere...
onnev 5848 The class of ordinal numbe...
iotajust 5850 Soundness justification th...
dfiota2 5852 Alternate definition for d...
nfiota1 5853 Bound-variable hypothesis ...
nfiotad 5854 Deduction version of ~ nfi...
nfiota 5855 Bound-variable hypothesis ...
cbviota 5856 Change bound variables in ...
cbviotav 5857 Change bound variables in ...
sb8iota 5858 Variable substitution in d...
iotaeq 5859 Equality theorem for descr...
iotabi 5860 Equivalence theorem for de...
uniabio 5861 Part of Theorem 8.17 in [Q...
iotaval 5862 Theorem 8.19 in [Quine] p....
iotauni 5863 Equivalence between two di...
iotaint 5864 Equivalence between two di...
iota1 5865 Property of iota. (Contri...
iotanul 5866 Theorem 8.22 in [Quine] p....
iotassuni 5867 The ` iota ` class is a su...
iotaex 5868 Theorem 8.23 in [Quine] p....
iota4 5869 Theorem *14.22 in [Whitehe...
iota4an 5870 Theorem *14.23 in [Whitehe...
iota5 5871 A method for computing iot...
iotabidv 5872 Formula-building deduction...
iotabii 5873 Formula-building deduction...
iotacl 5874 Membership law for descrip...
iota2df 5875 A condition that allows us...
iota2d 5876 A condition that allows us...
iota2 5877 The unique element such th...
sniota 5878 A class abstraction with a...
dfiota4 5879 The ` iota ` operation usi...
dfiota4OLD 5880 Obsolete proof of ~ dfiota...
csbiota 5881 Class substitution within ...
dffun2 5898 Alternate definition of a ...
dffun3 5899 Alternate definition of fu...
dffun4 5900 Alternate definition of a ...
dffun5 5901 Alternate definition of fu...
dffun6f 5902 Definition of function, us...
dffun6 5903 Alternate definition of a ...
funmo 5904 A function has at most one...
funrel 5905 A function is a relation. ...
0nelfun 5906 A function does not contai...
funss 5907 Subclass theorem for funct...
funeq 5908 Equality theorem for funct...
funeqi 5909 Equality inference for the...
funeqd 5910 Equality deduction for the...
nffun 5911 Bound-variable hypothesis ...
sbcfung 5912 Distribute proper substitu...
funeu 5913 There is exactly one value...
funeu2 5914 There is exactly one value...
dffun7 5915 Alternate definition of a ...
dffun8 5916 Alternate definition of a ...
dffun9 5917 Alternate definition of a ...
funfn 5918 An equivalence for the fun...
funfnd 5919 A function is a function o...
funi 5920 The identity relation is a...
nfunv 5921 The universe is not a func...
funopg 5922 A Kuratowski ordered pair ...
funopab 5923 A class of ordered pairs i...
funopabeq 5924 A class of ordered pairs o...
funopab4 5925 A class of ordered pairs o...
funmpt 5926 A function in maps-to nota...
funmpt2 5927 Functionality of a class g...
funco 5928 The composition of two fun...
funres 5929 A restriction of a functio...
funssres 5930 The restriction of a funct...
fun2ssres 5931 Equality of restrictions o...
funun 5932 The union of functions wit...
fununmo 5933 If the union of classes is...
fununfun 5934 If the union of classes is...
fundif 5935 A function with removed el...
funcnvsn 5936 The converse singleton of ...
funsng 5937 A singleton of an ordered ...
fnsng 5938 Functionality and domain o...
funsn 5939 A singleton of an ordered ...
funprg 5940 A set of two pairs is a fu...
funprgOLD 5941 Obsolete proof of ~ funprg...
funtpg 5942 A set of three pairs is a ...
funtpgOLD 5943 Obsolete proof of ~ funtpg...
funpr 5944 A function with a domain o...
funtp 5945 A function with a domain o...
fnsn 5946 Functionality and domain o...
fnprg 5947 Function with a domain of ...
fntpg 5948 Function with a domain of ...
fntp 5949 A function with a domain o...
funcnvpr 5950 The converse pair of order...
funcnvtp 5951 The converse triple of ord...
funcnvqp 5952 The converse quadruple of ...
funcnvqpOLD 5953 Obsolete proof of ~ funcnv...
fun0 5954 The empty set is a functio...
funcnv0 5955 The converse of the empty ...
funcnvcnv 5956 The double converse of a f...
funcnv2 5957 A simpler equivalence for ...
funcnv 5958 The converse of a class is...
funcnv3 5959 A condition showing a clas...
fun2cnv 5960 The double converse of a c...
svrelfun 5961 A single-valued relation i...
fncnv 5962 Single-rootedness (see ~ f...
fun11 5963 Two ways of stating that `...
fununi 5964 The union of a chain (with...
funin 5965 The intersection with a fu...
funres11 5966 The restriction of a one-t...
funcnvres 5967 The converse of a restrict...
cnvresid 5968 Converse of a restricted i...
funcnvres2 5969 The converse of a restrict...
funimacnv 5970 The image of the preimage ...
funimass1 5971 A kind of contraposition l...
funimass2 5972 A kind of contraposition l...
imadif 5973 The image of a difference ...
imain 5974 The image of an intersecti...
funimaexg 5975 Axiom of Replacement using...
funimaex 5976 The image of a set under a...
isarep1 5977 Part of a study of the Axi...
isarep2 5978 Part of a study of the Axi...
fneq1 5979 Equality theorem for funct...
fneq2 5980 Equality theorem for funct...
fneq1d 5981 Equality deduction for fun...
fneq2d 5982 Equality deduction for fun...
fneq12d 5983 Equality deduction for fun...
fneq12 5984 Equality theorem for funct...
fneq1i 5985 Equality inference for fun...
fneq2i 5986 Equality inference for fun...
nffn 5987 Bound-variable hypothesis ...
fnfun 5988 A function with domain is ...
fnrel 5989 A function with domain is ...
fndm 5990 The domain of a function. ...
funfni 5991 Inference to convert a fun...
fndmu 5992 A function has a unique do...
fnbr 5993 The first argument of bina...
fnop 5994 The first argument of an o...
fneu 5995 There is exactly one value...
fneu2 5996 There is exactly one value...
fnun 5997 The union of two functions...
fnunsn 5998 Extension of a function wi...
fnco 5999 Composition of two functio...
fnresdm 6000 A function does not change...
fnresdisj 6001 A function restricted to a...
2elresin 6002 Membership in two function...
fnssresb 6003 Restriction of a function ...
fnssres 6004 Restriction of a function ...
fnresin1 6005 Restriction of a function'...
fnresin2 6006 Restriction of a function'...
fnres 6007 An equivalence for functio...
fnresi 6008 Functionality and domain o...
idssxp 6009 A diagonal set as a subset...
fnima 6010 The image of a function's ...
fn0 6011 A function with empty doma...
fnimadisj 6012 A class that is disjoint w...
fnimaeq0 6013 Images under a function ne...
dfmpt3 6014 Alternate definition for t...
mptfnf 6015 The maps-to notation defin...
fnmptf 6016 The maps-to notation defin...
fnopabg 6017 Functionality and domain o...
fnopab 6018 Functionality and domain o...
mptfng 6019 The maps-to notation defin...
fnmpt 6020 The maps-to notation defin...
mpt0 6021 A mapping operation with e...
fnmpti 6022 Functionality and domain o...
dmmpti 6023 Domain of the mapping oper...
dmmptd 6024 The domain of the mapping ...
mptun 6025 Union of mappings which ar...
feq1 6026 Equality theorem for funct...
feq2 6027 Equality theorem for funct...
feq3 6028 Equality theorem for funct...
feq23 6029 Equality theorem for funct...
feq1d 6030 Equality deduction for fun...
feq2d 6031 Equality deduction for fun...
feq3d 6032 Equality deduction for fun...
feq12d 6033 Equality deduction for fun...
feq123d 6034 Equality deduction for fun...
feq123 6035 Equality theorem for funct...
feq1i 6036 Equality inference for fun...
feq2i 6037 Equality inference for fun...
feq12i 6038 Equality inference for fun...
feq23i 6039 Equality inference for fun...
feq23d 6040 Equality deduction for fun...
nff 6041 Bound-variable hypothesis ...
sbcfng 6042 Distribute proper substitu...
sbcfg 6043 Distribute proper substitu...
elimf 6044 Eliminate a mapping hypoth...
ffn 6045 A mapping is a function wi...
ffnd 6046 A mapping is a function wi...
dffn2 6047 Any function is a mapping ...
ffun 6048 A mapping is a function. ...
ffund 6049 A mapping is a function, d...
frel 6050 A mapping is a relation. ...
fdm 6051 The domain of a mapping. ...
fdmi 6052 The domain of a mapping. ...
frn 6053 The range of a mapping. (...
dffn3 6054 A function maps to its ran...
ffrn 6055 A function maps to its ran...
fss 6056 Expanding the codomain of ...
fssd 6057 Expanding the codomain of ...
fco 6058 Composition of two mapping...
fco2 6059 Functionality of a composi...
fssxp 6060 A mapping is a class of or...
funssxp 6061 Two ways of specifying a p...
ffdm 6062 A mapping is a partial fun...
ffdmd 6063 The domain of a function. ...
fdmrn 6064 A different way to write `...
opelf 6065 The members of an ordered ...
fun 6066 The union of two functions...
fun2 6067 The union of two functions...
fun2d 6068 The union of functions wit...
fnfco 6069 Composition of two functio...
fssres 6070 Restriction of a function ...
fssresd 6071 Restriction of a function ...
fssres2 6072 Restriction of a restricte...
fresin 6073 An identity for the mappin...
resasplit 6074 If two functions agree on ...
fresaun 6075 The union of two functions...
fresaunres2 6076 From the union of two func...
fresaunres1 6077 From the union of two func...
fcoi1 6078 Composition of a mapping a...
fcoi2 6079 Composition of restricted ...
feu 6080 There is exactly one value...
fimass 6081 The image of a class is a ...
fcnvres 6082 The converse of a restrict...
fimacnvdisj 6083 The preimage of a class di...
fint 6084 Function into an intersect...
fin 6085 Mapping into an intersecti...
f0 6086 The empty function. (Cont...
f00 6087 A class is a function with...
f0bi 6088 A function with empty doma...
f0dom0 6089 A function is empty iff it...
f0rn0 6090 If there is no element in ...
fconst 6091 A Cartesian product with a...
fconstg 6092 A Cartesian product with a...
fnconstg 6093 A Cartesian product with a...
fconst6g 6094 Constant function with loo...
fconst6 6095 A constant function as a m...
f1eq1 6096 Equality theorem for one-t...
f1eq2 6097 Equality theorem for one-t...
f1eq3 6098 Equality theorem for one-t...
nff1 6099 Bound-variable hypothesis ...
dff12 6100 Alternate definition of a ...
f1f 6101 A one-to-one mapping is a ...
f1fn 6102 A one-to-one mapping is a ...
f1fun 6103 A one-to-one mapping is a ...
f1rel 6104 A one-to-one onto mapping ...
f1dm 6105 The domain of a one-to-one...
f1ss 6106 A function that is one-to-...
f1ssr 6107 A function that is one-to-...
f1ssres 6108 A function that is one-to-...
f1cnvcnv 6109 Two ways to express that a...
f1co 6110 Composition of one-to-one ...
foeq1 6111 Equality theorem for onto ...
foeq2 6112 Equality theorem for onto ...
foeq3 6113 Equality theorem for onto ...
nffo 6114 Bound-variable hypothesis ...
fof 6115 An onto mapping is a mappi...
fofun 6116 An onto mapping is a funct...
fofn 6117 An onto mapping is a funct...
forn 6118 The codomain of an onto fu...
dffo2 6119 Alternate definition of an...
foima 6120 The image of the domain of...
dffn4 6121 A function maps onto its r...
funforn 6122 A function maps its domain...
fodmrnu 6123 An onto function has uniqu...
fores 6124 Restriction of an onto fun...
foco 6125 Composition of onto functi...
foconst 6126 A nonzero constant functio...
f1oeq1 6127 Equality theorem for one-t...
f1oeq2 6128 Equality theorem for one-t...
f1oeq3 6129 Equality theorem for one-t...
f1oeq23 6130 Equality theorem for one-t...
f1eq123d 6131 Equality deduction for one...
foeq123d 6132 Equality deduction for ont...
f1oeq123d 6133 Equality deduction for one...
f1oeq3d 6134 Equality deduction for one...
nff1o 6135 Bound-variable hypothesis ...
f1of1 6136 A one-to-one onto mapping ...
f1of 6137 A one-to-one onto mapping ...
f1ofn 6138 A one-to-one onto mapping ...
f1ofun 6139 A one-to-one onto mapping ...
f1orel 6140 A one-to-one onto mapping ...
f1odm 6141 The domain of a one-to-one...
dff1o2 6142 Alternate definition of on...
dff1o3 6143 Alternate definition of on...
f1ofo 6144 A one-to-one onto function...
dff1o4 6145 Alternate definition of on...
dff1o5 6146 Alternate definition of on...
f1orn 6147 A one-to-one function maps...
f1f1orn 6148 A one-to-one function maps...
f1ocnv 6149 The converse of a one-to-o...
f1ocnvb 6150 A relation is a one-to-one...
f1ores 6151 The restriction of a one-t...
f1orescnv 6152 The converse of a one-to-o...
f1imacnv 6153 Preimage of an image. (Co...
foimacnv 6154 A reverse version of ~ f1i...
foun 6155 The union of two onto func...
f1oun 6156 The union of two one-to-on...
resdif 6157 The restriction of a one-t...
resin 6158 The restriction of a one-t...
f1oco 6159 Composition of one-to-one ...
f1cnv 6160 The converse of an injecti...
funcocnv2 6161 Composition with the conve...
fococnv2 6162 The composition of an onto...
f1ococnv2 6163 The composition of a one-t...
f1cocnv2 6164 Composition of an injectiv...
f1ococnv1 6165 The composition of a one-t...
f1cocnv1 6166 Composition of an injectiv...
funcoeqres 6167 Re-express a constraint on...
f1ssf1 6168 A subset of an injective f...
f10 6169 The empty set maps one-to-...
f10d 6170 The empty set maps one-to-...
f1o00 6171 One-to-one onto mapping of...
fo00 6172 Onto mapping of the empty ...
f1o0 6173 One-to-one onto mapping of...
f1oi 6174 A restriction of the ident...
f1ovi 6175 The identity relation is a...
f1osn 6176 A singleton of an ordered ...
f1osng 6177 A singleton of an ordered ...
f1sng 6178 A singleton of an ordered ...
fsnd 6179 A singleton of an ordered ...
f1oprswap 6180 A two-element swap is a bi...
f1oprg 6181 An unordered pair of order...
tz6.12-2 6182 Function value when ` F ` ...
fveu 6183 The value of a function at...
brprcneu 6184 If ` A ` is a proper class...
fvprc 6185 A function's value at a pr...
fv2 6186 Alternate definition of fu...
dffv3 6187 A definition of function v...
dffv4 6188 The previous definition of...
elfv 6189 Membership in a function v...
fveq1 6190 Equality theorem for funct...
fveq2 6191 Equality theorem for funct...
fveq1i 6192 Equality inference for fun...
fveq1d 6193 Equality deduction for fun...
fveq2i 6194 Equality inference for fun...
fveq2d 6195 Equality deduction for fun...
fveq12i 6196 Equality deduction for fun...
fveq12d 6197 Equality deduction for fun...
nffv 6198 Bound-variable hypothesis ...
nffvmpt1 6199 Bound-variable hypothesis ...
nffvd 6200 Deduction version of bound...
fvex 6201 The value of a class exist...
fvexi 6202 The value of a class exist...
fvexd 6203 The value of a class exist...
fvif 6204 Move a conditional outside...
iffv 6205 Move a conditional outside...
fv3 6206 Alternate definition of th...
fvres 6207 The value of a restricted ...
fvresd 6208 The value of a restricted ...
funssfv 6209 The value of a member of t...
tz6.12-1 6210 Function value. Theorem 6...
tz6.12 6211 Function value. Theorem 6...
tz6.12f 6212 Function value, using boun...
tz6.12c 6213 Corollary of Theorem 6.12(...
tz6.12i 6214 Corollary of Theorem 6.12(...
fvbr0 6215 Two possibilities for the ...
fvrn0 6216 A function value is a memb...
fvssunirn 6217 The result of a function v...
ndmfv 6218 The value of a class outsi...
ndmfvrcl 6219 Reverse closure law for fu...
elfvdm 6220 If a function value has a ...
elfvex 6221 If a function value has a ...
elfvexd 6222 If a function value is non...
eliman0 6223 A non-nul function value i...
nfvres 6224 The value of a non-member ...
nfunsn 6225 If the restriction of a cl...
fvfundmfvn0 6226 If a class' value at an ar...
0fv 6227 Function value of the empt...
fv2prc 6228 A function's value at a fu...
elfv2ex 6229 If a function value of a f...
fveqres 6230 Equal values imply equal v...
csbfv12 6231 Move class substitution in...
csbfv2g 6232 Move class substitution in...
csbfv 6233 Substitution for a functio...
funbrfv 6234 The second argument of a b...
funopfv 6235 The second element in an o...
fnbrfvb 6236 Equivalence of function va...
fnopfvb 6237 Equivalence of function va...
funbrfvb 6238 Equivalence of function va...
funopfvb 6239 Equivalence of function va...
funbrfv2b 6240 Function value in terms of...
dffn5 6241 Representation of a functi...
fnrnfv 6242 The range of a function ex...
fvelrnb 6243 A member of a function's r...
foelrni 6244 A member of a surjective f...
dfimafn 6245 Alternate definition of th...
dfimafn2 6246 Alternate definition of th...
funimass4 6247 Membership relation for th...
fvelima 6248 Function value in an image...
feqmptd 6249 Deduction form of ~ dffn5 ...
feqresmpt 6250 Express a restricted funct...
feqmptdf 6251 Deduction form of ~ dffn5f...
dffn5f 6252 Representation of a functi...
fvelimab 6253 Function value in an image...
fvelimabd 6254 Deduction form of ~ fvelim...
fvi 6255 The value of the identity ...
fviss 6256 The value of the identity ...
fniinfv 6257 The indexed intersection o...
fnsnfv 6258 Singleton of function valu...
opabiotafun 6259 Define a function whose va...
opabiotadm 6260 Define a function whose va...
opabiota 6261 Define a function whose va...
fnimapr 6262 The image of a pair under ...
ssimaex 6263 The existence of a subimag...
ssimaexg 6264 The existence of a subimag...
funfv 6265 A simplified expression fo...
funfv2 6266 The value of a function. ...
funfv2f 6267 The value of a function. ...
fvun 6268 Value of the union of two ...
fvun1 6269 The value of a union when ...
fvun2 6270 The value of a union when ...
dffv2 6271 Alternate definition of fu...
dmfco 6272 Domains of a function comp...
fvco2 6273 Value of a function compos...
fvco 6274 Value of a function compos...
fvco3 6275 Value of a function compos...
fvco4i 6276 Conditions for a compositi...
fvopab3g 6277 Value of a function given ...
fvopab3ig 6278 Value of a function given ...
brfvopabrbr 6279 The binary relation of a f...
fvmptg 6280 Value of a function given ...
fvmpti 6281 Value of a function given ...
fvmpt 6282 Value of a function given ...
fvmpt2f 6283 Value of a function given ...
fvtresfn 6284 Functionality of a tuple-r...
fvmpts 6285 Value of a function given ...
fvmpt3 6286 Value of a function given ...
fvmpt3i 6287 Value of a function given ...
fvmptd 6288 Deduction version of ~ fvm...
mptrcl 6289 Reverse closure for a mapp...
fvmpt2i 6290 Value of a function given ...
fvmpt2 6291 Value of a function given ...
fvmptss 6292 If all the values of the m...
fvmpt2d 6293 Deduction version of ~ fvm...
fvmptex 6294 Express a function ` F ` w...
fvmptd3f 6295 Alternate deduction versio...
fvmptdf 6296 Alternate deduction versio...
fvmptdv 6297 Alternate deduction versio...
fvmptdv2 6298 Alternate deduction versio...
mpteqb 6299 Bidirectional equality the...
fvmptt 6300 Closed theorem form of ~ f...
fvmptf 6301 Value of a function given ...
fvmptnf 6302 The value of a function gi...
fvmptn 6303 This somewhat non-intuitiv...
fvmptss2 6304 A mapping always evaluates...
elfvmptrab1 6305 Implications for the value...
elfvmptrab 6306 Implications for the value...
fvopab4ndm 6307 Value of a function given ...
fvmptndm 6308 Value of a function given ...
fvopab5 6309 The value of a function th...
fvopab6 6310 Value of a function given ...
eqfnfv 6311 Equality of functions is d...
eqfnfv2 6312 Equality of functions is d...
eqfnfv3 6313 Derive equality of functio...
eqfnfvd 6314 Deduction for equality of ...
eqfnfv2f 6315 Equality of functions is d...
eqfunfv 6316 Equality of functions is d...
fvreseq0 6317 Equality of restricted fun...
fvreseq1 6318 Equality of a function res...
fvreseq 6319 Equality of restricted fun...
fnmptfvd 6320 A function with a given do...
fndmdif 6321 Two ways to express the lo...
fndmdifcom 6322 The difference set between...
fndmdifeq0 6323 The difference set of two ...
fndmin 6324 Two ways to express the lo...
fneqeql 6325 Two functions are equal if...
fneqeql2 6326 Two functions are equal if...
fnreseql 6327 Two functions are equal on...
chfnrn 6328 The range of a choice func...
funfvop 6329 Ordered pair with function...
funfvbrb 6330 Two ways to say that ` A `...
fvimacnvi 6331 A member of a preimage is ...
fvimacnv 6332 The argument of a function...
funimass3 6333 A kind of contraposition l...
funimass5 6334 A subclass of a preimage i...
funconstss 6335 Two ways of specifying tha...
fvimacnvALT 6336 Alternate proof of ~ fvima...
elpreima 6337 Membership in the preimage...
fniniseg 6338 Membership in the preimage...
fncnvima2 6339 Inverse images under funct...
fniniseg2 6340 Inverse point images under...
unpreima 6341 Preimage of a union. (Con...
inpreima 6342 Preimage of an intersectio...
difpreima 6343 Preimage of a difference. ...
respreima 6344 The preimage of a restrict...
iinpreima 6345 Preimage of an intersectio...
intpreima 6346 Preimage of an intersectio...
fimacnv 6347 The preimage of the codoma...
fimacnvinrn 6348 Taking the converse image ...
fimacnvinrn2 6349 Taking the converse image ...
fvn0ssdmfun 6350 If a class' function value...
fnopfv 6351 Ordered pair with function...
fvelrn 6352 A function's value belongs...
nelrnfvne 6353 A function value cannot be...
fveqdmss 6354 If the empty set is not co...
fveqressseq 6355 If the empty set is not co...
fnfvelrn 6356 A function's value belongs...
ffvelrn 6357 A function's value belongs...
ffvelrni 6358 A function's value belongs...
ffvelrnda 6359 A function's value belongs...
ffvelrnd 6360 A function's value belongs...
rexrn 6361 Restricted existential qua...
ralrn 6362 Restricted universal quant...
elrnrexdm 6363 For any element in the ran...
elrnrexdmb 6364 For any element in the ran...
eldmrexrn 6365 For any element in the dom...
eldmrexrnb 6366 For any element in the dom...
fvcofneq 6367 The values of two function...
ralrnmpt 6368 A restricted quantifier ov...
rexrnmpt 6369 A restricted quantifier ov...
f0cli 6370 Unconditional closure of a...
dff2 6371 Alternate definition of a ...
dff3 6372 Alternate definition of a ...
dff4 6373 Alternate definition of a ...
dffo3 6374 An onto mapping expressed ...
dffo4 6375 Alternate definition of an...
dffo5 6376 Alternate definition of an...
exfo 6377 A relation equivalent to t...
foelrn 6378 Property of a surjective f...
foco2 6379 If a composition of two fu...
foco2OLD 6380 Obsolete proof of ~ foco2 ...
fmpt 6381 Functionality of the mappi...
f1ompt 6382 Express bijection for a ma...
fmpti 6383 Functionality of the mappi...
mptex2 6384 If a class given as a map-...
fmptd 6385 Domain and codomain of the...
fmpt3d 6386 Domain and co-domain of th...
fmptdf 6387 A version of ~ fmptd using...
ffnfv 6388 A function maps to a class...
ffnfvf 6389 A function maps to a class...
fnfvrnss 6390 An upper bound for range d...
frnssb 6391 A function is a function i...
rnmptss 6392 The range of an operation ...
fmpt2d 6393 Domain and codomain of the...
ffvresb 6394 A necessary and sufficient...
f1oresrab 6395 Build a bijection between ...
fmptco 6396 Composition of two functio...
fmptcof 6397 Version of ~ fmptco where ...
fmptcos 6398 Composition of two functio...
cofmpt 6399 Express composition of a m...
fcompt 6400 Express composition of two...
fcoconst 6401 Composition with a constan...
fsn 6402 A function maps a singleto...
fsn2 6403 A function that maps a sin...
fsng 6404 A function maps a singleto...
fsn2g 6405 A function that maps a sin...
xpsng 6406 The Cartesian product of t...
xpsn 6407 The Cartesian product of t...
f1o2sn 6408 A singleton with a nested ...
residpr 6409 Restriction of the identit...
dfmpt 6410 Alternate definition for t...
fnasrn 6411 A function expressed as th...
funiun 6412 A function is a union of s...
funopsn 6413 If a function is an ordere...
funop 6414 An ordered pair is a funct...
funopdmsn 6415 The domain of a function w...
funsndifnop 6416 A singleton of an ordered ...
funsneqopsn 6417 A singleton of an ordered ...
funsneqop 6418 A singleton of an ordered ...
funsneqopb 6419 A singleton of an ordered ...
ressnop0 6420 If ` A ` is not in ` C ` ,...
fpr 6421 A function with a domain o...
fprg 6422 A function with a domain o...
ftpg 6423 A function with a domain o...
ftp 6424 A function with a domain o...
fnressn 6425 A function restricted to a...
funressn 6426 A function restricted to a...
fressnfv 6427 The value of a function re...
fvrnressn 6428 If the value of a function...
fvressn 6429 The value of a function re...
fvn0fvelrn 6430 If the value of a function...
fvconst 6431 The value of a constant fu...
fnsnb 6432 A function whose domain is...
fmptsn 6433 Express a singleton functi...
fmptsng 6434 Express a singleton functi...
fmptsnd 6435 Express a singleton functi...
fmptap 6436 Append an additional value...
fmptapd 6437 Append an additional value...
fmptpr 6438 Express a pair function in...
fvresi 6439 The value of a restricted ...
fninfp 6440 Express the class of fixed...
fnelfp 6441 Property of a fixed point ...
fndifnfp 6442 Express the class of non-f...
fnelnfp 6443 Property of a non-fixed po...
fnnfpeq0 6444 A function is the identity...
fvunsn 6445 Remove an ordered pair not...
fvsn 6446 The value of a singleton o...
fvsng 6447 The value of a singleton o...
fvsnun1 6448 The value of a function wi...
fvsnun2 6449 The value of a function wi...
fnsnsplit 6450 Split a function into a si...
fsnunf 6451 Adjoining a point to a fun...
fsnunf2 6452 Adjoining a point to a pun...
fsnunfv 6453 Recover the added point fr...
fsnunres 6454 Recover the original funct...
funresdfunsn 6455 Restricting a function to ...
fvpr1 6456 The value of a function wi...
fvpr2 6457 The value of a function wi...
fvpr1g 6458 The value of a function wi...
fvpr2g 6459 The value of a function wi...
fvtp1 6460 The first value of a funct...
fvtp2 6461 The second value of a func...
fvtp3 6462 The third value of a funct...
fvtp1g 6463 The value of a function wi...
fvtp2g 6464 The value of a function wi...
fvtp3g 6465 The value of a function wi...
tpres 6466 An unordered triple of ord...
fvconst2g 6467 The value of a constant fu...
fconst2g 6468 A constant function expres...
fvconst2 6469 The value of a constant fu...
fconst2 6470 A constant function expres...
fconst5 6471 Two ways to express that a...
fnprb 6472 A function whose domain ha...
fntpb 6473 A function whose domain ha...
fnpr2g 6474 A function whose domain ha...
fpr2g 6475 A function that maps a pai...
fconstfv 6476 A constant function expres...
fconst3 6477 Two ways to express a cons...
fconst4 6478 Two ways to express a cons...
resfunexg 6479 The restriction of a funct...
resiexd 6480 The restriction of the ide...
fnex 6481 If the domain of a functio...
funex 6482 If the domain of a functio...
opabex 6483 Existence of a function ex...
mptexg 6484 If the domain of a functio...
mptexgf 6485 If the domain of a functio...
mptex 6486 If the domain of a functio...
mptexd 6487 If the domain of a functio...
mptrabex 6488 If the domain of a functio...
mptrabexOLD 6489 Obsolete version of ~ mptr...
fex 6490 If the domain of a mapping...
eufnfv 6491 A function is uniquely det...
funfvima 6492 A function's value in a pr...
funfvima2 6493 A function's value in an i...
resfvresima 6494 The value of the function ...
funfvima3 6495 A class including a functi...
fnfvima 6496 The function value of an o...
rexima 6497 Existential quantification...
ralima 6498 Universal quantification u...
idref 6499 TODO: This is the same as...
fvclss 6500 Upper bound for the class ...
elabrex 6501 Elementhood in an image se...
abrexco 6502 Composition of two image m...
imaiun 6503 The image of an indexed un...
imauni 6504 The image of a union is th...
fniunfv 6505 The indexed union of a fun...
funiunfv 6506 The indexed union of a fun...
funiunfvf 6507 The indexed union of a fun...
eluniima 6508 Membership in the union of...
elunirn 6509 Membership in the union of...
elunirnALT 6510 Alternate proof of ~ eluni...
fnunirn 6511 Membership in a union of s...
dff13 6512 A one-to-one function in t...
dff13f 6513 A one-to-one function in t...
f1veqaeq 6514 If the values of a one-to-...
f1cofveqaeq 6515 If the values of a composi...
f1cofveqaeqALT 6516 Alternate proof of ~ f1cof...
2f1fvneq 6517 If two one-to-one function...
f1mpt 6518 Express injection for a ma...
f1fveq 6519 Equality of function value...
f1elima 6520 Membership in the image of...
f1imass 6521 Taking images under a one-...
f1imaeq 6522 Taking images under a one-...
f1imapss 6523 Taking images under a one-...
fpropnf1 6524 A function, given by an un...
f1dom3fv3dif 6525 The function values for a ...
f1dom3el3dif 6526 The range of a 1-1 functio...
dff14a 6527 A one-to-one function in t...
dff14b 6528 A one-to-one function in t...
f12dfv 6529 A one-to-one function with...
f13dfv 6530 A one-to-one function with...
dff1o6 6531 A one-to-one onto function...
f1ocnvfv1 6532 The converse value of the ...
f1ocnvfv2 6533 The value of the converse ...
f1ocnvfv 6534 Relationship between the v...
f1ocnvfvb 6535 Relationship between the v...
nvof1o 6536 An involution is a bijecti...
nvocnv 6537 The converse of an involut...
fsnex 6538 Relate a function with a s...
f1prex 6539 Relate a one-to-one functi...
f1ocnvdm 6540 The value of the converse ...
f1ocnvfvrneq 6541 If the values of a one-to-...
fcof1 6542 An application is injectiv...
fcofo 6543 An application is surjecti...
cbvfo 6544 Change bound variable betw...
cbvexfo 6545 Change bound variable betw...
cocan1 6546 An injection is left-cance...
cocan2 6547 A surjection is right-canc...
fcof1oinvd 6548 Show that a function is th...
fcof1od 6549 A function is bijective if...
2fcoidinvd 6550 Show that a function is th...
fcof1o 6551 Show that two functions ar...
2fvcoidd 6552 Show that the composition ...
2fvidf1od 6553 A function is bijective if...
2fvidinvd 6554 Show that two functions ar...
foeqcnvco 6555 Condition for function equ...
f1eqcocnv 6556 Condition for function equ...
fveqf1o 6557 Given a bijection ` F ` , ...
fliftrel 6558 ` F ` , a function lift, i...
fliftel 6559 Elementhood in the relatio...
fliftel1 6560 Elementhood in the relatio...
fliftcnv 6561 Converse of the relation `...
fliftfun 6562 The function ` F ` is the ...
fliftfund 6563 The function ` F ` is the ...
fliftfuns 6564 The function ` F ` is the ...
fliftf 6565 The domain and range of th...
fliftval 6566 The value of the function ...
isoeq1 6567 Equality theorem for isomo...
isoeq2 6568 Equality theorem for isomo...
isoeq3 6569 Equality theorem for isomo...
isoeq4 6570 Equality theorem for isomo...
isoeq5 6571 Equality theorem for isomo...
nfiso 6572 Bound-variable hypothesis ...
isof1o 6573 An isomorphism is a one-to...
isof1oidb 6574 A function is a bijection ...
isof1oopb 6575 A function is a bijection ...
isorel 6576 An isomorphism connects bi...
soisores 6577 Express the condition of i...
soisoi 6578 Infer isomorphism from one...
isoid 6579 Identity law for isomorphi...
isocnv 6580 Converse law for isomorphi...
isocnv2 6581 Converse law for isomorphi...
isocnv3 6582 Complementation law for is...
isores2 6583 An isomorphism from one we...
isores1 6584 An isomorphism from one we...
isores3 6585 Induced isomorphism on a s...
isotr 6586 Composition (transitive) l...
isomin 6587 Isomorphisms preserve mini...
isoini 6588 Isomorphisms preserve init...
isoini2 6589 Isomorphisms are isomorphi...
isofrlem 6590 Lemma for ~ isofr . (Cont...
isoselem 6591 Lemma for ~ isose . (Cont...
isofr 6592 An isomorphism preserves w...
isose 6593 An isomorphism preserves s...
isofr2 6594 A weak form of ~ isofr tha...
isopolem 6595 Lemma for ~ isopo . (Cont...
isopo 6596 An isomorphism preserves p...
isosolem 6597 Lemma for ~ isoso . (Cont...
isoso 6598 An isomorphism preserves s...
isowe 6599 An isomorphism preserves w...
isowe2 6600 A weak form of ~ isowe tha...
f1oiso 6601 Any one-to-one onto functi...
f1oiso2 6602 Any one-to-one onto functi...
f1owe 6603 Well-ordering of isomorphi...
weniso 6604 A set-like well-ordering h...
weisoeq 6605 Thus, there is at most one...
weisoeq2 6606 Thus, there is at most one...
knatar 6607 The Knaster-Tarski theorem...
canth 6608 No set ` A ` is equinumero...
ncanth 6609 Cantor's theorem fails for...
riotaeqdv 6612 Formula-building deduction...
riotabidv 6613 Formula-building deduction...
riotaeqbidv 6614 Equality deduction for res...
riotaex 6615 Restricted iota is a set. ...
riotav 6616 An iota restricted to the ...
riotauni 6617 Restricted iota in terms o...
nfriota1 6618 The abstraction variable i...
nfriotad 6619 Deduction version of ~ nfr...
nfriota 6620 A variable not free in a w...
cbvriota 6621 Change bound variable in a...
cbvriotav 6622 Change bound variable in a...
csbriota 6623 Interchange class substitu...
riotacl2 6624 Membership law for "the un...
riotacl 6625 Closure of restricted iota...
riotasbc 6626 Substitution law for descr...
riotabidva 6627 Equivalent wff's yield equ...
riotabiia 6628 Equivalent wff's yield equ...
riota1 6629 Property of restricted iot...
riota1a 6630 Property of iota. (Contri...
riota2df 6631 A deduction version of ~ r...
riota2f 6632 This theorem shows a condi...
riota2 6633 This theorem shows a condi...
riotaeqimp 6634 If two restricted iota des...
riotaprop 6635 Properties of a restricted...
riota5f 6636 A method for computing res...
riota5 6637 A method for computing res...
riotass2 6638 Restriction of a unique el...
riotass 6639 Restriction of a unique el...
moriotass 6640 Restriction of a unique el...
snriota 6641 A restricted class abstrac...
riotaxfrd 6642 Change the variable ` x ` ...
eusvobj2 6643 Specify the same property ...
eusvobj1 6644 Specify the same object in...
f1ofveu 6645 There is one domain elemen...
f1ocnvfv3 6646 Value of the converse of a...
riotaund 6647 Restricted iota equals the...
riotassuni 6648 The restricted iota class ...
riotaclb 6649 Bidirectional closure of r...
oveq 6656 Equality theorem for opera...
oveq1 6657 Equality theorem for opera...
oveq2 6658 Equality theorem for opera...
oveq12 6659 Equality theorem for opera...
oveq1i 6660 Equality inference for ope...
oveq2i 6661 Equality inference for ope...
oveq12i 6662 Equality inference for ope...
oveqi 6663 Equality inference for ope...
oveq123i 6664 Equality inference for ope...
oveq1d 6665 Equality deduction for ope...
oveq2d 6666 Equality deduction for ope...
oveqd 6667 Equality deduction for ope...
oveq12d 6668 Equality deduction for ope...
oveqan12d 6669 Equality deduction for ope...
oveqan12rd 6670 Equality deduction for ope...
oveq123d 6671 Equality deduction for ope...
ovrspc2v 6672 If an operation value is e...
oveqrspc2v 6673 Restricted specialization ...
oveqdr 6674 Equality of two operations...
nfovd 6675 Deduction version of bound...
nfov 6676 Bound-variable hypothesis ...
oprabid 6677 The law of concretion. Sp...
ovex 6678 The result of an operation...
ovexi 6679 The result of an operation...
ovexd 6680 The result of an operation...
ovssunirn 6681 The result of an operation...
0ov 6682 Operation value of the emp...
ovprc 6683 The value of an operation ...
ovprc1 6684 The value of an operation ...
ovprc2 6685 The value of an operation ...
ovrcl 6686 Reverse closure for an ope...
csbov123 6687 Move class substitution in...
csbov 6688 Move class substitution in...
csbov12g 6689 Move class substitution in...
csbov1g 6690 Move class substitution in...
csbov2g 6691 Move class substitution in...
rspceov 6692 A frequently used special ...
elovimad 6693 Elementhood of the image s...
fnotovb 6694 Equivalence of operation v...
opabbrex 6695 A collection of ordered pa...
opabresex2d 6696 Restrictions of a collecti...
fvmptopab 6697 The function value of a ma...
0neqopab 6698 The empty set is never an ...
brabv 6699 If two classes are in a re...
brfvopab 6700 The classes involved in a ...
dfoprab2 6701 Class abstraction for oper...
reloprab 6702 An operation class abstrac...
oprabv 6703 If a pair and a class are ...
nfoprab1 6704 The abstraction variables ...
nfoprab2 6705 The abstraction variables ...
nfoprab3 6706 The abstraction variables ...
nfoprab 6707 Bound-variable hypothesis ...
oprabbid 6708 Equivalent wff's yield equ...
oprabbidv 6709 Equivalent wff's yield equ...
oprabbii 6710 Equivalent wff's yield equ...
ssoprab2 6711 Equivalence of ordered pai...
ssoprab2b 6712 Equivalence of ordered pai...
eqoprab2b 6713 Equivalence of ordered pai...
mpt2eq123 6714 An equality theorem for th...
mpt2eq12 6715 An equality theorem for th...
mpt2eq123dva 6716 An equality deduction for ...
mpt2eq123dv 6717 An equality deduction for ...
mpt2eq123i 6718 An equality inference for ...
mpt2eq3dva 6719 Slightly more general equa...
mpt2eq3ia 6720 An equality inference for ...
mpt2eq3dv 6721 An equality deduction for ...
nfmpt21 6722 Bound-variable hypothesis ...
nfmpt22 6723 Bound-variable hypothesis ...
nfmpt2 6724 Bound-variable hypothesis ...
mpt20 6725 A mapping operation with e...
oprab4 6726 Two ways to state the doma...
cbvoprab1 6727 Rule used to change first ...
cbvoprab2 6728 Change the second bound va...
cbvoprab12 6729 Rule used to change first ...
cbvoprab12v 6730 Rule used to change first ...
cbvoprab3 6731 Rule used to change the th...
cbvoprab3v 6732 Rule used to change the th...
cbvmpt2x 6733 Rule to change the bound v...
cbvmpt2 6734 Rule to change the bound v...
cbvmpt2v 6735 Rule to change the bound v...
elimdelov 6736 Eliminate a hypothesis whi...
ovif 6737 Move a conditional outside...
ovif2 6738 Move a conditional outside...
ovif12 6739 Move a conditional outside...
ifov 6740 Move a conditional outside...
dmoprab 6741 The domain of an operation...
dmoprabss 6742 The domain of an operation...
rnoprab 6743 The range of an operation ...
rnoprab2 6744 The range of a restricted ...
reldmoprab 6745 The domain of an operation...
oprabss 6746 Structure of an operation ...
eloprabga 6747 The law of concretion for ...
eloprabg 6748 The law of concretion for ...
ssoprab2i 6749 Inference of operation cla...
mpt2v 6750 Operation with universal d...
mpt2mptx 6751 Express a two-argument fun...
mpt2mpt 6752 Express a two-argument fun...
mpt2difsnif 6753 A mapping with two argumen...
mpt2snif 6754 A mapping with two argumen...
fconstmpt2 6755 Representation of a consta...
resoprab 6756 Restriction of an operatio...
resoprab2 6757 Restriction of an operator...
resmpt2 6758 Restriction of the mapping...
funoprabg 6759 "At most one" is a suffici...
funoprab 6760 "At most one" is a suffici...
fnoprabg 6761 Functionality and domain o...
mpt2fun 6762 The maps-to notation for a...
fnoprab 6763 Functionality and domain o...
ffnov 6764 An operation maps to a cla...
fovcl 6765 Closure law for an operati...
eqfnov 6766 Equality of two operations...
eqfnov2 6767 Two operators with the sam...
fnov 6768 Representation of a functi...
mpt22eqb 6769 Bidirectional equality the...
rnmpt2 6770 The range of an operation ...
reldmmpt2 6771 The domain of an operation...
elrnmpt2g 6772 Membership in the range of...
elrnmpt2 6773 Membership in the range of...
elrnmpt2res 6774 Membership in the range of...
ralrnmpt2 6775 A restricted quantifier ov...
rexrnmpt2 6776 A restricted quantifier ov...
ovid 6777 The value of an operation ...
ovidig 6778 The value of an operation ...
ovidi 6779 The value of an operation ...
ov 6780 The value of an operation ...
ovigg 6781 The value of an operation ...
ovig 6782 The value of an operation ...
ovmpt4g 6783 Value of a function given ...
ovmpt2s 6784 Value of a function given ...
ov2gf 6785 The value of an operation ...
ovmpt2dxf 6786 Value of an operation give...
ovmpt2dx 6787 Value of an operation give...
ovmpt2d 6788 Value of an operation give...
ovmpt2x 6789 The value of an operation ...
ovmpt2ga 6790 Value of an operation give...
ovmpt2a 6791 Value of an operation give...
ovmpt2df 6792 Alternate deduction versio...
ovmpt2dv 6793 Alternate deduction versio...
ovmpt2dv2 6794 Alternate deduction versio...
ovmpt2g 6795 Value of an operation give...
ovmpt2 6796 Value of an operation give...
ov3 6797 The value of an operation ...
ov6g 6798 The value of an operation ...
ovg 6799 The value of an operation ...
ovres 6800 The value of a restricted ...
ovresd 6801 Lemma for converting metri...
oprres 6802 The restriction of an oper...
oprssov 6803 The value of a member of t...
fovrn 6804 An operation's value belon...
fovrnda 6805 An operation's value belon...
fovrnd 6806 An operation's value belon...
fnrnov 6807 The range of an operation ...
foov 6808 An onto mapping of an oper...
fnovrn 6809 An operation's value belon...
ovelrn 6810 A member of an operation's...
funimassov 6811 Membership relation for th...
ovelimab 6812 Operation value in an imag...
ovima0 6813 An operation value is a me...
ovconst2 6814 The value of a constant op...
oprssdm 6815 Domain of closure of an op...
nssdmovg 6816 The value of an operation ...
ndmovg 6817 The value of an operation ...
ndmov 6818 The value of an operation ...
ndmovcl 6819 The closure of an operatio...
ndmovrcl 6820 Reverse closure law, when ...
ndmovcom 6821 Any operation is commutati...
ndmovass 6822 Any operation is associati...
ndmovdistr 6823 Any operation is distribut...
ndmovord 6824 Elimination of redundant a...
ndmovordi 6825 Elimination of redundant a...
caovclg 6826 Convert an operation closu...
caovcld 6827 Convert an operation closu...
caovcl 6828 Convert an operation closu...
caovcomg 6829 Convert an operation commu...
caovcomd 6830 Convert an operation commu...
caovcom 6831 Convert an operation commu...
caovassg 6832 Convert an operation assoc...
caovassd 6833 Convert an operation assoc...
caovass 6834 Convert an operation assoc...
caovcang 6835 Convert an operation cance...
caovcand 6836 Convert an operation cance...
caovcanrd 6837 Commute the arguments of a...
caovcan 6838 Convert an operation cance...
caovordig 6839 Convert an operation order...
caovordid 6840 Convert an operation order...
caovordg 6841 Convert an operation order...
caovordd 6842 Convert an operation order...
caovord2d 6843 Operation ordering law wit...
caovord3d 6844 Ordering law. (Contribute...
caovord 6845 Convert an operation order...
caovord2 6846 Operation ordering law wit...
caovord3 6847 Ordering law. (Contribute...
caovdig 6848 Convert an operation distr...
caovdid 6849 Convert an operation distr...
caovdir2d 6850 Convert an operation distr...
caovdirg 6851 Convert an operation rever...
caovdird 6852 Convert an operation distr...
caovdi 6853 Convert an operation distr...
caov32d 6854 Rearrange arguments in a c...
caov12d 6855 Rearrange arguments in a c...
caov31d 6856 Rearrange arguments in a c...
caov13d 6857 Rearrange arguments in a c...
caov4d 6858 Rearrange arguments in a c...
caov411d 6859 Rearrange arguments in a c...
caov42d 6860 Rearrange arguments in a c...
caov32 6861 Rearrange arguments in a c...
caov12 6862 Rearrange arguments in a c...
caov31 6863 Rearrange arguments in a c...
caov13 6864 Rearrange arguments in a c...
caov4 6865 Rearrange arguments in a c...
caov411 6866 Rearrange arguments in a c...
caov42 6867 Rearrange arguments in a c...
caovdir 6868 Reverse distributive law. ...
caovdilem 6869 Lemma used by real number ...
caovlem2 6870 Lemma used in real number ...
caovmo 6871 Uniqueness of inverse elem...
grprinvlem 6872 Lemma for ~ grprinvd . (C...
grprinvd 6873 Deduce right inverse from ...
grpridd 6874 Deduce right identity from...
mpt2ndm0 6875 The value of an operation ...
elmpt2cl 6876 If a two-parameter class i...
elmpt2cl1 6877 If a two-parameter class i...
elmpt2cl2 6878 If a two-parameter class i...
elovmpt2 6879 Utility lemma for two-para...
elovmpt2rab 6880 Implications for the value...
elovmpt2rab1 6881 Implications for the value...
2mpt20 6882 If the operation value of ...
relmptopab 6883 Any function to sets of or...
f1ocnvd 6884 Describe an implicit one-t...
f1od 6885 Describe an implicit one-t...
f1ocnv2d 6886 Describe an implicit one-t...
f1o2d 6887 Describe an implicit one-t...
f1opw2 6888 A one-to-one mapping induc...
f1opw 6889 A one-to-one mapping induc...
elovmpt3imp 6890 If the value of a function...
ovmpt3rab1 6891 The value of an operation ...
ovmpt3rabdm 6892 If the value of a function...
elovmpt3rab1 6893 Implications for the value...
elovmpt3rab 6894 Implications for the value...
ofeq 6899 Equality theorem for funct...
ofreq 6900 Equality theorem for funct...
ofexg 6901 A function operation restr...
nfof 6902 Hypothesis builder for fun...
nfofr 6903 Hypothesis builder for fun...
offval 6904 Value of an operation appl...
ofrfval 6905 Value of a relation applie...
ofval 6906 Evaluate a function operat...
ofrval 6907 Exhibit a function relatio...
offn 6908 The function operation pro...
offval2f 6909 The function operation exp...
ofmresval 6910 Value of a restriction of ...
fnfvof 6911 Function value of a pointw...
off 6912 The function operation pro...
ofres 6913 Restrict the operands of a...
offval2 6914 The function operation exp...
ofrfval2 6915 The function relation acti...
ofmpteq 6916 Value of a pointwise opera...
ofco 6917 The composition of a funct...
offveq 6918 Convert an identity of the...
offveqb 6919 Equivalent expressions for...
ofc1 6920 Left operation by a consta...
ofc2 6921 Right operation by a const...
ofc12 6922 Function operation on two ...
caofref 6923 Transfer a reflexive law t...
caofinvl 6924 Transfer a left inverse la...
caofid0l 6925 Transfer a left identity l...
caofid0r 6926 Transfer a right identity ...
caofid1 6927 Transfer a right absorptio...
caofid2 6928 Transfer a right absorptio...
caofcom 6929 Transfer a commutative law...
caofrss 6930 Transfer a relation subset...
caofass 6931 Transfer an associative la...
caoftrn 6932 Transfer a transitivity la...
caofdi 6933 Transfer a distributive la...
caofdir 6934 Transfer a reverse distrib...
caonncan 6935 Transfer ~ nncan -shaped l...
relrpss 6938 The proper subset relation...
brrpssg 6939 The proper subset relation...
brrpss 6940 The proper subset relation...
porpss 6941 Every class is partially o...
sorpss 6942 Express strict ordering un...
sorpssi 6943 Property of a chain of set...
sorpssun 6944 A chain of sets is closed ...
sorpssin 6945 A chain of sets is closed ...
sorpssuni 6946 In a chain of sets, a maxi...
sorpssint 6947 In a chain of sets, a mini...
sorpsscmpl 6948 The componentwise compleme...
zfun 6950 Axiom of Union expressed w...
axun2 6951 A variant of the Axiom of ...
uniex2 6952 The Axiom of Union using t...
uniex 6953 The Axiom of Union in clas...
vuniex 6954 The union of a setvar is a...
uniexg 6955 The ZF Axiom of Union in c...
unex 6956 The union of two sets is a...
tpex 6957 An unordered triple of cla...
unexb 6958 Existence of union is equi...
unexg 6959 A union of two sets is a s...
xpexg 6960 The Cartesian product of t...
3xpexg 6961 The Cartesian product of t...
xpex 6962 The Cartesian product of t...
sqxpexg 6963 The Cartesian square of a ...
abnexg 6964 Sufficient condition for a...
abnex 6965 Sufficient condition for a...
snnex 6966 The class of all singleton...
snnexOLD 6967 Obsolete proof of ~ snnex ...
pwnex 6968 The class of all power set...
difex2 6969 If the subtrahend of a cla...
difsnexi 6970 If the difference of a cla...
uniuni 6971 Expression for double unio...
uniexr 6972 Converse of the Axiom of U...
uniexb 6973 The Axiom of Union and its...
pwexr 6974 Converse of the Axiom of P...
pwexb 6975 The Axiom of Power Sets an...
eldifpw 6976 Membership in a power clas...
elpwun 6977 Membership in the power cl...
iunpw 6978 An indexed union of a powe...
fr3nr 6979 A well-founded relation ha...
epne3 6980 A set well-founded by epsi...
dfwe2 6981 Alternate definition of we...
ordon 6982 The class of all ordinal n...
epweon 6983 The epsilon relation well-...
onprc 6984 No set contains all ordina...
ssorduni 6985 The union of a class of or...
ssonuni 6986 The union of a set of ordi...
ssonunii 6987 The union of a set of ordi...
ordeleqon 6988 A way to express the ordin...
ordsson 6989 Any ordinal class is a sub...
onss 6990 An ordinal number is a sub...
predon 6991 For an ordinal, the predec...
ssonprc 6992 Two ways of saying a class...
onuni 6993 The union of an ordinal nu...
orduni 6994 The union of an ordinal cl...
onint 6995 The intersection (infimum)...
onint0 6996 The intersection of a clas...
onssmin 6997 A nonempty class of ordina...
onminesb 6998 If a property is true for ...
onminsb 6999 If a property is true for ...
oninton 7000 The intersection of a none...
onintrab 7001 The intersection of a clas...
onintrab2 7002 An existence condition equ...
onnmin 7003 No member of a set of ordi...
onnminsb 7004 An ordinal number smaller ...
oneqmin 7005 A way to show that an ordi...
bm2.5ii 7006 Problem 2.5(ii) of [BellMa...
onminex 7007 If a wff is true for an or...
sucon 7008 The class of all ordinal n...
sucexb 7009 A successor exists iff its...
sucexg 7010 The successor of a set is ...
sucex 7011 The successor of a set is ...
onmindif2 7012 The minimum of a class of ...
suceloni 7013 The successor of an ordina...
ordsuc 7014 The successor of an ordina...
ordpwsuc 7015 The collection of ordinals...
onpwsuc 7016 The collection of ordinal ...
sucelon 7017 The successor of an ordina...
ordsucss 7018 The successor of an elemen...
onpsssuc 7019 An ordinal number is a pro...
ordelsuc 7020 A set belongs to an ordina...
onsucmin 7021 The successor of an ordina...
ordsucelsuc 7022 Membership is inherited by...
ordsucsssuc 7023 The subclass relationship ...
ordsucuniel 7024 Given an element ` A ` of ...
ordsucun 7025 The successor of the maxim...
ordunpr 7026 The maximum of two ordinal...
ordunel 7027 The maximum of two ordinal...
onsucuni 7028 A class of ordinal numbers...
ordsucuni 7029 An ordinal class is a subc...
orduniorsuc 7030 An ordinal class is either...
unon 7031 The class of all ordinal n...
ordunisuc 7032 An ordinal class is equal ...
orduniss2 7033 The union of the ordinal s...
onsucuni2 7034 A successor ordinal is the...
0elsuc 7035 The successor of an ordina...
limon 7036 The class of ordinal numbe...
onssi 7037 An ordinal number is a sub...
onsuci 7038 The successor of an ordina...
onuniorsuci 7039 An ordinal number is eithe...
onuninsuci 7040 A limit ordinal is not a s...
onsucssi 7041 A set belongs to an ordina...
nlimsucg 7042 A successor is not a limit...
orduninsuc 7043 An ordinal equal to its un...
ordunisuc2 7044 An ordinal equal to its un...
ordzsl 7045 An ordinal is zero, a succ...
onzsl 7046 An ordinal number is zero,...
dflim3 7047 An alternate definition of...
dflim4 7048 An alternate definition of...
limsuc 7049 The successor of a member ...
limsssuc 7050 A class includes a limit o...
nlimon 7051 Two ways to express the cl...
limuni3 7052 The union of a nonempty cl...
tfi 7053 The Principle of Transfini...
tfis 7054 Transfinite Induction Sche...
tfis2f 7055 Transfinite Induction Sche...
tfis2 7056 Transfinite Induction Sche...
tfis3 7057 Transfinite Induction Sche...
tfisi 7058 A transfinite induction sc...
tfinds 7059 Principle of Transfinite I...
tfindsg 7060 Transfinite Induction (inf...
tfindsg2 7061 Transfinite Induction (inf...
tfindes 7062 Transfinite Induction with...
tfinds2 7063 Transfinite Induction (inf...
tfinds3 7064 Principle of Transfinite I...
dfom2 7067 An alternate definition of...
elom 7068 Membership in omega. The ...
omsson 7069 Omega is a subset of ` On ...
limomss 7070 The class of natural numbe...
nnon 7071 A natural number is an ord...
nnoni 7072 A natural number is an ord...
nnord 7073 A natural number is ordina...
ordom 7074 Omega is ordinal. Theorem...
elnn 7075 A member of a natural numb...
omon 7076 The class of natural numbe...
omelon2 7077 Omega is an ordinal number...
nnlim 7078 A natural number is not a ...
omssnlim 7079 The class of natural numbe...
limom 7080 Omega is a limit ordinal. ...
peano2b 7081 A class belongs to omega i...
nnsuc 7082 A nonzero natural number i...
ssnlim 7083 An ordinal subclass of non...
omsinds 7084 Strong (or "total") induct...
peano1 7085 Zero is a natural number. ...
peano2 7086 The successor of any natur...
peano3 7087 The successor of any natur...
peano4 7088 Two natural numbers are eq...
peano5 7089 The induction postulate: a...
nn0suc 7090 A natural number is either...
find 7091 The Principle of Finite In...
finds 7092 Principle of Finite Induct...
findsg 7093 Principle of Finite Induct...
finds2 7094 Principle of Finite Induct...
finds1 7095 Principle of Finite Induct...
findes 7096 Finite induction with expl...
dmexg 7097 The domain of a set is a s...
rnexg 7098 The range of a set is a se...
dmex 7099 The domain of a set is a s...
rnex 7100 The range of a set is a se...
iprc 7101 The identity function is a...
resiexg 7102 The existence of a restric...
imaexg 7103 The image of a set is a se...
imaex 7104 The image of a set is a se...
exse2 7105 Any set relation is set-li...
xpexr 7106 If a Cartesian product is ...
xpexr2 7107 If a nonempty Cartesian pr...
xpexcnv 7108 A condition where the conv...
soex 7109 If the relation in a stric...
elxp4 7110 Membership in a Cartesian ...
elxp5 7111 Membership in a Cartesian ...
cnvexg 7112 The converse of a set is a...
cnvex 7113 The converse of a set is a...
relcnvexb 7114 A relation is a set iff it...
f1oexrnex 7115 If the range of a 1-1 onto...
f1oexbi 7116 There is a one-to-one onto...
coexg 7117 The composition of two set...
coex 7118 The composition of two set...
funcnvuni 7119 The union of a chain (with...
fun11uni 7120 The union of a chain (with...
fex2 7121 A function with bounded do...
fabexg 7122 Existence of a set of func...
fabex 7123 Existence of a set of func...
dmfex 7124 If a mapping is a set, its...
f1oabexg 7125 The class of all 1-1-onto ...
fun11iun 7126 The union of a chain (with...
ffoss 7127 Relationship between a map...
f11o 7128 Relationship between one-t...
resfunexgALT 7129 Alternate proof of ~ resfu...
cofunexg 7130 Existence of a composition...
cofunex2g 7131 Existence of a composition...
fnexALT 7132 Alternate proof of ~ fnex ...
funrnex 7133 If the domain of a functio...
zfrep6 7134 A version of the Axiom of ...
fornex 7135 If the domain of an onto f...
f1dmex 7136 If the codomain of a one-t...
f1ovv 7137 The range of a 1-1 onto fu...
fvclex 7138 Existence of the class of ...
fvresex 7139 Existence of the class of ...
abrexexg 7140 Existence of a class abstr...
abrexex 7141 Existence of a class abstr...
abrexexOLD 7142 Obsolete proof of ~ abrexe...
iunexg 7143 The existence of an indexe...
abrexex2g 7144 Existence of an existentia...
opabex3d 7145 Existence of an ordered pa...
opabex3 7146 Existence of an ordered pa...
iunex 7147 The existence of an indexe...
abrexex2 7148 Existence of an existentia...
abexssex 7149 Existence of a class abstr...
abrexex2OLD 7150 Obsolete proof of ~ abrexe...
abexex 7151 A condition where a class ...
f1oweALT 7152 Alternate proof of ~ f1owe...
wemoiso 7153 Thus, there is at most one...
wemoiso2 7154 Thus, there is at most one...
oprabexd 7155 Existence of an operator a...
oprabex 7156 Existence of an operation ...
oprabex3 7157 Existence of an operation ...
oprabrexex2 7158 Existence of an existentia...
ab2rexex 7159 Existence of a class abstr...
ab2rexex2 7160 Existence of an existentia...
xpexgALT 7161 Alternate proof of ~ xpexg...
offval3 7162 General value of ` ( F oF ...
offres 7163 Pointwise combination comm...
ofmres 7164 Equivalent expressions for...
ofmresex 7165 Existence of a restriction...
1stval 7170 The value of the function ...
2ndval 7171 The value of the function ...
1stnpr 7172 Value of the first-member ...
2ndnpr 7173 Value of the second-member...
1st0 7174 The value of the first-mem...
2nd0 7175 The value of the second-me...
op1st 7176 Extract the first member o...
op2nd 7177 Extract the second member ...
op1std 7178 Extract the first member o...
op2ndd 7179 Extract the second member ...
op1stg 7180 Extract the first member o...
op2ndg 7181 Extract the second member ...
ot1stg 7182 Extract the first member o...
ot2ndg 7183 Extract the second member ...
ot3rdg 7184 Extract the third member o...
1stval2 7185 Alternate value of the fun...
2ndval2 7186 Alternate value of the fun...
oteqimp 7187 The components of an order...
fo1st 7188 The ` 1st ` function maps ...
fo2nd 7189 The ` 2nd ` function maps ...
f1stres 7190 Mapping of a restriction o...
f2ndres 7191 Mapping of a restriction o...
fo1stres 7192 Onto mapping of a restrict...
fo2ndres 7193 Onto mapping of a restrict...
1st2val 7194 Value of an alternate defi...
2nd2val 7195 Value of an alternate defi...
1stcof 7196 Composition of the first m...
2ndcof 7197 Composition of the second ...
xp1st 7198 Location of the first elem...
xp2nd 7199 Location of the second ele...
elxp6 7200 Membership in a Cartesian ...
elxp7 7201 Membership in a Cartesian ...
eqopi 7202 Equality with an ordered p...
xp2 7203 Representation of Cartesia...
unielxp 7204 The membership relation fo...
1st2nd2 7205 Reconstruction of a member...
1st2ndb 7206 Reconstruction of an order...
xpopth 7207 An ordered pair theorem fo...
eqop 7208 Two ways to express equali...
eqop2 7209 Two ways to express equali...
op1steq 7210 Two ways of expressing tha...
el2xptp 7211 A member of a nested Carte...
el2xptp0 7212 A member of a nested Carte...
2nd1st 7213 Swap the members of an ord...
1st2nd 7214 Reconstruction of a member...
1stdm 7215 The first ordered pair com...
2ndrn 7216 The second ordered pair co...
1st2ndbr 7217 Express an element of a re...
releldm2 7218 Two ways of expressing mem...
reldm 7219 An expression for the doma...
sbcopeq1a 7220 Equality theorem for subst...
csbopeq1a 7221 Equality theorem for subst...
dfopab2 7222 A way to define an ordered...
dfoprab3s 7223 A way to define an operati...
dfoprab3 7224 Operation class abstractio...
dfoprab4 7225 Operation class abstractio...
dfoprab4f 7226 Operation class abstractio...
opabex2 7227 Condition for an operation...
opabn1stprc 7228 An ordered-pair class abst...
opiota 7229 The property of a uniquely...
dfxp3 7230 Define the Cartesian produ...
elopabi 7231 A consequence of membershi...
eloprabi 7232 A consequence of membershi...
mpt2mptsx 7233 Express a two-argument fun...
mpt2mpts 7234 Express a two-argument fun...
dmmpt2ssx 7235 The domain of a mapping is...
fmpt2x 7236 Functionality, domain and ...
fmpt2 7237 Functionality, domain and ...
fnmpt2 7238 Functionality and domain o...
fnmpt2i 7239 Functionality and domain o...
dmmpt2 7240 Domain of a class given by...
ovmpt2elrn 7241 An operation's value belon...
dmmpt2ga 7242 Domain of an operation giv...
dmmpt2g 7243 Domain of an operation giv...
mpt2exxg 7244 Existence of an operation ...
mpt2exg 7245 Existence of an operation ...
mpt2exga 7246 If the domain of a functio...
mpt2ex 7247 If the domain of a functio...
mptmpt2opabbrd 7248 The operation value of a f...
mptmpt2opabovd 7249 The operation value of a f...
el2mpt2csbcl 7250 If the operation value of ...
el2mpt2cl 7251 If the operation value of ...
fnmpt2ovd 7252 A function with a Cartesia...
offval22 7253 The function operation exp...
brovpreldm 7254 If a binary relation holds...
bropopvvv 7255 If a binary relation holds...
bropfvvvvlem 7256 Lemma for ~ bropfvvvv . (...
bropfvvvv 7257 If a binary relation holds...
ovmptss 7258 If all the values of the m...
relmpt2opab 7259 Any function to sets of or...
fmpt2co 7260 Composition of two functio...
oprabco 7261 Composition of a function ...
oprab2co 7262 Composition of operator ab...
df1st2 7263 An alternate possible defi...
df2nd2 7264 An alternate possible defi...
1stconst 7265 The mapping of a restricti...
2ndconst 7266 The mapping of a restricti...
dfmpt2 7267 Alternate definition for t...
mpt2sn 7268 An operation (in maps-to n...
curry1 7269 Composition with ` ``' ( 2...
curry1val 7270 The value of a curried fun...
curry1f 7271 Functionality of a curried...
curry2 7272 Composition with ` ``' ( 1...
curry2f 7273 Functionality of a curried...
curry2val 7274 The value of a curried fun...
cnvf1olem 7275 Lemma for ~ cnvf1o . (Con...
cnvf1o 7276 Describe a function that m...
fparlem1 7277 Lemma for ~ fpar . (Contr...
fparlem2 7278 Lemma for ~ fpar . (Contr...
fparlem3 7279 Lemma for ~ fpar . (Contr...
fparlem4 7280 Lemma for ~ fpar . (Contr...
fpar 7281 Merge two functions in par...
fsplit 7282 A function that can be use...
f2ndf 7283 The ` 2nd ` (second member...
fo2ndf 7284 The ` 2nd ` (second member...
f1o2ndf1 7285 The ` 2nd ` (second member...
algrflem 7286 Lemma for ~ algrf and rela...
frxp 7287 A lexicographical ordering...
xporderlem 7288 Lemma for lexicographical ...
poxp 7289 A lexicographical ordering...
soxp 7290 A lexicographical ordering...
wexp 7291 A lexicographical ordering...
fnwelem 7292 Lemma for ~ fnwe . (Contr...
fnwe 7293 A variant on lexicographic...
fnse 7294 Condition for the well-ord...
suppval 7297 The value of the operation...
supp0prc 7298 The support of a class is ...
suppvalbr 7299 The value of the operation...
supp0 7300 The support of the empty s...
suppval1 7301 The value of the operation...
suppvalfn 7302 The value of the operation...
elsuppfn 7303 An element of the support ...
cnvimadfsn 7304 The support of functions "...
suppimacnvss 7305 The support of functions "...
suppimacnv 7306 Support sets of functions ...
frnsuppeq 7307 Two ways of writing the su...
suppssdm 7308 The support of a function ...
suppsnop 7309 The support of a singleton...
snopsuppss 7310 The support of a singleton...
fvn0elsupp 7311 If the function value for ...
fvn0elsuppb 7312 The function value for a g...
rexsupp 7313 Existential quantification...
ressuppss 7314 The support of the restric...
suppun 7315 The support of a class/fun...
ressuppssdif 7316 The support of the restric...
mptsuppdifd 7317 The support of a function ...
mptsuppd 7318 The support of a function ...
extmptsuppeq 7319 The support of an extended...
suppfnss 7320 The support of a function ...
funsssuppss 7321 The support of a function ...
fnsuppres 7322 Two ways to express restri...
fnsuppeq0 7323 The support of a function ...
fczsupp0 7324 The support of a constant ...
suppss 7325 Show that the support of a...
suppssr 7326 A function is zero outside...
suppssov1 7327 Formula building theorem f...
suppssof1 7328 Formula building theorem f...
suppss2 7329 Show that the support of a...
suppsssn 7330 Show that the support of a...
suppssfv 7331 Formula building theorem f...
suppofss1d 7332 Condition for the support ...
suppofss2d 7333 Condition for the support ...
supp0cosupp0 7334 The support of the composi...
imacosupp 7335 The image of the support o...
opeliunxp2f 7336 Membership in a union of C...
mpt2xeldm 7337 If there is an element of ...
mpt2xneldm 7338 If the first argument of a...
mpt2xopn0yelv 7339 If there is an element of ...
mpt2xopynvov0g 7340 If the second argument of ...
mpt2xopxnop0 7341 If the first argument of a...
mpt2xopx0ov0 7342 If the first argument of a...
mpt2xopxprcov0 7343 If the components of the f...
mpt2xopynvov0 7344 If the second argument of ...
mpt2xopoveq 7345 Value of an operation give...
mpt2xopovel 7346 Element of the value of an...
mpt2xopoveqd 7347 Value of an operation give...
brovex 7348 A binary relation of the v...
brovmpt2ex 7349 A binary relation of the v...
sprmpt2d 7350 The extension of a binary ...
tposss 7353 Subset theorem for transpo...
tposeq 7354 Equality theorem for trans...
tposeqd 7355 Equality theorem for trans...
tposssxp 7356 The transposition is a sub...
reltpos 7357 The transposition is a rel...
brtpos2 7358 Value of the transposition...
brtpos0 7359 The behavior of ` tpos ` w...
reldmtpos 7360 Necessary and sufficient c...
brtpos 7361 The transposition swaps ar...
ottpos 7362 The transposition swaps th...
relbrtpos 7363 The transposition swaps ar...
dmtpos 7364 The domain of ` tpos F ` w...
rntpos 7365 The range of ` tpos F ` wh...
tposexg 7366 The transposition of a set...
ovtpos 7367 The transposition swaps th...
tposfun 7368 The transposition of a fun...
dftpos2 7369 Alternate definition of ` ...
dftpos3 7370 Alternate definition of ` ...
dftpos4 7371 Alternate definition of ` ...
tpostpos 7372 Value of the double transp...
tpostpos2 7373 Value of the double transp...
tposfn2 7374 The domain of a transposit...
tposfo2 7375 Condition for a surjective...
tposf2 7376 The domain and range of a ...
tposf12 7377 Condition for an injective...
tposf1o2 7378 Condition of a bijective t...
tposfo 7379 The domain and range of a ...
tposf 7380 The domain and range of a ...
tposfn 7381 Functionality of a transpo...
tpos0 7382 Transposition of the empty...
tposco 7383 Transposition of a composi...
tpossym 7384 Two ways to say a function...
tposeqi 7385 Equality theorem for trans...
tposex 7386 A transposition is a set. ...
nftpos 7387 Hypothesis builder for tra...
tposoprab 7388 Transposition of a class o...
tposmpt2 7389 Transposition of a two-arg...
tposconst 7390 The transposition of a con...
mpt2curryd 7395 The currying of an operati...
mpt2curryvald 7396 The value of a curried ope...
fvmpt2curryd 7397 The value of the value of ...
pwuninel2 7400 Direct proof of ~ pwuninel...
pwuninel 7401 The power set of the union...
undefval 7402 Value of the undefined val...
undefnel2 7403 The undefined value genera...
undefnel 7404 The undefined value genera...
undefne0 7405 The undefined value genera...
wrecseq123 7408 General equality theorem f...
nfwrecs 7409 Bound-variable hypothesis ...
wrecseq1 7410 Equality theorem for the w...
wrecseq2 7411 Equality theorem for the w...
wrecseq3 7412 Equality theorem for the w...
wfr3g 7413 Functions defined by well-...
wfrlem1 7414 Lemma for well-founded rec...
wfrlem2 7415 Lemma for well-founded rec...
wfrlem3 7416 Lemma for well-founded rec...
wfrlem3a 7417 Lemma for well-founded rec...
wfrlem4 7418 Lemma for well-founded rec...
wfrlem5 7419 Lemma for well-founded rec...
wfrrel 7420 The well-founded recursion...
wfrdmss 7421 The domain of the well-fou...
wfrlem8 7422 Lemma for well-founded rec...
wfrdmcl 7423 Given ` F = wrecs ( R , A ...
wfrlem10 7424 Lemma for well-founded rec...
wfrfun 7425 The well-founded function ...
wfrlem12 7426 Lemma for well-founded rec...
wfrlem13 7427 Lemma for well-founded rec...
wfrlem14 7428 Lemma for well-founded rec...
wfrlem15 7429 Lemma for well-founded rec...
wfrlem16 7430 Lemma for well-founded rec...
wfrlem17 7431 Without using ~ ax-rep , s...
wfr2a 7432 A weak version of ~ wfr2 w...
wfr1 7433 The Principle of Well-Foun...
wfr2 7434 The Principle of Well-Foun...
wfr3 7435 The principle of Well-Foun...
iunon 7436 The indexed union of a set...
iinon 7437 The nonempty indexed inter...
onfununi 7438 A property of functions on...
onovuni 7439 A variant of ~ onfununi fo...
onoviun 7440 A variant of ~ onovuni wit...
onnseq 7441 There are no length ` _om ...
dfsmo2 7444 Alternate definition of a ...
issmo 7445 Conditions for which ` A `...
issmo2 7446 Alternate definition of a ...
smoeq 7447 Equality theorem for stric...
smodm 7448 The domain of a strictly m...
smores 7449 A strictly monotone functi...
smores3 7450 A strictly monotone functi...
smores2 7451 A strictly monotone ordina...
smodm2 7452 The domain of a strictly m...
smofvon2 7453 The function values of a s...
iordsmo 7454 The identity relation rest...
smo0 7455 The null set is a strictly...
smofvon 7456 If ` B ` is a strictly mon...
smoel 7457 If ` x ` is less than ` y ...
smoiun 7458 The value of a strictly mo...
smoiso 7459 If ` F ` is an isomorphism...
smoel2 7460 A strictly monotone ordina...
smo11 7461 A strictly monotone ordina...
smoord 7462 A strictly monotone ordina...
smoword 7463 A strictly monotone ordina...
smogt 7464 A strictly monotone ordina...
smorndom 7465 The range of a strictly mo...
smoiso2 7466 The strictly monotone ordi...
dfrecs3 7469 The old definition of tran...
recseq 7470 Equality theorem for ` rec...
nfrecs 7471 Bound-variable hypothesis ...
tfrlem1 7472 A technical lemma for tran...
tfrlem3a 7473 Lemma for transfinite recu...
tfrlem3 7474 Lemma for transfinite recu...
tfrlem4 7475 Lemma for transfinite recu...
tfrlem5 7476 Lemma for transfinite recu...
recsfval 7477 Lemma for transfinite recu...
tfrlem6 7478 Lemma for transfinite recu...
tfrlem7 7479 Lemma for transfinite recu...
tfrlem8 7480 Lemma for transfinite recu...
tfrlem9 7481 Lemma for transfinite recu...
tfrlem9a 7482 Lemma for transfinite recu...
tfrlem10 7483 Lemma for transfinite recu...
tfrlem11 7484 Lemma for transfinite recu...
tfrlem12 7485 Lemma for transfinite recu...
tfrlem13 7486 Lemma for transfinite recu...
tfrlem14 7487 Lemma for transfinite recu...
tfrlem15 7488 Lemma for transfinite recu...
tfrlem16 7489 Lemma for finite recursion...
tfr1a 7490 A weak version of ~ tfr1 w...
tfr2a 7491 A weak version of ~ tfr2 w...
tfr2b 7492 Without assuming ~ ax-rep ...
tfr1 7493 Principle of Transfinite R...
tfr2 7494 Principle of Transfinite R...
tfr3 7495 Principle of Transfinite R...
tfr1ALT 7496 Alternate proof of ~ tfr1 ...
tfr2ALT 7497 Alternate proof of ~ tfr2 ...
tfr3ALT 7498 Alternate proof of ~ tfr3 ...
recsfnon 7499 Strong transfinite recursi...
recsval 7500 Strong transfinite recursi...
tz7.44lem1 7501 ` G ` is a function. Lemm...
tz7.44-1 7502 The value of ` F ` at ` (/...
tz7.44-2 7503 The value of ` F ` at a su...
tz7.44-3 7504 The value of ` F ` at a li...
rdgeq1 7507 Equality theorem for the r...
rdgeq2 7508 Equality theorem for the r...
rdgeq12 7509 Equality theorem for the r...
nfrdg 7510 Bound-variable hypothesis ...
rdglem1 7511 Lemma used with the recurs...
rdgfun 7512 The recursive definition g...
rdgdmlim 7513 The domain of the recursiv...
rdgfnon 7514 The recursive definition g...
rdgvalg 7515 Value of the recursive def...
rdgval 7516 Value of the recursive def...
rdg0 7517 The initial value of the r...
rdgseg 7518 The initial segments of th...
rdgsucg 7519 The value of the recursive...
rdgsuc 7520 The value of the recursive...
rdglimg 7521 The value of the recursive...
rdglim 7522 The value of the recursive...
rdg0g 7523 The initial value of the r...
rdgsucmptf 7524 The value of the recursive...
rdgsucmptnf 7525 The value of the recursive...
rdgsucmpt2 7526 This version of ~ rdgsucmp...
rdgsucmpt 7527 The value of the recursive...
rdglim2 7528 The value of the recursive...
rdglim2a 7529 The value of the recursive...
frfnom 7530 The function generated by ...
fr0g 7531 The initial value resultin...
frsuc 7532 The successor value result...
frsucmpt 7533 The successor value result...
frsucmptn 7534 The value of the finite re...
frsucmpt2 7535 The successor value result...
tz7.48lem 7536 A way of showing an ordina...
tz7.48-2 7537 Proposition 7.48(2) of [Ta...
tz7.48-1 7538 Proposition 7.48(1) of [Ta...
tz7.48-3 7539 Proposition 7.48(3) of [Ta...
tz7.49 7540 Proposition 7.49 of [Takeu...
tz7.49c 7541 Corollary of Proposition 7...
seqomlem0 7544 Lemma for ` seqom ` . Cha...
seqomlem1 7545 Lemma for ` seqom ` . The...
seqomlem2 7546 Lemma for ` seqom ` . (Co...
seqomlem3 7547 Lemma for ` seqom ` . (Co...
seqomlem4 7548 Lemma for ` seqom ` . (Co...
seqomeq12 7549 Equality theorem for ` seq...
fnseqom 7550 An index-aware recursive d...
seqom0g 7551 Value of an index-aware re...
seqomsuc 7552 Value of an index-aware re...
1on 7567 Ordinal 1 is an ordinal nu...
2on 7568 Ordinal 2 is an ordinal nu...
2on0 7569 Ordinal two is not zero. ...
3on 7570 Ordinal 3 is an ordinal nu...
4on 7571 Ordinal 3 is an ordinal nu...
df1o2 7572 Expanded value of the ordi...
df2o3 7573 Expanded value of the ordi...
df2o2 7574 Expanded value of the ordi...
1n0 7575 Ordinal one is not equal t...
xp01disj 7576 Cartesian products with th...
ordgt0ge1 7577 Two ways to express that a...
ordge1n0 7578 An ordinal greater than or...
el1o 7579 Membership in ordinal one....
dif1o 7580 Two ways to say that ` A `...
ondif1 7581 Two ways to say that ` A `...
ondif2 7582 Two ways to say that ` A `...
2oconcl 7583 Closure of the pair swappi...
0lt1o 7584 Ordinal zero is less than ...
dif20el 7585 An ordinal greater than on...
0we1 7586 The empty set is a well-or...
brwitnlem 7587 Lemma for relations which ...
fnoa 7588 Functionality and domain o...
fnom 7589 Functionality and domain o...
fnoe 7590 Functionality and domain o...
oav 7591 Value of ordinal addition....
omv 7592 Value of ordinal multiplic...
oe0lem 7593 A helper lemma for ~ oe0 a...
oev 7594 Value of ordinal exponenti...
oevn0 7595 Value of ordinal exponenti...
oa0 7596 Addition with zero. Propo...
om0 7597 Ordinal multiplication wit...
oe0m 7598 Ordinal exponentiation wit...
om0x 7599 Ordinal multiplication wit...
oe0m0 7600 Ordinal exponentiation wit...
oe0m1 7601 Ordinal exponentiation wit...
oe0 7602 Ordinal exponentiation wit...
oev2 7603 Alternate value of ordinal...
oasuc 7604 Addition with successor. ...
oesuclem 7605 Lemma for ~ oesuc . (Cont...
omsuc 7606 Multiplication with succes...
oesuc 7607 Ordinal exponentiation wit...
onasuc 7608 Addition with successor. ...
onmsuc 7609 Multiplication with succes...
onesuc 7610 Exponentiation with a succ...
oa1suc 7611 Addition with 1 is same as...
oalim 7612 Ordinal addition with a li...
omlim 7613 Ordinal multiplication wit...
oelim 7614 Ordinal exponentiation wit...
oacl 7615 Closure law for ordinal ad...
omcl 7616 Closure law for ordinal mu...
oecl 7617 Closure law for ordinal ex...
oa0r 7618 Ordinal addition with zero...
om0r 7619 Ordinal multiplication wit...
o1p1e2 7620 1 + 1 = 2 for ordinal numb...
o2p2e4 7621 2 + 2 = 4 for ordinal numb...
om1 7622 Ordinal multiplication wit...
om1r 7623 Ordinal multiplication wit...
oe1 7624 Ordinal exponentiation wit...
oe1m 7625 Ordinal exponentiation wit...
oaordi 7626 Ordering property of ordin...
oaord 7627 Ordering property of ordin...
oacan 7628 Left cancellation law for ...
oaword 7629 Weak ordering property of ...
oawordri 7630 Weak ordering property of ...
oaord1 7631 An ordinal is less than it...
oaword1 7632 An ordinal is less than or...
oaword2 7633 An ordinal is less than or...
oawordeulem 7634 Lemma for ~ oawordex . (C...
oawordeu 7635 Existence theorem for weak...
oawordexr 7636 Existence theorem for weak...
oawordex 7637 Existence theorem for weak...
oaordex 7638 Existence theorem for orde...
oa00 7639 An ordinal sum is zero iff...
oalimcl 7640 The ordinal sum with a lim...
oaass 7641 Ordinal addition is associ...
oarec 7642 Recursive definition of or...
oaf1o 7643 Left addition by a constan...
oacomf1olem 7644 Lemma for ~ oacomf1o . (C...
oacomf1o 7645 Define a bijection from ` ...
omordi 7646 Ordering property of ordin...
omord2 7647 Ordering property of ordin...
omord 7648 Ordering property of ordin...
omcan 7649 Left cancellation law for ...
omword 7650 Weak ordering property of ...
omwordi 7651 Weak ordering property of ...
omwordri 7652 Weak ordering property of ...
omword1 7653 An ordinal is less than or...
omword2 7654 An ordinal is less than or...
om00 7655 The product of two ordinal...
om00el 7656 The product of two nonzero...
omordlim 7657 Ordering involving the pro...
omlimcl 7658 The product of any nonzero...
odi 7659 Distributive law for ordin...
omass 7660 Multiplication of ordinal ...
oneo 7661 If an ordinal number is ev...
omeulem1 7662 Lemma for ~ omeu : existen...
omeulem2 7663 Lemma for ~ omeu : uniquen...
omopth2 7664 An ordered pair-like theor...
omeu 7665 The division algorithm for...
oen0 7666 Ordinal exponentiation wit...
oeordi 7667 Ordering law for ordinal e...
oeord 7668 Ordering property of ordin...
oecan 7669 Left cancellation law for ...
oeword 7670 Weak ordering property of ...
oewordi 7671 Weak ordering property of ...
oewordri 7672 Weak ordering property of ...
oeworde 7673 Ordinal exponentiation com...
oeordsuc 7674 Ordering property of ordin...
oelim2 7675 Ordinal exponentiation wit...
oeoalem 7676 Lemma for ~ oeoa . (Contr...
oeoa 7677 Sum of exponents law for o...
oeoelem 7678 Lemma for ~ oeoe . (Contr...
oeoe 7679 Product of exponents law f...
oelimcl 7680 The ordinal exponential wi...
oeeulem 7681 Lemma for ~ oeeu . (Contr...
oeeui 7682 The division algorithm for...
oeeu 7683 The division algorithm for...
nna0 7684 Addition with zero. Theor...
nnm0 7685 Multiplication with zero. ...
nnasuc 7686 Addition with successor. ...
nnmsuc 7687 Multiplication with succes...
nnesuc 7688 Exponentiation with a succ...
nna0r 7689 Addition to zero. Remark ...
nnm0r 7690 Multiplication with zero. ...
nnacl 7691 Closure of addition of nat...
nnmcl 7692 Closure of multiplication ...
nnecl 7693 Closure of exponentiation ...
nnacli 7694 ` _om ` is closed under ad...
nnmcli 7695 ` _om ` is closed under mu...
nnarcl 7696 Reverse closure law for ad...
nnacom 7697 Addition of natural number...
nnaordi 7698 Ordering property of addit...
nnaord 7699 Ordering property of addit...
nnaordr 7700 Ordering property of addit...
nnawordi 7701 Adding to both sides of an...
nnaass 7702 Addition of natural number...
nndi 7703 Distributive law for natur...
nnmass 7704 Multiplication of natural ...
nnmsucr 7705 Multiplication with succes...
nnmcom 7706 Multiplication of natural ...
nnaword 7707 Weak ordering property of ...
nnacan 7708 Cancellation law for addit...
nnaword1 7709 Weak ordering property of ...
nnaword2 7710 Weak ordering property of ...
nnmordi 7711 Ordering property of multi...
nnmord 7712 Ordering property of multi...
nnmword 7713 Weak ordering property of ...
nnmcan 7714 Cancellation law for multi...
nnmwordi 7715 Weak ordering property of ...
nnmwordri 7716 Weak ordering property of ...
nnawordex 7717 Equivalence for weak order...
nnaordex 7718 Equivalence for ordering. ...
1onn 7719 One is a natural number. ...
2onn 7720 The ordinal 2 is a natural...
3onn 7721 The ordinal 3 is a natural...
4onn 7722 The ordinal 4 is a natural...
oaabslem 7723 Lemma for ~ oaabs . (Cont...
oaabs 7724 Ordinal addition absorbs a...
oaabs2 7725 The absorption law ~ oaabs...
omabslem 7726 Lemma for ~ omabs . (Cont...
omabs 7727 Ordinal multiplication is ...
nnm1 7728 Multiply an element of ` _...
nnm2 7729 Multiply an element of ` _...
nn2m 7730 Multiply an element of ` _...
nnneo 7731 If a natural number is eve...
nneob 7732 A natural number is even i...
omsmolem 7733 Lemma for ~ omsmo . (Cont...
omsmo 7734 A strictly monotonic ordin...
omopthlem1 7735 Lemma for ~ omopthi . (Co...
omopthlem2 7736 Lemma for ~ omopthi . (Co...
omopthi 7737 An ordered pair theorem fo...
omopth 7738 An ordered pair theorem fo...
dfer2 7743 Alternate definition of eq...
dfec2 7745 Alternate definition of ` ...
ecexg 7746 An equivalence class modul...
ecexr 7747 A nonempty equivalence cla...
ereq1 7749 Equality theorem for equiv...
ereq2 7750 Equality theorem for equiv...
errel 7751 An equivalence relation is...
erdm 7752 The domain of an equivalen...
ercl 7753 Elementhood in the field o...
ersym 7754 An equivalence relation is...
ercl2 7755 Elementhood in the field o...
ersymb 7756 An equivalence relation is...
ertr 7757 An equivalence relation is...
ertrd 7758 A transitivity relation fo...
ertr2d 7759 A transitivity relation fo...
ertr3d 7760 A transitivity relation fo...
ertr4d 7761 A transitivity relation fo...
erref 7762 An equivalence relation is...
ercnv 7763 The converse of an equival...
errn 7764 The range and domain of an...
erssxp 7765 An equivalence relation is...
erex 7766 An equivalence relation is...
erexb 7767 An equivalence relation is...
iserd 7768 A reflexive, symmetric, tr...
iseri 7769 A reflexive, symmetric, tr...
iseriALT 7770 Alternate proof of ~ iseri...
brdifun 7771 Evaluate the incomparabili...
swoer 7772 Incomparability under a st...
swoord1 7773 The incomparability equiva...
swoord2 7774 The incomparability equiva...
swoso 7775 If the incomparability rel...
eqerlem 7776 Lemma for ~ eqer . (Contr...
eqer 7777 Equivalence relation invol...
eqerOLD 7778 Obsolete proof of ~ eqer a...
ider 7779 The identity relation is a...
0er 7780 The empty set is an equiva...
0erOLD 7781 Obsolete proof of ~ 0er as...
eceq1 7782 Equality theorem for equiv...
eceq1d 7783 Equality theorem for equiv...
eceq2 7784 Equality theorem for equiv...
elecg 7785 Membership in an equivalen...
elec 7786 Membership in an equivalen...
relelec 7787 Membership in an equivalen...
ecss 7788 An equivalence class is a ...
ecdmn0 7789 A representative of a none...
ereldm 7790 Equality of equivalence cl...
erth 7791 Basic property of equivale...
erth2 7792 Basic property of equivale...
erthi 7793 Basic property of equivale...
erdisj 7794 Equivalence classes do not...
ecidsn 7795 An equivalence class modul...
qseq1 7796 Equality theorem for quoti...
qseq2 7797 Equality theorem for quoti...
elqsg 7798 Closed form of ~ elqs . (...
elqs 7799 Membership in a quotient s...
elqsi 7800 Membership in a quotient s...
elqsecl 7801 Membership in a quotient s...
ecelqsg 7802 Membership of an equivalen...
ecelqsi 7803 Membership of an equivalen...
ecopqsi 7804 "Closure" law for equivale...
qsexg 7805 A quotient set exists. (C...
qsex 7806 A quotient set exists. (C...
uniqs 7807 The union of a quotient se...
qsss 7808 A quotient set is a set of...
uniqs2 7809 The union of a quotient se...
snec 7810 The singleton of an equiva...
ecqs 7811 Equivalence class in terms...
ecid 7812 A set is equal to its conv...
qsid 7813 A set is equal to its quot...
ectocld 7814 Implicit substitution of c...
ectocl 7815 Implicit substitution of c...
elqsn0 7816 A quotient set doesn't con...
ecelqsdm 7817 Membership of an equivalen...
xpider 7818 A square Cartesian product...
iiner 7819 The intersection of a none...
riiner 7820 The relative intersection ...
erinxp 7821 A restricted equivalence r...
ecinxp 7822 Restrict the relation in a...
qsinxp 7823 Restrict the equivalence r...
qsdisj 7824 Members of a quotient set ...
qsdisj2 7825 A quotient set is a disjoi...
qsel 7826 If an element of a quotien...
uniinqs 7827 Class union distributes ov...
qliftlem 7828 ` F ` , a function lift, i...
qliftrel 7829 ` F ` , a function lift, i...
qliftel 7830 Elementhood in the relatio...
qliftel1 7831 Elementhood in the relatio...
qliftfun 7832 The function ` F ` is the ...
qliftfund 7833 The function ` F ` is the ...
qliftfuns 7834 The function ` F ` is the ...
qliftf 7835 The domain and range of th...
qliftval 7836 The value of the function ...
ecoptocl 7837 Implicit substitution of c...
2ecoptocl 7838 Implicit substitution of c...
3ecoptocl 7839 Implicit substitution of c...
brecop 7840 Binary relation on a quoti...
brecop2 7841 Binary relation on a quoti...
eroveu 7842 Lemma for ~ erov and ~ ero...
erovlem 7843 Lemma for ~ erov and ~ ero...
erov 7844 The value of an operation ...
eroprf 7845 Functionality of an operat...
erov2 7846 The value of an operation ...
eroprf2 7847 Functionality of an operat...
ecopoveq 7848 This is the first of sever...
ecopovsym 7849 Assuming the operation ` F...
ecopovtrn 7850 Assuming that operation ` ...
ecopover 7851 Assuming that operation ` ...
ecopoverOLD 7852 Obsolete proof of ~ ecopov...
eceqoveq 7853 Equality of equivalence re...
ecovcom 7854 Lemma used to transfer a c...
ecovass 7855 Lemma used to transfer an ...
ecovdi 7856 Lemma used to transfer a d...
mapprc 7861 When ` A ` is a proper cla...
pmex 7862 The class of all partial f...
mapex 7863 The class of all functions...
fnmap 7864 Set exponentiation has a u...
fnpm 7865 Partial function exponenti...
reldmmap 7866 Set exponentiation is a we...
mapvalg 7867 The value of set exponenti...
pmvalg 7868 The value of the partial m...
mapval 7869 The value of set exponenti...
elmapg 7870 Membership relation for se...
elmapd 7871 Deduction form of ~ elmapg...
mapdm0 7872 The empty set is the only ...
elpmg 7873 The predicate "is a partia...
elpm2g 7874 The predicate "is a partia...
elpm2r 7875 Sufficient condition for b...
elpmi 7876 A partial function is a fu...
pmfun 7877 A partial function is a fu...
elmapex 7878 Eliminate antecedent for m...
elmapi 7879 A mapping is a function, f...
elmapfn 7880 A mapping is a function wi...
elmapfun 7881 A mapping is always a func...
elmapssres 7882 A restricted mapping is a ...
fpmg 7883 A total function is a part...
pmss12g 7884 Subset relation for the se...
pmresg 7885 Elementhood of a restricte...
elmap 7886 Membership relation for se...
mapval2 7887 Alternate expression for t...
elpm 7888 The predicate "is a partia...
elpm2 7889 The predicate "is a partia...
fpm 7890 A total function is a part...
mapsspm 7891 Set exponentiation is a su...
pmsspw 7892 Partial maps are a subset ...
mapsspw 7893 Set exponentiation is a su...
fvmptmap 7894 Special case of ~ fvmpt fo...
map0e 7895 Set exponentiation with an...
map0b 7896 Set exponentiation with an...
map0g 7897 Set exponentiation is empt...
map0 7898 Set exponentiation is empt...
mapsn 7899 The value of set exponenti...
mapss 7900 Subset inheritance for set...
fdiagfn 7901 Functionality of the diago...
fvdiagfn 7902 Functionality of the diago...
mapsnconst 7903 Every singleton map is a c...
mapsncnv 7904 Expression for the inverse...
mapsnf1o2 7905 Explicit bijection between...
mapsnf1o3 7906 Explicit bijection in the ...
ralxpmap 7907 Quantification over functi...
dfixp 7910 Eliminate the expression `...
ixpsnval 7911 The value of an infinite C...
elixp2 7912 Membership in an infinite ...
fvixp 7913 Projection of a factor of ...
ixpfn 7914 A nuple is a function. (C...
elixp 7915 Membership in an infinite ...
elixpconst 7916 Membership in an infinite ...
ixpconstg 7917 Infinite Cartesian product...
ixpconst 7918 Infinite Cartesian product...
ixpeq1 7919 Equality theorem for infin...
ixpeq1d 7920 Equality theorem for infin...
ss2ixp 7921 Subclass theorem for infin...
ixpeq2 7922 Equality theorem for infin...
ixpeq2dva 7923 Equality theorem for infin...
ixpeq2dv 7924 Equality theorem for infin...
cbvixp 7925 Change bound variable in a...
cbvixpv 7926 Change bound variable in a...
nfixp 7927 Bound-variable hypothesis ...
nfixp1 7928 The index variable in an i...
ixpprc 7929 A cartesian product of pro...
ixpf 7930 A member of an infinite Ca...
uniixp 7931 The union of an infinite C...
ixpexg 7932 The existence of an infini...
ixpin 7933 The intersection of two in...
ixpiin 7934 The indexed intersection o...
ixpint 7935 The intersection of a coll...
ixp0x 7936 An infinite Cartesian prod...
ixpssmap2g 7937 An infinite Cartesian prod...
ixpssmapg 7938 An infinite Cartesian prod...
0elixp 7939 Membership of the empty se...
ixpn0 7940 The infinite Cartesian pro...
ixp0 7941 The infinite Cartesian pro...
ixpssmap 7942 An infinite Cartesian prod...
resixp 7943 Restriction of an element ...
undifixp 7944 Union of two projections o...
mptelixpg 7945 Condition for an explicit ...
resixpfo 7946 Restriction of elements of...
elixpsn 7947 Membership in a class of s...
ixpsnf1o 7948 A bijection between a clas...
mapsnf1o 7949 A bijection between a set ...
boxriin 7950 A rectangular subset of a ...
boxcutc 7951 The relative complement of...
relen 7960 Equinumerosity is a relati...
reldom 7961 Dominance is a relation. ...
relsdom 7962 Strict dominance is a rela...
encv 7963 If two classes are equinum...
bren 7964 Equinumerosity relation. ...
brdomg 7965 Dominance relation. (Cont...
brdomi 7966 Dominance relation. (Cont...
brdom 7967 Dominance relation. (Cont...
domen 7968 Dominance in terms of equi...
domeng 7969 Dominance in terms of equi...
ctex 7970 A countable set is a set. ...
f1oen3g 7971 The domain and range of a ...
f1oen2g 7972 The domain and range of a ...
f1dom2g 7973 The domain of a one-to-one...
f1oeng 7974 The domain and range of a ...
f1domg 7975 The domain of a one-to-one...
f1oen 7976 The domain and range of a ...
f1dom 7977 The domain of a one-to-one...
brsdom 7978 Strict dominance relation,...
isfi 7979 Express " ` A ` is finite....
enssdom 7980 Equinumerosity implies dom...
dfdom2 7981 Alternate definition of do...
endom 7982 Equinumerosity implies dom...
sdomdom 7983 Strict dominance implies d...
sdomnen 7984 Strict dominance implies n...
brdom2 7985 Dominance in terms of stri...
bren2 7986 Equinumerosity expressed i...
enrefg 7987 Equinumerosity is reflexiv...
enref 7988 Equinumerosity is reflexiv...
eqeng 7989 Equality implies equinumer...
domrefg 7990 Dominance is reflexive. (...
en2d 7991 Equinumerosity inference f...
en3d 7992 Equinumerosity inference f...
en2i 7993 Equinumerosity inference f...
en3i 7994 Equinumerosity inference f...
dom2lem 7995 A mapping (first hypothesi...
dom2d 7996 A mapping (first hypothesi...
dom3d 7997 A mapping (first hypothesi...
dom2 7998 A mapping (first hypothesi...
dom3 7999 A mapping (first hypothesi...
idssen 8000 Equality implies equinumer...
ssdomg 8001 A set dominates its subset...
ener 8002 Equinumerosity is an equiv...
enerOLD 8003 Obsolete proof of ~ ener a...
ensymb 8004 Symmetry of equinumerosity...
ensym 8005 Symmetry of equinumerosity...
ensymi 8006 Symmetry of equinumerosity...
ensymd 8007 Symmetry of equinumerosity...
entr 8008 Transitivity of equinumero...
domtr 8009 Transitivity of dominance ...
entri 8010 A chained equinumerosity i...
entr2i 8011 A chained equinumerosity i...
entr3i 8012 A chained equinumerosity i...
entr4i 8013 A chained equinumerosity i...
endomtr 8014 Transitivity of equinumero...
domentr 8015 Transitivity of dominance ...
f1imaeng 8016 A one-to-one function's im...
f1imaen2g 8017 A one-to-one function's im...
f1imaen 8018 A one-to-one function's im...
en0 8019 The empty set is equinumer...
ensn1 8020 A singleton is equinumerou...
ensn1g 8021 A singleton is equinumerou...
enpr1g 8022 ` { A , A } ` has only one...
en1 8023 A set is equinumerous to o...
en1b 8024 A set is equinumerous to o...
reuen1 8025 Two ways to express "exact...
euen1 8026 Two ways to express "exact...
euen1b 8027 Two ways to express " ` A ...
en1uniel 8028 A singleton contains its s...
2dom 8029 A set that dominates ordin...
fundmen 8030 A function is equinumerous...
fundmeng 8031 A function is equinumerous...
cnven 8032 A relational set is equinu...
cnvct 8033 If a set is countable, so ...
fndmeng 8034 A function is equinumerate...
mapsnen 8035 Set exponentiation to a si...
map1 8036 Set exponentiation: ordina...
en2sn 8037 Two singletons are equinum...
snfi 8038 A singleton is finite. (C...
fiprc 8039 The class of finite sets i...
unen 8040 Equinumerosity of union of...
ssct 8041 Any subset of a countable ...
difsnen 8042 All decrements of a set ar...
domdifsn 8043 Dominance over a set with ...
xpsnen 8044 A set is equinumerous to i...
xpsneng 8045 A set is equinumerous to i...
xp1en 8046 One times a cardinal numbe...
endisj 8047 Any two sets are equinumer...
undom 8048 Dominance law for union. ...
xpcomf1o 8049 The canonical bijection fr...
xpcomco 8050 Composition with the bijec...
xpcomen 8051 Commutative law for equinu...
xpcomeng 8052 Commutative law for equinu...
xpsnen2g 8053 A set is equinumerous to i...
xpassen 8054 Associative law for equinu...
xpdom2 8055 Dominance law for Cartesia...
xpdom2g 8056 Dominance law for Cartesia...
xpdom1g 8057 Dominance law for Cartesia...
xpdom3 8058 A set is dominated by its ...
xpdom1 8059 Dominance law for Cartesia...
domunsncan 8060 A singleton cancellation l...
omxpenlem 8061 Lemma for ~ omxpen . (Con...
omxpen 8062 The cardinal and ordinal p...
omf1o 8063 Construct an explicit bije...
pw2f1olem 8064 Lemma for ~ pw2f1o . (Con...
pw2f1o 8065 The power set of a set is ...
pw2eng 8066 The power set of a set is ...
pw2en 8067 The power set of a set is ...
fopwdom 8068 Covering implies injection...
enfixsn 8069 Given two equipollent sets...
sbthlem1 8070 Lemma for ~ sbth . (Contr...
sbthlem2 8071 Lemma for ~ sbth . (Contr...
sbthlem3 8072 Lemma for ~ sbth . (Contr...
sbthlem4 8073 Lemma for ~ sbth . (Contr...
sbthlem5 8074 Lemma for ~ sbth . (Contr...
sbthlem6 8075 Lemma for ~ sbth . (Contr...
sbthlem7 8076 Lemma for ~ sbth . (Contr...
sbthlem8 8077 Lemma for ~ sbth . (Contr...
sbthlem9 8078 Lemma for ~ sbth . (Contr...
sbthlem10 8079 Lemma for ~ sbth . (Contr...
sbth 8080 Schroeder-Bernstein Theore...
sbthb 8081 Schroeder-Bernstein Theore...
sbthcl 8082 Schroeder-Bernstein Theore...
dfsdom2 8083 Alternate definition of st...
brsdom2 8084 Alternate definition of st...
sdomnsym 8085 Strict dominance is asymme...
domnsym 8086 Theorem 22(i) of [Suppes] ...
0domg 8087 Any set dominates the empt...
dom0 8088 A set dominated by the emp...
0sdomg 8089 A set strictly dominates t...
0dom 8090 Any set dominates the empt...
0sdom 8091 A set strictly dominates t...
sdom0 8092 The empty set does not str...
sdomdomtr 8093 Transitivity of strict dom...
sdomentr 8094 Transitivity of strict dom...
domsdomtr 8095 Transitivity of dominance ...
ensdomtr 8096 Transitivity of equinumero...
sdomirr 8097 Strict dominance is irrefl...
sdomtr 8098 Strict dominance is transi...
sdomn2lp 8099 Strict dominance has no 2-...
enen1 8100 Equality-like theorem for ...
enen2 8101 Equality-like theorem for ...
domen1 8102 Equality-like theorem for ...
domen2 8103 Equality-like theorem for ...
sdomen1 8104 Equality-like theorem for ...
sdomen2 8105 Equality-like theorem for ...
domtriord 8106 Dominance is trichotomous ...
sdomel 8107 Strict dominance implies o...
sdomdif 8108 The difference of a set fr...
onsdominel 8109 An ordinal with more eleme...
domunsn 8110 Dominance over a set with ...
fodomr 8111 There exists a mapping fro...
pwdom 8112 Injection of sets implies ...
canth2 8113 Cantor's Theorem. No set ...
canth2g 8114 Cantor's theorem with the ...
2pwuninel 8115 The power set of the power...
2pwne 8116 No set equals the power se...
disjen 8117 A stronger form of ~ pwuni...
disjenex 8118 Existence version of ~ dis...
domss2 8119 A corollary of ~ disjenex ...
domssex2 8120 A corollary of ~ disjenex ...
domssex 8121 Weakening of ~ domssex to ...
xpf1o 8122 Construct a bijection on a...
xpen 8123 Equinumerosity law for Car...
mapen 8124 Two set exponentiations ar...
mapdom1 8125 Order-preserving property ...
mapxpen 8126 Equinumerosity law for dou...
xpmapenlem 8127 Lemma for ~ xpmapen . (Co...
xpmapen 8128 Equinumerosity law for set...
mapunen 8129 Equinumerosity law for set...
map2xp 8130 A cardinal power with expo...
mapdom2 8131 Order-preserving property ...
mapdom3 8132 Set exponentiation dominat...
pwen 8133 If two sets are equinumero...
ssenen 8134 Equinumerosity of equinume...
limenpsi 8135 A limit ordinal is equinum...
limensuci 8136 A limit ordinal is equinum...
limensuc 8137 A limit ordinal is equinum...
infensuc 8138 Any infinite ordinal is eq...
phplem1 8139 Lemma for Pigeonhole Princ...
phplem2 8140 Lemma for Pigeonhole Princ...
phplem3 8141 Lemma for Pigeonhole Princ...
phplem4 8142 Lemma for Pigeonhole Princ...
nneneq 8143 Two equinumerous natural n...
php 8144 Pigeonhole Principle. A n...
php2 8145 Corollary of Pigeonhole Pr...
php3 8146 Corollary of Pigeonhole Pr...
php4 8147 Corollary of the Pigeonhol...
php5 8148 Corollary of the Pigeonhol...
snnen2o 8149 A singleton ` { A } ` is n...
onomeneq 8150 An ordinal number equinume...
onfin 8151 An ordinal number is finit...
onfin2 8152 A set is a natural number ...
nnfi 8153 Natural numbers are finite...
nndomo 8154 Cardinal ordering agrees w...
nnsdomo 8155 Cardinal ordering agrees w...
sucdom2 8156 Strict dominance of a set ...
sucdom 8157 Strict dominance of a set ...
0sdom1dom 8158 Strict dominance over zero...
1sdom2 8159 Ordinal 1 is strictly domi...
sdom1 8160 A set has less than one me...
modom 8161 Two ways to express "at mo...
modom2 8162 Two ways to express "at mo...
1sdom 8163 A set that strictly domina...
unxpdomlem1 8164 Lemma for ~ unxpdom . (Tr...
unxpdomlem2 8165 Lemma for ~ unxpdom . (Co...
unxpdomlem3 8166 Lemma for ~ unxpdom . (Co...
unxpdom 8167 Cartesian product dominate...
unxpdom2 8168 Corollary of ~ unxpdom . ...
sucxpdom 8169 Cartesian product dominate...
pssinf 8170 A set equinumerous to a pr...
fisseneq 8171 A finite set is equal to i...
ominf 8172 The set of natural numbers...
isinf 8173 Any set that is not finite...
fineqvlem 8174 Lemma for ~ fineqv . (Con...
fineqv 8175 If the Axiom of Infinity i...
enfi 8176 Equinumerous sets have the...
enfii 8177 A set equinumerous to a fi...
pssnn 8178 A proper subset of a natur...
ssnnfi 8179 A subset of a natural numb...
ssfi 8180 A subset of a finite set i...
domfi 8181 A set dominated by a finit...
xpfir 8182 The components of a nonemp...
ssfid 8183 A subset of a finite set i...
infi 8184 The intersection of two se...
rabfi 8185 A restricted class built f...
finresfin 8186 The restriction of a finit...
f1finf1o 8187 Any injection from one fin...
0fin 8188 The empty set is finite. ...
nfielex 8189 If a class is not finite, ...
en1eqsn 8190 A set with one element is ...
en1eqsnbi 8191 A set containing an elemen...
diffi 8192 If ` A ` is finite, ` ( A ...
dif1en 8193 If a set ` A ` is equinume...
enp1ilem 8194 Lemma for uses of ~ enp1i ...
enp1i 8195 Proof induction for ~ en2i...
en2 8196 A set equinumerous to ordi...
en3 8197 A set equinumerous to ordi...
en4 8198 A set equinumerous to ordi...
findcard 8199 Schema for induction on th...
findcard2 8200 Schema for induction on th...
findcard2s 8201 Variation of ~ findcard2 r...
findcard2d 8202 Deduction version of ~ fin...
findcard3 8203 Schema for strong inductio...
ac6sfi 8204 A version of ~ ac6s for fi...
frfi 8205 A partial order is well-fo...
fimax2g 8206 A finite set has a maximum...
fimaxg 8207 A finite set has a maximum...
fisupg 8208 Lemma showing existence an...
wofi 8209 A total order on a finite ...
ordunifi 8210 The maximum of a finite co...
nnunifi 8211 The union (supremum) of a ...
unblem1 8212 Lemma for ~ unbnn . After...
unblem2 8213 Lemma for ~ unbnn . The v...
unblem3 8214 Lemma for ~ unbnn . The v...
unblem4 8215 Lemma for ~ unbnn . The f...
unbnn 8216 Any unbounded subset of na...
unbnn2 8217 Version of ~ unbnn that do...
isfinite2 8218 Any set strictly dominated...
nnsdomg 8219 Omega strictly dominates a...
isfiniteg 8220 A set is finite iff it is ...
infsdomnn 8221 An infinite set strictly d...
infn0 8222 An infinite set is not emp...
fin2inf 8223 This (useless) theorem, wh...
unfilem1 8224 Lemma for proving that the...
unfilem2 8225 Lemma for proving that the...
unfilem3 8226 Lemma for proving that the...
unfi 8227 The union of two finite se...
unfir 8228 If a union is finite, the ...
unfi2 8229 The union of two finite se...
difinf 8230 An infinite set ` A ` minu...
xpfi 8231 The Cartesian product of t...
3xpfi 8232 The Cartesian product of t...
domunfican 8233 A finite set union cancell...
infcntss 8234 Every infinite set has a d...
prfi 8235 An unordered pair is finit...
tpfi 8236 An unordered triple is fin...
fiint 8237 Equivalent ways of stating...
fnfi 8238 A version of ~ fnex for fi...
fodomfi 8239 An onto function implies d...
fodomfib 8240 Equivalence of an onto map...
fofinf1o 8241 Any surjection from one fi...
rneqdmfinf1o 8242 Any function from a finite...
fidomdm 8243 Any finite set dominates i...
dmfi 8244 The domain of a finite set...
fundmfibi 8245 A function is finite if an...
resfnfinfin 8246 The restriction of a funct...
residfi 8247 A restricted identity func...
cnvfi 8248 If a set is finite, its co...
rnfi 8249 The range of a finite set ...
f1dmvrnfibi 8250 A one-to-one function whos...
f1vrnfibi 8251 A one-to-one function whic...
fofi 8252 If a function has a finite...
f1fi 8253 If a 1-to-1 function has a...
iunfi 8254 The finite union of finite...
unifi 8255 The finite union of finite...
unifi2 8256 The finite union of finite...
infssuni 8257 If an infinite set ` A ` i...
unirnffid 8258 The union of the range of ...
imafi 8259 Images of finite sets are ...
pwfilem 8260 Lemma for ~ pwfi . (Contr...
pwfi 8261 The power set of a finite ...
mapfi 8262 Set exponentiation of fini...
ixpfi 8263 A Cartesian product of fin...
ixpfi2 8264 A Cartesian product of fin...
mptfi 8265 A finite mapping set is fi...
abrexfi 8266 An image set from a finite...
cnvimamptfin 8267 A preimage of a mapping wi...
elfpw 8268 Membership in a class of f...
unifpw 8269 A set is the union of its ...
f1opwfi 8270 A one-to-one mapping induc...
fissuni 8271 A finite subset of a union...
fipreima 8272 Given a finite subset ` A ...
finsschain 8273 A finite subset of the uni...
indexfi 8274 If for every element of a ...
relfsupp 8277 The property of a function...
relprcnfsupp 8278 A proper class is never fi...
isfsupp 8279 The property of a class to...
funisfsupp 8280 The property of a function...
fsuppimp 8281 Implications of a class be...
fsuppimpd 8282 A finitely supported funct...
fisuppfi 8283 A function on a finite set...
fdmfisuppfi 8284 The support of a function ...
fdmfifsupp 8285 A function with a finite d...
fsuppmptdm 8286 A mapping with a finite do...
fndmfisuppfi 8287 The support of a function ...
fndmfifsupp 8288 A function with a finite d...
suppeqfsuppbi 8289 If two functions have the ...
suppssfifsupp 8290 If the support of a functi...
fsuppsssupp 8291 If the support of a functi...
fsuppxpfi 8292 The cartesian product of t...
fczfsuppd 8293 A constant function with v...
fsuppun 8294 The union of two finitely ...
fsuppunfi 8295 The union of the support o...
fsuppunbi 8296 If the union of two classe...
0fsupp 8297 The empty set is a finitel...
snopfsupp 8298 A singleton containing an ...
funsnfsupp 8299 Finite support for a funct...
fsuppres 8300 The restriction of a finit...
ressuppfi 8301 If the support of the rest...
resfsupp 8302 If the restriction of a fu...
resfifsupp 8303 The restriction of a funct...
frnfsuppbi 8304 Two ways of saying that a ...
fsuppmptif 8305 A function mapping an argu...
fsuppcolem 8306 Lemma for ~ fsuppco . For...
fsuppco 8307 The composition of a 1-1 f...
fsuppco2 8308 The composition of a funct...
fsuppcor 8309 The composition of a funct...
mapfienlem1 8310 Lemma 1 for ~ mapfien . (...
mapfienlem2 8311 Lemma 2 for ~ mapfien . (...
mapfienlem3 8312 Lemma 3 for ~ mapfien . (...
mapfien 8313 A bijection of the base se...
mapfien2 8314 Equinumerousity relation f...
sniffsupp 8315 A function mapping all but...
fival 8318 The set of all the finite ...
elfi 8319 Specific properties of an ...
elfi2 8320 The empty intersection nee...
elfir 8321 Sufficient condition for a...
intrnfi 8322 Sufficient condition for t...
iinfi 8323 An indexed intersection of...
inelfi 8324 The intersection of two se...
ssfii 8325 Any element of a set ` A `...
fi0 8326 The set of finite intersec...
fieq0 8327 If ` A ` is not empty, the...
fiin 8328 The elements of ` ( fi `` ...
dffi2 8329 The set of finite intersec...
fiss 8330 Subset relationship for fu...
inficl 8331 A set which is closed unde...
fipwuni 8332 The set of finite intersec...
fisn 8333 A singleton is closed unde...
fiuni 8334 The union of the finite in...
fipwss 8335 If a set is a family of su...
elfiun 8336 A finite intersection of e...
dffi3 8337 The set of finite intersec...
fifo 8338 Describe a surjection from...
marypha1lem 8339 Core induction for Philip ...
marypha1 8340 (Philip) Hall's marriage t...
marypha2lem1 8341 Lemma for ~ marypha2 . Pr...
marypha2lem2 8342 Lemma for ~ marypha2 . Pr...
marypha2lem3 8343 Lemma for ~ marypha2 . Pr...
marypha2lem4 8344 Lemma for ~ marypha2 . Pr...
marypha2 8345 Version of ~ marypha1 usin...
dfsup2 8350 Quantifier free definition...
supeq1 8351 Equality theorem for supre...
supeq1d 8352 Equality deduction for sup...
supeq1i 8353 Equality inference for sup...
supeq2 8354 Equality theorem for supre...
supeq3 8355 Equality theorem for supre...
supeq123d 8356 Equality deduction for sup...
nfsup 8357 Hypothesis builder for sup...
supmo 8358 Any class ` B ` has at mos...
supexd 8359 A supremum is a set. (Con...
supeu 8360 A supremum is unique. Sim...
supval2 8361 Alternate expression for t...
eqsup 8362 Sufficient condition for a...
eqsupd 8363 Sufficient condition for a...
supcl 8364 A supremum belongs to its ...
supub 8365 A supremum is an upper bou...
suplub 8366 A supremum is the least up...
suplub2 8367 Bidirectional form of ~ su...
supnub 8368 An upper bound is not less...
supex 8369 A supremum is a set. (Con...
sup00 8370 The supremum under an empt...
sup0riota 8371 The supremum of an empty s...
sup0 8372 The supremum of an empty s...
supmax 8373 The greatest element of a ...
fisup2g 8374 A finite set satisfies the...
fisupcl 8375 A nonempty finite set cont...
supgtoreq 8376 The supremum of a finite s...
suppr 8377 The supremum of a pair. (...
supsn 8378 The supremum of a singleto...
supisolem 8379 Lemma for ~ supiso . (Con...
supisoex 8380 Lemma for ~ supiso . (Con...
supiso 8381 Image of a supremum under ...
infeq1 8382 Equality theorem for infim...
infeq1d 8383 Equality deduction for inf...
infeq1i 8384 Equality inference for inf...
infeq2 8385 Equality theorem for infim...
infeq3 8386 Equality theorem for infim...
infeq123d 8387 Equality deduction for inf...
nfinf 8388 Hypothesis builder for inf...
infexd 8389 An infimum is a set. (Con...
eqinf 8390 Sufficient condition for a...
eqinfd 8391 Sufficient condition for a...
infval 8392 Alternate expression for t...
infcllem 8393 Lemma for ~ infcl , ~ infl...
infcl 8394 An infimum belongs to its ...
inflb 8395 An infimum is a lower boun...
infglb 8396 An infimum is the greatest...
infglbb 8397 Bidirectional form of ~ in...
infnlb 8398 A lower bound is not great...
infex 8399 An infimum is a set. (Con...
infmin 8400 The smallest element of a ...
infmo 8401 Any class ` B ` has at mos...
infeu 8402 An infimum is unique. (Co...
fimin2g 8403 A finite set has a minimum...
fiming 8404 A finite set has a minimum...
fiinfg 8405 Lemma showing existence an...
fiinf2g 8406 A finite set satisfies the...
fiinfcl 8407 A nonempty finite set cont...
infltoreq 8408 The infimum of a finite se...
infpr 8409 The infimum of a pair. (C...
infsn 8410 The infimum of a singleton...
inf00 8411 The infimum regarding an e...
infempty 8412 The infimum of an empty se...
infiso 8413 Image of an infimum under ...
dfoi 8416 Rewrite ~ df-oi with abbre...
oieq1 8417 Equality theorem for ordin...
oieq2 8418 Equality theorem for ordin...
nfoi 8419 Hypothesis builder for ord...
ordiso2 8420 Generalize ~ ordiso to pro...
ordiso 8421 Order-isomorphic ordinal n...
ordtypecbv 8422 Lemma for ~ ordtype . (Co...
ordtypelem1 8423 Lemma for ~ ordtype . (Co...
ordtypelem2 8424 Lemma for ~ ordtype . (Co...
ordtypelem3 8425 Lemma for ~ ordtype . (Co...
ordtypelem4 8426 Lemma for ~ ordtype . (Co...
ordtypelem5 8427 Lemma for ~ ordtype . (Co...
ordtypelem6 8428 Lemma for ~ ordtype . (Co...
ordtypelem7 8429 Lemma for ~ ordtype . ` ra...
ordtypelem8 8430 Lemma for ~ ordtype . (Co...
ordtypelem9 8431 Lemma for ~ ordtype . Eit...
ordtypelem10 8432 Lemma for ~ ordtype . Usi...
oi0 8433 Definition of the ordinal ...
oicl 8434 The order type of the well...
oif 8435 The order isomorphism of t...
oiiso2 8436 The order isomorphism of t...
ordtype 8437 For any set-like well-orde...
oiiniseg 8438 ` ran F ` is an initial se...
ordtype2 8439 For any set-like well-orde...
oiexg 8440 The order isomorphism on a...
oion 8441 The order type of the well...
oiiso 8442 The order isomorphism of t...
oien 8443 The order type of a well-o...
oieu 8444 Uniqueness of the unique o...
oismo 8445 When ` A ` is a subclass o...
oiid 8446 The order type of an ordin...
hartogslem1 8447 Lemma for ~ hartogs . (Co...
hartogslem2 8448 Lemma for ~ hartogs . (Co...
hartogs 8449 Given any set, the Hartogs...
wofib 8450 The only sets which are we...
wemaplem1 8451 Value of the lexicographic...
wemaplem2 8452 Lemma for ~ wemapso . Tra...
wemaplem3 8453 Lemma for ~ wemapso . Tra...
wemappo 8454 Construct lexicographic or...
wemapsolem 8455 Lemma for ~ wemapso . (Co...
wemapso 8456 Construct lexicographic or...
wemapso2lem 8457 Lemma for ~ wemapso2 . (C...
wemapso2 8458 An alternative to having a...
card2on 8459 Proof that the alternate d...
card2inf 8460 The definition ~ cardval2 ...
harf 8465 Functionality of the Harto...
harcl 8466 Closure of the Hartogs fun...
harval 8467 Function value of the Hart...
elharval 8468 The Hartogs number of a se...
harndom 8469 The Hartogs number of a se...
harword 8470 Weak ordering property of ...
relwdom 8471 Weak dominance is a relati...
brwdom 8472 Property of weak dominance...
brwdomi 8473 Property of weak dominance...
brwdomn0 8474 Weak dominance over nonemp...
0wdom 8475 Any set weakly dominates t...
fowdom 8476 An onto function implies w...
wdomref 8477 Reflexivity of weak domina...
brwdom2 8478 Alternate characterization...
domwdom 8479 Weak dominance is implied ...
wdomtr 8480 Transitivity of weak domin...
wdomen1 8481 Equality-like theorem for ...
wdomen2 8482 Equality-like theorem for ...
wdompwdom 8483 Weak dominance strengthens...
canthwdom 8484 Cantor's Theorem, stated u...
wdom2d 8485 Deduce weak dominance from...
wdomd 8486 Deduce weak dominance from...
brwdom3 8487 Condition for weak dominan...
brwdom3i 8488 Weak dominance implies exi...
unwdomg 8489 Weak dominance of a (disjo...
xpwdomg 8490 Weak dominance of a Cartes...
wdomima2g 8491 A set is weakly dominant o...
wdomimag 8492 A set is weakly dominant o...
unxpwdom2 8493 Lemma for ~ unxpwdom . (C...
unxpwdom 8494 If a Cartesian product is ...
harwdom 8495 The Hartogs function is we...
ixpiunwdom 8496 Describe an onto function ...
axreg2 8498 Axiom of Regularity expres...
zfregcl 8499 The Axiom of Regularity wi...
zfreg 8500 The Axiom of Regularity us...
zfregclOLD 8501 Obsolete version of ~ zfre...
zfregOLD 8502 Obsolete version of ~ zfre...
zfreg2OLD 8503 Alternate version of ~ zfr...
elirrv 8504 The membership relation is...
elirr 8505 No class is a member of it...
sucprcreg 8506 A class is equal to its su...
ruv 8507 The Russell class is equal...
ruALT 8508 Alternate proof of ~ ru , ...
zfregfr 8509 The epsilon relation is we...
en2lp 8510 No class has 2-cycle membe...
en3lplem1 8511 Lemma for ~ en3lp . (Cont...
en3lplem2 8512 Lemma for ~ en3lp . (Cont...
en3lp 8513 No class has 3-cycle membe...
preleq 8514 Equality of two unordered ...
opthreg 8515 Theorem for alternate repr...
suc11reg 8516 The successor operation be...
dford2 8517 Assuming ~ ax-reg , an ord...
inf0 8518 Our Axiom of Infinity deri...
inf1 8519 Variation of Axiom of Infi...
inf2 8520 Variation of Axiom of Infi...
inf3lema 8521 Lemma for our Axiom of Inf...
inf3lemb 8522 Lemma for our Axiom of Inf...
inf3lemc 8523 Lemma for our Axiom of Inf...
inf3lemd 8524 Lemma for our Axiom of Inf...
inf3lem1 8525 Lemma for our Axiom of Inf...
inf3lem2 8526 Lemma for our Axiom of Inf...
inf3lem3 8527 Lemma for our Axiom of Inf...
inf3lem4 8528 Lemma for our Axiom of Inf...
inf3lem5 8529 Lemma for our Axiom of Inf...
inf3lem6 8530 Lemma for our Axiom of Inf...
inf3lem7 8531 Lemma for our Axiom of Inf...
inf3 8532 Our Axiom of Infinity ~ ax...
infeq5i 8533 Half of ~ infeq5 . (Contr...
infeq5 8534 The statement "there exist...
zfinf 8536 Axiom of Infinity expresse...
axinf2 8537 A standard version of Axio...
zfinf2 8539 A standard version of the ...
omex 8540 The existence of omega (th...
axinf 8541 The first version of the A...
inf5 8542 The statement "there exist...
omelon 8543 Omega is an ordinal number...
dfom3 8544 The class of natural numbe...
elom3 8545 A simplification of ~ elom...
dfom4 8546 A simplification of ~ df-o...
dfom5 8547 ` _om ` is the smallest li...
oancom 8548 Ordinal addition is not co...
isfinite 8549 A set is finite iff it is ...
fict 8550 A finite set is countable ...
nnsdom 8551 A natural number is strict...
omenps 8552 Omega is equinumerous to a...
omensuc 8553 The set of natural numbers...
infdifsn 8554 Removing a singleton from ...
infdiffi 8555 Removing a finite set from...
unbnn3 8556 Any unbounded subset of na...
noinfep 8557 Using the Axiom of Regular...
cantnffval 8560 The value of the Cantor no...
cantnfdm 8561 The domain of the Cantor n...
cantnfvalf 8562 Lemma for ~ cantnf . The ...
cantnfs 8563 Elementhood in the set of ...
cantnfcl 8564 Basic properties of the or...
cantnfval 8565 The value of the Cantor no...
cantnfval2 8566 Alternate expression for t...
cantnfsuc 8567 The value of the recursive...
cantnfle 8568 A lower bound on the ` CNF...
cantnflt 8569 An upper bound on the part...
cantnflt2 8570 An upper bound on the ` CN...
cantnff 8571 The ` CNF ` function is a ...
cantnf0 8572 The value of the zero func...
cantnfrescl 8573 A function is finitely sup...
cantnfres 8574 The ` CNF ` function respe...
cantnfp1lem1 8575 Lemma for ~ cantnfp1 . (C...
cantnfp1lem2 8576 Lemma for ~ cantnfp1 . (C...
cantnfp1lem3 8577 Lemma for ~ cantnfp1 . (C...
cantnfp1 8578 If ` F ` is created by add...
oemapso 8579 The relation ` T ` is a st...
oemapval 8580 Value of the relation ` T ...
oemapvali 8581 If ` F < G ` , then there ...
cantnflem1a 8582 Lemma for ~ cantnf . (Con...
cantnflem1b 8583 Lemma for ~ cantnf . (Con...
cantnflem1c 8584 Lemma for ~ cantnf . (Con...
cantnflem1d 8585 Lemma for ~ cantnf . (Con...
cantnflem1 8586 Lemma for ~ cantnf . This...
cantnflem2 8587 Lemma for ~ cantnf . (Con...
cantnflem3 8588 Lemma for ~ cantnf . Here...
cantnflem4 8589 Lemma for ~ cantnf . Comp...
cantnf 8590 The Cantor Normal Form the...
oemapwe 8591 The lexicographic order on...
cantnffval2 8592 An alternate definition of...
cantnff1o 8593 Simplify the isomorphism o...
wemapwe 8594 Construct lexicographic or...
oef1o 8595 A bijection of the base se...
cnfcomlem 8596 Lemma for ~ cnfcom . (Con...
cnfcom 8597 Any ordinal ` B ` is equin...
cnfcom2lem 8598 Lemma for ~ cnfcom2 . (Co...
cnfcom2 8599 Any nonzero ordinal ` B ` ...
cnfcom3lem 8600 Lemma for ~ cnfcom3 . (Co...
cnfcom3 8601 Any infinite ordinal ` B `...
cnfcom3clem 8602 Lemma for ~ cnfcom3c . (C...
cnfcom3c 8603 Wrap the construction of ~...
trcl 8604 For any set ` A ` , show t...
tz9.1 8605 Every set has a transitive...
tz9.1c 8606 Alternate expression for t...
epfrs 8607 The strong form of the Axi...
zfregs 8608 The strong form of the Axi...
zfregs2 8609 Alternate strong form of t...
setind 8610 Set (epsilon) induction. ...
setind2 8611 Set (epsilon) induction, s...
tcvalg 8614 Value of the transitive cl...
tcid 8615 Defining property of the t...
tctr 8616 Defining property of the t...
tcmin 8617 Defining property of the t...
tc2 8618 A variant of the definitio...
tcsni 8619 The transitive closure of ...
tcss 8620 The transitive closure fun...
tcel 8621 The transitive closure fun...
tcidm 8622 The transitive closure fun...
tc0 8623 The transitive closure of ...
tc00 8624 The transitive closure is ...
r1funlim 8629 The cumulative hierarchy o...
r1fnon 8630 The cumulative hierarchy o...
r10 8631 Value of the cumulative hi...
r1sucg 8632 Value of the cumulative hi...
r1suc 8633 Value of the cumulative hi...
r1limg 8634 Value of the cumulative hi...
r1lim 8635 Value of the cumulative hi...
r1fin 8636 The first ` _om ` levels o...
r1sdom 8637 Each stage in the cumulati...
r111 8638 The cumulative hierarchy i...
r1tr 8639 The cumulative hierarchy o...
r1tr2 8640 The union of a cumulative ...
r1ordg 8641 Ordering relation for the ...
r1ord3g 8642 Ordering relation for the ...
r1ord 8643 Ordering relation for the ...
r1ord2 8644 Ordering relation for the ...
r1ord3 8645 Ordering relation for the ...
r1sssuc 8646 The value of the cumulativ...
r1pwss 8647 Each set of the cumulative...
r1sscl 8648 Each set of the cumulative...
r1val1 8649 The value of the cumulativ...
tz9.12lem1 8650 Lemma for ~ tz9.12 . (Con...
tz9.12lem2 8651 Lemma for ~ tz9.12 . (Con...
tz9.12lem3 8652 Lemma for ~ tz9.12 . (Con...
tz9.12 8653 A set is well-founded if a...
tz9.13 8654 Every set is well-founded,...
tz9.13g 8655 Every set is well-founded,...
rankwflemb 8656 Two ways of saying a set i...
rankf 8657 The domain and range of th...
rankon 8658 The rank of a set is an or...
r1elwf 8659 Any member of the cumulati...
rankvalb 8660 Value of the rank function...
rankr1ai 8661 One direction of ~ rankr1a...
rankvaln 8662 Value of the rank function...
rankidb 8663 Identity law for the rank ...
rankdmr1 8664 A rank is a member of the ...
rankr1ag 8665 A version of ~ rankr1a tha...
rankr1bg 8666 A relationship between ran...
r1rankidb 8667 Any set is a subset of the...
r1elssi 8668 The range of the ` R1 ` fu...
r1elss 8669 The range of the ` R1 ` fu...
pwwf 8670 A power set is well-founde...
sswf 8671 A subset of a well-founded...
snwf 8672 A singleton is well-founde...
unwf 8673 A binary union is well-fou...
prwf 8674 An unordered pair is well-...
opwf 8675 An ordered pair is well-fo...
unir1 8676 The cumulative hierarchy o...
jech9.3 8677 Every set belongs to some ...
rankwflem 8678 Every set is well-founded,...
rankval 8679 Value of the rank function...
rankvalg 8680 Value of the rank function...
rankval2 8681 Value of an alternate defi...
uniwf 8682 A union is well-founded if...
rankr1clem 8683 Lemma for ~ rankr1c . (Co...
rankr1c 8684 A relationship between the...
rankidn 8685 A relationship between the...
rankpwi 8686 The rank of a power set. ...
rankelb 8687 The membership relation is...
wfelirr 8688 A well-founded set is not ...
rankval3b 8689 The value of the rank func...
ranksnb 8690 The rank of a singleton. ...
rankonidlem 8691 Lemma for ~ rankonid . (C...
rankonid 8692 The rank of an ordinal num...
onwf 8693 The ordinals are all well-...
onssr1 8694 Initial segments of the or...
rankr1g 8695 A relationship between the...
rankid 8696 Identity law for the rank ...
rankr1 8697 A relationship between the...
ssrankr1 8698 A relationship between an ...
rankr1a 8699 A relationship between ran...
r1val2 8700 The value of the cumulativ...
r1val3 8701 The value of the cumulativ...
rankel 8702 The membership relation is...
rankval3 8703 The value of the rank func...
bndrank 8704 Any class whose elements h...
unbndrank 8705 The elements of a proper c...
rankpw 8706 The rank of a power set. ...
ranklim 8707 The rank of a set belongs ...
r1pw 8708 A stronger property of ` R...
r1pwALT 8709 Alternate shorter proof of...
r1pwcl 8710 The cumulative hierarchy o...
rankssb 8711 The subset relation is inh...
rankss 8712 The subset relation is inh...
rankunb 8713 The rank of the union of t...
rankprb 8714 The rank of an unordered p...
rankopb 8715 The rank of an ordered pai...
rankuni2b 8716 The value of the rank func...
ranksn 8717 The rank of a singleton. ...
rankuni2 8718 The rank of a union. Part...
rankun 8719 The rank of the union of t...
rankpr 8720 The rank of an unordered p...
rankop 8721 The rank of an ordered pai...
r1rankid 8722 Any set is a subset of the...
rankeq0b 8723 A set is empty iff its ran...
rankeq0 8724 A set is empty iff its ran...
rankr1id 8725 The rank of the hierarchy ...
rankuni 8726 The rank of a union. Part...
rankr1b 8727 A relationship between ran...
ranksuc 8728 The rank of a successor. ...
rankuniss 8729 Upper bound of the rank of...
rankval4 8730 The rank of a set is the s...
rankbnd 8731 The rank of a set is bound...
rankbnd2 8732 The rank of a set is bound...
rankc1 8733 A relationship that can be...
rankc2 8734 A relationship that can be...
rankelun 8735 Rank membership is inherit...
rankelpr 8736 Rank membership is inherit...
rankelop 8737 Rank membership is inherit...
rankxpl 8738 A lower bound on the rank ...
rankxpu 8739 An upper bound on the rank...
rankfu 8740 An upper bound on the rank...
rankmapu 8741 An upper bound on the rank...
rankxplim 8742 The rank of a Cartesian pr...
rankxplim2 8743 If the rank of a Cartesian...
rankxplim3 8744 The rank of a Cartesian pr...
rankxpsuc 8745 The rank of a Cartesian pr...
tcwf 8746 The transitive closure fun...
tcrank 8747 This theorem expresses two...
scottex 8748 Scott's trick collects all...
scott0 8749 Scott's trick collects all...
scottexs 8750 Theorem scheme version of ...
scott0s 8751 Theorem scheme version of ...
cplem1 8752 Lemma for the Collection P...
cplem2 8753 -Lemma for the Collection ...
cp 8754 Collection Principle. Thi...
bnd 8755 A very strong generalizati...
bnd2 8756 A variant of the Boundedne...
kardex 8757 The collection of all sets...
karden 8758 If we allow the Axiom of R...
htalem 8759 Lemma for defining an emul...
hta 8760 A ZFC emulation of Hilbert...
cardf2 8769 The cardinality function i...
cardon 8770 The cardinal number of a s...
isnum2 8771 A way to express well-orde...
isnumi 8772 A set equinumerous to an o...
ennum 8773 Equinumerous sets are equi...
finnum 8774 Every finite set is numera...
onenon 8775 Every ordinal number is nu...
tskwe 8776 A Tarski set is well-order...
xpnum 8777 The cartesian product of n...
cardval3 8778 An alternate definition of...
cardid2 8779 Any numerable set is equin...
isnum3 8780 A set is numerable iff it ...
oncardval 8781 The value of the cardinal ...
oncardid 8782 Any ordinal number is equi...
cardonle 8783 The cardinal of an ordinal...
card0 8784 The cardinality of the emp...
cardidm 8785 The cardinality function i...
oncard 8786 A set is a cardinal number...
ficardom 8787 The cardinal number of a f...
ficardid 8788 A finite set is equinumero...
cardnn 8789 The cardinality of a natur...
cardnueq0 8790 The empty set is the only ...
cardne 8791 No member of a cardinal nu...
carden2a 8792 If two sets have equal non...
carden2b 8793 If two sets are equinumero...
card1 8794 A set has cardinality one ...
cardsn 8795 A singleton has cardinalit...
carddomi2 8796 Two sets have the dominanc...
sdomsdomcardi 8797 A set strictly dominates i...
cardlim 8798 An infinite cardinal is a ...
cardsdomelir 8799 A cardinal strictly domina...
cardsdomel 8800 A cardinal strictly domina...
iscard 8801 Two ways to express the pr...
iscard2 8802 Two ways to express the pr...
carddom2 8803 Two numerable sets have th...
harcard 8804 The class of ordinal numbe...
cardprclem 8805 Lemma for ~ cardprc . (Co...
cardprc 8806 The class of all cardinal ...
carduni 8807 The union of a set of card...
cardiun 8808 The indexed union of a set...
cardennn 8809 If ` A ` is equinumerous t...
cardsucinf 8810 The cardinality of the suc...
cardsucnn 8811 The cardinality of the suc...
cardom 8812 The set of natural numbers...
carden2 8813 Two numerable sets are equ...
cardsdom2 8814 A numerable set is strictl...
domtri2 8815 Trichotomy of dominance fo...
nnsdomel 8816 Strict dominance and eleme...
cardval2 8817 An alternate version of th...
isinffi 8818 An infinite set contains s...
fidomtri 8819 Trichotomy of dominance wi...
fidomtri2 8820 Trichotomy of dominance wi...
harsdom 8821 The Hartogs number of a we...
onsdom 8822 Any well-orderable set is ...
harval2 8823 An alternate expression fo...
cardmin2 8824 The smallest ordinal that ...
pm54.43lem 8825 In Theorem *54.43 of [Whit...
pm54.43 8826 Theorem *54.43 of [Whitehe...
pr2nelem 8827 Lemma for ~ pr2ne . (Cont...
pr2ne 8828 If an unordered pair has t...
prdom2 8829 An unordered pair has at m...
en2eqpr 8830 Building a set with two el...
en2eleq 8831 Express a set of pair card...
en2other2 8832 Taking the other element t...
dif1card 8833 The cardinality of a nonem...
leweon 8834 Lexicographical order is a...
r0weon 8835 A set-like well-ordering o...
infxpenlem 8836 Lemma for ~ infxpen . (Co...
infxpen 8837 Every infinite ordinal is ...
xpomen 8838 The Cartesian product of o...
xpct 8839 The cartesian product of t...
infxpidm2 8840 The Cartesian product of a...
infxpenc 8841 A canonical version of ~ i...
infxpenc2lem1 8842 Lemma for ~ infxpenc2 . (...
infxpenc2lem2 8843 Lemma for ~ infxpenc2 . (...
infxpenc2lem3 8844 Lemma for ~ infxpenc2 . (...
infxpenc2 8845 Existence form of ~ infxpe...
iunmapdisj 8846 The union ` U_ n e. C ( A ...
fseqenlem1 8847 Lemma for ~ fseqen . (Con...
fseqenlem2 8848 Lemma for ~ fseqen . (Con...
fseqdom 8849 One half of ~ fseqen . (C...
fseqen 8850 A set that is equinumerous...
infpwfidom 8851 The collection of finite s...
dfac8alem 8852 Lemma for ~ dfac8a . If t...
dfac8a 8853 Numeration theorem: every ...
dfac8b 8854 The well-ordering theorem:...
dfac8clem 8855 Lemma for ~ dfac8c . (Con...
dfac8c 8856 If the union of a set is w...
ac10ct 8857 A proof of the Well orderi...
ween 8858 A set is numerable iff it ...
ac5num 8859 A version of ~ ac5b with t...
ondomen 8860 If a set is dominated by a...
numdom 8861 A set dominated by a numer...
ssnum 8862 A subset of a numerable se...
onssnum 8863 All subsets of the ordinal...
indcardi 8864 Indirect strong induction ...
acnrcl 8865 Reverse closure for the ch...
acneq 8866 Equality theorem for the c...
isacn 8867 The property of being a ch...
acni 8868 The property of being a ch...
acni2 8869 The property of being a ch...
acni3 8870 The property of being a ch...
acnlem 8871 Construct a mapping satisf...
numacn 8872 A well-orderable set has c...
finacn 8873 Every set has finite choic...
acndom 8874 A set with long choice seq...
acnnum 8875 A set ` X ` which has choi...
acnen 8876 The class of choice sets o...
acndom2 8877 A set smaller than one wit...
acnen2 8878 The class of sets with cho...
fodomacn 8879 A version of ~ fodom that ...
fodomnum 8880 A version of ~ fodom that ...
fonum 8881 A surjection maps numerabl...
numwdom 8882 A surjection maps numerabl...
fodomfi2 8883 Onto functions define domi...
wdomfil 8884 Weak dominance agrees with...
infpwfien 8885 Any infinite well-orderabl...
inffien 8886 The set of finite intersec...
wdomnumr 8887 Weak dominance agrees with...
alephfnon 8888 The aleph function is a fu...
aleph0 8889 The first infinite cardina...
alephlim 8890 Value of the aleph functio...
alephsuc 8891 Value of the aleph functio...
alephon 8892 An aleph is an ordinal num...
alephcard 8893 Every aleph is a cardinal ...
alephnbtwn 8894 No cardinal can be sandwic...
alephnbtwn2 8895 No set has equinumerosity ...
alephordilem1 8896 Lemma for ~ alephordi . (...
alephordi 8897 Strict ordering property o...
alephord 8898 Ordering property of the a...
alephord2 8899 Ordering property of the a...
alephord2i 8900 Ordering property of the a...
alephord3 8901 Ordering property of the a...
alephsucdom 8902 A set dominated by an alep...
alephsuc2 8903 An alternate representatio...
alephdom 8904 Relationship between inclu...
alephgeom 8905 Every aleph is greater tha...
alephislim 8906 Every aleph is a limit ord...
aleph11 8907 The aleph function is one-...
alephf1 8908 The aleph function is a on...
alephsdom 8909 If an ordinal is smaller t...
alephdom2 8910 A dominated initial ordina...
alephle 8911 The argument of the aleph ...
cardaleph 8912 Given any transfinite card...
cardalephex 8913 Every transfinite cardinal...
infenaleph 8914 An infinite numerable set ...
isinfcard 8915 Two ways to express the pr...
iscard3 8916 Two ways to express the pr...
cardnum 8917 Two ways to express the cl...
alephinit 8918 An infinite initial ordina...
carduniima 8919 The union of the image of ...
cardinfima 8920 If a mapping to cardinals ...
alephiso 8921 Aleph is an order isomorph...
alephprc 8922 The class of all transfini...
alephsson 8923 The class of transfinite c...
unialeph 8924 The union of the class of ...
alephsmo 8925 The aleph function is stri...
alephf1ALT 8926 Alternate proof of ~ aleph...
alephfplem1 8927 Lemma for ~ alephfp . (Co...
alephfplem2 8928 Lemma for ~ alephfp . (Co...
alephfplem3 8929 Lemma for ~ alephfp . (Co...
alephfplem4 8930 Lemma for ~ alephfp . (Co...
alephfp 8931 The aleph function has a f...
alephfp2 8932 The aleph function has at ...
alephval3 8933 An alternate way to expres...
alephsucpw2 8934 The power set of an aleph ...
mappwen 8935 Power rule for cardinal ar...
finnisoeu 8936 A finite totally ordered s...
iunfictbso 8937 Countability of a countabl...
aceq1 8940 Equivalence of two version...
aceq0 8941 Equivalence of two version...
aceq2 8942 Equivalence of two version...
aceq3lem 8943 Lemma for ~ dfac3 . (Cont...
dfac3 8944 Equivalence of two version...
dfac4 8945 Equivalence of two version...
dfac5lem1 8946 Lemma for ~ dfac5 . (Cont...
dfac5lem2 8947 Lemma for ~ dfac5 . (Cont...
dfac5lem3 8948 Lemma for ~ dfac5 . (Cont...
dfac5lem4 8949 Lemma for ~ dfac5 . (Cont...
dfac5lem5 8950 Lemma for ~ dfac5 . (Cont...
dfac5 8951 Equivalence of two version...
dfac2a 8952 Our Axiom of Choice (in th...
dfac2 8953 Axiom of Choice (first for...
dfac7 8954 Equivalence of the Axiom o...
dfac0 8955 Equivalence of two version...
dfac1 8956 Equivalence of two version...
dfac8 8957 A proof of the equivalency...
dfac9 8958 Equivalence of the axiom o...
dfac10 8959 Axiom of Choice equivalent...
dfac10c 8960 Axiom of Choice equivalent...
dfac10b 8961 Axiom of Choice equivalent...
acacni 8962 A choice equivalent: every...
dfacacn 8963 A choice equivalent: every...
dfac13 8964 The axiom of choice holds ...
dfac12lem1 8965 Lemma for ~ dfac12 . (Con...
dfac12lem2 8966 Lemma for ~ dfac12 . (Con...
dfac12lem3 8967 Lemma for ~ dfac12 . (Con...
dfac12r 8968 The axiom of choice holds ...
dfac12k 8969 Equivalence of ~ dfac12 an...
dfac12a 8970 The axiom of choice holds ...
dfac12 8971 The axiom of choice holds ...
kmlem1 8972 Lemma for 5-quantifier AC ...
kmlem2 8973 Lemma for 5-quantifier AC ...
kmlem3 8974 Lemma for 5-quantifier AC ...
kmlem4 8975 Lemma for 5-quantifier AC ...
kmlem5 8976 Lemma for 5-quantifier AC ...
kmlem6 8977 Lemma for 5-quantifier AC ...
kmlem7 8978 Lemma for 5-quantifier AC ...
kmlem8 8979 Lemma for 5-quantifier AC ...
kmlem9 8980 Lemma for 5-quantifier AC ...
kmlem10 8981 Lemma for 5-quantifier AC ...
kmlem11 8982 Lemma for 5-quantifier AC ...
kmlem12 8983 Lemma for 5-quantifier AC ...
kmlem13 8984 Lemma for 5-quantifier AC ...
kmlem14 8985 Lemma for 5-quantifier AC ...
kmlem15 8986 Lemma for 5-quantifier AC ...
kmlem16 8987 Lemma for 5-quantifier AC ...
dfackm 8988 Equivalence of the Axiom o...
cdafn 8991 Cardinal number addition i...
cdaval 8992 Value of cardinal addition...
uncdadom 8993 Cardinal addition dominate...
cdaun 8994 Cardinal addition is equin...
cdaen 8995 Cardinal addition of equin...
cdaenun 8996 Cardinal addition is equin...
cda1en 8997 Cardinal addition with car...
cda1dif 8998 Adding and subtracting one...
pm110.643 8999 1+1=2 for cardinal number ...
pm110.643ALT 9000 Alternate proof of ~ pm110...
cda0en 9001 Cardinal addition with car...
xp2cda 9002 Two times a cardinal numbe...
cdacomen 9003 Commutative law for cardin...
cdaassen 9004 Associative law for cardin...
xpcdaen 9005 Cardinal multiplication di...
mapcdaen 9006 Sum of exponents law for c...
pwcdaen 9007 Sum of exponents law for c...
cdadom1 9008 Ordering law for cardinal ...
cdadom2 9009 Ordering law for cardinal ...
cdadom3 9010 A set is dominated by its ...
cdaxpdom 9011 Cartesian product dominate...
cdafi 9012 The cardinal sum of two fi...
cdainflem 9013 Any partition of omega int...
cdainf 9014 A set is infinite iff the ...
infcda1 9015 An infinite set is equinum...
pwcda1 9016 The sum of a powerset with...
pwcdaidm 9017 If the natural numbers inj...
cdalepw 9018 If ` A ` is idempotent und...
onacda 9019 The cardinal and ordinal s...
cardacda 9020 The cardinal sum is equinu...
cdanum 9021 The cardinal sum of two nu...
unnum 9022 The union of two numerable...
nnacda 9023 The cardinal and ordinal s...
ficardun 9024 The cardinality of the uni...
ficardun2 9025 The cardinality of the uni...
pwsdompw 9026 Lemma for ~ domtriom . Th...
unctb 9027 The union of two countable...
infcdaabs 9028 Absorption law for additio...
infunabs 9029 An infinite set is equinum...
infcda 9030 The sum of two cardinal nu...
infdif 9031 The cardinality of an infi...
infdif2 9032 Cardinality ordering for a...
infxpdom 9033 Dominance law for multipli...
infxpabs 9034 Absorption law for multipl...
infunsdom1 9035 The union of two sets that...
infunsdom 9036 The union of two sets that...
infxp 9037 Absorption law for multipl...
pwcdadom 9038 A property of dominance ov...
infpss 9039 Every infinite set has an ...
infmap2 9040 An exponentiation law for ...
ackbij2lem1 9041 Lemma for ~ ackbij2 . (Co...
ackbij1lem1 9042 Lemma for ~ ackbij2 . (Co...
ackbij1lem2 9043 Lemma for ~ ackbij2 . (Co...
ackbij1lem3 9044 Lemma for ~ ackbij2 . (Co...
ackbij1lem4 9045 Lemma for ~ ackbij2 . (Co...
ackbij1lem5 9046 Lemma for ~ ackbij2 . (Co...
ackbij1lem6 9047 Lemma for ~ ackbij2 . (Co...
ackbij1lem7 9048 Lemma for ~ ackbij1 . (Co...
ackbij1lem8 9049 Lemma for ~ ackbij1 . (Co...
ackbij1lem9 9050 Lemma for ~ ackbij1 . (Co...
ackbij1lem10 9051 Lemma for ~ ackbij1 . (Co...
ackbij1lem11 9052 Lemma for ~ ackbij1 . (Co...
ackbij1lem12 9053 Lemma for ~ ackbij1 . (Co...
ackbij1lem13 9054 Lemma for ~ ackbij1 . (Co...
ackbij1lem14 9055 Lemma for ~ ackbij1 . (Co...
ackbij1lem15 9056 Lemma for ~ ackbij1 . (Co...
ackbij1lem16 9057 Lemma for ~ ackbij1 . (Co...
ackbij1lem17 9058 Lemma for ~ ackbij1 . (Co...
ackbij1lem18 9059 Lemma for ~ ackbij1 . (Co...
ackbij1 9060 The Ackermann bijection, p...
ackbij1b 9061 The Ackermann bijection, p...
ackbij2lem2 9062 Lemma for ~ ackbij2 . (Co...
ackbij2lem3 9063 Lemma for ~ ackbij2 . (Co...
ackbij2lem4 9064 Lemma for ~ ackbij2 . (Co...
ackbij2 9065 The Ackermann bijection, p...
r1om 9066 The set of hereditarily fi...
fictb 9067 A set is countable iff its...
cflem 9068 A lemma used to simplify c...
cfval 9069 Value of the cofinality fu...
cff 9070 Cofinality is a function o...
cfub 9071 An upper bound on cofinali...
cflm 9072 Value of the cofinality fu...
cf0 9073 Value of the cofinality fu...
cardcf 9074 Cofinality is a cardinal n...
cflecard 9075 Cofinality is bounded by t...
cfle 9076 Cofinality is bounded by i...
cfon 9077 The cofinality of any set ...
cfeq0 9078 Only the ordinal zero has ...
cfsuc 9079 Value of the cofinality fu...
cff1 9080 There is always a map from...
cfflb 9081 If there is a cofinal map ...
cfval2 9082 Another expression for the...
coflim 9083 A simpler expression for t...
cflim3 9084 Another expression for the...
cflim2 9085 The cofinality function is...
cfom 9086 Value of the cofinality fu...
cfss 9087 There is a cofinal subset ...
cfslb 9088 Any cofinal subset of ` A ...
cfslbn 9089 Any subset of ` A ` smalle...
cfslb2n 9090 Any small collection of sm...
cofsmo 9091 Any cofinal map implies th...
cfsmolem 9092 Lemma for ~ cfsmo . (Cont...
cfsmo 9093 The map in ~ cff1 can be a...
cfcoflem 9094 Lemma for ~ cfcof , showin...
coftr 9095 If there is a cofinal map ...
cfcof 9096 If there is a cofinal map ...
cfidm 9097 The cofinality function is...
alephsing 9098 The cofinality of a limit ...
sornom 9099 The range of a single-step...
isfin1a 9114 Definition of a Ia-finite ...
fin1ai 9115 Property of a Ia-finite se...
isfin2 9116 Definition of a II-finite ...
fin2i 9117 Property of a II-finite se...
isfin3 9118 Definition of a III-finite...
isfin4 9119 Definition of a IV-finite ...
fin4i 9120 Infer that a set is IV-inf...
isfin5 9121 Definition of a V-finite s...
isfin6 9122 Definition of a VI-finite ...
isfin7 9123 Definition of a VII-finite...
sdom2en01 9124 A set with less than two e...
infpssrlem1 9125 Lemma for ~ infpssr . (Co...
infpssrlem2 9126 Lemma for ~ infpssr . (Co...
infpssrlem3 9127 Lemma for ~ infpssr . (Co...
infpssrlem4 9128 Lemma for ~ infpssr . (Co...
infpssrlem5 9129 Lemma for ~ infpssr . (Co...
infpssr 9130 Dedekind infinity implies ...
fin4en1 9131 Dedekind finite is a cardi...
ssfin4 9132 Dedekind finite sets have ...
domfin4 9133 A set dominated by a Dedek...
ominf4 9134 ` _om ` is Dedekind infini...
infpssALT 9135 Alternate proof of ~ infps...
isfin4-2 9136 Alternate definition of IV...
isfin4-3 9137 Alternate definition of IV...
fin23lem7 9138 Lemma for ~ isfin2-2 . Th...
fin23lem11 9139 Lemma for ~ isfin2-2 . (C...
fin2i2 9140 A II-finite set contains m...
isfin2-2 9141 ` Fin2 ` expressed in term...
ssfin2 9142 A subset of a II-finite se...
enfin2i 9143 II-finiteness is a cardina...
fin23lem24 9144 Lemma for ~ fin23 . In a ...
fincssdom 9145 In a chain of finite sets,...
fin23lem25 9146 Lemma for ~ fin23 . In a ...
fin23lem26 9147 Lemma for ~ fin23lem22 . ...
fin23lem23 9148 Lemma for ~ fin23lem22 . ...
fin23lem22 9149 Lemma for ~ fin23 but coul...
fin23lem27 9150 The mapping constructed in...
isfin3ds 9151 Property of a III-finite s...
ssfin3ds 9152 A subset of a III-finite s...
fin23lem12 9153 The beginning of the proof...
fin23lem13 9154 Lemma for ~ fin23 . Each ...
fin23lem14 9155 Lemma for ~ fin23 . ` U ` ...
fin23lem15 9156 Lemma for ~ fin23 . ` U ` ...
fin23lem16 9157 Lemma for ~ fin23 . ` U ` ...
fin23lem19 9158 Lemma for ~ fin23 . The f...
fin23lem20 9159 Lemma for ~ fin23 . ` X ` ...
fin23lem17 9160 Lemma for ~ fin23 . By ? ...
fin23lem21 9161 Lemma for ~ fin23 . ` X ` ...
fin23lem28 9162 Lemma for ~ fin23 . The r...
fin23lem29 9163 Lemma for ~ fin23 . The r...
fin23lem30 9164 Lemma for ~ fin23 . The r...
fin23lem31 9165 Lemma for ~ fin23 . The r...
fin23lem32 9166 Lemma for ~ fin23 . Wrap ...
fin23lem33 9167 Lemma for ~ fin23 . Disch...
fin23lem34 9168 Lemma for ~ fin23 . Estab...
fin23lem35 9169 Lemma for ~ fin23 . Stric...
fin23lem36 9170 Lemma for ~ fin23 . Weak ...
fin23lem38 9171 Lemma for ~ fin23 . The c...
fin23lem39 9172 Lemma for ~ fin23 . Thus,...
fin23lem40 9173 Lemma for ~ fin23 . ` Fin2...
fin23lem41 9174 Lemma for ~ fin23 . A set...
isf32lem1 9175 Lemma for ~ isfin3-2 . De...
isf32lem2 9176 Lemma for ~ isfin3-2 . No...
isf32lem3 9177 Lemma for ~ isfin3-2 . Be...
isf32lem4 9178 Lemma for ~ isfin3-2 . Be...
isf32lem5 9179 Lemma for ~ isfin3-2 . Th...
isf32lem6 9180 Lemma for ~ isfin3-2 . Ea...
isf32lem7 9181 Lemma for ~ isfin3-2 . Di...
isf32lem8 9182 Lemma for ~ isfin3-2 . K ...
isf32lem9 9183 Lemma for ~ isfin3-2 . Co...
isf32lem10 9184 Lemma for isfin3-2 . Writ...
isf32lem11 9185 Lemma for ~ isfin3-2 . Re...
isf32lem12 9186 Lemma for ~ isfin3-2 . (C...
isfin32i 9187 One half of ~ isfin3-2 . ...
isf33lem 9188 Lemma for ~ isfin3-3 . (C...
isfin3-2 9189 Weakly Dedekind-infinite s...
isfin3-3 9190 Weakly Dedekind-infinite s...
fin33i 9191 Inference from ~ isfin3-3 ...
compsscnvlem 9192 Lemma for ~ compsscnv . (...
compsscnv 9193 Complementation on a power...
isf34lem1 9194 Lemma for ~ isfin3-4 . (C...
isf34lem2 9195 Lemma for ~ isfin3-4 . (C...
compssiso 9196 Complementation is an anti...
isf34lem3 9197 Lemma for ~ isfin3-4 . (C...
compss 9198 Express image under of the...
isf34lem4 9199 Lemma for ~ isfin3-4 . (C...
isf34lem5 9200 Lemma for ~ isfin3-4 . (C...
isf34lem7 9201 Lemma for ~ isfin3-4 . (C...
isf34lem6 9202 Lemma for ~ isfin3-4 . (C...
fin34i 9203 Inference from ~ isfin3-4 ...
isfin3-4 9204 Weakly Dedekind-infinite s...
fin11a 9205 Every I-finite set is Ia-f...
enfin1ai 9206 Ia-finiteness is a cardina...
isfin1-2 9207 A set is finite in the usu...
isfin1-3 9208 A set is I-finite iff ever...
isfin1-4 9209 A set is I-finite iff ever...
dffin1-5 9210 Compact quantifier-free ve...
fin23 9211 Every II-finite set (every...
fin34 9212 Every III-finite set is IV...
isfin5-2 9213 Alternate definition of V-...
fin45 9214 Every IV-finite set is V-f...
fin56 9215 Every V-finite set is VI-f...
fin17 9216 Every I-finite set is VII-...
fin67 9217 Every VI-finite set is VII...
isfin7-2 9218 A set is VII-finite iff it...
fin71num 9219 A well-orderable set is VI...
dffin7-2 9220 Class form of ~ isfin7-2 ....
dfacfin7 9221 Axiom of Choice equivalent...
fin1a2lem1 9222 Lemma for ~ fin1a2 . (Con...
fin1a2lem2 9223 Lemma for ~ fin1a2 . (Con...
fin1a2lem3 9224 Lemma for ~ fin1a2 . (Con...
fin1a2lem4 9225 Lemma for ~ fin1a2 . (Con...
fin1a2lem5 9226 Lemma for ~ fin1a2 . (Con...
fin1a2lem6 9227 Lemma for ~ fin1a2 . Esta...
fin1a2lem7 9228 Lemma for ~ fin1a2 . Spli...
fin1a2lem8 9229 Lemma for ~ fin1a2 . Spli...
fin1a2lem9 9230 Lemma for ~ fin1a2 . In a...
fin1a2lem10 9231 Lemma for ~ fin1a2 . A no...
fin1a2lem11 9232 Lemma for ~ fin1a2 . (Con...
fin1a2lem12 9233 Lemma for ~ fin1a2 . (Con...
fin1a2lem13 9234 Lemma for ~ fin1a2 . (Con...
fin12 9235 Weak theorem which skips I...
fin1a2s 9236 An II-infinite set can hav...
fin1a2 9237 Every Ia-finite set is II-...
itunifval 9238 Function value of iterated...
itunifn 9239 Functionality of the itera...
ituni0 9240 A zero-fold iterated union...
itunisuc 9241 Successor iterated union. ...
itunitc1 9242 Each union iterate is a me...
itunitc 9243 The union of all union ite...
ituniiun 9244 Unwrap an iterated union f...
hsmexlem7 9245 Lemma for ~ hsmex . Prope...
hsmexlem8 9246 Lemma for ~ hsmex . Prope...
hsmexlem9 9247 Lemma for ~ hsmex . Prope...
hsmexlem1 9248 Lemma for ~ hsmex . Bound...
hsmexlem2 9249 Lemma for ~ hsmex . Bound...
hsmexlem3 9250 Lemma for ~ hsmex . Clear...
hsmexlem4 9251 Lemma for ~ hsmex . The c...
hsmexlem5 9252 Lemma for ~ hsmex . Combi...
hsmexlem6 9253 Lemma for ~ hsmex . (Cont...
hsmex 9254 The collection of heredita...
hsmex2 9255 The set of hereditary size...
hsmex3 9256 The set of hereditary size...
axcc2lem 9258 Lemma for ~ axcc2 . (Cont...
axcc2 9259 A possibly more useful ver...
axcc3 9260 A possibly more useful ver...
axcc4 9261 A version of ~ axcc3 that ...
acncc 9262 An ~ ax-cc equivalent: eve...
axcc4dom 9263 Relax the constraint on ~ ...
domtriomlem 9264 Lemma for ~ domtriom . (C...
domtriom 9265 Trichotomy of equinumerosi...
fin41 9266 Under countable choice, th...
dominf 9267 A nonempty set that is a s...
dcomex 9269 The Axiom of Dependent Cho...
axdc2lem 9270 Lemma for ~ axdc2 . We co...
axdc2 9271 An apparent strengthening ...
axdc3lem 9272 The class ` S ` of finite ...
axdc3lem2 9273 Lemma for ~ axdc3 . We ha...
axdc3lem3 9274 Simple substitution lemma ...
axdc3lem4 9275 Lemma for ~ axdc3 . We ha...
axdc3 9276 Dependent Choice. Axiom D...
axdc4lem 9277 Lemma for ~ axdc4 . (Cont...
axdc4 9278 A more general version of ...
axcclem 9279 Lemma for ~ axcc . (Contr...
axcc 9280 Although CC can be proven ...
zfac 9282 Axiom of Choice expressed ...
ac2 9283 Axiom of Choice equivalent...
ac3 9284 Axiom of Choice using abbr...
axac3 9286 This theorem asserts that ...
ackm 9287 A remarkable equivalent to...
axac2 9288 Derive ~ ax-ac2 from ~ ax-...
axac 9289 Derive ~ ax-ac from ~ ax-a...
axaci 9290 Apply a choice equivalent....
cardeqv 9291 All sets are well-orderabl...
numth3 9292 All sets are well-orderabl...
numth2 9293 Numeration theorem: any se...
numth 9294 Numeration theorem: every ...
ac7 9295 An Axiom of Choice equival...
ac7g 9296 An Axiom of Choice equival...
ac4 9297 Equivalent of Axiom of Cho...
ac4c 9298 Equivalent of Axiom of Cho...
ac5 9299 An Axiom of Choice equival...
ac5b 9300 Equivalent of Axiom of Cho...
ac6num 9301 A version of ~ ac6 which t...
ac6 9302 Equivalent of Axiom of Cho...
ac6c4 9303 Equivalent of Axiom of Cho...
ac6c5 9304 Equivalent of Axiom of Cho...
ac9 9305 An Axiom of Choice equival...
ac6s 9306 Equivalent of Axiom of Cho...
ac6n 9307 Equivalent of Axiom of Cho...
ac6s2 9308 Generalization of the Axio...
ac6s3 9309 Generalization of the Axio...
ac6sg 9310 ~ ac6s with sethood as ant...
ac6sf 9311 Version of ~ ac6 with boun...
ac6s4 9312 Generalization of the Axio...
ac6s5 9313 Generalization of the Axio...
ac8 9314 An Axiom of Choice equival...
ac9s 9315 An Axiom of Choice equival...
numthcor 9316 Any set is strictly domina...
weth 9317 Well-ordering theorem: any...
zorn2lem1 9318 Lemma for ~ zorn2 . (Cont...
zorn2lem2 9319 Lemma for ~ zorn2 . (Cont...
zorn2lem3 9320 Lemma for ~ zorn2 . (Cont...
zorn2lem4 9321 Lemma for ~ zorn2 . (Cont...
zorn2lem5 9322 Lemma for ~ zorn2 . (Cont...
zorn2lem6 9323 Lemma for ~ zorn2 . (Cont...
zorn2lem7 9324 Lemma for ~ zorn2 . (Cont...
zorn2g 9325 Zorn's Lemma of [Monk1] p....
zorng 9326 Zorn's Lemma. If the unio...
zornn0g 9327 Variant of Zorn's lemma ~ ...
zorn2 9328 Zorn's Lemma of [Monk1] p....
zorn 9329 Zorn's Lemma. If the unio...
zornn0 9330 Variant of Zorn's lemma ~ ...
ttukeylem1 9331 Lemma for ~ ttukey . Expa...
ttukeylem2 9332 Lemma for ~ ttukey . A pr...
ttukeylem3 9333 Lemma for ~ ttukey . (Con...
ttukeylem4 9334 Lemma for ~ ttukey . (Con...
ttukeylem5 9335 Lemma for ~ ttukey . The ...
ttukeylem6 9336 Lemma for ~ ttukey . (Con...
ttukeylem7 9337 Lemma for ~ ttukey . (Con...
ttukey2g 9338 The Teichmüller-Tukey...
ttukeyg 9339 The Teichmüller-Tukey...
ttukey 9340 The Teichmüller-Tukey...
axdclem 9341 Lemma for ~ axdc . (Contr...
axdclem2 9342 Lemma for ~ axdc . Using ...
axdc 9343 This theorem derives ~ ax-...
fodom 9344 An onto function implies d...
fodomg 9345 An onto function implies d...
dmct 9346 The domain of a countable ...
rnct 9347 The range of a countable s...
fodomb 9348 Equivalence of an onto map...
wdomac 9349 When assuming AC, weak and...
brdom3 9350 Equivalence to a dominance...
brdom5 9351 An equivalence to a domina...
brdom4 9352 An equivalence to a domina...
brdom7disj 9353 An equivalence to a domina...
brdom6disj 9354 An equivalence to a domina...
fin71ac 9355 Once we allow AC, the "str...
imadomg 9356 An image of a function und...
fimact 9357 The image by a function of...
fnrndomg 9358 The range of a function is...
fnct 9359 If the domain of a functio...
mptct 9360 A countable mapping set is...
iunfo 9361 Existence of an onto funct...
iundom2g 9362 An upper bound for the car...
iundomg 9363 An upper bound for the car...
iundom 9364 An upper bound for the car...
unidom 9365 An upper bound for the car...
uniimadom 9366 An upper bound for the car...
uniimadomf 9367 An upper bound for the car...
cardval 9368 The value of the cardinal ...
cardid 9369 Any set is equinumerous to...
cardidg 9370 Any set is equinumerous to...
cardidd 9371 Any set is equinumerous to...
cardf 9372 The cardinality function i...
carden 9373 Two sets are equinumerous ...
cardeq0 9374 Only the empty set has car...
unsnen 9375 Equinumerosity of a set wi...
carddom 9376 Two sets have the dominanc...
cardsdom 9377 Two sets have the strict d...
domtri 9378 Trichotomy law for dominan...
entric 9379 Trichotomy of equinumerosi...
entri2 9380 Trichotomy of dominance an...
entri3 9381 Trichotomy of dominance. ...
sdomsdomcard 9382 A set strictly dominates i...
canth3 9383 Cantor's theorem in terms ...
infxpidm 9384 The Cartesian product of a...
ondomon 9385 The collection of ordinal ...
cardmin 9386 The smallest ordinal that ...
ficard 9387 A set is finite iff its ca...
infinf 9388 Equivalence between two in...
unirnfdomd 9389 The union of the range of ...
konigthlem 9390 Lemma for ~ konigth . (Co...
konigth 9391 Konig's Theorem. If ` m (...
alephsucpw 9392 The power set of an aleph ...
aleph1 9393 The set exponentiation of ...
alephval2 9394 An alternate way to expres...
dominfac 9395 A nonempty set that is a s...
iunctb 9396 The countable union of cou...
unictb 9397 The countable union of cou...
infmap 9398 An exponentiation law for ...
alephadd 9399 The sum of two alephs is t...
alephmul 9400 The product of two alephs ...
alephexp1 9401 An exponentiation law for ...
alephsuc3 9402 An alternate representatio...
alephexp2 9403 An expression equinumerous...
alephreg 9404 A successor aleph is regul...
pwcfsdom 9405 A corollary of Konig's The...
cfpwsdom 9406 A corollary of Konig's The...
alephom 9407 From ~ canth2 , we know th...
smobeth 9408 The beth function is stric...
nd1 9409 A lemma for proving condit...
nd2 9410 A lemma for proving condit...
nd3 9411 A lemma for proving condit...
nd4 9412 A lemma for proving condit...
axextnd 9413 A version of the Axiom of ...
axrepndlem1 9414 Lemma for the Axiom of Rep...
axrepndlem2 9415 Lemma for the Axiom of Rep...
axrepnd 9416 A version of the Axiom of ...
axunndlem1 9417 Lemma for the Axiom of Uni...
axunnd 9418 A version of the Axiom of ...
axpowndlem1 9419 Lemma for the Axiom of Pow...
axpowndlem2 9420 Lemma for the Axiom of Pow...
axpowndlem3 9421 Lemma for the Axiom of Pow...
axpowndlem4 9422 Lemma for the Axiom of Pow...
axpownd 9423 A version of the Axiom of ...
axregndlem1 9424 Lemma for the Axiom of Reg...
axregndlem2 9425 Lemma for the Axiom of Reg...
axregnd 9426 A version of the Axiom of ...
axinfndlem1 9427 Lemma for the Axiom of Inf...
axinfnd 9428 A version of the Axiom of ...
axacndlem1 9429 Lemma for the Axiom of Cho...
axacndlem2 9430 Lemma for the Axiom of Cho...
axacndlem3 9431 Lemma for the Axiom of Cho...
axacndlem4 9432 Lemma for the Axiom of Cho...
axacndlem5 9433 Lemma for the Axiom of Cho...
axacnd 9434 A version of the Axiom of ...
zfcndext 9435 Axiom of Extensionality ~ ...
zfcndrep 9436 Axiom of Replacement ~ ax-...
zfcndun 9437 Axiom of Union ~ ax-un , r...
zfcndpow 9438 Axiom of Power Sets ~ ax-p...
zfcndreg 9439 Axiom of Regularity ~ ax-r...
zfcndinf 9440 Axiom of Infinity ~ ax-inf...
zfcndac 9441 Axiom of Choice ~ ax-ac , ...
elgch 9444 Elementhood in the collect...
fingch 9445 A finite set is a GCH-set....
gchi 9446 The only GCH-sets which ha...
gchen1 9447 If ` A <_ B < ~P A ` , and...
gchen2 9448 If ` A < B <_ ~P A ` , and...
gchor 9449 If ` A <_ B <_ ~P A ` , an...
engch 9450 The property of being a GC...
gchdomtri 9451 Under certain conditions, ...
fpwwe2cbv 9452 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem1 9453 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem2 9454 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem3 9455 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem5 9456 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem6 9457 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem7 9458 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem8 9459 Lemma for ~ fpwwe2 . Show...
fpwwe2lem9 9460 Lemma for ~ fpwwe2 . Give...
fpwwe2lem10 9461 Lemma for ~ fpwwe2 . Give...
fpwwe2lem11 9462 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem12 9463 Lemma for ~ fpwwe2 . (Con...
fpwwe2lem13 9464 Lemma for ~ fpwwe2 . (Con...
fpwwe2 9465 Given any function ` F ` f...
fpwwecbv 9466 Lemma for ~ fpwwe . (Cont...
fpwwelem 9467 Lemma for ~ fpwwe . (Cont...
fpwwe 9468 Given any function ` F ` f...
canth4 9469 An "effective" form of Can...
canthnumlem 9470 Lemma for ~ canthnum . (C...
canthnum 9471 The set of well-orderable ...
canthwelem 9472 Lemma for ~ canthwe . (Co...
canthwe 9473 The set of well-orders of ...
canthp1lem1 9474 Lemma for ~ canthp1 . (Co...
canthp1lem2 9475 Lemma for ~ canthp1 . (Co...
canthp1 9476 A slightly stronger form o...
finngch 9477 The exclusion of finite se...
gchcda1 9478 An infinite GCH-set is ide...
gchinf 9479 An infinite GCH-set is Ded...
pwfseqlem1 9480 Lemma for ~ pwfseq . Deri...
pwfseqlem2 9481 Lemma for ~ pwfseq . (Con...
pwfseqlem3 9482 Lemma for ~ pwfseq . Usin...
pwfseqlem4a 9483 Lemma for ~ pwfseqlem4 . ...
pwfseqlem4 9484 Lemma for ~ pwfseq . Deri...
pwfseqlem5 9485 Lemma for ~ pwfseq . Alth...
pwfseq 9486 The powerset of a Dedekind...
pwxpndom2 9487 The powerset of a Dedekind...
pwxpndom 9488 The powerset of a Dedekind...
pwcdandom 9489 The powerset of a Dedekind...
gchcdaidm 9490 An infinite GCH-set is ide...
gchxpidm 9491 An infinite GCH-set is ide...
gchpwdom 9492 A relationship between dom...
gchaleph 9493 If ` ( aleph `` A ) ` is a...
gchaleph2 9494 If ` ( aleph `` A ) ` and ...
hargch 9495 If ` A + ~~ ~P A ` , then ...
alephgch 9496 If ` ( aleph `` suc A ) ` ...
gch2 9497 It is sufficient to requir...
gch3 9498 An equivalent formulation ...
gch-kn 9499 The equivalence of two ver...
gchaclem 9500 Lemma for ~ gchac (obsolet...
gchhar 9501 A "local" form of ~ gchac ...
gchacg 9502 A "local" form of ~ gchac ...
gchac 9503 The Generalized Continuum ...
elwina 9508 Conditions of weak inacces...
elina 9509 Conditions of strong inacc...
winaon 9510 A weakly inaccessible card...
inawinalem 9511 Lemma for ~ inawina . (Co...
inawina 9512 Every strongly inaccessibl...
omina 9513 ` _om ` is a strongly inac...
winacard 9514 A weakly inaccessible card...
winainflem 9515 A weakly inaccessible card...
winainf 9516 A weakly inaccessible card...
winalim 9517 A weakly inaccessible card...
winalim2 9518 A nontrivial weakly inacce...
winafp 9519 A nontrivial weakly inacce...
winafpi 9520 This theorem, which states...
gchina 9521 Assuming the GCH, weakly a...
iswun 9526 Properties of a weak unive...
wuntr 9527 A weak universe is transit...
wununi 9528 A weak universe is closed ...
wunpw 9529 A weak universe is closed ...
wunelss 9530 The elements of a weak uni...
wunpr 9531 A weak universe is closed ...
wunun 9532 A weak universe is closed ...
wuntp 9533 A weak universe is closed ...
wunss 9534 A weak universe is closed ...
wunin 9535 A weak universe is closed ...
wundif 9536 A weak universe is closed ...
wunint 9537 A weak universe is closed ...
wunsn 9538 A weak universe is closed ...
wunsuc 9539 A weak universe is closed ...
wun0 9540 A weak universe contains t...
wunr1om 9541 A weak universe is infinit...
wunom 9542 A weak universe contains a...
wunfi 9543 A weak universe contains a...
wunop 9544 A weak universe is closed ...
wunot 9545 A weak universe is closed ...
wunxp 9546 A weak universe is closed ...
wunpm 9547 A weak universe is closed ...
wunmap 9548 A weak universe is closed ...
wunf 9549 A weak universe is closed ...
wundm 9550 A weak universe is closed ...
wunrn 9551 A weak universe is closed ...
wuncnv 9552 A weak universe is closed ...
wunres 9553 A weak universe is closed ...
wunfv 9554 A weak universe is closed ...
wunco 9555 A weak universe is closed ...
wuntpos 9556 A weak universe is closed ...
intwun 9557 The intersection of a coll...
r1limwun 9558 Each limit stage in the cu...
r1wunlim 9559 The weak universes in the ...
wunex2 9560 Construct a weak universe ...
wunex 9561 Construct a weak universe ...
uniwun 9562 Every set is contained in ...
wunex3 9563 Construct a weak universe ...
wuncval 9564 Value of the weak universe...
wuncid 9565 The weak universe closure ...
wunccl 9566 The weak universe closure ...
wuncss 9567 The weak universe closure ...
wuncidm 9568 The weak universe closure ...
wuncval2 9569 Our earlier expression for...
eltskg 9572 Properties of a Tarski cla...
eltsk2g 9573 Properties of a Tarski cla...
tskpwss 9574 First axiom of a Tarski cl...
tskpw 9575 Second axiom of a Tarski c...
tsken 9576 Third axiom of a Tarski cl...
0tsk 9577 The empty set is a (transi...
tsksdom 9578 An element of a Tarski cla...
tskssel 9579 A part of a Tarski class s...
tskss 9580 The subsets of an element ...
tskin 9581 The intersection of two el...
tsksn 9582 A singleton of an element ...
tsktrss 9583 A transitive element of a ...
tsksuc 9584 If an element of a Tarski ...
tsk0 9585 A nonempty Tarski class co...
tsk1 9586 One is an element of a non...
tsk2 9587 Two is an element of a non...
2domtsk 9588 If a Tarski class is not e...
tskr1om 9589 A nonempty Tarski class is...
tskr1om2 9590 A nonempty Tarski class co...
tskinf 9591 A nonempty Tarski class is...
tskpr 9592 If ` A ` and ` B ` are mem...
tskop 9593 If ` A ` and ` B ` are mem...
tskxpss 9594 A Cartesian product of two...
tskwe2 9595 A Tarski class is well-ord...
inttsk 9596 The intersection of a coll...
inar1 9597 ` ( R1 `` A ) ` for ` A ` ...
r1omALT 9598 Alternate proof of ~ r1om ...
rankcf 9599 Any set must be at least a...
inatsk 9600 ` ( R1 `` A ) ` for ` A ` ...
r1omtsk 9601 The set of hereditarily fi...
tskord 9602 A Tarski class contains al...
tskcard 9603 An even more direct relati...
r1tskina 9604 There is a direct relation...
tskuni 9605 The union of an element of...
tskwun 9606 A nonempty transitive Tars...
tskint 9607 The intersection of an ele...
tskun 9608 The union of two elements ...
tskxp 9609 The Cartesian product of t...
tskmap 9610 Set exponentiation is an e...
tskurn 9611 A transitive Tarski class ...
elgrug 9614 Properties of a Grothendie...
grutr 9615 A Grothendieck universe is...
gruelss 9616 A Grothendieck universe is...
grupw 9617 A Grothendieck universe co...
gruss 9618 Any subset of an element o...
grupr 9619 A Grothendieck universe co...
gruurn 9620 A Grothendieck universe co...
gruiun 9621 If ` B ( x ) ` is a family...
gruuni 9622 A Grothendieck universe co...
grurn 9623 A Grothendieck universe co...
gruima 9624 A Grothendieck universe co...
gruel 9625 Any element of an element ...
grusn 9626 A Grothendieck universe co...
gruop 9627 A Grothendieck universe co...
gruun 9628 A Grothendieck universe co...
gruxp 9629 A Grothendieck universe co...
grumap 9630 A Grothendieck universe co...
gruixp 9631 A Grothendieck universe co...
gruiin 9632 A Grothendieck universe co...
gruf 9633 A Grothendieck universe co...
gruen 9634 A Grothendieck universe co...
gruwun 9635 A nonempty Grothendieck un...
intgru 9636 The intersection of a fami...
ingru 9637 The intersection of a univ...
wfgru 9638 The wellfounded part of a ...
grudomon 9639 Each ordinal that is compa...
gruina 9640 If a Grothendieck universe...
grur1a 9641 A characterization of Grot...
grur1 9642 A characterization of Grot...
grutsk1 9643 Grothendieck universes are...
grutsk 9644 Grothendieck universes are...
axgroth5 9646 The Tarski-Grothendieck ax...
axgroth2 9647 Alternate version of the T...
grothpw 9648 Derive the Axiom of Power ...
grothpwex 9649 Derive the Axiom of Power ...
axgroth6 9650 The Tarski-Grothendieck ax...
grothomex 9651 The Tarski-Grothendieck Ax...
grothac 9652 The Tarski-Grothendieck Ax...
axgroth3 9653 Alternate version of the T...
axgroth4 9654 Alternate version of the T...
grothprimlem 9655 Lemma for ~ grothprim . E...
grothprim 9656 The Tarski-Grothendieck Ax...
grothtsk 9657 The Tarski-Grothendieck Ax...
inaprc 9658 An equivalent to the Tarsk...
tskmval 9661 Value of our tarski map. ...
tskmid 9662 The set ` A ` is an elemen...
tskmcl 9663 A Tarski class that contai...
sstskm 9664 Being a part of ` ( tarski...
eltskm 9665 Belonging to ` ( tarskiMap...
elni 9698 Membership in the class of...
elni2 9699 Membership in the class of...
pinn 9700 A positive integer is a na...
pion 9701 A positive integer is an o...
piord 9702 A positive integer is ordi...
niex 9703 The class of positive inte...
0npi 9704 The empty set is not a pos...
1pi 9705 Ordinal 'one' is a positiv...
addpiord 9706 Positive integer addition ...
mulpiord 9707 Positive integer multiplic...
mulidpi 9708 1 is an identity element f...
ltpiord 9709 Positive integer 'less tha...
ltsopi 9710 Positive integer 'less tha...
ltrelpi 9711 Positive integer 'less tha...
dmaddpi 9712 Domain of addition on posi...
dmmulpi 9713 Domain of multiplication o...
addclpi 9714 Closure of addition of pos...
mulclpi 9715 Closure of multiplication ...
addcompi 9716 Addition of positive integ...
addasspi 9717 Addition of positive integ...
mulcompi 9718 Multiplication of positive...
mulasspi 9719 Multiplication of positive...
distrpi 9720 Multiplication of positive...
addcanpi 9721 Addition cancellation law ...
mulcanpi 9722 Multiplication cancellatio...
addnidpi 9723 There is no identity eleme...
ltexpi 9724 Ordering on positive integ...
ltapi 9725 Ordering property of addit...
ltmpi 9726 Ordering property of multi...
1lt2pi 9727 One is less than two (one ...
nlt1pi 9728 No positive integer is les...
indpi 9729 Principle of Finite Induct...
enqbreq 9741 Equivalence relation for p...
enqbreq2 9742 Equivalence relation for p...
enqer 9743 The equivalence relation f...
enqex 9744 The equivalence relation f...
nqex 9745 The class of positive frac...
0nnq 9746 The empty set is not a pos...
elpqn 9747 Each positive fraction is ...
ltrelnq 9748 Positive fraction 'less th...
pinq 9749 The representatives of pos...
1nq 9750 The positive fraction 'one...
nqereu 9751 There is a unique element ...
nqerf 9752 Corollary of ~ nqereu : th...
nqercl 9753 Corollary of ~ nqereu : cl...
nqerrel 9754 Any member of ` ( N. X. N....
nqerid 9755 Corollary of ~ nqereu : th...
enqeq 9756 Corollary of ~ nqereu : if...
nqereq 9757 The function ` /Q ` acts a...
addpipq2 9758 Addition of positive fract...
addpipq 9759 Addition of positive fract...
addpqnq 9760 Addition of positive fract...
mulpipq2 9761 Multiplication of positive...
mulpipq 9762 Multiplication of positive...
mulpqnq 9763 Multiplication of positive...
ordpipq 9764 Ordering of positive fract...
ordpinq 9765 Ordering of positive fract...
addpqf 9766 Closure of addition on pos...
addclnq 9767 Closure of addition on pos...
mulpqf 9768 Closure of multiplication ...
mulclnq 9769 Closure of multiplication ...
addnqf 9770 Domain of addition on posi...
mulnqf 9771 Domain of multiplication o...
addcompq 9772 Addition of positive fract...
addcomnq 9773 Addition of positive fract...
mulcompq 9774 Multiplication of positive...
mulcomnq 9775 Multiplication of positive...
adderpqlem 9776 Lemma for ~ adderpq . (Co...
mulerpqlem 9777 Lemma for ~ mulerpq . (Co...
adderpq 9778 Addition is compatible wit...
mulerpq 9779 Multiplication is compatib...
addassnq 9780 Addition of positive fract...
mulassnq 9781 Multiplication of positive...
mulcanenq 9782 Lemma for distributive law...
distrnq 9783 Multiplication of positive...
1nqenq 9784 The equivalence class of r...
mulidnq 9785 Multiplication identity el...
recmulnq 9786 Relationship between recip...
recidnq 9787 A positive fraction times ...
recclnq 9788 Closure law for positive f...
recrecnq 9789 Reciprocal of reciprocal o...
dmrecnq 9790 Domain of reciprocal on po...
ltsonq 9791 'Less than' is a strict or...
lterpq 9792 Compatibility of ordering ...
ltanq 9793 Ordering property of addit...
ltmnq 9794 Ordering property of multi...
1lt2nq 9795 One is less than two (one ...
ltaddnq 9796 The sum of two fractions i...
ltexnq 9797 Ordering on positive fract...
halfnq 9798 One-half of any positive f...
nsmallnq 9799 The is no smallest positiv...
ltbtwnnq 9800 There exists a number betw...
ltrnq 9801 Ordering property of recip...
archnq 9802 For any fraction, there is...
npex 9808 The class of positive real...
elnp 9809 Membership in positive rea...
elnpi 9810 Membership in positive rea...
prn0 9811 A positive real is not emp...
prpssnq 9812 A positive real is a subse...
elprnq 9813 A positive real is a set o...
0npr 9814 The empty set is not a pos...
prcdnq 9815 A positive real is closed ...
prub 9816 A positive fraction not in...
prnmax 9817 A positive real has no lar...
npomex 9818 A simplifying observation,...
prnmadd 9819 A positive real has no lar...
ltrelpr 9820 Positive real 'less than' ...
genpv 9821 Value of general operation...
genpelv 9822 Membership in value of gen...
genpprecl 9823 Pre-closure law for genera...
genpdm 9824 Domain of general operatio...
genpn0 9825 The result of an operation...
genpss 9826 The result of an operation...
genpnnp 9827 The result of an operation...
genpcd 9828 Downward closure of an ope...
genpnmax 9829 An operation on positive r...
genpcl 9830 Closure of an operation on...
genpass 9831 Associativity of an operat...
plpv 9832 Value of addition on posit...
mpv 9833 Value of multiplication on...
dmplp 9834 Domain of addition on posi...
dmmp 9835 Domain of multiplication o...
nqpr 9836 The canonical embedding of...
1pr 9837 The positive real number '...
addclprlem1 9838 Lemma to prove downward cl...
addclprlem2 9839 Lemma to prove downward cl...
addclpr 9840 Closure of addition on pos...
mulclprlem 9841 Lemma to prove downward cl...
mulclpr 9842 Closure of multiplication ...
addcompr 9843 Addition of positive reals...
addasspr 9844 Addition of positive reals...
mulcompr 9845 Multiplication of positive...
mulasspr 9846 Multiplication of positive...
distrlem1pr 9847 Lemma for distributive law...
distrlem4pr 9848 Lemma for distributive law...
distrlem5pr 9849 Lemma for distributive law...
distrpr 9850 Multiplication of positive...
1idpr 9851 1 is an identity element f...
ltprord 9852 Positive real 'less than' ...
psslinpr 9853 Proper subset is a linear ...
ltsopr 9854 Positive real 'less than' ...
prlem934 9855 Lemma 9-3.4 of [Gleason] p...
ltaddpr 9856 The sum of two positive re...
ltaddpr2 9857 The sum of two positive re...
ltexprlem1 9858 Lemma for Proposition 9-3....
ltexprlem2 9859 Lemma for Proposition 9-3....
ltexprlem3 9860 Lemma for Proposition 9-3....
ltexprlem4 9861 Lemma for Proposition 9-3....
ltexprlem5 9862 Lemma for Proposition 9-3....
ltexprlem6 9863 Lemma for Proposition 9-3....
ltexprlem7 9864 Lemma for Proposition 9-3....
ltexpri 9865 Proposition 9-3.5(iv) of [...
ltaprlem 9866 Lemma for Proposition 9-3....
ltapr 9867 Ordering property of addit...
addcanpr 9868 Addition cancellation law ...
prlem936 9869 Lemma 9-3.6 of [Gleason] p...
reclem2pr 9870 Lemma for Proposition 9-3....
reclem3pr 9871 Lemma for Proposition 9-3....
reclem4pr 9872 Lemma for Proposition 9-3....
recexpr 9873 The reciprocal of a positi...
suplem1pr 9874 The union of a nonempty, b...
suplem2pr 9875 The union of a set of posi...
supexpr 9876 The union of a nonempty, b...
enrbreq 9885 Equivalence relation for s...
enrer 9886 The equivalence relation f...
enreceq 9887 Equivalence class equality...
enrex 9888 The equivalence relation f...
ltrelsr 9889 Signed real 'less than' is...
addcmpblnr 9890 Lemma showing compatibilit...
mulcmpblnrlem 9891 Lemma used in lemma showin...
mulcmpblnr 9892 Lemma showing compatibilit...
prsrlem1 9893 Decomposing signed reals i...
addsrmo 9894 There is at most one resul...
mulsrmo 9895 There is at most one resul...
addsrpr 9896 Addition of signed reals i...
mulsrpr 9897 Multiplication of signed r...
ltsrpr 9898 Ordering of signed reals i...
gt0srpr 9899 Greater than zero in terms...
0nsr 9900 The empty set is not a sig...
0r 9901 The constant ` 0R ` is a s...
1sr 9902 The constant ` 1R ` is a s...
m1r 9903 The constant ` -1R ` is a ...
addclsr 9904 Closure of addition on sig...
mulclsr 9905 Closure of multiplication ...
dmaddsr 9906 Domain of addition on sign...
dmmulsr 9907 Domain of multiplication o...
addcomsr 9908 Addition of signed reals i...
addasssr 9909 Addition of signed reals i...
mulcomsr 9910 Multiplication of signed r...
mulasssr 9911 Multiplication of signed r...
distrsr 9912 Multiplication of signed r...
m1p1sr 9913 Minus one plus one is zero...
m1m1sr 9914 Minus one times minus one ...
ltsosr 9915 Signed real 'less than' is...
0lt1sr 9916 0 is less than 1 for signe...
1ne0sr 9917 1 and 0 are distinct for s...
0idsr 9918 The signed real number 0 i...
1idsr 9919 1 is an identity element f...
00sr 9920 A signed real times 0 is 0...
ltasr 9921 Ordering property of addit...
pn0sr 9922 A signed real plus its neg...
negexsr 9923 Existence of negative sign...
recexsrlem 9924 The reciprocal of a positi...
addgt0sr 9925 The sum of two positive si...
mulgt0sr 9926 The product of two positiv...
sqgt0sr 9927 The square of a nonzero si...
recexsr 9928 The reciprocal of a nonzer...
mappsrpr 9929 Mapping from positive sign...
ltpsrpr 9930 Mapping of order from posi...
map2psrpr 9931 Equivalence for positive s...
supsrlem 9932 Lemma for supremum theorem...
supsr 9933 A nonempty, bounded set of...
opelcn 9950 Ordered pair membership in...
opelreal 9951 Ordered pair membership in...
elreal 9952 Membership in class of rea...
elreal2 9953 Ordered pair membership in...
0ncn 9954 The empty set is not a com...
ltrelre 9955 'Less than' is a relation ...
addcnsr 9956 Addition of complex number...
mulcnsr 9957 Multiplication of complex ...
eqresr 9958 Equality of real numbers i...
addresr 9959 Addition of real numbers i...
mulresr 9960 Multiplication of real num...
ltresr 9961 Ordering of real subset of...
ltresr2 9962 Ordering of real subset of...
dfcnqs 9963 Technical trick to permit ...
addcnsrec 9964 Technical trick to permit ...
mulcnsrec 9965 Technical trick to permit ...
axaddf 9966 Addition is an operation o...
axmulf 9967 Multiplication is an opera...
axcnex 9968 The complex numbers form a...
axresscn 9969 The real numbers are a sub...
ax1cn 9970 1 is a complex number. Ax...
axicn 9971 ` _i ` is a complex number...
axaddcl 9972 Closure law for addition o...
axaddrcl 9973 Closure law for addition i...
axmulcl 9974 Closure law for multiplica...
axmulrcl 9975 Closure law for multiplica...
axmulcom 9976 Multiplication of complex ...
axaddass 9977 Addition of complex number...
axmulass 9978 Multiplication of complex ...
axdistr 9979 Distributive law for compl...
axi2m1 9980 i-squared equals -1 (expre...
ax1ne0 9981 1 and 0 are distinct. Axi...
ax1rid 9982 ` 1 ` is an identity eleme...
axrnegex 9983 Existence of negative of r...
axrrecex 9984 Existence of reciprocal of...
axcnre 9985 A complex number can be ex...
axpre-lttri 9986 Ordering on reals satisfie...
axpre-lttrn 9987 Ordering on reals is trans...
axpre-ltadd 9988 Ordering property of addit...
axpre-mulgt0 9989 The product of two positiv...
axpre-sup 9990 A nonempty, bounded-above ...
wuncn 9991 A weak universe containing...
cnex 10017 Alias for ~ ax-cnex . See...
addcl 10018 Alias for ~ ax-addcl , for...
readdcl 10019 Alias for ~ ax-addrcl , fo...
mulcl 10020 Alias for ~ ax-mulcl , for...
remulcl 10021 Alias for ~ ax-mulrcl , fo...
mulcom 10022 Alias for ~ ax-mulcom , fo...
addass 10023 Alias for ~ ax-addass , fo...
mulass 10024 Alias for ~ ax-mulass , fo...
adddi 10025 Alias for ~ ax-distr , for...
recn 10026 A real number is a complex...
reex 10027 The real numbers form a se...
reelprrecn 10028 Reals are a subset of the ...
cnelprrecn 10029 Complex numbers are a subs...
elimne0 10030 Hypothesis for weak deduct...
adddir 10031 Distributive law for compl...
0cn 10032 0 is a complex number. Se...
0cnd 10033 0 is a complex number, ded...
c0ex 10034 0 is a set (common case). ...
1ex 10035 1 is a set. Common specia...
cnre 10036 Alias for ~ ax-cnre , for ...
mulid1 10037 ` 1 ` is an identity eleme...
mulid2 10038 Identity law for multiplic...
1re 10039 ` 1 ` is a real number. T...
0re 10040 ` 0 ` is a real number. S...
0red 10041 ` 0 ` is a real number, de...
mulid1i 10042 Identity law for multiplic...
mulid2i 10043 Identity law for multiplic...
addcli 10044 Closure law for addition. ...
mulcli 10045 Closure law for multiplica...
mulcomi 10046 Commutative law for multip...
mulcomli 10047 Commutative law for multip...
addassi 10048 Associative law for additi...
mulassi 10049 Associative law for multip...
adddii 10050 Distributive law (left-dis...
adddiri 10051 Distributive law (right-di...
recni 10052 A real number is a complex...
readdcli 10053 Closure law for addition o...
remulcli 10054 Closure law for multiplica...
1red 10055 1 is an real number, deduc...
1cnd 10056 1 is a complex number, ded...
mulid1d 10057 Identity law for multiplic...
mulid2d 10058 Identity law for multiplic...
addcld 10059 Closure law for addition. ...
mulcld 10060 Closure law for multiplica...
mulcomd 10061 Commutative law for multip...
addassd 10062 Associative law for additi...
mulassd 10063 Associative law for multip...
adddid 10064 Distributive law (left-dis...
adddird 10065 Distributive law (right-di...
adddirp1d 10066 Distributive law, plus 1 v...
joinlmuladdmuld 10067 Join AB+CB into (A+C) on L...
recnd 10068 Deduction from real number...
readdcld 10069 Closure law for addition o...
remulcld 10070 Closure law for multiplica...
pnfnre 10081 Plus infinity is not a rea...
mnfnre 10082 Minus infinity is not a re...
ressxr 10083 The standard reals are a s...
rexpssxrxp 10084 The Cartesian product of s...
rexr 10085 A standard real is an exte...
0xr 10086 Zero is an extended real. ...
renepnf 10087 No (finite) real equals pl...
renemnf 10088 No real equals minus infin...
rexrd 10089 A standard real is an exte...
renepnfd 10090 No (finite) real equals pl...
renemnfd 10091 No real equals minus infin...
pnfxr 10092 Plus infinity belongs to t...
pnfex 10093 Plus infinity exists (comm...
pnfnemnf 10094 Plus and minus infinity ar...
mnfnepnf 10095 Minus and plus infinity ar...
mnfxr 10096 Minus infinity belongs to ...
rexri 10097 A standard real is an exte...
renfdisj 10098 The reals and the infiniti...
ltrelxr 10099 'Less than' is a relation ...
ltrel 10100 'Less than' is a relation....
lerelxr 10101 'Less than or equal' is a ...
lerel 10102 'Less or equal to' is a re...
xrlenlt 10103 'Less than or equal to' ex...
xrlenltd 10104 'Less than or equal to' ex...
xrltnle 10105 'Less than' expressed in t...
xrnltled 10106 'Not less than ' implies '...
ssxr 10107 The three (non-exclusive) ...
ltxrlt 10108 The standard less-than ` <...
axlttri 10109 Ordering on reals satisfie...
axlttrn 10110 Ordering on reals is trans...
axltadd 10111 Ordering property of addit...
axmulgt0 10112 The product of two positiv...
axsup 10113 A nonempty, bounded-above ...
lttr 10114 Alias for ~ axlttrn , for ...
mulgt0 10115 The product of two positiv...
lenlt 10116 'Less than or equal to' ex...
ltnle 10117 'Less than' expressed in t...
ltso 10118 'Less than' is a strict or...
gtso 10119 'Greater than' is a strict...
lttri2 10120 Consequence of trichotomy....
lttri3 10121 Trichotomy law for 'less t...
lttri4 10122 Trichotomy law for 'less t...
letri3 10123 Trichotomy law. (Contribu...
leloe 10124 'Less than or equal to' ex...
eqlelt 10125 Equality in terms of 'less...
ltle 10126 'Less than' implies 'less ...
leltne 10127 'Less than or equal to' im...
lelttr 10128 Transitive law. (Contribu...
ltletr 10129 Transitive law. (Contribu...
ltleletr 10130 Transitive law, weaker for...
letr 10131 Transitive law. (Contribu...
ltnr 10132 'Less than' is irreflexive...
leid 10133 'Less than or equal to' is...
ltne 10134 'Less than' implies not eq...
ltnsym 10135 'Less than' is not symmetr...
ltnsym2 10136 'Less than' is antisymmetr...
letric 10137 Trichotomy law. (Contribu...
ltlen 10138 'Less than' expressed in t...
eqle 10139 Equality implies 'less tha...
eqled 10140 Equality implies 'less tha...
ltadd2 10141 Addition to both sides of ...
ne0gt0 10142 A nonzero nonnegative numb...
lecasei 10143 Ordering elimination by ca...
lelttric 10144 Trichotomy law. (Contribu...
ltlecasei 10145 Ordering elimination by ca...
ltnri 10146 'Less than' is irreflexive...
eqlei 10147 Equality implies 'less tha...
eqlei2 10148 Equality implies 'less tha...
gtneii 10149 'Less than' implies not eq...
ltneii 10150 'Greater than' implies not...
lttri2i 10151 Consequence of trichotomy....
lttri3i 10152 Consequence of trichotomy....
letri3i 10153 Consequence of trichotomy....
leloei 10154 'Less than or equal to' in...
ltleni 10155 'Less than' expressed in t...
ltnsymi 10156 'Less than' is not symmetr...
lenlti 10157 'Less than or equal to' in...
ltnlei 10158 'Less than' in terms of 'l...
ltlei 10159 'Less than' implies 'less ...
ltleii 10160 'Less than' implies 'less ...
ltnei 10161 'Less than' implies not eq...
letrii 10162 Trichotomy law for 'less t...
lttri 10163 'Less than' is transitive....
lelttri 10164 'Less than or equal to', '...
ltletri 10165 'Less than', 'less than or...
letri 10166 'Less than or equal to' is...
le2tri3i 10167 Extended trichotomy law fo...
ltadd2i 10168 Addition to both sides of ...
mulgt0i 10169 The product of two positiv...
mulgt0ii 10170 The product of two positiv...
ltnrd 10171 'Less than' is irreflexive...
gtned 10172 'Less than' implies not eq...
ltned 10173 'Greater than' implies not...
ne0gt0d 10174 A nonzero nonnegative numb...
lttrid 10175 Ordering on reals satisfie...
lttri2d 10176 Consequence of trichotomy....
lttri3d 10177 Consequence of trichotomy....
lttri4d 10178 Trichotomy law for 'less t...
letri3d 10179 Consequence of trichotomy....
leloed 10180 'Less than or equal to' in...
eqleltd 10181 Equality in terms of 'less...
ltlend 10182 'Less than' expressed in t...
lenltd 10183 'Less than or equal to' in...
ltnled 10184 'Less than' in terms of 'l...
ltled 10185 'Less than' implies 'less ...
ltnsymd 10186 'Less than' implies 'less ...
nltled 10187 'Not less than ' implies '...
lensymd 10188 'Less than or equal to' im...
letrid 10189 Trichotomy law for 'less t...
leltned 10190 'Less than or equal to' im...
leneltd 10191 'Less than or equal to' an...
mulgt0d 10192 The product of two positiv...
ltadd2d 10193 Addition to both sides of ...
letrd 10194 Transitive law deduction f...
lelttrd 10195 Transitive law deduction f...
ltadd2dd 10196 Addition to both sides of ...
ltletrd 10197 Transitive law deduction f...
lttrd 10198 Transitive law deduction f...
lelttrdi 10199 If a number is less than a...
dedekind 10200 The Dedekind cut theorem. ...
dedekindle 10201 The Dedekind cut theorem, ...
mul12 10202 Commutative/associative la...
mul32 10203 Commutative/associative la...
mul31 10204 Commutative/associative la...
mul4 10205 Rearrangement of 4 factors...
muladd11 10206 A simple product of sums e...
1p1times 10207 Two times a number. (Cont...
peano2cn 10208 A theorem for complex numb...
peano2re 10209 A theorem for reals analog...
readdcan 10210 Cancellation law for addit...
00id 10211 ` 0 ` is its own additive ...
mul02lem1 10212 Lemma for ~ mul02 . If an...
mul02lem2 10213 Lemma for ~ mul02 . Zero ...
mul02 10214 Multiplication by ` 0 ` . ...
mul01 10215 Multiplication by ` 0 ` . ...
addid1 10216 ` 0 ` is an additive ident...
cnegex 10217 Existence of the negative ...
cnegex2 10218 Existence of a left invers...
addid2 10219 ` 0 ` is a left identity f...
addcan 10220 Cancellation law for addit...
addcan2 10221 Cancellation law for addit...
addcom 10222 Addition commutes. This u...
addid1i 10223 ` 0 ` is an additive ident...
addid2i 10224 ` 0 ` is a left identity f...
mul02i 10225 Multiplication by 0. Theo...
mul01i 10226 Multiplication by ` 0 ` . ...
addcomi 10227 Addition commutes. Based ...
addcomli 10228 Addition commutes. (Contr...
addcani 10229 Cancellation law for addit...
addcan2i 10230 Cancellation law for addit...
mul12i 10231 Commutative/associative la...
mul32i 10232 Commutative/associative la...
mul4i 10233 Rearrangement of 4 factors...
mul02d 10234 Multiplication by 0. Theo...
mul01d 10235 Multiplication by ` 0 ` . ...
addid1d 10236 ` 0 ` is an additive ident...
addid2d 10237 ` 0 ` is a left identity f...
addcomd 10238 Addition commutes. Based ...
addcand 10239 Cancellation law for addit...
addcan2d 10240 Cancellation law for addit...
addcanad 10241 Cancelling a term on the l...
addcan2ad 10242 Cancelling a term on the r...
addneintrd 10243 Introducing a term on the ...
addneintr2d 10244 Introducing a term on the ...
mul12d 10245 Commutative/associative la...
mul32d 10246 Commutative/associative la...
mul31d 10247 Commutative/associative la...
mul4d 10248 Rearrangement of 4 factors...
muladd11r 10249 A simple product of sums e...
comraddd 10250 Commute RHS addition, in d...
ltaddneg 10251 Adding a negative number t...
ltaddnegr 10252 Adding a negative number t...
add12 10253 Commutative/associative la...
add32 10254 Commutative/associative la...
add32r 10255 Commutative/associative la...
add4 10256 Rearrangement of 4 terms i...
add42 10257 Rearrangement of 4 terms i...
add12i 10258 Commutative/associative la...
add32i 10259 Commutative/associative la...
add4i 10260 Rearrangement of 4 terms i...
add42i 10261 Rearrangement of 4 terms i...
add12d 10262 Commutative/associative la...
add32d 10263 Commutative/associative la...
add4d 10264 Rearrangement of 4 terms i...
add42d 10265 Rearrangement of 4 terms i...
0cnALT 10270 Alternate proof of ~ 0cn w...
negeu 10271 Existential uniqueness of ...
subval 10272 Value of subtraction, whic...
negeq 10273 Equality theorem for negat...
negeqi 10274 Equality inference for neg...
negeqd 10275 Equality deduction for neg...
nfnegd 10276 Deduction version of ~ nfn...
nfneg 10277 Bound-variable hypothesis ...
csbnegg 10278 Move class substitution in...
negex 10279 A negative is a set. (Con...
subcl 10280 Closure law for subtractio...
negcl 10281 Closure law for negative. ...
negicn 10282 ` -u _i ` is a complex num...
subf 10283 Subtraction is an operatio...
subadd 10284 Relationship between subtr...
subadd2 10285 Relationship between subtr...
subsub23 10286 Swap subtrahend and result...
pncan 10287 Cancellation law for subtr...
pncan2 10288 Cancellation law for subtr...
pncan3 10289 Subtraction and addition o...
npcan 10290 Cancellation law for subtr...
addsubass 10291 Associative-type law for a...
addsub 10292 Law for addition and subtr...
subadd23 10293 Commutative/associative la...
addsub12 10294 Commutative/associative la...
2addsub 10295 Law for subtraction and ad...
addsubeq4 10296 Relation between sums and ...
pncan3oi 10297 Subtraction and addition o...
mvrraddi 10298 Move RHS right addition to...
mvlladdi 10299 Move LHS left addition to ...
subid 10300 Subtraction of a number fr...
subid1 10301 Identity law for subtracti...
npncan 10302 Cancellation law for subtr...
nppcan 10303 Cancellation law for subtr...
nnpcan 10304 Cancellation law for subtr...
nppcan3 10305 Cancellation law for subtr...
subcan2 10306 Cancellation law for subtr...
subeq0 10307 If the difference between ...
npncan2 10308 Cancellation law for subtr...
subsub2 10309 Law for double subtraction...
nncan 10310 Cancellation law for subtr...
subsub 10311 Law for double subtraction...
nppcan2 10312 Cancellation law for subtr...
subsub3 10313 Law for double subtraction...
subsub4 10314 Law for double subtraction...
sub32 10315 Swap the second and third ...
nnncan 10316 Cancellation law for subtr...
nnncan1 10317 Cancellation law for subtr...
nnncan2 10318 Cancellation law for subtr...
npncan3 10319 Cancellation law for subtr...
pnpcan 10320 Cancellation law for mixed...
pnpcan2 10321 Cancellation law for mixed...
pnncan 10322 Cancellation law for mixed...
ppncan 10323 Cancellation law for mixed...
addsub4 10324 Rearrangement of 4 terms i...
subadd4 10325 Rearrangement of 4 terms i...
sub4 10326 Rearrangement of 4 terms i...
neg0 10327 Minus 0 equals 0. (Contri...
negid 10328 Addition of a number and i...
negsub 10329 Relationship between subtr...
subneg 10330 Relationship between subtr...
negneg 10331 A number is equal to the n...
neg11 10332 Negative is one-to-one. (...
negcon1 10333 Negative contraposition la...
negcon2 10334 Negative contraposition la...
negeq0 10335 A number is zero iff its n...
subcan 10336 Cancellation law for subtr...
negsubdi 10337 Distribution of negative o...
negdi 10338 Distribution of negative o...
negdi2 10339 Distribution of negative o...
negsubdi2 10340 Distribution of negative o...
neg2sub 10341 Relationship between subtr...
renegcli 10342 Closure law for negative o...
resubcli 10343 Closure law for subtractio...
renegcl 10344 Closure law for negative o...
resubcl 10345 Closure law for subtractio...
negreb 10346 The negative of a real is ...
peano2cnm 10347 "Reverse" second Peano pos...
peano2rem 10348 "Reverse" second Peano pos...
negcli 10349 Closure law for negative. ...
negidi 10350 Addition of a number and i...
negnegi 10351 A number is equal to the n...
subidi 10352 Subtraction of a number fr...
subid1i 10353 Identity law for subtracti...
negne0bi 10354 A number is nonzero iff it...
negrebi 10355 The negative of a real is ...
negne0i 10356 The negative of a nonzero ...
subcli 10357 Closure law for subtractio...
pncan3i 10358 Subtraction and addition o...
negsubi 10359 Relationship between subtr...
subnegi 10360 Relationship between subtr...
subeq0i 10361 If the difference between ...
neg11i 10362 Negative is one-to-one. (...
negcon1i 10363 Negative contraposition la...
negcon2i 10364 Negative contraposition la...
negdii 10365 Distribution of negative o...
negsubdii 10366 Distribution of negative o...
negsubdi2i 10367 Distribution of negative o...
subaddi 10368 Relationship between subtr...
subadd2i 10369 Relationship between subtr...
subaddrii 10370 Relationship between subtr...
subsub23i 10371 Swap subtrahend and result...
addsubassi 10372 Associative-type law for s...
addsubi 10373 Law for subtraction and ad...
subcani 10374 Cancellation law for subtr...
subcan2i 10375 Cancellation law for subtr...
pnncani 10376 Cancellation law for mixed...
addsub4i 10377 Rearrangement of 4 terms i...
0reALT 10378 Alternate proof of ~ 0re ....
negcld 10379 Closure law for negative. ...
subidd 10380 Subtraction of a number fr...
subid1d 10381 Identity law for subtracti...
negidd 10382 Addition of a number and i...
negnegd 10383 A number is equal to the n...
negeq0d 10384 A number is zero iff its n...
negne0bd 10385 A number is nonzero iff it...
negcon1d 10386 Contraposition law for una...
negcon1ad 10387 Contraposition law for una...
neg11ad 10388 The negatives of two compl...
negned 10389 If two complex numbers are...
negne0d 10390 The negative of a nonzero ...
negrebd 10391 The negative of a real is ...
subcld 10392 Closure law for subtractio...
pncand 10393 Cancellation law for subtr...
pncan2d 10394 Cancellation law for subtr...
pncan3d 10395 Subtraction and addition o...
npcand 10396 Cancellation law for subtr...
nncand 10397 Cancellation law for subtr...
negsubd 10398 Relationship between subtr...
subnegd 10399 Relationship between subtr...
subeq0d 10400 If the difference between ...
subne0d 10401 Two unequal numbers have n...
subeq0ad 10402 The difference of two comp...
subne0ad 10403 If the difference of two c...
neg11d 10404 If the difference between ...
negdid 10405 Distribution of negative o...
negdi2d 10406 Distribution of negative o...
negsubdid 10407 Distribution of negative o...
negsubdi2d 10408 Distribution of negative o...
neg2subd 10409 Relationship between subtr...
subaddd 10410 Relationship between subtr...
subadd2d 10411 Relationship between subtr...
addsubassd 10412 Associative-type law for s...
addsubd 10413 Law for subtraction and ad...
subadd23d 10414 Commutative/associative la...
addsub12d 10415 Commutative/associative la...
npncand 10416 Cancellation law for subtr...
nppcand 10417 Cancellation law for subtr...
nppcan2d 10418 Cancellation law for subtr...
nppcan3d 10419 Cancellation law for subtr...
subsubd 10420 Law for double subtraction...
subsub2d 10421 Law for double subtraction...
subsub3d 10422 Law for double subtraction...
subsub4d 10423 Law for double subtraction...
sub32d 10424 Swap the second and third ...
nnncand 10425 Cancellation law for subtr...
nnncan1d 10426 Cancellation law for subtr...
nnncan2d 10427 Cancellation law for subtr...
npncan3d 10428 Cancellation law for subtr...
pnpcand 10429 Cancellation law for mixed...
pnpcan2d 10430 Cancellation law for mixed...
pnncand 10431 Cancellation law for mixed...
ppncand 10432 Cancellation law for mixed...
subcand 10433 Cancellation law for subtr...
subcan2d 10434 Cancellation law for subtr...
subcanad 10435 Cancellation law for subtr...
subneintrd 10436 Introducing subtraction on...
subcan2ad 10437 Cancellation law for subtr...
subneintr2d 10438 Introducing subtraction on...
addsub4d 10439 Rearrangement of 4 terms i...
subadd4d 10440 Rearrangement of 4 terms i...
sub4d 10441 Rearrangement of 4 terms i...
2addsubd 10442 Law for subtraction and ad...
addsubeq4d 10443 Relation between sums and ...
mvlraddd 10444 Move LHS right addition to...
mvrraddd 10445 Move RHS right addition to...
subaddeqd 10446 Transfer two terms of a su...
addlsub 10447 Left-subtraction: Subtrac...
addrsub 10448 Right-subtraction: Subtra...
subexsub 10449 A subtraction law: Exchan...
addid0 10450 If adding a number to a an...
addn0nid 10451 Adding a nonzero number to...
pnpncand 10452 Addition/subtraction cance...
subeqrev 10453 Reverse the order of subtr...
pncan1 10454 Cancellation law for addit...
npcan1 10455 Cancellation law for subtr...
subeq0bd 10456 If two complex numbers are...
renegcld 10457 Closure law for negative o...
resubcld 10458 Closure law for subtractio...
negn0 10459 The image under negation o...
negf1o 10460 Negation is an isomorphism...
kcnktkm1cn 10461 k times k minus 1 is a com...
muladd 10462 Product of two sums. (Con...
subdi 10463 Distribution of multiplica...
subdir 10464 Distribution of multiplica...
ine0 10465 The imaginary unit ` _i ` ...
mulneg1 10466 Product with negative is n...
mulneg2 10467 The product with a negativ...
mulneg12 10468 Swap the negative sign in ...
mul2neg 10469 Product of two negatives. ...
submul2 10470 Convert a subtraction to a...
mulm1 10471 Product with minus one is ...
addneg1mul 10472 Addition with product with...
mulsub 10473 Product of two differences...
mulsub2 10474 Swap the order of subtract...
mulm1i 10475 Product with minus one is ...
mulneg1i 10476 Product with negative is n...
mulneg2i 10477 Product with negative is n...
mul2negi 10478 Product of two negatives. ...
subdii 10479 Distribution of multiplica...
subdiri 10480 Distribution of multiplica...
muladdi 10481 Product of two sums. (Con...
mulm1d 10482 Product with minus one is ...
mulneg1d 10483 Product with negative is n...
mulneg2d 10484 Product with negative is n...
mul2negd 10485 Product of two negatives. ...
subdid 10486 Distribution of multiplica...
subdird 10487 Distribution of multiplica...
subdir2d 10488 Distribution of multiplica...
muladdd 10489 Product of two sums. (Con...
mulsubd 10490 Product of two differences...
muls1d 10491 Multiplication by one minu...
mulsubfacd 10492 Multiplication followed by...
gt0ne0 10493 Positive implies nonzero. ...
lt0ne0 10494 A number which is less tha...
ltadd1 10495 Addition to both sides of ...
leadd1 10496 Addition to both sides of ...
leadd2 10497 Addition to both sides of ...
ltsubadd 10498 'Less than' relationship b...
ltsubadd2 10499 'Less than' relationship b...
lesubadd 10500 'Less than or equal to' re...
lesubadd2 10501 'Less than or equal to' re...
ltaddsub 10502 'Less than' relationship b...
ltaddsub2 10503 'Less than' relationship b...
leaddsub 10504 'Less than or equal to' re...
leaddsub2 10505 'Less than or equal to' re...
suble 10506 Swap subtrahends in an ine...
lesub 10507 Swap subtrahends in an ine...
ltsub23 10508 'Less than' relationship b...
ltsub13 10509 'Less than' relationship b...
le2add 10510 Adding both sides of two '...
ltleadd 10511 Adding both sides of two o...
leltadd 10512 Adding both sides of two o...
lt2add 10513 Adding both sides of two '...
addgt0 10514 The sum of 2 positive numb...
addgegt0 10515 The sum of nonnegative and...
addgtge0 10516 The sum of nonnegative and...
addge0 10517 The sum of 2 nonnegative n...
ltaddpos 10518 Adding a positive number t...
ltaddpos2 10519 Adding a positive number t...
ltsubpos 10520 Subtracting a positive num...
posdif 10521 Comparison of two numbers ...
lesub1 10522 Subtraction from both side...
lesub2 10523 Subtraction of both sides ...
ltsub1 10524 Subtraction from both side...
ltsub2 10525 Subtraction of both sides ...
lt2sub 10526 Subtracting both sides of ...
le2sub 10527 Subtracting both sides of ...
ltneg 10528 Negative of both sides of ...
ltnegcon1 10529 Contraposition of negative...
ltnegcon2 10530 Contraposition of negative...
leneg 10531 Negative of both sides of ...
lenegcon1 10532 Contraposition of negative...
lenegcon2 10533 Contraposition of negative...
lt0neg1 10534 Comparison of a number and...
lt0neg2 10535 Comparison of a number and...
le0neg1 10536 Comparison of a number and...
le0neg2 10537 Comparison of a number and...
addge01 10538 A number is less than or e...
addge02 10539 A number is less than or e...
add20 10540 Two nonnegative numbers ar...
subge0 10541 Nonnegative subtraction. ...
suble0 10542 Nonpositive subtraction. ...
leaddle0 10543 The sum of a real number a...
subge02 10544 Nonnegative subtraction. ...
lesub0 10545 Lemma to show a nonnegativ...
mulge0 10546 The product of two nonnega...
mullt0 10547 The product of two negativ...
msqgt0 10548 A nonzero square is positi...
msqge0 10549 A square is nonnegative. ...
0lt1 10550 0 is less than 1. Theorem...
0le1 10551 0 is less than or equal to...
relin01 10552 An interval law for less t...
ltordlem 10553 Lemma for ~ ltord1 . (Con...
ltord1 10554 Infer an ordering relation...
leord1 10555 Infer an ordering relation...
eqord1 10556 Infer an ordering relation...
ltord2 10557 Infer an ordering relation...
leord2 10558 Infer an ordering relation...
eqord2 10559 Infer an ordering relation...
wloglei 10560 Form of ~ wlogle where bot...
wlogle 10561 If the predicate ` ch ( x ...
leidi 10562 'Less than or equal to' is...
gt0ne0i 10563 Positive means nonzero (us...
gt0ne0ii 10564 Positive implies nonzero. ...
msqgt0i 10565 A nonzero square is positi...
msqge0i 10566 A square is nonnegative. ...
addgt0i 10567 Addition of 2 positive num...
addge0i 10568 Addition of 2 nonnegative ...
addgegt0i 10569 Addition of nonnegative an...
addgt0ii 10570 Addition of 2 positive num...
add20i 10571 Two nonnegative numbers ar...
ltnegi 10572 Negative of both sides of ...
lenegi 10573 Negative of both sides of ...
ltnegcon2i 10574 Contraposition of negative...
mulge0i 10575 The product of two nonnega...
lesub0i 10576 Lemma to show a nonnegativ...
ltaddposi 10577 Adding a positive number t...
posdifi 10578 Comparison of two numbers ...
ltnegcon1i 10579 Contraposition of negative...
lenegcon1i 10580 Contraposition of negative...
subge0i 10581 Nonnegative subtraction. ...
ltadd1i 10582 Addition to both sides of ...
leadd1i 10583 Addition to both sides of ...
leadd2i 10584 Addition to both sides of ...
ltsubaddi 10585 'Less than' relationship b...
lesubaddi 10586 'Less than or equal to' re...
ltsubadd2i 10587 'Less than' relationship b...
lesubadd2i 10588 'Less than or equal to' re...
ltaddsubi 10589 'Less than' relationship b...
lt2addi 10590 Adding both side of two in...
le2addi 10591 Adding both side of two in...
gt0ne0d 10592 Positive implies nonzero. ...
lt0ne0d 10593 Something less than zero i...
leidd 10594 'Less than or equal to' is...
msqgt0d 10595 A nonzero square is positi...
msqge0d 10596 A square is nonnegative. ...
lt0neg1d 10597 Comparison of a number and...
lt0neg2d 10598 Comparison of a number and...
le0neg1d 10599 Comparison of a number and...
le0neg2d 10600 Comparison of a number and...
addgegt0d 10601 Addition of nonnegative an...
addgt0d 10602 Addition of 2 positive num...
addge0d 10603 Addition of 2 nonnegative ...
mulge0d 10604 The product of two nonnega...
ltnegd 10605 Negative of both sides of ...
lenegd 10606 Negative of both sides of ...
ltnegcon1d 10607 Contraposition of negative...
ltnegcon2d 10608 Contraposition of negative...
lenegcon1d 10609 Contraposition of negative...
lenegcon2d 10610 Contraposition of negative...
ltaddposd 10611 Adding a positive number t...
ltaddpos2d 10612 Adding a positive number t...
ltsubposd 10613 Subtracting a positive num...
posdifd 10614 Comparison of two numbers ...
addge01d 10615 A number is less than or e...
addge02d 10616 A number is less than or e...
subge0d 10617 Nonnegative subtraction. ...
suble0d 10618 Nonpositive subtraction. ...
subge02d 10619 Nonnegative subtraction. ...
ltadd1d 10620 Addition to both sides of ...
leadd1d 10621 Addition to both sides of ...
leadd2d 10622 Addition to both sides of ...
ltsubaddd 10623 'Less than' relationship b...
lesubaddd 10624 'Less than or equal to' re...
ltsubadd2d 10625 'Less than' relationship b...
lesubadd2d 10626 'Less than or equal to' re...
ltaddsubd 10627 'Less than' relationship b...
ltaddsub2d 10628 'Less than' relationship b...
leaddsub2d 10629 'Less than or equal to' re...
subled 10630 Swap subtrahends in an ine...
lesubd 10631 Swap subtrahends in an ine...
ltsub23d 10632 'Less than' relationship b...
ltsub13d 10633 'Less than' relationship b...
lesub1d 10634 Subtraction from both side...
lesub2d 10635 Subtraction of both sides ...
ltsub1d 10636 Subtraction from both side...
ltsub2d 10637 Subtraction of both sides ...
ltadd1dd 10638 Addition to both sides of ...
ltsub1dd 10639 Subtraction from both side...
ltsub2dd 10640 Subtraction of both sides ...
leadd1dd 10641 Addition to both sides of ...
leadd2dd 10642 Addition to both sides of ...
lesub1dd 10643 Subtraction from both side...
lesub2dd 10644 Subtraction of both sides ...
lesub3d 10645 The result of subtracting ...
le2addd 10646 Adding both side of two in...
le2subd 10647 Subtracting both sides of ...
ltleaddd 10648 Adding both sides of two o...
leltaddd 10649 Adding both sides of two o...
lt2addd 10650 Adding both side of two in...
lt2subd 10651 Subtracting both sides of ...
possumd 10652 Condition for a positive s...
sublt0d 10653 When a subtraction gives a...
ltaddsublt 10654 Addition and subtraction o...
1le1 10655 ` 1 <_ 1 ` . Common speci...
ixi 10656 ` _i ` times itself is min...
recextlem1 10657 Lemma for ~ recex . (Cont...
recextlem2 10658 Lemma for ~ recex . (Cont...
recex 10659 Existence of reciprocal of...
mulcand 10660 Cancellation law for multi...
mulcan2d 10661 Cancellation law for multi...
mulcanad 10662 Cancellation of a nonzero ...
mulcan2ad 10663 Cancellation of a nonzero ...
mulcan 10664 Cancellation law for multi...
mulcan2 10665 Cancellation law for multi...
mulcani 10666 Cancellation law for multi...
mul0or 10667 If a product is zero, one ...
mulne0b 10668 The product of two nonzero...
mulne0 10669 The product of two nonzero...
mulne0i 10670 The product of two nonzero...
muleqadd 10671 Property of numbers whose ...
receu 10672 Existential uniqueness of ...
mulnzcnopr 10673 Multiplication maps nonzer...
msq0i 10674 A number is zero iff its s...
mul0ori 10675 If a product is zero, one ...
msq0d 10676 A number is zero iff its s...
mul0ord 10677 If a product is zero, one ...
mulne0bd 10678 The product of two nonzero...
mulne0d 10679 The product of two nonzero...
mulcan1g 10680 A generalized form of the ...
mulcan2g 10681 A generalized form of the ...
mulne0bad 10682 A factor of a nonzero comp...
mulne0bbd 10683 A factor of a nonzero comp...
1div0 10686 You can't divide by zero, ...
divval 10687 Value of division: if ` A ...
divmul 10688 Relationship between divis...
divmul2 10689 Relationship between divis...
divmul3 10690 Relationship between divis...
divcl 10691 Closure law for division. ...
reccl 10692 Closure law for reciprocal...
divcan2 10693 A cancellation law for div...
divcan1 10694 A cancellation law for div...
diveq0 10695 A ratio is zero iff the nu...
divne0b 10696 The ratio of nonzero numbe...
divne0 10697 The ratio of nonzero numbe...
recne0 10698 The reciprocal of a nonzer...
recid 10699 Multiplication of a number...
recid2 10700 Multiplication of a number...
divrec 10701 Relationship between divis...
divrec2 10702 Relationship between divis...
divass 10703 An associative law for div...
div23 10704 A commutative/associative ...
div32 10705 A commutative/associative ...
div13 10706 A commutative/associative ...
div12 10707 A commutative/associative ...
divmulass 10708 An associative law for div...
divmulasscom 10709 An associative/commutative...
divdir 10710 Distribution of division o...
divcan3 10711 A cancellation law for div...
divcan4 10712 A cancellation law for div...
div11 10713 One-to-one relationship fo...
divid 10714 A number divided by itself...
div0 10715 Division into zero is zero...
div1 10716 A number divided by 1 is i...
1div1e1 10717 1 divided by 1 is 1 (commo...
diveq1 10718 Equality in terms of unit ...
divneg 10719 Move negative sign inside ...
muldivdir 10720 Distribution of division o...
divsubdir 10721 Distribution of division o...
recrec 10722 A number is equal to the r...
rec11 10723 Reciprocal is one-to-one. ...
rec11r 10724 Mutual reciprocals. (Cont...
divmuldiv 10725 Multiplication of two rati...
divdivdiv 10726 Division of two ratios. T...
divcan5 10727 Cancellation of common fac...
divmul13 10728 Swap the denominators in t...
divmul24 10729 Swap the numerators in the...
divmuleq 10730 Cross-multiply in an equal...
recdiv 10731 The reciprocal of a ratio....
divcan6 10732 Cancellation of inverted f...
divdiv32 10733 Swap denominators in a div...
divcan7 10734 Cancel equal divisors in a...
dmdcan 10735 Cancellation law for divis...
divdiv1 10736 Division into a fraction. ...
divdiv2 10737 Division by a fraction. (...
recdiv2 10738 Division into a reciprocal...
ddcan 10739 Cancellation in a double d...
divadddiv 10740 Addition of two ratios. T...
divsubdiv 10741 Subtraction of two ratios....
conjmul 10742 Two numbers whose reciproc...
rereccl 10743 Closure law for reciprocal...
redivcl 10744 Closure law for division o...
eqneg 10745 A number equal to its nega...
eqnegd 10746 A complex number equals it...
eqnegad 10747 If a complex number equals...
div2neg 10748 Quotient of two negatives....
divneg2 10749 Move negative sign inside ...
recclzi 10750 Closure law for reciprocal...
recne0zi 10751 The reciprocal of a nonzer...
recidzi 10752 Multiplication of a number...
div1i 10753 A number divided by 1 is i...
eqnegi 10754 A number equal to its nega...
reccli 10755 Closure law for reciprocal...
recidi 10756 Multiplication of a number...
recreci 10757 A number is equal to the r...
dividi 10758 A number divided by itself...
div0i 10759 Division into zero is zero...
divclzi 10760 Closure law for division. ...
divcan1zi 10761 A cancellation law for div...
divcan2zi 10762 A cancellation law for div...
divreczi 10763 Relationship between divis...
divcan3zi 10764 A cancellation law for div...
divcan4zi 10765 A cancellation law for div...
rec11i 10766 Reciprocal is one-to-one. ...
divcli 10767 Closure law for division. ...
divcan2i 10768 A cancellation law for div...
divcan1i 10769 A cancellation law for div...
divreci 10770 Relationship between divis...
divcan3i 10771 A cancellation law for div...
divcan4i 10772 A cancellation law for div...
divne0i 10773 The ratio of nonzero numbe...
rec11ii 10774 Reciprocal is one-to-one. ...
divasszi 10775 An associative law for div...
divmulzi 10776 Relationship between divis...
divdirzi 10777 Distribution of division o...
divdiv23zi 10778 Swap denominators in a div...
divmuli 10779 Relationship between divis...
divdiv32i 10780 Swap denominators in a div...
divassi 10781 An associative law for div...
divdiri 10782 Distribution of division o...
div23i 10783 A commutative/associative ...
div11i 10784 One-to-one relationship fo...
divmuldivi 10785 Multiplication of two rati...
divmul13i 10786 Swap denominators of two r...
divadddivi 10787 Addition of two ratios. T...
divdivdivi 10788 Division of two ratios. T...
rerecclzi 10789 Closure law for reciprocal...
rereccli 10790 Closure law for reciprocal...
redivclzi 10791 Closure law for division o...
redivcli 10792 Closure law for division o...
div1d 10793 A number divided by 1 is i...
reccld 10794 Closure law for reciprocal...
recne0d 10795 The reciprocal of a nonzer...
recidd 10796 Multiplication of a number...
recid2d 10797 Multiplication of a number...
recrecd 10798 A number is equal to the r...
dividd 10799 A number divided by itself...
div0d 10800 Division into zero is zero...
divcld 10801 Closure law for division. ...
divcan1d 10802 A cancellation law for div...
divcan2d 10803 A cancellation law for div...
divrecd 10804 Relationship between divis...
divrec2d 10805 Relationship between divis...
divcan3d 10806 A cancellation law for div...
divcan4d 10807 A cancellation law for div...
diveq0d 10808 A ratio is zero iff the nu...
diveq1d 10809 Equality in terms of unit ...
diveq1ad 10810 The quotient of two comple...
diveq0ad 10811 A fraction of complex numb...
divne1d 10812 If two complex numbers are...
divne0bd 10813 A ratio is zero iff the nu...
divnegd 10814 Move negative sign inside ...
divneg2d 10815 Move negative sign inside ...
div2negd 10816 Quotient of two negatives....
divne0d 10817 The ratio of nonzero numbe...
recdivd 10818 The reciprocal of a ratio....
recdiv2d 10819 Division into a reciprocal...
divcan6d 10820 Cancellation of inverted f...
ddcand 10821 Cancellation in a double d...
rec11d 10822 Reciprocal is one-to-one. ...
divmuld 10823 Relationship between divis...
div32d 10824 A commutative/associative ...
div13d 10825 A commutative/associative ...
divdiv32d 10826 Swap denominators in a div...
divcan5d 10827 Cancellation of common fac...
divcan5rd 10828 Cancellation of common fac...
divcan7d 10829 Cancel equal divisors in a...
dmdcand 10830 Cancellation law for divis...
dmdcan2d 10831 Cancellation law for divis...
divdiv1d 10832 Division into a fraction. ...
divdiv2d 10833 Division by a fraction. (...
divmul2d 10834 Relationship between divis...
divmul3d 10835 Relationship between divis...
divassd 10836 An associative law for div...
div12d 10837 A commutative/associative ...
div23d 10838 A commutative/associative ...
divdird 10839 Distribution of division o...
divsubdird 10840 Distribution of division o...
div11d 10841 One-to-one relationship fo...
divmuldivd 10842 Multiplication of two rati...
divmul13d 10843 Swap denominators of two r...
divmul24d 10844 Swap the numerators in the...
divadddivd 10845 Addition of two ratios. T...
divsubdivd 10846 Subtraction of two ratios....
divmuleqd 10847 Cross-multiply in an equal...
divdivdivd 10848 Division of two ratios. T...
diveq1bd 10849 If two complex numbers are...
div2sub 10850 Swap the order of subtract...
div2subd 10851 Swap subtrahend and minuen...
rereccld 10852 Closure law for reciprocal...
redivcld 10853 Closure law for division o...
subrec 10854 Subtraction of reciprocals...
subreci 10855 Subtraction of reciprocals...
subrecd 10856 Subtraction of reciprocals...
mvllmuld 10857 Move LHS left multiplicati...
mvllmuli 10858 Move LHS left multiplicati...
elimgt0 10859 Hypothesis for weak deduct...
elimge0 10860 Hypothesis for weak deduct...
ltp1 10861 A number is less than itse...
lep1 10862 A number is less than or e...
ltm1 10863 A number minus 1 is less t...
lem1 10864 A number minus 1 is less t...
letrp1 10865 A transitive property of '...
p1le 10866 A transitive property of p...
recgt0 10867 The reciprocal of a positi...
prodgt0 10868 Infer that a multiplicand ...
prodgt02 10869 Infer that a multiplier is...
prodge0 10870 Infer that a multiplicand ...
prodge02 10871 Infer that a multiplier is...
ltmul1a 10872 Lemma for ~ ltmul1 . Mult...
ltmul1 10873 Multiplication of both sid...
ltmul2 10874 Multiplication of both sid...
lemul1 10875 Multiplication of both sid...
lemul2 10876 Multiplication of both sid...
lemul1a 10877 Multiplication of both sid...
lemul2a 10878 Multiplication of both sid...
ltmul12a 10879 Comparison of product of t...
lemul12b 10880 Comparison of product of t...
lemul12a 10881 Comparison of product of t...
mulgt1 10882 The product of two numbers...
ltmulgt11 10883 Multiplication by a number...
ltmulgt12 10884 Multiplication by a number...
lemulge11 10885 Multiplication by a number...
lemulge12 10886 Multiplication by a number...
ltdiv1 10887 Division of both sides of ...
lediv1 10888 Division of both sides of ...
gt0div 10889 Division of a positive num...
ge0div 10890 Division of a nonnegative ...
divgt0 10891 The ratio of two positive ...
divge0 10892 The ratio of nonnegative a...
mulge0b 10893 A condition for multiplica...
mulle0b 10894 A condition for multiplica...
mulsuble0b 10895 A condition for multiplica...
ltmuldiv 10896 'Less than' relationship b...
ltmuldiv2 10897 'Less than' relationship b...
ltdivmul 10898 'Less than' relationship b...
ledivmul 10899 'Less than or equal to' re...
ltdivmul2 10900 'Less than' relationship b...
lt2mul2div 10901 'Less than' relationship b...
ledivmul2 10902 'Less than or equal to' re...
lemuldiv 10903 'Less than or equal' relat...
lemuldiv2 10904 'Less than or equal' relat...
ltrec 10905 The reciprocal of both sid...
lerec 10906 The reciprocal of both sid...
lt2msq1 10907 Lemma for ~ lt2msq . (Con...
lt2msq 10908 Two nonnegative numbers co...
ltdiv2 10909 Division of a positive num...
ltrec1 10910 Reciprocal swap in a 'less...
lerec2 10911 Reciprocal swap in a 'less...
ledivdiv 10912 Invert ratios of positive ...
lediv2 10913 Division of a positive num...
ltdiv23 10914 Swap denominator with othe...
lediv23 10915 Swap denominator with othe...
lediv12a 10916 Comparison of ratio of two...
lediv2a 10917 Division of both sides of ...
reclt1 10918 The reciprocal of a positi...
recgt1 10919 The reciprocal of a positi...
recgt1i 10920 The reciprocal of a number...
recp1lt1 10921 Construct a number less th...
recreclt 10922 Given a positive number ` ...
le2msq 10923 The square function on non...
msq11 10924 The square of a nonnegativ...
ledivp1 10925 Less-than-or-equal-to and ...
squeeze0 10926 If a nonnegative number is...
ltp1i 10927 A number is less than itse...
recgt0i 10928 The reciprocal of a positi...
recgt0ii 10929 The reciprocal of a positi...
prodgt0i 10930 Infer that a multiplicand ...
prodge0i 10931 Infer that a multiplicand ...
divgt0i 10932 The ratio of two positive ...
divge0i 10933 The ratio of nonnegative a...
ltreci 10934 The reciprocal of both sid...
lereci 10935 The reciprocal of both sid...
lt2msqi 10936 The square function on non...
le2msqi 10937 The square function on non...
msq11i 10938 The square of a nonnegativ...
divgt0i2i 10939 The ratio of two positive ...
ltrecii 10940 The reciprocal of both sid...
divgt0ii 10941 The ratio of two positive ...
ltmul1i 10942 Multiplication of both sid...
ltdiv1i 10943 Division of both sides of ...
ltmuldivi 10944 'Less than' relationship b...
ltmul2i 10945 Multiplication of both sid...
lemul1i 10946 Multiplication of both sid...
lemul2i 10947 Multiplication of both sid...
ltdiv23i 10948 Swap denominator with othe...
ledivp1i 10949 Less-than-or-equal-to and ...
ltdivp1i 10950 Less-than and division rel...
ltdiv23ii 10951 Swap denominator with othe...
ltmul1ii 10952 Multiplication of both sid...
ltdiv1ii 10953 Division of both sides of ...
ltp1d 10954 A number is less than itse...
lep1d 10955 A number is less than or e...
ltm1d 10956 A number minus 1 is less t...
lem1d 10957 A number minus 1 is less t...
recgt0d 10958 The reciprocal of a positi...
divgt0d 10959 The ratio of two positive ...
mulgt1d 10960 The product of two numbers...
lemulge11d 10961 Multiplication by a number...
lemulge12d 10962 Multiplication by a number...
lemul1ad 10963 Multiplication of both sid...
lemul2ad 10964 Multiplication of both sid...
ltmul12ad 10965 Comparison of product of t...
lemul12ad 10966 Comparison of product of t...
lemul12bd 10967 Comparison of product of t...
fimaxre 10968 A finite set of real numbe...
fimaxre2 10969 A nonempty finite set of r...
fimaxre3 10970 A nonempty finite set of r...
negfi 10971 The negation of a finite s...
fiminre 10972 A nonempty finite set of r...
lbreu 10973 If a set of reals contains...
lbcl 10974 If a set of reals contains...
lble 10975 If a set of reals contains...
lbinf 10976 If a set of reals contains...
lbinfcl 10977 If a set of reals contains...
lbinfle 10978 If a set of reals contains...
sup2 10979 A nonempty, bounded-above ...
sup3 10980 A version of the completen...
infm3lem 10981 Lemma for ~ infm3 . (Cont...
infm3 10982 The completeness axiom for...
suprcl 10983 Closure of supremum of a n...
suprub 10984 A member of a nonempty bou...
suprubd 10985 Natural deduction form of ...
suprcld 10986 Natural deduction form of ...
suprlub 10987 The supremum of a nonempty...
suprnub 10988 An upper bound is not less...
suprleub 10989 The supremum of a nonempty...
supaddc 10990 The supremum function dist...
supadd 10991 The supremum function dist...
supmul1 10992 The supremum function dist...
supmullem1 10993 Lemma for ~ supmul . (Con...
supmullem2 10994 Lemma for ~ supmul . (Con...
supmul 10995 The supremum function dist...
sup3ii 10996 A version of the completen...
suprclii 10997 Closure of supremum of a n...
suprubii 10998 A member of a nonempty bou...
suprlubii 10999 The supremum of a nonempty...
suprnubii 11000 An upper bound is not less...
suprleubii 11001 The supremum of a nonempty...
riotaneg 11002 The negative of the unique...
negiso 11003 Negation is an order anti-...
dfinfre 11004 The infimum of a set of re...
infrecl 11005 Closure of infimum of a no...
infrenegsup 11006 The infimum of a set of re...
infregelb 11007 Any lower bound of a nonem...
infrelb 11008 If a nonempty set of real ...
supfirege 11009 The supremum of a finite s...
inelr 11010 The imaginary unit ` _i ` ...
rimul 11011 A real number times the im...
cru 11012 The representation of comp...
crne0 11013 The real representation of...
creur 11014 The real part of a complex...
creui 11015 The imaginary part of a co...
cju 11016 The complex conjugate of a...
ofsubeq0 11017 Function analogue of ~ sub...
ofnegsub 11018 Function analogue of ~ neg...
ofsubge0 11019 Function analogue of ~ sub...
nnexALT 11022 Alternate proof of ~ nnex ...
peano5nni 11023 Peano's inductive postulat...
nnssre 11024 The positive integers are ...
nnsscn 11025 The positive integers are ...
nnex 11026 The set of positive intege...
nnre 11027 A positive integer is a re...
nncn 11028 A positive integer is a co...
nnrei 11029 A positive integer is a re...
nncni 11030 A positive integer is a co...
1nn 11031 Peano postulate: 1 is a po...
peano2nn 11032 Peano postulate: a success...
dfnn2 11033 Alternate definition of th...
dfnn3 11034 Alternate definition of th...
nnred 11035 A positive integer is a re...
nncnd 11036 A positive integer is a co...
peano2nnd 11037 Peano postulate: a success...
nnind 11038 Principle of Mathematical ...
nnindALT 11039 Principle of Mathematical ...
nn1m1nn 11040 Every positive integer is ...
nn1suc 11041 If a statement holds for 1...
nnaddcl 11042 Closure of addition of pos...
nnmulcl 11043 Closure of multiplication ...
nnmulcli 11044 Closure of multiplication ...
nn2ge 11045 There exists a positive in...
nnge1 11046 A positive integer is one ...
nngt1ne1 11047 A positive integer is grea...
nnle1eq1 11048 A positive integer is less...
nngt0 11049 A positive integer is posi...
nnnlt1 11050 A positive integer is not ...
nnnle0 11051 A positive integer is not ...
0nnn 11052 Zero is not a positive int...
nnne0 11053 A positive integer is nonz...
nngt0i 11054 A positive integer is posi...
nnne0i 11055 A positive integer is nonz...
nndivre 11056 The quotient of a real and...
nnrecre 11057 The reciprocal of a positi...
nnrecgt0 11058 The reciprocal of a positi...
nnsub 11059 Subtraction of positive in...
nnsubi 11060 Subtraction of positive in...
nndiv 11061 Two ways to express " ` A ...
nndivtr 11062 Transitive property of div...
nnge1d 11063 A positive integer is one ...
nngt0d 11064 A positive integer is posi...
nnne0d 11065 A positive integer is nonz...
nnrecred 11066 The reciprocal of a positi...
nnaddcld 11067 Closure of addition of pos...
nnmulcld 11068 Closure of multiplication ...
nndivred 11069 A positive integer is one ...
0ne1 11088 ` 0 =/= 1 ` (common case);...
1m1e0 11089 ` ( 1 - 1 ) = 0 ` (common ...
2re 11090 The number 2 is real. (Co...
2cn 11091 The number 2 is a complex ...
2ex 11092 2 is a set (common case). ...
2cnd 11093 2 is a complex number, ded...
3re 11094 The number 3 is real. (Co...
3cn 11095 The number 3 is a complex ...
3ex 11096 3 is a set (common case). ...
4re 11097 The number 4 is real. (Co...
4cn 11098 The number 4 is a complex ...
5re 11099 The number 5 is real. (Co...
5cn 11100 The number 5 is complex. ...
6re 11101 The number 6 is real. (Co...
6cn 11102 The number 6 is complex. ...
7re 11103 The number 7 is real. (Co...
7cn 11104 The number 7 is complex. ...
8re 11105 The number 8 is real. (Co...
8cn 11106 The number 8 is complex. ...
9re 11107 The number 9 is real. (Co...
9cn 11108 The number 9 is complex. ...
10reOLD 11109 Obsolete version of ~ 10re...
0le0 11110 Zero is nonnegative. (Con...
0le2 11111 0 is less than or equal to...
2pos 11112 The number 2 is positive. ...
2ne0 11113 The number 2 is nonzero. ...
3pos 11114 The number 3 is positive. ...
3ne0 11115 The number 3 is nonzero. ...
4pos 11116 The number 4 is positive. ...
4ne0 11117 The number 4 is nonzero. ...
5pos 11118 The number 5 is positive. ...
6pos 11119 The number 6 is positive. ...
7pos 11120 The number 7 is positive. ...
8pos 11121 The number 8 is positive. ...
9pos 11122 The number 9 is positive. ...
10posOLD 11123 The number 10 is positive....
neg1cn 11124 -1 is a complex number (co...
neg1rr 11125 -1 is a real number (commo...
neg1ne0 11126 -1 is nonzero (common case...
neg1lt0 11127 -1 is less than 0 (common ...
negneg1e1 11128 ` -u -u 1 ` is 1 (common c...
1pneg1e0 11129 ` 1 + -u 1 ` is 0 (common ...
0m0e0 11130 0 minus 0 equals 0 (common...
1m0e1 11131 1 - 0 = 1 (common case). ...
0p1e1 11132 0 + 1 = 1. (Contributed b...
1p0e1 11133 1 + 0 = 1. (Contributed b...
1p1e2 11134 1 + 1 = 2. (Contributed b...
2m1e1 11135 2 - 1 = 1. The result is ...
1e2m1 11136 1 = 2 - 1 (common case). ...
3m1e2 11137 3 - 1 = 2. (Contributed b...
4m1e3 11138 4 - 1 = 3. (Contributed b...
5m1e4 11139 5 - 1 = 4. (Contributed b...
6m1e5 11140 6 - 1 = 5. (Contributed b...
7m1e6 11141 7 - 1 = 6. (Contributed b...
8m1e7 11142 8 - 1 = 7. (Contributed b...
9m1e8 11143 9 - 1 = 8. (Contributed b...
2p2e4 11144 Two plus two equals four. ...
2times 11145 Two times a number. (Cont...
times2 11146 A number times 2. (Contri...
2timesi 11147 Two times a number. (Cont...
times2i 11148 A number times 2. (Contri...
2txmxeqx 11149 Two times a complex number...
2div2e1 11150 2 divided by 2 is 1 (commo...
2p1e3 11151 2 + 1 = 3. (Contributed b...
1p2e3 11152 1 + 2 = 3 (common case). ...
3p1e4 11153 3 + 1 = 4. (Contributed b...
4p1e5 11154 4 + 1 = 5. (Contributed b...
5p1e6 11155 5 + 1 = 6. (Contributed b...
6p1e7 11156 6 + 1 = 7. (Contributed b...
7p1e8 11157 7 + 1 = 8. (Contributed b...
8p1e9 11158 8 + 1 = 9. (Contributed b...
9p1e10OLD 11159 9 + 1 = 10. (Contributed ...
3p2e5 11160 3 + 2 = 5. (Contributed b...
3p3e6 11161 3 + 3 = 6. (Contributed b...
4p2e6 11162 4 + 2 = 6. (Contributed b...
4p3e7 11163 4 + 3 = 7. (Contributed b...
4p4e8 11164 4 + 4 = 8. (Contributed b...
5p2e7 11165 5 + 2 = 7. (Contributed b...
5p3e8 11166 5 + 3 = 8. (Contributed b...
5p4e9 11167 5 + 4 = 9. (Contributed b...
5p5e10OLD 11168 5 + 5 = 10. (Contributed ...
6p2e8 11169 6 + 2 = 8. (Contributed b...
6p3e9 11170 6 + 3 = 9. (Contributed b...
6p4e10OLD 11171 6 + 4 = 10. (Contributed ...
7p2e9 11172 7 + 2 = 9. (Contributed b...
7p3e10OLD 11173 7 + 3 = 10. (Contributed ...
8p2e10OLD 11174 8 + 2 = 10. (Contributed ...
1t1e1 11175 1 times 1 equals 1. (Cont...
2t1e2 11176 2 times 1 equals 2. (Cont...
2t2e4 11177 2 times 2 equals 4. (Cont...
3t1e3 11178 3 times 1 equals 3. (Cont...
3t2e6 11179 3 times 2 equals 6. (Cont...
3t3e9 11180 3 times 3 equals 9. (Cont...
4t2e8 11181 4 times 2 equals 8. (Cont...
5t2e10OLD 11182 5 times 2 equals 10. (Con...
2t0e0 11183 2 times 0 equals 0. (Cont...
4d2e2 11184 One half of four is two. ...
2nn 11185 2 is a positive integer. ...
3nn 11186 3 is a positive integer. ...
4nn 11187 4 is a positive integer. ...
5nn 11188 5 is a positive integer. ...
6nn 11189 6 is a positive integer. ...
7nn 11190 7 is a positive integer. ...
8nn 11191 8 is a positive integer. ...
9nn 11192 9 is a positive integer. ...
10nnOLD 11193 Obsolete version of ~ 10nn...
1lt2 11194 1 is less than 2. (Contri...
2lt3 11195 2 is less than 3. (Contri...
1lt3 11196 1 is less than 3. (Contri...
3lt4 11197 3 is less than 4. (Contri...
2lt4 11198 2 is less than 4. (Contri...
1lt4 11199 1 is less than 4. (Contri...
4lt5 11200 4 is less than 5. (Contri...
3lt5 11201 3 is less than 5. (Contri...
2lt5 11202 2 is less than 5. (Contri...
1lt5 11203 1 is less than 5. (Contri...
5lt6 11204 5 is less than 6. (Contri...
4lt6 11205 4 is less than 6. (Contri...
3lt6 11206 3 is less than 6. (Contri...
2lt6 11207 2 is less than 6. (Contri...
1lt6 11208 1 is less than 6. (Contri...
6lt7 11209 6 is less than 7. (Contri...
5lt7 11210 5 is less than 7. (Contri...
4lt7 11211 4 is less than 7. (Contri...
3lt7 11212 3 is less than 7. (Contri...
2lt7 11213 2 is less than 7. (Contri...
1lt7 11214 1 is less than 7. (Contri...
7lt8 11215 7 is less than 8. (Contri...
6lt8 11216 6 is less than 8. (Contri...
5lt8 11217 5 is less than 8. (Contri...
4lt8 11218 4 is less than 8. (Contri...
3lt8 11219 3 is less than 8. (Contri...
2lt8 11220 2 is less than 8. (Contri...
1lt8 11221 1 is less than 8. (Contri...
8lt9 11222 8 is less than 9. (Contri...
7lt9 11223 7 is less than 9. (Contri...
6lt9 11224 6 is less than 9. (Contri...
5lt9 11225 5 is less than 9. (Contri...
4lt9 11226 4 is less than 9. (Contri...
3lt9 11227 3 is less than 9. (Contri...
2lt9 11228 2 is less than 9. (Contri...
1lt9 11229 1 is less than 9. (Contri...
9lt10OLD 11230 9 is less than 10. (Contr...
8lt10OLD 11231 8 is less than 10. (Contr...
7lt10OLD 11232 7 is less than 10. (Contr...
6lt10OLD 11233 6 is less than 10. (Contr...
5lt10OLD 11234 5 is less than 10. (Contr...
4lt10OLD 11235 4 is less than 10. (Contr...
3lt10OLD 11236 3 is less than 10. (Contr...
2lt10OLD 11237 2 is less than 10. (Contr...
1lt10OLD 11238 1 is less than 10. (Contr...
0ne2 11239 0 is not equal to 2. (Con...
1ne2 11240 1 is not equal to 2. (Con...
1le2 11241 1 is less than or equal to...
2cnne0 11242 2 is a nonzero complex num...
2rene0 11243 2 is a nonzero real number...
1le3 11244 1 is less than or equal to...
neg1mulneg1e1 11245 ` -u 1 x. -u 1 ` is 1 (com...
halfre 11246 One-half is real. (Contri...
halfcn 11247 One-half is complex. (Con...
halfgt0 11248 One-half is greater than z...
halfge0 11249 One-half is not negative. ...
halflt1 11250 One-half is less than one....
1mhlfehlf 11251 Prove that 1 - 1/2 = 1/2. ...
8th4div3 11252 An eighth of four thirds i...
halfpm6th 11253 One half plus or minus one...
it0e0 11254 i times 0 equals 0 (common...
2mulicn 11255 ` ( 2 x. _i ) e. CC ` (com...
2muline0 11256 ` ( 2 x. _i ) =/= 0 ` (com...
halfcl 11257 Closure of half of a numbe...
rehalfcl 11258 Real closure of half. (Co...
half0 11259 Half of a number is zero i...
2halves 11260 Two halves make a whole. ...
halfpos2 11261 A number is positive iff i...
halfpos 11262 A positive number is great...
halfnneg2 11263 A number is nonnegative if...
halfaddsubcl 11264 Closure of half-sum and ha...
halfaddsub 11265 Sum and difference of half...
subhalfhalf 11266 Subtracting the half of a ...
lt2halves 11267 A sum is less than the who...
addltmul 11268 Sum is less than product f...
nominpos 11269 There is no smallest posit...
avglt1 11270 Ordering property for aver...
avglt2 11271 Ordering property for aver...
avgle1 11272 Ordering property for aver...
avgle2 11273 Ordering property for aver...
avgle 11274 The average of two numbers...
2timesd 11275 Two times a number. (Cont...
times2d 11276 A number times 2. (Contri...
halfcld 11277 Closure of half of a numbe...
2halvesd 11278 Two halves make a whole. ...
rehalfcld 11279 Real closure of half. (Co...
lt2halvesd 11280 A sum is less than the who...
rehalfcli 11281 Half a real number is real...
lt2addmuld 11282 If two real numbers are le...
add1p1 11283 Adding two times 1 to a nu...
sub1m1 11284 Subtracting two times 1 fr...
cnm2m1cnm3 11285 Subtracting 2 and afterwar...
xp1d2m1eqxm1d2 11286 A complex number increased...
div4p1lem1div2 11287 An integer greater than 5,...
nnunb 11288 The set of positive intege...
arch 11289 Archimedean property of re...
nnrecl 11290 There exists a positive in...
bndndx 11291 A bounded real sequence ` ...
elnn0 11294 Nonnegative integers expre...
nnssnn0 11295 Positive naturals are a su...
nn0ssre 11296 Nonnegative integers are a...
nn0sscn 11297 Nonnegative integers are a...
nn0ex 11298 The set of nonnegative int...
nnnn0 11299 A positive integer is a no...
nnnn0i 11300 A positive integer is a no...
nn0re 11301 A nonnegative integer is a...
nn0cn 11302 A nonnegative integer is a...
nn0rei 11303 A nonnegative integer is a...
nn0cni 11304 A nonnegative integer is a...
dfn2 11305 The set of positive intege...
elnnne0 11306 The positive integer prope...
0nn0 11307 0 is a nonnegative integer...
1nn0 11308 1 is a nonnegative integer...
2nn0 11309 2 is a nonnegative integer...
3nn0 11310 3 is a nonnegative integer...
4nn0 11311 4 is a nonnegative integer...
5nn0 11312 5 is a nonnegative integer...
6nn0 11313 6 is a nonnegative integer...
7nn0 11314 7 is a nonnegative integer...
8nn0 11315 8 is a nonnegative integer...
9nn0 11316 9 is a nonnegative integer...
10nn0OLD 11317 Obsolete version of ~ 10nn...
nn0ge0 11318 A nonnegative integer is g...
nn0nlt0 11319 A nonnegative integer is n...
nn0ge0i 11320 Nonnegative integers are n...
nn0le0eq0 11321 A nonnegative integer is l...
nn0p1gt0 11322 A nonnegative integer incr...
nnnn0addcl 11323 A positive integer plus a ...
nn0nnaddcl 11324 A nonnegative integer plus...
0mnnnnn0 11325 The result of subtracting ...
un0addcl 11326 If ` S ` is closed under a...
un0mulcl 11327 If ` S ` is closed under m...
nn0addcl 11328 Closure of addition of non...
nn0mulcl 11329 Closure of multiplication ...
nn0addcli 11330 Closure of addition of non...
nn0mulcli 11331 Closure of multiplication ...
nn0p1nn 11332 A nonnegative integer plus...
peano2nn0 11333 Second Peano postulate for...
nnm1nn0 11334 A positive integer minus 1...
elnn0nn 11335 The nonnegative integer pr...
elnnnn0 11336 The positive integer prope...
elnnnn0b 11337 The positive integer prope...
elnnnn0c 11338 The positive integer prope...
nn0addge1 11339 A number is less than or e...
nn0addge2 11340 A number is less than or e...
nn0addge1i 11341 A number is less than or e...
nn0addge2i 11342 A number is less than or e...
nn0sub 11343 Subtraction of nonnegative...
ltsubnn0 11344 Subtracting a nonnegative ...
nn0negleid 11345 A nonnegative integer is g...
difgtsumgt 11346 If the difference of a rea...
nn0le2xi 11347 A nonnegative integer is l...
nn0lele2xi 11348 'Less than or equal to' im...
frnnn0supp 11349 Two ways to write the supp...
frnnn0fsupp 11350 A function on ` NN0 ` is f...
nnnn0d 11351 A positive integer is a no...
nn0red 11352 A nonnegative integer is a...
nn0cnd 11353 A nonnegative integer is a...
nn0ge0d 11354 A nonnegative integer is g...
nn0addcld 11355 Closure of addition of non...
nn0mulcld 11356 Closure of multiplication ...
nn0readdcl 11357 Closure law for addition o...
nn0n0n1ge2 11358 A nonnegative integer whic...
nn0n0n1ge2b 11359 A nonnegative integer is n...
nn0ge2m1nn 11360 If a nonnegative integer i...
nn0ge2m1nn0 11361 If a nonnegative integer i...
nn0nndivcl 11362 Closure law for dividing o...
elxnn0 11365 An extended nonnegative in...
nn0ssxnn0 11366 The standard nonnegative i...
nn0xnn0 11367 A standard nonnegative int...
xnn0xr 11368 An extended nonnegative in...
0xnn0 11369 Zero is an extended nonneg...
pnf0xnn0 11370 Positive infinity is an ex...
nn0nepnf 11371 No standard nonnegative in...
nn0xnn0d 11372 A standard nonnegative int...
nn0nepnfd 11373 No standard nonnegative in...
xnn0nemnf 11374 No extended nonnegative in...
xnn0xrnemnf 11375 The extended nonnegative i...
xnn0nnn0pnf 11376 An extended nonnegative in...
elz 11379 Membership in the set of i...
nnnegz 11380 The negative of a positive...
zre 11381 An integer is a real. (Co...
zcn 11382 An integer is a complex nu...
zrei 11383 An integer is a real numbe...
zssre 11384 The integers are a subset ...
zsscn 11385 The integers are a subset ...
zex 11386 The set of integers exists...
elnnz 11387 Positive integer property ...
0z 11388 Zero is an integer. (Cont...
0zd 11389 Zero is an integer, deduct...
elnn0z 11390 Nonnegative integer proper...
elznn0nn 11391 Integer property expressed...
elznn0 11392 Integer property expressed...
elznn 11393 Integer property expressed...
elz2 11394 Membership in the set of i...
dfz2 11395 Alternative definition of ...
zexALT 11396 Alternate proof of ~ zex ....
nnssz 11397 Positive integers are a su...
nn0ssz 11398 Nonnegative integers are a...
nnz 11399 A positive integer is an i...
nn0z 11400 A nonnegative integer is a...
nnzi 11401 A positive integer is an i...
nn0zi 11402 A nonnegative integer is a...
elnnz1 11403 Positive integer property ...
znnnlt1 11404 An integer is not a positi...
nnzrab 11405 Positive integers expresse...
nn0zrab 11406 Nonnegative integers expre...
1z 11407 One is an integer. (Contr...
1zzd 11408 1 is an integer, deductive...
2z 11409 2 is an integer. (Contrib...
3z 11410 3 is an integer. (Contrib...
4z 11411 4 is an integer. (Contrib...
znegcl 11412 Closure law for negative i...
neg1z 11413 -1 is an integer (common c...
znegclb 11414 A complex number is an int...
nn0negz 11415 The negative of a nonnegat...
nn0negzi 11416 The negative of a nonnegat...
zaddcl 11417 Closure of addition of int...
peano2z 11418 Second Peano postulate gen...
zsubcl 11419 Closure of subtraction of ...
peano2zm 11420 "Reverse" second Peano pos...
zletr 11421 Transitive law of ordering...
zrevaddcl 11422 Reverse closure law for ad...
znnsub 11423 The positive difference of...
znn0sub 11424 The nonnegative difference...
nzadd 11425 The sum of a real number n...
zmulcl 11426 Closure of multiplication ...
zltp1le 11427 Integer ordering relation....
zleltp1 11428 Integer ordering relation....
zlem1lt 11429 Integer ordering relation....
zltlem1 11430 Integer ordering relation....
zgt0ge1 11431 An integer greater than ` ...
nnleltp1 11432 Positive integer ordering ...
nnltp1le 11433 Positive integer ordering ...
nnaddm1cl 11434 Closure of addition of pos...
nn0ltp1le 11435 Nonnegative integer orderi...
nn0leltp1 11436 Nonnegative integer orderi...
nn0ltlem1 11437 Nonnegative integer orderi...
nn0sub2 11438 Subtraction of nonnegative...
nn0lt10b 11439 A nonnegative integer less...
nn0lt2 11440 A nonnegative integer less...
nn0le2is012 11441 A nonnegative integer whic...
nn0lem1lt 11442 Nonnegative integer orderi...
nnlem1lt 11443 Positive integer ordering ...
nnltlem1 11444 Positive integer ordering ...
nnm1ge0 11445 A positive integer decreas...
nn0ge0div 11446 Division of a nonnegative ...
zdiv 11447 Two ways to express " ` M ...
zdivadd 11448 Property of divisibility: ...
zdivmul 11449 Property of divisibility: ...
zextle 11450 An extensionality-like pro...
zextlt 11451 An extensionality-like pro...
recnz 11452 The reciprocal of a number...
btwnnz 11453 A number between an intege...
gtndiv 11454 A larger number does not d...
halfnz 11455 One-half is not an integer...
3halfnz 11456 Three halves is not an int...
suprzcl 11457 The supremum of a bounded-...
prime 11458 Two ways to express " ` A ...
msqznn 11459 The square of a nonzero in...
zneo 11460 No even integer equals an ...
nneo 11461 A positive integer is even...
nneoi 11462 A positive integer is even...
zeo 11463 An integer is even or odd....
zeo2 11464 An integer is even or odd ...
peano2uz2 11465 Second Peano postulate for...
peano5uzi 11466 Peano's inductive postulat...
peano5uzti 11467 Peano's inductive postulat...
dfuzi 11468 An expression for the uppe...
uzind 11469 Induction on the upper int...
uzind2 11470 Induction on the upper int...
uzind3 11471 Induction on the upper int...
nn0ind 11472 Principle of Mathematical ...
nn0indALT 11473 Principle of Mathematical ...
nn0indd 11474 Principle of Mathematical ...
fzind 11475 Induction on the integers ...
fnn0ind 11476 Induction on the integers ...
nn0ind-raph 11477 Principle of Mathematical ...
zindd 11478 Principle of Mathematical ...
btwnz 11479 Any real number can be san...
nn0zd 11480 A positive integer is an i...
nnzd 11481 A nonnegative integer is a...
zred 11482 An integer is a real numbe...
zcnd 11483 An integer is a complex nu...
znegcld 11484 Closure law for negative i...
peano2zd 11485 Deduction from second Pean...
zaddcld 11486 Closure of addition of int...
zsubcld 11487 Closure of subtraction of ...
zmulcld 11488 Closure of multiplication ...
znnn0nn 11489 The negative of a negative...
zadd2cl 11490 Increasing an integer by 2...
zriotaneg 11491 The negative of the unique...
suprfinzcl 11492 The supremum of a nonempty...
dfdecOLD 11495 Define the "decimal constr...
9p1e10 11496 9 + 1 = 10. (Contributed ...
dfdec10 11497 Version of the definition ...
decex 11498 A decimal number is a set....
decexOLD 11499 Obsolete proof of ~ decex ...
deceq1 11500 Equality theorem for the d...
deceq1OLD 11501 Obsolete proof of ~ deceq1...
deceq2 11502 Equality theorem for the d...
deceq2OLD 11503 Obsolete proof of ~ deceq1...
deceq1i 11504 Equality theorem for the d...
deceq2i 11505 Equality theorem for the d...
deceq12i 11506 Equality theorem for the d...
numnncl 11507 Closure for a numeral (wit...
num0u 11508 Add a zero in the units pl...
num0h 11509 Add a zero in the higher p...
numcl 11510 Closure for a decimal inte...
numsuc 11511 The successor of a decimal...
deccl 11512 Closure for a numeral. (C...
decclOLD 11513 Obsolete proof of ~ deccl ...
10nn 11514 10 is a positive integer. ...
10pos 11515 The number 10 is positive....
10nn0 11516 10 is a nonnegative intege...
10re 11517 The number 10 is real. (C...
decnncl 11518 Closure for a numeral. (C...
decnnclOLD 11519 Obsolete proof of ~ decnnc...
dec0u 11520 Add a zero in the units pl...
dec0uOLD 11521 Obsolete version of ~ dec0...
dec0h 11522 Add a zero in the higher p...
dec0hOLD 11523 Obsolete proof of ~ dec0h ...
numnncl2 11524 Closure for a decimal inte...
decnncl2 11525 Closure for a decimal inte...
decnncl2OLD 11526 Obsolete proof of ~ decnnc...
numlt 11527 Comparing two decimal inte...
numltc 11528 Comparing two decimal inte...
le9lt10 11529 A "decimal digit" (i.e. a ...
declt 11530 Comparing two decimal inte...
decltOLD 11531 Obsolete proof of ~ declt ...
decltc 11532 Comparing two decimal inte...
decltcOLD 11533 Obsolete version of ~ decl...
declth 11534 Comparing two decimal inte...
decsuc 11535 The successor of a decimal...
decsucOLD 11536 Obsolete proof of ~ decsuc...
3declth 11537 Comparing two decimal inte...
3decltc 11538 Comparing two decimal inte...
3decltcOLD 11539 Obsolete version of ~ 3dec...
decle 11540 Comparing two decimal inte...
decleh 11541 Comparing two decimal inte...
declei 11542 Comparing a digit to a dec...
decleOLD 11543 Obsolete version of ~ decl...
declecOLD 11544 Obsolete version of ~ decl...
numlti 11545 Comparing a digit to a dec...
declti 11546 Comparing a digit to a dec...
decltdi 11547 Comparing a digit to a dec...
decltiOLD 11548 Obsolete version of ~ decl...
numsucc 11549 The successor of a decimal...
decsucc 11550 The successor of a decimal...
decsuccOLD 11551 Obsolete version of ~ decs...
1e0p1 11552 The successor of zero. (C...
dec10p 11553 Ten plus an integer. (Con...
dec10pOLD 11554 Obsolete version of ~ dec1...
dec10OLD 11555 The decimal form of 10. N...
9p1e10bOLD 11556 Obsolete proof of ~ 9p1e10...
numma 11557 Perform a multiply-add of ...
nummac 11558 Perform a multiply-add of ...
numma2c 11559 Perform a multiply-add of ...
numadd 11560 Add two decimal integers `...
numaddc 11561 Add two decimal integers `...
nummul1c 11562 The product of a decimal i...
nummul2c 11563 The product of a decimal i...
decma 11564 Perform a multiply-add of ...
decmaOLD 11565 Obsolete proof of ~ decma ...
decmac 11566 Perform a multiply-add of ...
decmacOLD 11567 Obsolete proof of ~ decmac...
decma2c 11568 Perform a multiply-add of ...
decma2cOLD 11569 Obsolete proof of ~ decma2...
decadd 11570 Add two numerals ` M ` and...
decaddOLD 11571 Obsolete proof of ~ decadd...
decaddc 11572 Add two numerals ` M ` and...
decaddcOLD 11573 Obsolete proof of ~ decadd...
decaddc2OLD 11574 Obsolete version of ~ deca...
decaddc2 11575 Add two numerals ` M ` and...
decrmanc 11576 Perform a multiply-add of ...
decrmac 11577 Perform a multiply-add of ...
decaddm10 11578 The sum of two multiples o...
decaddi 11579 Add two numerals ` M ` and...
decaddci 11580 Add two numerals ` M ` and...
decaddci2 11581 Add two numerals ` M ` and...
decaddci2OLD 11582 Obsolete version of ~ deca...
decsubi 11583 Difference between a numer...
decsubiOLD 11584 Obsolete proof of ~ decsub...
decmul1 11585 The product of a numeral w...
decmul1OLD 11586 Obsolete proof of ~ decmul...
decmul1c 11587 The product of a numeral w...
decmul1cOLD 11588 Obsolete proof of ~ decmul...
decmul2c 11589 The product of a numeral w...
decmul2cOLD 11590 Obsolete proof of ~ decmul...
decmulnc 11591 The product of a numeral w...
11multnc 11592 The product of 11 (as nume...
decmul10add 11593 A multiplication of a numb...
decmul10addOLD 11594 Obsolete proof of ~ decmul...
6p5lem 11595 Lemma for ~ 6p5e11 and rel...
5p5e10 11596 5 + 5 = 10. (Contributed ...
5p5e10bOLD 11597 Obsolete proof of ~ 5p5e10...
6p4e10 11598 6 + 4 = 10. (Contributed ...
6p4e10bOLD 11599 Obsolete proof of ~ 6p4e10...
6p5e11 11600 6 + 5 = 11. (Contributed ...
6p5e11OLD 11601 Obsolete proof of ~ 6p5e11...
6p6e12 11602 6 + 6 = 12. (Contributed ...
7p3e10 11603 7 + 3 = 10. (Contributed ...
7p3e10bOLD 11604 Obsolete proof of ~ 7p3e10...
7p4e11 11605 7 + 4 = 11. (Contributed ...
7p4e11OLD 11606 Obsolete proof of ~ 7p4e11...
7p5e12 11607 7 + 5 = 12. (Contributed ...
7p6e13 11608 7 + 6 = 13. (Contributed ...
7p7e14 11609 7 + 7 = 14. (Contributed ...
8p2e10 11610 8 + 2 = 10. (Contributed ...
8p2e10bOLD 11611 Obsolete proof of ~ 8p2e10...
8p3e11 11612 8 + 3 = 11. (Contributed ...
8p3e11OLD 11613 Obsolete proof of ~ 8p3e11...
8p4e12 11614 8 + 4 = 12. (Contributed ...
8p5e13 11615 8 + 5 = 13. (Contributed ...
8p6e14 11616 8 + 6 = 14. (Contributed ...
8p7e15 11617 8 + 7 = 15. (Contributed ...
8p8e16 11618 8 + 8 = 16. (Contributed ...
9p2e11 11619 9 + 2 = 11. (Contributed ...
9p2e11OLD 11620 Obsolete proof of ~ 9p2e11...
9p3e12 11621 9 + 3 = 12. (Contributed ...
9p4e13 11622 9 + 4 = 13. (Contributed ...
9p5e14 11623 9 + 5 = 14. (Contributed ...
9p6e15 11624 9 + 6 = 15. (Contributed ...
9p7e16 11625 9 + 7 = 16. (Contributed ...
9p8e17 11626 9 + 8 = 17. (Contributed ...
9p9e18 11627 9 + 9 = 18. (Contributed ...
10p10e20 11628 10 + 10 = 20. (Contribute...
10p10e20OLD 11629 Obsolete version of ~ 10p1...
10m1e9 11630 10 - 1 = 9. (Contributed ...
4t3lem 11631 Lemma for ~ 4t3e12 and rel...
4t3e12 11632 4 times 3 equals 12. (Con...
4t4e16 11633 4 times 4 equals 16. (Con...
5t2e10 11634 5 times 2 equals 10. (Con...
5t3e15 11635 5 times 3 equals 15. (Con...
5t3e15OLD 11636 Obsolete proof of ~ 5t3e15...
5t4e20 11637 5 times 4 equals 20. (Con...
5t4e20OLD 11638 Obsolete proof of ~ 5t4e20...
5t5e25 11639 5 times 5 equals 25. (Con...
5t5e25OLD 11640 Obsolete proof of ~ 5t5e25...
6t2e12 11641 6 times 2 equals 12. (Con...
6t3e18 11642 6 times 3 equals 18. (Con...
6t4e24 11643 6 times 4 equals 24. (Con...
6t5e30 11644 6 times 5 equals 30. (Con...
6t5e30OLD 11645 Obsolete proof of ~ 6t5e30...
6t6e36 11646 6 times 6 equals 36. (Con...
6t6e36OLD 11647 Obsolete proof of ~ 6t6e36...
7t2e14 11648 7 times 2 equals 14. (Con...
7t3e21 11649 7 times 3 equals 21. (Con...
7t4e28 11650 7 times 4 equals 28. (Con...
7t5e35 11651 7 times 5 equals 35. (Con...
7t6e42 11652 7 times 6 equals 42. (Con...
7t7e49 11653 7 times 7 equals 49. (Con...
8t2e16 11654 8 times 2 equals 16. (Con...
8t3e24 11655 8 times 3 equals 24. (Con...
8t4e32 11656 8 times 4 equals 32. (Con...
8t5e40 11657 8 times 5 equals 40. (Con...
8t5e40OLD 11658 Obsolete proof of ~ 8t5e40...
8t6e48 11659 8 times 6 equals 48. (Con...
8t6e48OLD 11660 Obsolete proof of ~ 8t6e48...
8t7e56 11661 8 times 7 equals 56. (Con...
8t8e64 11662 8 times 8 equals 64. (Con...
9t2e18 11663 9 times 2 equals 18. (Con...
9t3e27 11664 9 times 3 equals 27. (Con...
9t4e36 11665 9 times 4 equals 36. (Con...
9t5e45 11666 9 times 5 equals 45. (Con...
9t6e54 11667 9 times 6 equals 54. (Con...
9t7e63 11668 9 times 7 equals 63. (Con...
9t8e72 11669 9 times 8 equals 72. (Con...
9t9e81 11670 9 times 9 equals 81. (Con...
9t11e99 11671 9 times 11 equals 99. (Co...
9t11e99OLD 11672 Obsolete proof of ~ 9t11e9...
9lt10 11673 9 is less than 10. (Contr...
8lt10 11674 8 is less than 10. (Contr...
7lt10 11675 7 is less than 10. (Contr...
6lt10 11676 6 is less than 10. (Contr...
5lt10 11677 5 is less than 10. (Contr...
4lt10 11678 4 is less than 10. (Contr...
3lt10 11679 3 is less than 10. (Contr...
2lt10 11680 2 is less than 10. (Contr...
1lt10 11681 1 is less than 10. (Contr...
decbin0 11682 Decompose base 4 into base...
decbin2 11683 Decompose base 4 into base...
decbin3 11684 Decompose base 4 into base...
halfthird 11685 Half minus a third. (Cont...
5recm6rec 11686 One fifth minus one sixth....
uzval 11689 The value of the upper int...
uzf 11690 The domain and range of th...
eluz1 11691 Membership in the upper se...
eluzel2 11692 Implication of membership ...
eluz2 11693 Membership in an upper set...
eluzmn 11694 Membership in an earlier u...
eluz1i 11695 Membership in an upper set...
eluzuzle 11696 An integer in an upper set...
eluzelz 11697 A member of an upper set o...
eluzelre 11698 A member of an upper set o...
eluzelcn 11699 A member of an upper set o...
eluzle 11700 Implication of membership ...
eluz 11701 Membership in an upper set...
uzid 11702 Membership of the least me...
uzn0 11703 The upper integers are all...
uztrn 11704 Transitive law for sets of...
uztrn2 11705 Transitive law for sets of...
uzneg 11706 Contraposition law for upp...
uzssz 11707 An upper set of integers i...
uzss 11708 Subset relationship for tw...
uztric 11709 Totality of the ordering r...
uz11 11710 The upper integers functio...
eluzp1m1 11711 Membership in the next upp...
eluzp1l 11712 Strict ordering implied by...
eluzp1p1 11713 Membership in the next upp...
eluzaddi 11714 Membership in a later uppe...
eluzsubi 11715 Membership in an earlier u...
eluzadd 11716 Membership in a later uppe...
eluzsub 11717 Membership in an earlier u...
uzm1 11718 Choices for an element of ...
uznn0sub 11719 The nonnegative difference...
uzin 11720 Intersection of two upper ...
uzp1 11721 Choices for an element of ...
nn0uz 11722 Nonnegative integers expre...
nnuz 11723 Positive integers expresse...
elnnuz 11724 A positive integer express...
elnn0uz 11725 A nonnegative integer expr...
eluz2nn 11726 An integer is greater than...
eluzge2nn0 11727 If an integer is greater t...
eluz2n0 11728 An integer greater than or...
uzuzle23 11729 An integer in the upper se...
eluzge3nn 11730 If an integer is greater t...
uz3m2nn 11731 An integer greater than or...
1eluzge0 11732 1 is an integer greater th...
2eluzge0 11733 2 is an integer greater th...
2eluzge1 11734 2 is an integer greater th...
uznnssnn 11735 The upper integers startin...
raluz 11736 Restricted universal quant...
raluz2 11737 Restricted universal quant...
rexuz 11738 Restricted existential qua...
rexuz2 11739 Restricted existential qua...
2rexuz 11740 Double existential quantif...
peano2uz 11741 Second Peano postulate for...
peano2uzs 11742 Second Peano postulate for...
peano2uzr 11743 Reversed second Peano axio...
uzaddcl 11744 Addition closure law for a...
nn0pzuz 11745 The sum of a nonnegative i...
uzind4 11746 Induction on the upper set...
uzind4ALT 11747 Induction on the upper set...
uzind4s 11748 Induction on the upper set...
uzind4s2 11749 Induction on the upper set...
uzind4i 11750 Induction on the upper int...
uzwo 11751 Well-ordering principle: a...
uzwo2 11752 Well-ordering principle: a...
nnwo 11753 Well-ordering principle: a...
nnwof 11754 Well-ordering principle: a...
nnwos 11755 Well-ordering principle: a...
indstr 11756 Strong Mathematical Induct...
eluznn0 11757 Membership in a nonnegativ...
eluznn 11758 Membership in a positive u...
eluz2b1 11759 Two ways to say "an intege...
eluz2gt1 11760 An integer greater than or...
eluz2b2 11761 Two ways to say "an intege...
eluz2b3 11762 Two ways to say "an intege...
uz2m1nn 11763 One less than an integer g...
1nuz2 11764 1 is not in ` ( ZZ>= `` 2 ...
elnn1uz2 11765 A positive integer is eith...
uz2mulcl 11766 Closure of multiplication ...
indstr2 11767 Strong Mathematical Induct...
uzinfi 11768 Extract the lower bound of...
nninf 11769 The infimum of the set of ...
nn0inf 11770 The infimum of the set of ...
infssuzle 11771 The infimum of a subset of...
infssuzcl 11772 The infimum of a subset of...
ublbneg 11773 The image under negation o...
eqreznegel 11774 Two ways to express the im...
supminf 11775 The supremum of a bounded-...
lbzbi 11776 If a set of reals is bound...
zsupss 11777 Any nonempty bounded subse...
suprzcl2 11778 The supremum of a bounded-...
suprzub 11779 The supremum of a bounded-...
uzsupss 11780 Any bounded subset of an u...
nn01to3 11781 A (nonnegative) integer be...
nn0ge2m1nnALT 11782 Alternate proof of ~ nn0ge...
uzwo3 11783 Well-ordering principle: a...
zmin 11784 There is a unique smallest...
zmax 11785 There is a unique largest ...
zbtwnre 11786 There is a unique integer ...
rebtwnz 11787 There is a unique greatest...
elq 11790 Membership in the set of r...
qmulz 11791 If ` A ` is rational, then...
znq 11792 The ratio of an integer an...
qre 11793 A rational number is a rea...
zq 11794 An integer is a rational n...
zssq 11795 The integers are a subset ...
nn0ssq 11796 The nonnegative integers a...
nnssq 11797 The positive integers are ...
qssre 11798 The rationals are a subset...
qsscn 11799 The rationals are a subset...
qex 11800 The set of rational number...
nnq 11801 A positive integer is rati...
qcn 11802 A rational number is a com...
qexALT 11803 Alternate proof of ~ qex ....
qaddcl 11804 Closure of addition of rat...
qnegcl 11805 Closure law for the negati...
qmulcl 11806 Closure of multiplication ...
qsubcl 11807 Closure of subtraction of ...
qreccl 11808 Closure of reciprocal of r...
qdivcl 11809 Closure of division of rat...
qrevaddcl 11810 Reverse closure law for ad...
nnrecq 11811 The reciprocal of a positi...
irradd 11812 The sum of an irrational n...
irrmul 11813 The product of an irration...
rpnnen1lem2 11814 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem1 11815 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem3 11816 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem4 11817 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem5 11818 Lemma for ~ rpnnen1 . (Co...
rpnnen1lem6 11819 Lemma for ~ rpnnen1 . (Co...
rpnnen1 11820 One half of ~ rpnnen , whe...
rpnnen1lem1OLD 11821 Lemma for ~ rpnnen1OLD . ...
rpnnen1lem3OLD 11822 Lemma for ~ rpnnen1OLD . ...
rpnnen1lem4OLD 11823 Lemma for ~ rpnnen1OLD . ...
rpnnen1lem5OLD 11824 Lemma for ~ rpnnen1OLD . ...
rpnnen1OLD 11825 One half of ~ rpnnen , whe...
reexALT 11826 Alternate proof of ~ reex ...
cnref1o 11827 There is a natural one-to-...
cnexALT 11828 The set of complex numbers...
xrex 11829 The set of extended reals ...
addex 11830 The addition operation is ...
mulex 11831 The multiplication operati...
elrp 11834 Membership in the set of p...
elrpii 11835 Membership in the set of p...
1rp 11836 1 is a positive real. (Co...
2rp 11837 2 is a positive real. (Co...
3rp 11838 3 is a positive real. (Co...
rpre 11839 A positive real is a real....
rpxr 11840 A positive real is an exte...
rpcn 11841 A positive real is a compl...
nnrp 11842 A positive integer is a po...
rpssre 11843 The positive reals are a s...
rpgt0 11844 A positive real is greater...
rpge0 11845 A positive real is greater...
rpregt0 11846 A positive real is a posit...
rprege0 11847 A positive real is a nonne...
rpne0 11848 A positive real is nonzero...
rprene0 11849 A positive real is a nonze...
rpcnne0 11850 A positive real is a nonze...
rpcndif0 11851 A positive real number is ...
ralrp 11852 Quantification over positi...
rexrp 11853 Quantification over positi...
rpaddcl 11854 Closure law for addition o...
rpmulcl 11855 Closure law for multiplica...
rpdivcl 11856 Closure law for division o...
rpreccl 11857 Closure law for reciprocat...
rphalfcl 11858 Closure law for half of a ...
rpgecl 11859 A number greater or equal ...
rphalflt 11860 Half of a positive real is...
rerpdivcl 11861 Closure law for division o...
ge0p1rp 11862 A nonnegative number plus ...
rpneg 11863 Either a nonzero real or i...
negelrp 11864 Elementhood of a negation ...
0nrp 11865 Zero is not a positive rea...
ltsubrp 11866 Subtracting a positive rea...
ltaddrp 11867 Adding a positive number t...
difrp 11868 Two ways to say one number...
elrpd 11869 Membership in the set of p...
nnrpd 11870 A positive integer is a po...
zgt1rpn0n1 11871 An integer greater than 1 ...
rpred 11872 A positive real is a real....
rpxrd 11873 A positive real is an exte...
rpcnd 11874 A positive real is a compl...
rpgt0d 11875 A positive real is greater...
rpge0d 11876 A positive real is greater...
rpne0d 11877 A positive real is nonzero...
rpregt0d 11878 A positive real is real an...
rprege0d 11879 A positive real is real an...
rprene0d 11880 A positive real is a nonze...
rpcnne0d 11881 A positive real is a nonze...
rpreccld 11882 Closure law for reciprocat...
rprecred 11883 Closure law for reciprocat...
rphalfcld 11884 Closure law for half of a ...
reclt1d 11885 The reciprocal of a positi...
recgt1d 11886 The reciprocal of a positi...
rpaddcld 11887 Closure law for addition o...
rpmulcld 11888 Closure law for multiplica...
rpdivcld 11889 Closure law for division o...
ltrecd 11890 The reciprocal of both sid...
lerecd 11891 The reciprocal of both sid...
ltrec1d 11892 Reciprocal swap in a 'less...
lerec2d 11893 Reciprocal swap in a 'less...
lediv2ad 11894 Division of both sides of ...
ltdiv2d 11895 Division of a positive num...
lediv2d 11896 Division of a positive num...
ledivdivd 11897 Invert ratios of positive ...
divge1 11898 The ratio of a number over...
divlt1lt 11899 A real number divided by a...
divle1le 11900 A real number divided by a...
ledivge1le 11901 If a number is less than o...
ge0p1rpd 11902 A nonnegative number plus ...
rerpdivcld 11903 Closure law for division o...
ltsubrpd 11904 Subtracting a positive rea...
ltaddrpd 11905 Adding a positive number t...
ltaddrp2d 11906 Adding a positive number t...
ltmulgt11d 11907 Multiplication by a number...
ltmulgt12d 11908 Multiplication by a number...
gt0divd 11909 Division of a positive num...
ge0divd 11910 Division of a nonnegative ...
rpgecld 11911 A number greater or equal ...
divge0d 11912 The ratio of nonnegative a...
ltmul1d 11913 The ratio of nonnegative a...
ltmul2d 11914 Multiplication of both sid...
lemul1d 11915 Multiplication of both sid...
lemul2d 11916 Multiplication of both sid...
ltdiv1d 11917 Division of both sides of ...
lediv1d 11918 Division of both sides of ...
ltmuldivd 11919 'Less than' relationship b...
ltmuldiv2d 11920 'Less than' relationship b...
lemuldivd 11921 'Less than or equal to' re...
lemuldiv2d 11922 'Less than or equal to' re...
ltdivmuld 11923 'Less than' relationship b...
ltdivmul2d 11924 'Less than' relationship b...
ledivmuld 11925 'Less than or equal to' re...
ledivmul2d 11926 'Less than or equal to' re...
ltmul1dd 11927 The ratio of nonnegative a...
ltmul2dd 11928 Multiplication of both sid...
ltdiv1dd 11929 Division of both sides of ...
lediv1dd 11930 Division of both sides of ...
lediv12ad 11931 Comparison of ratio of two...
mul2lt0rlt0 11932 If the result of a multipl...
mul2lt0rgt0 11933 If the result of a multipl...
mul2lt0llt0 11934 If the result of a multipl...
mul2lt0lgt0 11935 If the result of a multipl...
mul2lt0bi 11936 If the result of a multipl...
ltdiv23d 11937 Swap denominator with othe...
lediv23d 11938 Swap denominator with othe...
lt2mul2divd 11939 The ratio of nonnegative a...
nnledivrp 11940 Division of a positive int...
nn0ledivnn 11941 Division of a nonnegative ...
addlelt 11942 If the sum of a real numbe...
ltxr 11949 The 'less than' binary rel...
elxr 11950 Membership in the set of e...
xrnemnf 11951 An extended real other tha...
xrnepnf 11952 An extended real other tha...
xrltnr 11953 The extended real 'less th...
ltpnf 11954 Any (finite) real is less ...
ltpnfd 11955 Any (finite) real is less ...
0ltpnf 11956 Zero is less than plus inf...
mnflt 11957 Minus infinity is less tha...
mnfltd 11958 Minus infinity is less tha...
mnflt0 11959 Minus infinity is less tha...
mnfltpnf 11960 Minus infinity is less tha...
mnfltxr 11961 Minus infinity is less tha...
pnfnlt 11962 No extended real is greate...
nltmnf 11963 No extended real is less t...
pnfge 11964 Plus infinity is an upper ...
xnn0n0n1ge2b 11965 An extended nonnegative in...
0lepnf 11966 0 less than or equal to po...
xnn0ge0 11967 An extended nonnegative in...
nn0pnfge0OLD 11968 Obsolete version of ~ xnn0...
mnfle 11969 Minus infinity is less tha...
xrltnsym 11970 Ordering on the extended r...
xrltnsym2 11971 'Less than' is antisymmetr...
xrlttri 11972 Ordering on the extended r...
xrlttr 11973 Ordering on the extended r...
xrltso 11974 'Less than' is a strict or...
xrlttri2 11975 Trichotomy law for 'less t...
xrlttri3 11976 Trichotomy law for 'less t...
xrleloe 11977 'Less than or equal' expre...
xrleltne 11978 'Less than or equal to' im...
xrltlen 11979 'Less than' expressed in t...
dfle2 11980 Alternative definition of ...
dflt2 11981 Alternative definition of ...
xrltle 11982 'Less than' implies 'less ...
xrleid 11983 'Less than or equal to' is...
xrletri 11984 Trichotomy law for extende...
xrletri3 11985 Trichotomy law for extende...
xrletrid 11986 Trichotomy law for extende...
xrlelttr 11987 Transitive law for orderin...
xrltletr 11988 Transitive law for orderin...
xrletr 11989 Transitive law for orderin...
xrlttrd 11990 Transitive law for orderin...
xrlelttrd 11991 Transitive law for orderin...
xrltletrd 11992 Transitive law for orderin...
xrletrd 11993 Transitive law for orderin...
xrltne 11994 'Less than' implies not eq...
nltpnft 11995 An extended real is not le...
xgepnf 11996 An extended real which is ...
ngtmnft 11997 An extended real is not gr...
xlemnf 11998 An extended real which is ...
xrrebnd 11999 An extended real is real i...
xrre 12000 A way of proving that an e...
xrre2 12001 An extended real between t...
xrre3 12002 A way of proving that an e...
ge0gtmnf 12003 A nonnegative extended rea...
ge0nemnf 12004 A nonnegative extended rea...
xrrege0 12005 A nonnegative extended rea...
xrmax1 12006 An extended real is less t...
xrmax2 12007 An extended real is less t...
xrmin1 12008 The minimum of two extende...
xrmin2 12009 The minimum of two extende...
xrmaxeq 12010 The maximum of two extende...
xrmineq 12011 The minimum of two extende...
xrmaxlt 12012 Two ways of saying the max...
xrltmin 12013 Two ways of saying an exte...
xrmaxle 12014 Two ways of saying the max...
xrlemin 12015 Two ways of saying a numbe...
max1 12016 A number is less than or e...
max1ALT 12017 A number is less than or e...
max2 12018 A number is less than or e...
2resupmax 12019 The supremum of two real n...
min1 12020 The minimum of two numbers...
min2 12021 The minimum of two numbers...
maxle 12022 Two ways of saying the max...
lemin 12023 Two ways of saying a numbe...
maxlt 12024 Two ways of saying the max...
ltmin 12025 Two ways of saying a numbe...
lemaxle 12026 A real number which is les...
max0sub 12027 Decompose a real number in...
ifle 12028 An if statement transforms...
z2ge 12029 There exists an integer gr...
qbtwnre 12030 The rational numbers are d...
qbtwnxr 12031 The rational numbers are d...
qsqueeze 12032 If a nonnegative real is l...
qextltlem 12033 Lemma for ~ qextlt and qex...
qextlt 12034 An extensionality-like pro...
qextle 12035 An extensionality-like pro...
xralrple 12036 Show that ` A ` is less th...
alrple 12037 Show that ` A ` is less th...
xnegeq 12038 Equality of two extended n...
xnegex 12039 A negative extended real e...
xnegpnf 12040 Minus ` +oo ` . Remark of...
xnegmnf 12041 Minus ` -oo ` . Remark of...
rexneg 12042 Minus a real number. Rema...
xneg0 12043 The negative of zero. (Co...
xnegcl 12044 Closure of extended real n...
xnegneg 12045 Extended real version of ~...
xneg11 12046 Extended real version of ~...
xltnegi 12047 Forward direction of ~ xlt...
xltneg 12048 Extended real version of ~...
xleneg 12049 Extended real version of ~...
xlt0neg1 12050 Extended real version of ~...
xlt0neg2 12051 Extended real version of ~...
xle0neg1 12052 Extended real version of ~...
xle0neg2 12053 Extended real version of ~...
xaddval 12054 Value of the extended real...
xaddf 12055 The extended real addition...
xmulval 12056 Value of the extended real...
xaddpnf1 12057 Addition of positive infin...
xaddpnf2 12058 Addition of positive infin...
xaddmnf1 12059 Addition of negative infin...
xaddmnf2 12060 Addition of negative infin...
pnfaddmnf 12061 Addition of positive and n...
mnfaddpnf 12062 Addition of negative and p...
rexadd 12063 The extended real addition...
rexsub 12064 Extended real subtraction ...
rexaddd 12065 The extended real addition...
xnn0xaddcl 12066 The extended nonnegative i...
xaddnemnf 12067 Closure of extended real a...
xaddnepnf 12068 Closure of extended real a...
xnegid 12069 Extended real version of ~...
xaddcl 12070 The extended real addition...
xaddcom 12071 The extended real addition...
xaddid1 12072 Extended real version of ~...
xaddid2 12073 Extended real version of ~...
xaddid1d 12074 ` 0 ` is a right identity ...
xnn0lenn0nn0 12075 An extended nonnegative in...
xnn0le2is012 12076 An extended nonnegative in...
xnn0xadd0 12077 The sum of two extended no...
xnegdi 12078 Extended real version of ~...
xaddass 12079 Associativity of extended ...
xaddass2 12080 Associativity of extended ...
xpncan 12081 Extended real version of ~...
xnpcan 12082 Extended real version of ~...
xleadd1a 12083 Extended real version of ~...
xleadd2a 12084 Commuted form of ~ xleadd1...
xleadd1 12085 Weakened version of ~ xlea...
xltadd1 12086 Extended real version of ~...
xltadd2 12087 Extended real version of ~...
xaddge0 12088 The sum of nonnegative ext...
xle2add 12089 Extended real version of ~...
xlt2add 12090 Extended real version of ~...
xsubge0 12091 Extended real version of ~...
xposdif 12092 Extended real version of ~...
xlesubadd 12093 Under certain conditions, ...
xmullem 12094 Lemma for ~ rexmul . (Con...
xmullem2 12095 Lemma for ~ xmulneg1 . (C...
xmulcom 12096 Extended real multiplicati...
xmul01 12097 Extended real version of ~...
xmul02 12098 Extended real version of ~...
xmulneg1 12099 Extended real version of ~...
xmulneg2 12100 Extended real version of ~...
rexmul 12101 The extended real multipli...
xmulf 12102 The extended real multipli...
xmulcl 12103 Closure of extended real m...
xmulpnf1 12104 Multiplication by plus inf...
xmulpnf2 12105 Multiplication by plus inf...
xmulmnf1 12106 Multiplication by minus in...
xmulmnf2 12107 Multiplication by minus in...
xmulpnf1n 12108 Multiplication by plus inf...
xmulid1 12109 Extended real version of ~...
xmulid2 12110 Extended real version of ~...
xmulm1 12111 Extended real version of ~...
xmulasslem2 12112 Lemma for ~ xmulass . (Co...
xmulgt0 12113 Extended real version of ~...
xmulge0 12114 Extended real version of ~...
xmulasslem 12115 Lemma for ~ xmulass . (Co...
xmulasslem3 12116 Lemma for ~ xmulass . (Co...
xmulass 12117 Associativity of the exten...
xlemul1a 12118 Extended real version of ~...
xlemul2a 12119 Extended real version of ~...
xlemul1 12120 Extended real version of ~...
xlemul2 12121 Extended real version of ~...
xltmul1 12122 Extended real version of ~...
xltmul2 12123 Extended real version of ~...
xadddilem 12124 Lemma for ~ xadddi . (Con...
xadddi 12125 Distributive property for ...
xadddir 12126 Commuted version of ~ xadd...
xadddi2 12127 The assumption that the mu...
xadddi2r 12128 Commuted version of ~ xadd...
x2times 12129 Extended real version of ~...
xnegcld 12130 Closure of extended real n...
xaddcld 12131 The extended real addition...
xmulcld 12132 Closure of extended real m...
xadd4d 12133 Rearrangement of 4 terms i...
xnn0add4d 12134 Rearrangement of 4 terms i...
xrsupexmnf 12135 Adding minus infinity to a...
xrinfmexpnf 12136 Adding plus infinity to a ...
xrsupsslem 12137 Lemma for ~ xrsupss . (Co...
xrinfmsslem 12138 Lemma for ~ xrinfmss . (C...
xrsupss 12139 Any subset of extended rea...
xrinfmss 12140 Any subset of extended rea...
xrinfmss2 12141 Any subset of extended rea...
xrub 12142 By quantifying only over r...
supxr 12143 The supremum of a set of e...
supxr2 12144 The supremum of a set of e...
supxrcl 12145 The supremum of an arbitra...
supxrun 12146 The supremum of the union ...
supxrmnf 12147 Adding minus infinity to a...
supxrpnf 12148 The supremum of a set of e...
supxrunb1 12149 The supremum of an unbound...
supxrunb2 12150 The supremum of an unbound...
supxrbnd1 12151 The supremum of a bounded-...
supxrbnd2 12152 The supremum of a bounded-...
xrsup0 12153 The supremum of an empty s...
supxrub 12154 A member of a set of exten...
supxrlub 12155 The supremum of a set of e...
supxrleub 12156 The supremum of a set of e...
supxrre 12157 The real and extended real...
supxrbnd 12158 The supremum of a bounded-...
supxrgtmnf 12159 The supremum of a nonempty...
supxrre1 12160 The supremum of a nonempty...
supxrre2 12161 The supremum of a nonempty...
supxrss 12162 Smaller sets of extended r...
infxrcl 12163 The infimum of an arbitrar...
infxrlb 12164 A member of a set of exten...
infxrgelb 12165 The infimum of a set of ex...
infxrre 12166 The real and extended real...
infxrmnf 12167 The infinimum of a set of ...
xrinf0 12168 The infimum of the empty s...
infxrss 12169 Larger sets of extended re...
reltre 12170 For all real numbers there...
rpltrp 12171 For all positive real numb...
reltxrnmnf 12172 For all extended real numb...
infmremnf 12173 The infimum of the reals i...
infmrp1 12174 The infimum of the positiv...
ixxval 12183 Value of the interval func...
elixx1 12184 Membership in an interval ...
ixxf 12185 The set of intervals of ex...
ixxex 12186 The set of intervals of ex...
ixxssxr 12187 The set of intervals of ex...
elixx3g 12188 Membership in a set of ope...
ixxssixx 12189 An interval is a subset of...
ixxdisj 12190 Split an interval into dis...
ixxun 12191 Split an interval into two...
ixxin 12192 Intersection of two interv...
ixxss1 12193 Subset relationship for in...
ixxss2 12194 Subset relationship for in...
ixxss12 12195 Subset relationship for in...
ixxub 12196 Extract the upper bound of...
ixxlb 12197 Extract the lower bound of...
iooex 12198 The set of open intervals ...
iooval 12199 Value of the open interval...
ioo0 12200 An empty open interval of ...
ioon0 12201 An open interval of extend...
ndmioo 12202 The open interval function...
iooid 12203 An open interval with iden...
elioo3g 12204 Membership in a set of ope...
elioore 12205 A member of an open interv...
lbioo 12206 An open interval does not ...
ubioo 12207 An open interval does not ...
iooval2 12208 Value of the open interval...
iooin 12209 Intersection of two open i...
iooss1 12210 Subset relationship for op...
iooss2 12211 Subset relationship for op...
iocval 12212 Value of the open-below, c...
icoval 12213 Value of the closed-below,...
iccval 12214 Value of the closed interv...
elioo1 12215 Membership in an open inte...
elioo2 12216 Membership in an open inte...
elioc1 12217 Membership in an open-belo...
elico1 12218 Membership in a closed-bel...
elicc1 12219 Membership in a closed int...
iccid 12220 A closed interval with ide...
ico0 12221 An empty open interval of ...
ioc0 12222 An empty open interval of ...
icc0 12223 An empty closed interval o...
elicod 12224 Membership in a left close...
icogelb 12225 An element of a left close...
elicore 12226 A member of a left closed,...
ubioc1 12227 The upper bound belongs to...
lbico1 12228 The lower bound belongs to...
iccleub 12229 An element of a closed int...
iccgelb 12230 An element of a closed int...
elioo5 12231 Membership in an open inte...
eliooxr 12232 A nonempty open interval s...
eliooord 12233 Ordering implied by a memb...
elioo4g 12234 Membership in an open inte...
ioossre 12235 An open interval is a set ...
elioc2 12236 Membership in an open-belo...
elico2 12237 Membership in a closed-bel...
elicc2 12238 Membership in a closed rea...
elicc2i 12239 Inference for membership i...
elicc4 12240 Membership in a closed rea...
iccss 12241 Condition for a closed int...
iccssioo 12242 Condition for a closed int...
icossico 12243 Condition for a closed-bel...
iccss2 12244 Condition for a closed int...
iccssico 12245 Condition for a closed int...
iccssioo2 12246 Condition for a closed int...
iccssico2 12247 Condition for a closed int...
ioomax 12248 The open interval from min...
iccmax 12249 The closed interval from m...
ioopos 12250 The set of positive reals ...
ioorp 12251 The set of positive reals ...
iooshf 12252 Shift the arguments of the...
iocssre 12253 A closed-above interval wi...
icossre 12254 A closed-below interval wi...
iccssre 12255 A closed real interval is ...
iccssxr 12256 A closed interval is a set...
iocssxr 12257 An open-below, closed-abov...
icossxr 12258 A closed-below, open-above...
ioossicc 12259 An open interval is a subs...
icossicc 12260 A closed-below, open-above...
iocssicc 12261 A closed-above, open-below...
ioossico 12262 An open interval is a subs...
iocssioo 12263 Condition for a closed int...
icossioo 12264 Condition for a closed int...
ioossioo 12265 Condition for an open inte...
iccsupr 12266 A nonempty subset of a clo...
elioopnf 12267 Membership in an unbounded...
elioomnf 12268 Membership in an unbounded...
elicopnf 12269 Membership in a closed unb...
repos 12270 Two ways of saying that a ...
ioof 12271 The set of open intervals ...
iccf 12272 The set of closed interval...
unirnioo 12273 The union of the range of ...
dfioo2 12274 Alternate definition of th...
ioorebas 12275 Open intervals are element...
xrge0neqmnf 12276 An extended nonnegative re...
xrge0nre 12277 An extended real which is ...
elrege0 12278 The predicate "is a nonneg...
nn0rp0 12279 A nonnegative integer is a...
rge0ssre 12280 Nonnegative real numbers a...
elxrge0 12281 Elementhood in the set of ...
0e0icopnf 12282 0 is a member of ` ( 0 [,)...
0e0iccpnf 12283 0 is a member of ` ( 0 [,]...
ge0addcl 12284 The nonnegative reals are ...
ge0mulcl 12285 The nonnegative reals are ...
ge0xaddcl 12286 The nonnegative reals are ...
ge0xmulcl 12287 The nonnegative extended r...
lbicc2 12288 The lower bound of a close...
ubicc2 12289 The upper bound of a close...
0elunit 12290 Zero is an element of the ...
1elunit 12291 One is an element of the c...
iooneg 12292 Membership in a negated op...
iccneg 12293 Membership in a negated cl...
icoshft 12294 A shifted real is a member...
icoshftf1o 12295 Shifting a closed-below, o...
icoun 12296 The union of end-to-end cl...
icodisj 12297 End-to-end closed-below, o...
snunioo 12298 The closure of one end of ...
snunico 12299 The closure of the open en...
snunioc 12300 The closure of the open en...
prunioo 12301 The closure of an open rea...
ioodisj 12302 If the upper bound of one ...
ioojoin 12303 Join two open intervals to...
difreicc 12304 The class difference of ` ...
iccsplit 12305 Split a closed interval in...
iccshftr 12306 Membership in a shifted in...
iccshftri 12307 Membership in a shifted in...
iccshftl 12308 Membership in a shifted in...
iccshftli 12309 Membership in a shifted in...
iccdil 12310 Membership in a dilated in...
iccdili 12311 Membership in a dilated in...
icccntr 12312 Membership in a contracted...
icccntri 12313 Membership in a contracted...
divelunit 12314 A condition for a ratio to...
lincmb01cmp 12315 A linear combination of tw...
iccf1o 12316 Describe a bijection from ...
iccen 12317 Any nontrivial closed inte...
xov1plusxeqvd 12318 A complex number ` X ` is ...
unitssre 12319 ` ( 0 [,] 1 ) ` is a subse...
supicc 12320 Supremum of a bounded set ...
supiccub 12321 The supremum of a bounded ...
supicclub 12322 The supremum of a bounded ...
supicclub2 12323 The supremum of a bounded ...
zltaddlt1le 12324 The sum of an integer and ...
xnn0xrge0 12325 An extended nonnegative in...
fzval 12328 The value of a finite set ...
fzval2 12329 An alternative way of expr...
fzf 12330 Establish the domain and c...
elfz1 12331 Membership in a finite set...
elfz 12332 Membership in a finite set...
elfz2 12333 Membership in a finite set...
elfz5 12334 Membership in a finite set...
elfz4 12335 Membership in a finite set...
elfzuzb 12336 Membership in a finite set...
eluzfz 12337 Membership in a finite set...
elfzuz 12338 A member of a finite set o...
elfzuz3 12339 Membership in a finite set...
elfzel2 12340 Membership in a finite set...
elfzel1 12341 Membership in a finite set...
elfzelz 12342 A member of a finite set o...
fzssz 12343 A finite sequence of integ...
elfzle1 12344 A member of a finite set o...
elfzle2 12345 A member of a finite set o...
elfzuz2 12346 Implication of membership ...
elfzle3 12347 Membership in a finite set...
eluzfz1 12348 Membership in a finite set...
eluzfz2 12349 Membership in a finite set...
eluzfz2b 12350 Membership in a finite set...
elfz3 12351 Membership in a finite set...
elfz1eq 12352 Membership in a finite set...
elfzubelfz 12353 If there is a member in a ...
peano2fzr 12354 A Peano-postulate-like the...
fzn0 12355 Properties of a finite int...
fz0 12356 A finite set of sequential...
fzn 12357 A finite set of sequential...
fzen 12358 A shifted finite set of se...
fz1n 12359 A 1-based finite set of se...
0nelfz1 12360 0 is not an element of a f...
0fz1 12361 Two ways to say a finite 1...
fz10 12362 There are no integers betw...
uzsubsubfz 12363 Membership of an integer g...
uzsubsubfz1 12364 Membership of an integer g...
ige3m2fz 12365 Membership of an integer g...
fzsplit2 12366 Split a finite interval of...
fzsplit 12367 Split a finite interval of...
fzdisj 12368 Condition for two finite i...
fz01en 12369 0-based and 1-based finite...
elfznn 12370 A member of a finite set o...
elfz1end 12371 A nonempty finite range of...
fz1ssnn 12372 A finite set of positive i...
fznn0sub 12373 Subtraction closure for a ...
fzmmmeqm 12374 Subtracting the difference...
fzaddel 12375 Membership of a sum in a f...
fzadd2 12376 Membership of a sum in a f...
fzsubel 12377 Membership of a difference...
fzopth 12378 A finite set of sequential...
fzass4 12379 Two ways to express a nond...
fzss1 12380 Subset relationship for fi...
fzss2 12381 Subset relationship for fi...
fzssuz 12382 A finite set of sequential...
fzsn 12383 A finite interval of integ...
fzssp1 12384 Subset relationship for fi...
fzssnn 12385 Finite sets of sequential ...
ssfzunsnext 12386 A subset of a finite seque...
ssfzunsn 12387 A subset of a finite seque...
fzsuc 12388 Join a successor to the en...
fzpred 12389 Join a predecessor to the ...
fzpreddisj 12390 A finite set of sequential...
elfzp1 12391 Append an element to a fin...
fzp1ss 12392 Subset relationship for fi...
fzelp1 12393 Membership in a set of seq...
fzp1elp1 12394 Add one to an element of a...
fznatpl1 12395 Shift membership in a fini...
fzpr 12396 A finite interval of integ...
fztp 12397 A finite interval of integ...
fzsuc2 12398 Join a successor to the en...
fzp1disj 12399 ` ( M ... ( N + 1 ) ) ` is...
fzdifsuc 12400 Remove a successor from th...
fzprval 12401 Two ways of defining the f...
fztpval 12402 Two ways of defining the f...
fzrev 12403 Reversal of start and end ...
fzrev2 12404 Reversal of start and end ...
fzrev2i 12405 Reversal of start and end ...
fzrev3 12406 The "complement" of a memb...
fzrev3i 12407 The "complement" of a memb...
fznn 12408 Finite set of sequential i...
elfz1b 12409 Membership in a 1 based fi...
elfz1uz 12410 Membership in a 1 based fi...
elfzm11 12411 Membership in a finite set...
uzsplit 12412 Express an upper integer s...
uzdisj 12413 The first ` N ` elements o...
fseq1p1m1 12414 Add/remove an item to/from...
fseq1m1p1 12415 Add/remove an item to/from...
fz1sbc 12416 Quantification over a one-...
elfzp1b 12417 An integer is a member of ...
elfzm1b 12418 An integer is a member of ...
elfzp12 12419 Options for membership in ...
fzm1 12420 Choices for an element of ...
fzneuz 12421 No finite set of sequentia...
fznuz 12422 Disjointness of the upper ...
uznfz 12423 Disjointness of the upper ...
fzp1nel 12424 One plus the upper bound o...
fzrevral 12425 Reversal of scanning order...
fzrevral2 12426 Reversal of scanning order...
fzrevral3 12427 Reversal of scanning order...
fzshftral 12428 Shift the scanning order i...
ige2m1fz1 12429 Membership of an integer g...
ige2m1fz 12430 Membership in a 0 based fi...
elfz2nn0 12431 Membership in a finite set...
fznn0 12432 Characterization of a fini...
elfznn0 12433 A member of a finite set o...
elfz3nn0 12434 The upper bound of a nonem...
fz0ssnn0 12435 Finite sets of sequential ...
0elfz 12436 0 is an element of a finit...
nn0fz0 12437 A nonnegative integer is a...
elfz0add 12438 An element of a finite set...
fz0sn 12439 An integer range from 0 to...
fz0tp 12440 An integer range from 0 to...
fz0to3un2pr 12441 An integer range from 0 to...
fz0to4untppr 12442 An integer range from 0 to...
elfz0ubfz0 12443 An element of a finite set...
elfz0fzfz0 12444 A member of a finite set o...
fz0fzelfz0 12445 If a member of a finite se...
fznn0sub2 12446 Subtraction closure for a ...
uzsubfz0 12447 Membership of an integer g...
fz0fzdiffz0 12448 The difference of an integ...
elfzmlbm 12449 Subtracting the lower boun...
elfzmlbp 12450 Subtracting the lower boun...
fzctr 12451 Lemma for theorems about t...
difelfzle 12452 The difference of two inte...
difelfznle 12453 The difference of two inte...
nn0split 12454 Express the set of nonnega...
nn0disj 12455 The first ` N + 1 ` elemen...
fz0sn0fz1 12456 A finite set of sequential...
fvffz0 12457 The function value of a fu...
1fv 12458 A one value function. (Co...
4fvwrd4 12459 The first four function va...
2ffzeq 12460 Two functions over 0 based...
preduz 12461 The value of the predecess...
prednn 12462 The value of the predecess...
prednn0 12463 The value of the predecess...
predfz 12464 Calculate the predecessor ...
fzof 12467 Functionality of the half-...
elfzoel1 12468 Reverse closure for half-o...
elfzoel2 12469 Reverse closure for half-o...
elfzoelz 12470 Reverse closure for half-o...
fzoval 12471 Value of the half-open int...
elfzo 12472 Membership in a half-open ...
elfzo2 12473 Membership in a half-open ...
elfzouz 12474 Membership in a half-open ...
nelfzo 12475 An integer not being a mem...
fzolb 12476 The left endpoint of a hal...
fzolb2 12477 The left endpoint of a hal...
elfzole1 12478 A member in a half-open in...
elfzolt2 12479 A member in a half-open in...
elfzolt3 12480 Membership in a half-open ...
elfzolt2b 12481 A member in a half-open in...
elfzolt3b 12482 Membership in a half-open ...
fzonel 12483 A half-open range does not...
elfzouz2 12484 The upper bound of a half-...
elfzofz 12485 A half-open range is conta...
elfzo3 12486 Express membership in a ha...
fzon0 12487 A half-open integer interv...
fzossfz 12488 A half-open range is conta...
fzon 12489 A half-open set of sequent...
fzo0n 12490 A half-open range of nonne...
fzonlt0 12491 A half-open integer range ...
fzo0 12492 Half-open sets with equal ...
fzonnsub 12493 If ` K < N ` then ` N - K ...
fzonnsub2 12494 If ` M < N ` then ` N - M ...
fzoss1 12495 Subset relationship for ha...
fzoss2 12496 Subset relationship for ha...
fzossrbm1 12497 Subset of a half open rang...
fzo0ss1 12498 Subset relationship for ha...
fzossnn0 12499 A half-open integer range ...
fzospliti 12500 One direction of splitting...
fzosplit 12501 Split a half-open integer ...
fzodisj 12502 Abutting half-open integer...
fzouzsplit 12503 Split an upper integer set...
fzouzdisj 12504 A half-open integer range ...
fzodisjsn 12505 A half-open integer range ...
prinfzo0 12506 The intersection of a half...
lbfzo0 12507 An integer is strictly gre...
elfzo0 12508 Membership in a half-open ...
elfzo0z 12509 Membership in a half-open ...
nn0p1elfzo 12510 A nonnegative integer incr...
elfzo0le 12511 A member in a half-open ra...
elfzonn0 12512 A member of a half-open ra...
fzonmapblen 12513 The result of subtracting ...
fzofzim 12514 If a nonnegative integer i...
fz1fzo0m1 12515 Translation of one between...
fzossnn 12516 Half-open integer ranges s...
elfzo1 12517 Membership in a half-open ...
fzo1fzo0n0 12518 An integer between 1 and a...
fzo0n0 12519 A half-open integer range ...
fzoaddel 12520 Translate membership in a ...
fzo0addel 12521 Translate membership in a ...
fzo0addelr 12522 Translate membership in a ...
fzoaddel2 12523 Translate membership in a ...
elfzoext 12524 Membership of an integer i...
elincfzoext 12525 Membership of an increased...
fzosubel 12526 Translate membership in a ...
fzosubel2 12527 Membership in a translated...
fzosubel3 12528 Membership in a translated...
eluzgtdifelfzo 12529 Membership of the differen...
ige2m2fzo 12530 Membership of an integer g...
fzocatel 12531 Translate membership in a ...
ubmelfzo 12532 If an integer in a 1 based...
elfzodifsumelfzo 12533 If an integer is in a half...
elfzom1elp1fzo 12534 Membership of an integer i...
elfzom1elfzo 12535 Membership in a half-open ...
fzval3 12536 Expressing a closed intege...
fz0add1fz1 12537 Translate membership in a ...
fzosn 12538 Expressing a singleton as ...
elfzomin 12539 Membership of an integer i...
zpnn0elfzo 12540 Membership of an integer i...
zpnn0elfzo1 12541 Membership of an integer i...
fzosplitsnm1 12542 Removing a singleton from ...
elfzonlteqm1 12543 If an element of a half-op...
fzonn0p1 12544 A nonnegative integer is e...
fzossfzop1 12545 A half-open range of nonne...
fzonn0p1p1 12546 If a nonnegative integer i...
elfzom1p1elfzo 12547 Increasing an element of a...
fzo0ssnn0 12548 Half-open integer ranges s...
fzo0ssnn0OLD 12549 Obsolete proof of ~ fzo0ss...
fzo01 12550 Expressing the singleton o...
fzo12sn 12551 A 1-based half-open intege...
fzo13pr 12552 A 1-based half-open intege...
fzo0to2pr 12553 A half-open integer range ...
fzo0to3tp 12554 A half-open integer range ...
fzo0to42pr 12555 A half-open integer range ...
fzo1to4tp 12556 A half-open integer range ...
fzo0sn0fzo1 12557 A half-open range of nonne...
elfzo0l 12558 A member of a half-open ra...
fzoend 12559 The endpoint of a half-ope...
fzo0end 12560 The endpoint of a zero-bas...
ssfzo12 12561 Subset relationship for ha...
ssfzoulel 12562 If a half-open integer ran...
ssfzo12bi 12563 Subset relationship for ha...
ubmelm1fzo 12564 The result of subtracting ...
fzofzp1 12565 If a point is in a half-op...
fzofzp1b 12566 If a point is in a half-op...
elfzom1b 12567 An integer is a member of ...
elfzom1elp1fzo1 12568 Membership of a nonnegativ...
elfzo1elm1fzo0 12569 Membership of a positive i...
elfzonelfzo 12570 If an element of a half-op...
fzonfzoufzol 12571 If an element of a half-op...
elfzomelpfzo 12572 An integer increased by an...
elfznelfzo 12573 A value in a finite set of...
elfznelfzob 12574 A value in a finite set of...
peano2fzor 12575 A Peano-postulate-like the...
fzosplitsn 12576 Extending a half-open rang...
fzosplitpr 12577 Extending a half-open inte...
fzosplitprm1 12578 Extending a half-open inte...
fzosplitsni 12579 Membership in a half-open ...
fzisfzounsn 12580 A finite interval of integ...
elfzr 12581 A member of a finite inter...
elfzlmr 12582 A member of a finite inter...
elfz0lmr 12583 A member of a finite inter...
fzostep1 12584 Two possibilities for a nu...
fzoshftral 12585 Shift the scanning order i...
fzind2 12586 Induction on the integers ...
fvinim0ffz 12587 The function values for th...
injresinjlem 12588 Lemma for ~ injresinj . (...
injresinj 12589 A function whose restricti...
subfzo0 12590 The difference between two...
flval 12595 Value of the floor (greate...
flcl 12596 The floor (greatest intege...
reflcl 12597 The floor (greatest intege...
fllelt 12598 A basic property of the fl...
flcld 12599 The floor (greatest intege...
flle 12600 A basic property of the fl...
flltp1 12601 A basic property of the fl...
fllep1 12602 A basic property of the fl...
fraclt1 12603 The fractional part of a r...
fracle1 12604 The fractional part of a r...
fracge0 12605 The fractional part of a r...
flge 12606 The floor function value i...
fllt 12607 The floor function value i...
flflp1 12608 Move floor function betwee...
flid 12609 An integer is its own floo...
flidm 12610 The floor function is idem...
flidz 12611 A real number equals its f...
flltnz 12612 If A is not an integer, th...
flwordi 12613 Ordering relationship for ...
flword2 12614 Ordering relationship for ...
flval2 12615 An alternate way to define...
flval3 12616 An alternate way to define...
flbi 12617 A condition equivalent to ...
flbi2 12618 A condition equivalent to ...
adddivflid 12619 The floor of a sum of an i...
ico01fl0 12620 The floor of a real number...
flge0nn0 12621 The floor of a number grea...
flge1nn 12622 The floor of a number grea...
fldivnn0 12623 The floor function of a di...
refldivcl 12624 The floor function of a di...
divfl0 12625 The floor of a fraction is...
fladdz 12626 An integer can be moved in...
flzadd 12627 An integer can be moved in...
flmulnn0 12628 Move a nonnegative integer...
btwnzge0 12629 A real bounded between an ...
2tnp1ge0ge0 12630 Two times an integer plus ...
flhalf 12631 Ordering relation for the ...
fldivle 12632 The floor function of a di...
fldivnn0le 12633 The floor function of a di...
flltdivnn0lt 12634 The floor function of a di...
ltdifltdiv 12635 If the dividend of a divis...
fldiv4p1lem1div2 12636 The floor of an integer eq...
fldiv4lem1div2uz2 12637 The floor of an integer gr...
fldiv4lem1div2 12638 The floor of a positive in...
ceilval 12639 The value of the ceiling f...
dfceil2 12640 Alternative definition of ...
ceilval2 12641 The value of the ceiling f...
ceicl 12642 The ceiling function retur...
ceilcl 12643 Closure of the ceiling fun...
ceige 12644 The ceiling of a real numb...
ceilge 12645 The ceiling of a real numb...
ceim1l 12646 One less than the ceiling ...
ceilm1lt 12647 One less than the ceiling ...
ceile 12648 The ceiling of a real numb...
ceille 12649 The ceiling of a real numb...
ceilid 12650 An integer is its own ceil...
ceilidz 12651 A real number equals its c...
flleceil 12652 The floor of a real number...
fleqceilz 12653 A real number is an intege...
quoremz 12654 Quotient and remainder of ...
quoremnn0 12655 Quotient and remainder of ...
quoremnn0ALT 12656 Alternate proof of ~ quore...
intfrac2 12657 Decompose a real into inte...
intfracq 12658 Decompose a rational numbe...
fldiv 12659 Cancellation of the embedd...
fldiv2 12660 Cancellation of an embedde...
fznnfl 12661 Finite set of sequential i...
uzsup 12662 An upper set of integers i...
ioopnfsup 12663 An upper set of reals is u...
icopnfsup 12664 An upper set of reals is u...
rpsup 12665 The positive reals are unb...
resup 12666 The real numbers are unbou...
xrsup 12667 The extended real numbers ...
modval 12670 The value of the modulo op...
modvalr 12671 The value of the modulo op...
modcl 12672 Closure law for the modulo...
flpmodeq 12673 Partition of a division in...
modcld 12674 Closure law for the modulo...
mod0 12675 ` A mod B ` is zero iff ` ...
mulmod0 12676 The product of an integer ...
negmod0 12677 ` A ` is divisible by ` B ...
modge0 12678 The modulo operation is no...
modlt 12679 The modulo operation is le...
modelico 12680 Modular reduction produces...
moddiffl 12681 The modulo operation diffe...
moddifz 12682 The modulo operation diffe...
modfrac 12683 The fractional part of a n...
flmod 12684 The floor function express...
intfrac 12685 Break a number into its in...
zmod10 12686 An integer modulo 1 is 0. ...
zmod1congr 12687 Two arbitrary integers are...
modmulnn 12688 Move a positive integer in...
modvalp1 12689 The value of the modulo op...
zmodcl 12690 Closure law for the modulo...
zmodcld 12691 Closure law for the modulo...
zmodfz 12692 An integer mod ` B ` lies ...
zmodfzo 12693 An integer mod ` B ` lies ...
zmodfzp1 12694 An integer mod ` B ` lies ...
modid 12695 Identity law for modulo. ...
modid0 12696 A positive real number mod...
modid2 12697 Identity law for modulo. ...
zmodid2 12698 Identity law for modulo re...
zmodidfzo 12699 Identity law for modulo re...
zmodidfzoimp 12700 Identity law for modulo re...
0mod 12701 Special case: 0 modulo a p...
1mod 12702 Special case: 1 modulo a r...
modabs 12703 Absorption law for modulo....
modabs2 12704 Absorption law for modulo....
modcyc 12705 The modulo operation is pe...
modcyc2 12706 The modulo operation is pe...
modadd1 12707 Addition property of the m...
modaddabs 12708 Absorption law for modulo....
modaddmod 12709 The sum of a real number m...
muladdmodid 12710 The sum of a positive real...
mulp1mod1 12711 The product of an integer ...
modmuladd 12712 Decomposition of an intege...
modmuladdim 12713 Implication of a decomposi...
modmuladdnn0 12714 Implication of a decomposi...
negmod 12715 The negation of a number m...
m1modnnsub1 12716 Minus one modulo a positiv...
m1modge3gt1 12717 Minus one modulo an intege...
addmodid 12718 The sum of a positive inte...
addmodidr 12719 The sum of a positive inte...
modadd2mod 12720 The sum of a real number m...
modm1p1mod0 12721 If an real number modulo a...
modltm1p1mod 12722 If a real number modulo a ...
modmul1 12723 Multiplication property of...
modmul12d 12724 Multiplication property of...
modnegd 12725 Negation property of the m...
modadd12d 12726 Additive property of the m...
modsub12d 12727 Subtraction property of th...
modsubmod 12728 The difference of a real n...
modsubmodmod 12729 The difference of a real n...
2txmodxeq0 12730 Two times a positive real ...
2submod 12731 If a real number is betwee...
modifeq2int 12732 If a nonnegative integer i...
modaddmodup 12733 The sum of an integer modu...
modaddmodlo 12734 The sum of an integer modu...
modmulmod 12735 The product of a real numb...
modmulmodr 12736 The product of an integer ...
modaddmulmod 12737 The sum of a real number a...
moddi 12738 Distribute multiplication ...
modsubdir 12739 Distribute the modulo oper...
modeqmodmin 12740 A real number equals the d...
modirr 12741 A number modulo an irratio...
modfzo0difsn 12742 For a number within a half...
modsumfzodifsn 12743 The sum of a number within...
modlteq 12744 Two nonnegative integers l...
addmodlteq 12745 Two nonnegative integers l...
om2uz0i 12746 The mapping ` G ` is a one...
om2uzsuci 12747 The value of ` G ` (see ~ ...
om2uzuzi 12748 The value ` G ` (see ~ om2...
om2uzlti 12749 Less-than relation for ` G...
om2uzlt2i 12750 The mapping ` G ` (see ~ o...
om2uzrani 12751 Range of ` G ` (see ~ om2u...
om2uzf1oi 12752 ` G ` (see ~ om2uz0i ) is ...
om2uzisoi 12753 ` G ` (see ~ om2uz0i ) is ...
om2uzoi 12754 An alternative definition ...
om2uzrdg 12755 A helper lemma for the val...
uzrdglem 12756 A helper lemma for the val...
uzrdgfni 12757 The recursive definition g...
uzrdg0i 12758 Initial value of a recursi...
uzrdgsuci 12759 Successor value of a recur...
ltweuz 12760 ` < ` is a well-founded re...
ltwenn 12761 Less than well-orders the ...
ltwefz 12762 Less than well-orders a se...
uzenom 12763 An upper integer set is de...
uzinf 12764 An upper integer set is in...
nnnfi 12765 The set of positive intege...
uzrdgxfr 12766 Transfer the value of the ...
fzennn 12767 The cardinality of a finit...
fzen2 12768 The cardinality of a finit...
cardfz 12769 The cardinality of a finit...
hashgf1o 12770 ` G ` maps ` _om ` one-to-...
fzfi 12771 A finite interval of integ...
fzfid 12772 Commonly used special case...
fzofi 12773 Half-open integer sets are...
fsequb 12774 The values of a finite rea...
fsequb2 12775 The values of a finite rea...
fseqsupcl 12776 The values of a finite rea...
fseqsupubi 12777 The values of a finite rea...
nn0ennn 12778 The nonnegative integers a...
nnenom 12779 The set of positive intege...
nnct 12780 ` NN ` is countable. (Con...
uzindi 12781 Indirect strong induction ...
axdc4uzlem 12782 Lemma for ~ axdc4uz . (Co...
axdc4uz 12783 A version of ~ axdc4 that ...
ssnn0fi 12784 A subset of the nonnegativ...
rabssnn0fi 12785 A subset of the nonnegativ...
uzsinds 12786 Strong (or "total") induct...
nnsinds 12787 Strong (or "total") induct...
nn0sinds 12788 Strong (or "total") induct...
fsuppmapnn0fiublem 12789 Lemma for ~ fsuppmapnn0fiu...
fsuppmapnn0fiub 12790 If all functions of a fini...
fsuppmapnn0fiubOLD 12791 Obsolete proof of ~ fsuppm...
fsuppmapnn0fiubex 12792 If all functions of a fini...
fsuppmapnn0fiub0 12793 If all functions of a fini...
suppssfz 12794 Condition for a function o...
fsuppmapnn0ub 12795 If a function over the non...
fsuppmapnn0fz 12796 If a function over the non...
mptnn0fsupp 12797 A mapping from the nonnega...
mptnn0fsuppd 12798 A mapping from the nonnega...
mptnn0fsuppr 12799 A finitely supported mappi...
f13idfv 12800 A one-to-one function with...
seqex 12803 Existence of the sequence ...
seqeq1 12804 Equality theorem for the s...
seqeq2 12805 Equality theorem for the s...
seqeq3 12806 Equality theorem for the s...
seqeq1d 12807 Equality deduction for the...
seqeq2d 12808 Equality deduction for the...
seqeq3d 12809 Equality deduction for the...
seqeq123d 12810 Equality deduction for the...
nfseq 12811 Hypothesis builder for the...
seqval 12812 Value of the sequence buil...
seqfn 12813 The sequence builder funct...
seq1 12814 Value of the sequence buil...
seq1i 12815 Value of the sequence buil...
seqp1 12816 Value of the sequence buil...
seqp1i 12817 Value of the sequence buil...
seqm1 12818 Value of the sequence buil...
seqcl2 12819 Closure properties of the ...
seqf2 12820 Range of the recursive seq...
seqcl 12821 Closure properties of the ...
seqf 12822 Range of the recursive seq...
seqfveq2 12823 Equality of sequences. (C...
seqfeq2 12824 Equality of sequences. (C...
seqfveq 12825 Equality of sequences. (C...
seqfeq 12826 Equality of sequences. (C...
seqshft2 12827 Shifting the index set of ...
seqres 12828 Restricting its characteri...
serf 12829 An infinite series of comp...
serfre 12830 An infinite series of real...
monoord 12831 Ordering relation for a mo...
monoord2 12832 Ordering relation for a mo...
sermono 12833 The partial sums in an inf...
seqsplit 12834 Split a sequence into two ...
seq1p 12835 Removing the first term fr...
seqcaopr3 12836 Lemma for ~ seqcaopr2 . (...
seqcaopr2 12837 The sum of two infinite se...
seqcaopr 12838 The sum of two infinite se...
seqf1olem2a 12839 Lemma for ~ seqf1o . (Con...
seqf1olem1 12840 Lemma for ~ seqf1o . (Con...
seqf1olem2 12841 Lemma for ~ seqf1o . (Con...
seqf1o 12842 Rearrange a sum via an arb...
seradd 12843 The sum of two infinite se...
sersub 12844 The difference of two infi...
seqid3 12845 A sequence that consists e...
seqid 12846 Discard the first few term...
seqid2 12847 The last few terms of a se...
seqhomo 12848 Apply a homomorphism to a ...
seqz 12849 If the operation ` .+ ` ha...
seqfeq4 12850 Equality of series under d...
seqfeq3 12851 Equality of series under d...
seqdistr 12852 The distributive property ...
ser0 12853 The value of the partial s...
ser0f 12854 A zero-valued infinite ser...
serge0 12855 A finite sum of nonnegativ...
serle 12856 Comparison of partial sums...
ser1const 12857 Value of the partial serie...
seqof 12858 Distribute function operat...
seqof2 12859 Distribute function operat...
expval 12862 Value of exponentiation to...
expnnval 12863 Value of exponentiation to...
exp0 12864 Value of a complex number ...
0exp0e1 12865 ` 0 ^ 0 = 1 ` (common case...
exp1 12866 Value of a complex number ...
expp1 12867 Value of a complex number ...
expneg 12868 Value of a complex number ...
expneg2 12869 Value of a complex number ...
expn1 12870 A number to the negative o...
expcllem 12871 Lemma for proving nonnegat...
expcl2lem 12872 Lemma for proving integer ...
nnexpcl 12873 Closure of exponentiation ...
nn0expcl 12874 Closure of exponentiation ...
zexpcl 12875 Closure of exponentiation ...
qexpcl 12876 Closure of exponentiation ...
reexpcl 12877 Closure of exponentiation ...
expcl 12878 Closure law for nonnegativ...
rpexpcl 12879 Closure law for exponentia...
reexpclz 12880 Closure of exponentiation ...
qexpclz 12881 Closure of exponentiation ...
m1expcl2 12882 Closure of exponentiation ...
m1expcl 12883 Closure of exponentiation ...
expclzlem 12884 Closure law for integer ex...
expclz 12885 Closure law for integer ex...
nn0expcli 12886 Closure of exponentiation ...
nn0sqcl 12887 The square of a nonnegativ...
expm1t 12888 Exponentiation in terms of...
1exp 12889 Value of one raised to a n...
expeq0 12890 Positive integer exponenti...
expne0 12891 Positive integer exponenti...
expne0i 12892 Nonnegative integer expone...
expgt0 12893 Nonnegative integer expone...
expnegz 12894 Value of a complex number ...
0exp 12895 Value of zero raised to a ...
expge0 12896 Nonnegative integer expone...
expge1 12897 Nonnegative integer expone...
expgt1 12898 Positive integer exponenti...
mulexp 12899 Positive integer exponenti...
mulexpz 12900 Integer exponentiation of ...
exprec 12901 Nonnegative integer expone...
expadd 12902 Sum of exponents law for n...
expaddzlem 12903 Lemma for ~ expaddz . (Co...
expaddz 12904 Sum of exponents law for i...
expmul 12905 Product of exponents law f...
expmulz 12906 Product of exponents law f...
m1expeven 12907 Exponentiation of negative...
expsub 12908 Exponent subtraction law f...
expp1z 12909 Value of a nonzero complex...
expm1 12910 Value of a complex number ...
expdiv 12911 Nonnegative integer expone...
ltexp2a 12912 Ordering relationship for ...
expcan 12913 Cancellation law for expon...
ltexp2 12914 Ordering law for exponenti...
leexp2 12915 Ordering law for exponenti...
leexp2a 12916 Weak ordering relationship...
ltexp2r 12917 The power of a positive nu...
leexp2r 12918 Weak ordering relationship...
leexp1a 12919 Weak mantissa ordering rel...
exple1 12920 Nonnegative integer expone...
expubnd 12921 An upper bound on ` A ^ N ...
sqval 12922 Value of the square of a c...
sqneg 12923 The square of the negative...
sqsubswap 12924 Swap the order of subtract...
sqcl 12925 Closure of square. (Contr...
sqmul 12926 Distribution of square ove...
sqeq0 12927 A number is zero iff its s...
sqdiv 12928 Distribution of square ove...
sqdivid 12929 The square of a nonzero nu...
sqne0 12930 A number is nonzero iff it...
resqcl 12931 Closure of the square of a...
sqgt0 12932 The square of a nonzero re...
nnsqcl 12933 The naturals are closed un...
zsqcl 12934 Integers are closed under ...
qsqcl 12935 The square of a rational i...
sq11 12936 The square function is one...
lt2sq 12937 The square function on non...
le2sq 12938 The square function on non...
le2sq2 12939 The square of a 'less than...
sqge0 12940 A square of a real is nonn...
zsqcl2 12941 The square of an integer i...
sumsqeq0 12942 Two real numbers are equal...
sqvali 12943 Value of square. Inferenc...
sqcli 12944 Closure of square. (Contr...
sqeq0i 12945 A number is zero iff its s...
sqrecii 12946 Square of reciprocal. (Co...
sqmuli 12947 Distribution of square ove...
sqdivi 12948 Distribution of square ove...
resqcli 12949 Closure of square in reals...
sqgt0i 12950 The square of a nonzero re...
sqge0i 12951 A square of a real is nonn...
lt2sqi 12952 The square function on non...
le2sqi 12953 The square function on non...
sq11i 12954 The square function is one...
sq0 12955 The square of 0 is 0. (Co...
sq0i 12956 If a number is zero, its s...
sq0id 12957 If a number is zero, its s...
sq1 12958 The square of 1 is 1. (Co...
neg1sqe1 12959 ` -u 1 ` squared is 1 (com...
sq2 12960 The square of 2 is 4. (Co...
sq3 12961 The square of 3 is 9. (Co...
sq4e2t8 12962 The square of 4 is 2 times...
cu2 12963 The cube of 2 is 8. (Cont...
irec 12964 The reciprocal of ` _i ` ....
i2 12965 ` _i ` squared. (Contribu...
i3 12966 ` _i ` cubed. (Contribute...
i4 12967 ` _i ` to the fourth power...
nnlesq 12968 A positive integer is less...
iexpcyc 12969 Taking ` _i ` to the ` K `...
expnass 12970 A counterexample showing t...
sqlecan 12971 Cancel one factor of a squ...
subsq 12972 Factor the difference of t...
subsq2 12973 Express the difference of ...
binom2i 12974 The square of a binomial. ...
subsqi 12975 Factor the difference of t...
sqeqori 12976 The squares of two complex...
subsq0i 12977 The two solutions to the d...
sqeqor 12978 The squares of two complex...
binom2 12979 The square of a binomial. ...
binom21 12980 Special case of ~ binom2 w...
binom2sub 12981 Expand the square of a sub...
binom2sub1 12982 Special case of ~ binom2su...
binom2subi 12983 Expand the square of a sub...
mulbinom2 12984 The square of a binomial w...
binom3 12985 The cube of a binomial. (...
sq01 12986 If a complex number equals...
zesq 12987 An integer is even iff its...
nnesq 12988 A positive integer is even...
crreczi 12989 Reciprocal of a complex nu...
bernneq 12990 Bernoulli's inequality, du...
bernneq2 12991 Variation of Bernoulli's i...
bernneq3 12992 A corollary of ~ bernneq ....
expnbnd 12993 Exponentiation with a mant...
expnlbnd 12994 The reciprocal of exponent...
expnlbnd2 12995 The reciprocal of exponent...
expmulnbnd 12996 Exponentiation with a mant...
digit2 12997 Two ways to express the ` ...
digit1 12998 Two ways to express the ` ...
modexp 12999 Exponentiation property of...
discr1 13000 A nonnegative quadratic fo...
discr 13001 If a quadratic polynomial ...
exp0d 13002 Value of a complex number ...
exp1d 13003 Value of a complex number ...
expeq0d 13004 Positive integer exponenti...
sqvald 13005 Value of square. Inferenc...
sqcld 13006 Closure of square. (Contr...
sqeq0d 13007 A number is zero iff its s...
expcld 13008 Closure law for nonnegativ...
expp1d 13009 Value of a complex number ...
expaddd 13010 Sum of exponents law for n...
expmuld 13011 Product of exponents law f...
sqrecd 13012 Square of reciprocal. (Co...
expclzd 13013 Closure law for integer ex...
expne0d 13014 Nonnegative integer expone...
expnegd 13015 Value of a complex number ...
exprecd 13016 Nonnegative integer expone...
expp1zd 13017 Value of a nonzero complex...
expm1d 13018 Value of a complex number ...
expsubd 13019 Exponent subtraction law f...
sqmuld 13020 Distribution of square ove...
sqdivd 13021 Distribution of square ove...
expdivd 13022 Nonnegative integer expone...
mulexpd 13023 Positive integer exponenti...
0expd 13024 Value of zero raised to a ...
reexpcld 13025 Closure of exponentiation ...
expge0d 13026 Nonnegative integer expone...
expge1d 13027 Nonnegative integer expone...
sqoddm1div8 13028 A squared odd number minus...
nnsqcld 13029 The naturals are closed un...
nnexpcld 13030 Closure of exponentiation ...
nn0expcld 13031 Closure of exponentiation ...
rpexpcld 13032 Closure law for exponentia...
ltexp2rd 13033 The power of a positive nu...
reexpclzd 13034 Closure of exponentiation ...
resqcld 13035 Closure of square in reals...
sqge0d 13036 A square of a real is nonn...
sqgt0d 13037 The square of a nonzero re...
ltexp2d 13038 Ordering relationship for ...
leexp2d 13039 Ordering law for exponenti...
expcand 13040 Ordering relationship for ...
leexp2ad 13041 Ordering relationship for ...
leexp2rd 13042 Ordering relationship for ...
lt2sqd 13043 The square function on non...
le2sqd 13044 The square function on non...
sq11d 13045 The square function is one...
mulsubdivbinom2 13046 The square of a binomial w...
muldivbinom2 13047 The square of a binomial w...
sq10 13048 The square of 10 is 100. ...
sq10e99m1 13049 The square of 10 is 99 plu...
3dec 13050 A "decimal constructor" wh...
sq10OLD 13051 Old version of ~ sq10 . O...
sq10e99m1OLD 13052 Old version of ~ sq10e99m1...
3decOLD 13053 Old version of ~ 3dec . O...
nn0le2msqi 13054 The square function on non...
nn0opthlem1 13055 A rather pretty lemma for ...
nn0opthlem2 13056 Lemma for ~ nn0opthi . (C...
nn0opthi 13057 An ordered pair theorem fo...
nn0opth2i 13058 An ordered pair theorem fo...
nn0opth2 13059 An ordered pair theorem fo...
facnn 13062 Value of the factorial fun...
fac0 13063 The factorial of 0. (Cont...
fac1 13064 The factorial of 1. (Cont...
facp1 13065 The factorial of a success...
fac2 13066 The factorial of 2. (Cont...
fac3 13067 The factorial of 3. (Cont...
fac4 13068 The factorial of 4. (Cont...
facnn2 13069 Value of the factorial fun...
faccl 13070 Closure of the factorial f...
faccld 13071 Closure of the factorial f...
facmapnn 13072 The factorial function res...
facne0 13073 The factorial function is ...
facdiv 13074 A positive integer divides...
facndiv 13075 No positive integer (great...
facwordi 13076 Ordering property of facto...
faclbnd 13077 A lower bound for the fact...
faclbnd2 13078 A lower bound for the fact...
faclbnd3 13079 A lower bound for the fact...
faclbnd4lem1 13080 Lemma for ~ faclbnd4 . Pr...
faclbnd4lem2 13081 Lemma for ~ faclbnd4 . Us...
faclbnd4lem3 13082 Lemma for ~ faclbnd4 . Th...
faclbnd4lem4 13083 Lemma for ~ faclbnd4 . Pr...
faclbnd4 13084 Variant of ~ faclbnd5 prov...
faclbnd5 13085 The factorial function gro...
faclbnd6 13086 Geometric lower bound for ...
facubnd 13087 An upper bound for the fac...
facavg 13088 The product of two factori...
bcval 13091 Value of the binomial coef...
bcval2 13092 Value of the binomial coef...
bcval3 13093 Value of the binomial coef...
bcval4 13094 Value of the binomial coef...
bcrpcl 13095 Closure of the binomial co...
bccmpl 13096 "Complementing" its second...
bcn0 13097 ` N ` choose 0 is 1. Rema...
bc0k 13098 The binomial coefficient "...
bcnn 13099 ` N ` choose ` N ` is 1. ...
bcn1 13100 Binomial coefficient: ` N ...
bcnp1n 13101 Binomial coefficient: ` N ...
bcm1k 13102 The proportion of one bino...
bcp1n 13103 The proportion of one bino...
bcp1nk 13104 The proportion of one bino...
bcval5 13105 Write out the top and bott...
bcn2 13106 Binomial coefficient: ` N ...
bcp1m1 13107 Compute the binomial coeff...
bcpasc 13108 Pascal's rule for the bino...
bccl 13109 A binomial coefficient, in...
bccl2 13110 A binomial coefficient, in...
bcn2m1 13111 Compute the binomial coeff...
bcn2p1 13112 Compute the binomial coeff...
permnn 13113 The number of permutations...
bcnm1 13114 The binomial coefficent of...
4bc3eq4 13115 The value of four choose t...
4bc2eq6 13116 The value of four choose t...
hashkf 13119 The finite part of the siz...
hashgval 13120 The value of the ` # ` fun...
hashginv 13121 ` ``' G ` maps the size fu...
hashinf 13122 The value of the ` # ` fun...
hashbnd 13123 If ` A ` has size bounded ...
hashfxnn0 13124 The size function is a fun...
hashf 13125 The size function maps all...
hashfOLD 13126 Obsolete version of ~ hash...
hashxnn0 13127 The value of the hash func...
hashresfn 13128 Restriction of the domain ...
dmhashres 13129 Restriction of the domain ...
hashnn0pnf 13130 The value of the hash func...
hashnnn0genn0 13131 If the size of a set is no...
hashnemnf 13132 The size of a set is never...
hashv01gt1 13133 The size of a set is eithe...
hashfz1 13134 The set ` ( 1 ... N ) ` ha...
hashen 13135 Two finite sets have the s...
hasheni 13136 Equinumerous sets have the...
hasheqf1o 13137 The size of two finite set...
fiinfnf1o 13138 There is no bijection betw...
focdmex 13139 The codomain of an onto fu...
hasheqf1oi 13140 The size of two sets is eq...
hasheqf1oiOLD 13141 Obsolete version of ~ hash...
hashf1rn 13142 The size of a finite set w...
hashf1rnOLD 13143 Obsolete version of ~ hash...
hasheqf1od 13144 The size of two sets is eq...
fz1eqb 13145 Two possibly-empty 1-based...
hashcard 13146 The size function of the c...
hashcl 13147 Closure of the ` # ` funct...
hashxrcl 13148 Extended real closure of t...
hashclb 13149 Reverse closure of the ` #...
nfile 13150 The size of any infinite s...
hashvnfin 13151 A set of finite size is a ...
hashnfinnn0 13152 The size of an infinite se...
isfinite4 13153 A finite set is equinumero...
hasheq0 13154 Two ways of saying a finit...
hashneq0 13155 Two ways of saying a set i...
hashgt0n0 13156 If the size of a set is gr...
hashnncl 13157 Positive natural closure o...
hash0 13158 The empty set has size zer...
hashsng 13159 The size of a singleton. ...
hashen1 13160 A set with only one elemen...
hashrabrsn 13161 The size of a restricted c...
hashrabsn01 13162 The size of a restricted c...
hashrabsn1 13163 If the size of a restricte...
hashfn 13164 A function is equinumerous...
fseq1hash 13165 The value of the size func...
hashgadd 13166 ` G ` maps ordinal additio...
hashgval2 13167 A short expression for the...
hashdom 13168 Dominance relation for the...
hashdomi 13169 Non-strict order relation ...
hashsdom 13170 Strict dominance relation ...
hashun 13171 The size of the union of d...
hashun2 13172 The size of the union of f...
hashun3 13173 The size of the union of f...
hashinfxadd 13174 The extended real addition...
hashunx 13175 The size of the union of d...
hashge0 13176 The cardinality of a set i...
hashgt0 13177 The cardinality of a nonem...
hashge1 13178 The cardinality of a nonem...
1elfz0hash 13179 1 is an element of the fin...
hashnn0n0nn 13180 If a nonnegative integer i...
hashunsng 13181 The size of the union of a...
hashprg 13182 The size of an unordered p...
hashprgOLD 13183 Obsolete version of ~ hash...
elprchashprn2 13184 If one element of an unord...
hashprb 13185 The size of an unordered p...
hashprdifel 13186 The elements of an unorder...
prhash2ex 13187 There is (at least) one se...
hashle00 13188 If the size of a set is le...
hashgt0elex 13189 If the size of a set is gr...
hashgt0elexb 13190 The size of a set is great...
hashp1i 13191 Size of a finite ordinal. ...
hash1 13192 Size of a finite ordinal. ...
hash2 13193 Size of a finite ordinal. ...
hash3 13194 Size of a finite ordinal. ...
hash4 13195 Size of a finite ordinal. ...
pr0hash2ex 13196 There is (at least) one se...
hashss 13197 The size of a subset is le...
prsshashgt1 13198 The size of a superset of ...
hashin 13199 The size of the intersecti...
hashssdif 13200 The size of the difference...
hashdif 13201 The size of the difference...
hashdifsn 13202 The size of the difference...
hashdifpr 13203 The size of the difference...
hashsn01 13204 The size of a singleton is...
hashsnle1 13205 The size of a singleton is...
hashsnlei 13206 Get an upper bound on a co...
hash1snb 13207 The size of a set is 1 if ...
euhash1 13208 The size of a set is 1 in ...
hash1n0 13209 If the size of a set is 1 ...
hashgt12el 13210 In a set with more than on...
hashgt12el2 13211 In a set with more than on...
hashunlei 13212 Get an upper bound on a co...
hashsslei 13213 Get an upper bound on a co...
hashfz 13214 Value of the numeric cardi...
fzsdom2 13215 Condition for finite range...
hashfzo 13216 Cardinality of a half-open...
hashfzo0 13217 Cardinality of a half-open...
hashfzp1 13218 Value of the numeric cardi...
hashfz0 13219 Value of the numeric cardi...
hashxplem 13220 Lemma for ~ hashxp . (Con...
hashxp 13221 The size of the Cartesian ...
hashmap 13222 The size of the set expone...
hashpw 13223 The size of the power set ...
hashfun 13224 A finite set is a function...
hashres 13225 The number of elements of ...
hashreshashfun 13226 The number of elements of ...
hashimarn 13227 The size of the image of a...
hashimarni 13228 If the size of the image o...
resunimafz0 13229 TODO-AV: Revise using ` F...
fnfz0hash 13230 The size of a function on ...
ffz0hash 13231 The size of a function on ...
fnfz0hashnn0 13232 The size of a function on ...
ffzo0hash 13233 The size of a function on ...
fnfzo0hash 13234 The size of a function on ...
fnfzo0hashnn0 13235 The value of the size func...
hashbclem 13236 Lemma for ~ hashbc : induc...
hashbc 13237 The binomial coefficient c...
hashfacen 13238 The number of bijections b...
hashf1lem1 13239 Lemma for ~ hashf1 . (Con...
hashf1lem2 13240 Lemma for ~ hashf1 . (Con...
hashf1 13241 The permutation number ` |...
hashfac 13242 A factorial counts the num...
leiso 13243 Two ways to write a strict...
leisorel 13244 Version of ~ isorel for st...
fz1isolem 13245 Lemma for ~ fz1iso . (Con...
fz1iso 13246 Any finite ordered set has...
ishashinf 13247 Any set that is not finite...
seqcoll 13248 The function ` F ` contain...
seqcoll2 13249 The function ` F ` contain...
hashprlei 13250 An unordered pair has at m...
hash2pr 13251 A set of size two is an un...
hash2prde 13252 A set of size two is an un...
hash2exprb 13253 A set of size two is an un...
hash2prb 13254 A set of size two is a pro...
prprrab 13255 The set of proper pairs of...
nehash2 13256 The cardinality of a set w...
hash2prd 13257 A set of size two is an un...
hash2pwpr 13258 If the size of a subset of...
hashle2pr 13259 A nonempty set of size les...
hashle2prv 13260 A nonempty subset of a pow...
pr2pwpr 13261 The set of subsets of a pa...
hashge2el2dif 13262 A set with size at least 2...
hashge2el2difr 13263 A set with at least 2 diff...
hashge2el2difb 13264 A set has size at least 2 ...
hashdmpropge2 13265 The size of the domain of ...
hashtplei 13266 An unordered triple has at...
hashtpg 13267 The size of an unordered t...
hashge3el3dif 13268 A set with size at least 3...
elss2prb 13269 An element of the set of s...
hash2sspr 13270 A subset of size two is an...
exprelprel 13271 If there is an element of ...
hash3tr 13272 A set of size three is an ...
hash1to3 13273 If the size of a set is be...
fundmge2nop0 13274 A function with a domain c...
fundmge2nop 13275 A function with a domain c...
fun2dmnop0 13276 A function with a domain c...
fun2dmnop 13277 A function with a domain c...
brfi1indlem 13278 TODO-AV1: no lemma, but se...
fi1uzind 13279 Properties of an ordered p...
brfi1uzind 13280 Properties of a binary rel...
brfi1ind 13281 Properties of a binary rel...
brfi1indALT 13282 Alternate proof of ~ brfi1...
opfi1uzind 13283 Properties of an ordered p...
opfi1ind 13284 Properties of an ordered p...
fi1uzindOLD 13285 Obsolete version of ~ fi1u...
brfi1uzindOLD 13286 Obsolete version of ~ brfi...
brfi1indOLD 13287 Obsolete version of ~ brfi...
brfi1indALTOLD 13288 Obsolete version of ~ brfi...
opfi1uzindOLD 13289 Obsolete version of ~ opfi...
opfi1indOLD 13290 Obsolete version of ~ opfi...
iswrd 13307 Property of being a word o...
wrdval 13308 Value of the set of words ...
iswrdi 13309 A zero-based sequence is a...
wrdf 13310 A word is a zero-based seq...
iswrdb 13311 A word over an alphabet is...
wrddm 13312 The indices of a word (i.e...
sswrd 13313 The set of words respects ...
snopiswrd 13314 A singleton of an ordered ...
wrdexg 13315 The set of words over a se...
wrdexb 13316 The set of words over a se...
wrdexi 13317 The set of words over a se...
wrdsymbcl 13318 A symbol within a word ove...
wrdfn 13319 A word is a function with ...
wrdv 13320 A word over an alphabet is...
wrdlndm 13321 The length of a word is no...
iswrdsymb 13322 An arbitrary word is a wor...
wrdfin 13323 A word is a finite set. (...
lencl 13324 The length of a word is a ...
lennncl 13325 The length of a nonempty w...
wrdffz 13326 A word is a function from ...
wrdeq 13327 Equality theorem for the s...
wrdeqi 13328 Equality theorem for the s...
iswrddm0 13329 A function with empty doma...
wrd0 13330 The empty set is a word (t...
0wrd0 13331 The empty word is the only...
ffz0iswrd 13332 A sequence with zero-based...
nfwrd 13333 Hypothesis builder for ` W...
csbwrdg 13334 Class substitution for the...
wrdnval 13335 Words of a fixed length ar...
wrdmap 13336 Words as a mapping. (Cont...
hashwrdn 13337 If there is only a finite ...
wrdnfi 13338 If there is only a finite ...
wrdsymb0 13339 A symbol at a position "ou...
wrdlenge1n0 13340 A word with length at leas...
wrdlenge2n0 13341 A word with length at leas...
wrdsymb1 13342 The first symbol of a none...
wrdlen1 13343 A word of length 1 starts ...
fstwrdne 13344 The first symbol of a none...
fstwrdne0 13345 The first symbol of a none...
eqwrd 13346 Two words are equal iff th...
elovmpt2wrd 13347 Implications for the value...
elovmptnn0wrd 13348 Implications for the value...
wrdred1 13349 A word truncated by a symb...
wrdred1hash 13350 The length of a word trunc...
lsw 13351 Extract the last symbol of...
lsw0 13352 The last symbol of an empt...
lsw0g 13353 The last symbol of an empt...
lsw1 13354 The last symbol of a word ...
lswcl 13355 Closure of the last symbol...
lswlgt0cl 13356 The last symbol of a nonem...
ccatfn 13357 The concatenation operator...
ccatfval 13358 Value of the concatenation...
ccatcl 13359 The concatenation of two w...
ccatlen 13360 The length of a concatenat...
ccatval1 13361 Value of a symbol in the l...
ccatval2 13362 Value of a symbol in the r...
ccatval3 13363 Value of a symbol in the r...
elfzelfzccat 13364 An element of a finite set...
ccatvalfn 13365 The concatenation of two w...
ccatsymb 13366 The symbol at a given posi...
ccatfv0 13367 The first symbol of a conc...
ccatval1lsw 13368 The last symbol of the lef...
ccatlid 13369 Concatenation of a word by...
ccatrid 13370 Concatenation of a word by...
ccatass 13371 Associative law for concat...
ccatrn 13372 The range of a concatenate...
lswccatn0lsw 13373 The last symbol of a word ...
lswccat0lsw 13374 The last symbol of a word ...
ccatalpha 13375 A concatenation of two arb...
ccatrcl1 13376 Reverse closure of a conca...
ids1 13377 Identity function protecti...
s1val 13378 Value of a single-symbol w...
s1rn 13379 The range of a single-symb...
s1eq 13380 Equality theorem for a sin...
s1eqd 13381 Equality theorem for a sin...
s1cl 13382 A singleton word is a word...
s1cld 13383 A singleton word is a word...
s1cli 13384 A singleton word is a word...
s1len 13385 Length of a singleton word...
s1nz 13386 A singleton word is not th...
s1nzOLD 13387 Obsolete proof of ~ s1nz a...
s1dm 13388 The domain of a singleton ...
s1dmALT 13389 Alternate version of ~ s1d...
s1fv 13390 Sole symbol of a singleton...
lsws1 13391 The last symbol of a singl...
eqs1 13392 A word of length 1 is a si...
wrdl1exs1 13393 A word of length 1 is a si...
wrdl1s1 13394 A word of length 1 is a si...
s111 13395 The singleton word functio...
ccatws1cl 13396 The concatenation of a wor...
ccat2s1cl 13397 The concatenation of two s...
ccatws1len 13398 The length of the concaten...
wrdlenccats1lenm1 13399 The length of a word is th...
ccat2s1len 13400 The length of the concaten...
ccatw2s1cl 13401 The concatenation of a wor...
ccatw2s1len 13402 The length of the concaten...
ccats1val1 13403 Value of a symbol in the l...
ccats1val2 13404 Value of the symbol concat...
ccat2s1p1 13405 Extract the first of two c...
ccat2s1p2 13406 Extract the second of two ...
ccatw2s1ass 13407 Associative law for a conc...
ccatws1lenrevOLD 13408 Obsolete theorem as of 24-...
ccatws1n0 13409 The concatenation of a wor...
ccatws1ls 13410 The last symbol of the con...
lswccats1 13411 The last symbol of a word ...
lswccats1fst 13412 The last symbol of a nonem...
ccatw2s1p1 13413 Extract the symbol of the ...
ccatw2s1p2 13414 Extract the second of two ...
ccat2s1fvw 13415 Extract a symbol of a word...
ccat2s1fst 13416 The first symbol of the co...
swrdval 13417 Value of a subword. (Cont...
swrd00 13418 A zero length substring. ...
swrdcl 13419 Closure of the subword ext...
swrdval2 13420 Value of the subword extra...
swrd0val 13421 Value of the subword extra...
swrd0len 13422 Length of a left-anchored ...
swrdlen 13423 Length of an extracted sub...
swrdfv 13424 A symbol in an extracted s...
swrdf 13425 A subword of a word is a f...
swrdvalfn 13426 Value of the subword extra...
swrd0f 13427 A left-anchored subword of...
swrdid 13428 A word is a subword of its...
swrdrn 13429 The range of a subword of ...
swrdn0 13430 A prefixing subword consis...
swrdlend 13431 The value of the subword e...
swrdnd 13432 The value of the subword e...
swrdnd2 13433 Value of the subword extra...
swrd0 13434 A subword of an empty set ...
swrdrlen 13435 Length of a right-anchored...
swrd0len0 13436 Length of a prefix of a wo...
addlenrevswrd 13437 The sum of the lengths of ...
addlenswrd 13438 The sum of the lengths of ...
swrd0fv 13439 A symbol in an left-anchor...
swrd0fv0 13440 The first symbol in a left...
swrdtrcfv 13441 A symbol in a word truncat...
swrdtrcfv0 13442 The first symbol in a word...
swrd0fvlsw 13443 The last symbol in a left-...
swrdeq 13444 Two subwords of words are ...
swrdlen2 13445 Length of an extracted sub...
swrdfv2 13446 A symbol in an extracted s...
swrdsb0eq 13447 Two subwords with the same...
swrdsbslen 13448 Two subwords with the same...
swrdspsleq 13449 Two words have a common su...
swrdtrcfvl 13450 The last symbol in a word ...
swrds1 13451 Extract a single symbol fr...
swrdlsw 13452 Extract the last single sy...
2swrdeqwrdeq 13453 Two words are equal if and...
2swrd1eqwrdeq 13454 Two (nonempty) words are e...
disjxwrd 13455 Sets of words are disjoint...
ccatswrd 13456 Joining two adjacent subwo...
swrdccat1 13457 Recover the left half of a...
swrdccat2 13458 Recover the right half of ...
swrdswrdlem 13459 Lemma for ~ swrdswrd . (C...
swrdswrd 13460 A subword of a subword. (...
swrd0swrd 13461 A prefix of a subword. (C...
swrdswrd0 13462 A subword of a prefix. (C...
swrd0swrd0 13463 A prefix of a prefix. (Co...
swrd0swrdid 13464 A prefix of a prefix with ...
wrdcctswrd 13465 The concatenation of two p...
lencctswrd 13466 The length of two concaten...
lenrevcctswrd 13467 The length of two reversel...
swrdccatwrd 13468 Reconstruct a nonempty wor...
ccats1swrdeq 13469 The last symbol of a word ...
ccatopth 13470 An ~ opth -like theorem fo...
ccatopth2 13471 An ~ opth -like theorem fo...
ccatlcan 13472 Concatenation of words is ...
ccatrcan 13473 Concatenation of words is ...
wrdeqs1cat 13474 Decompose a nonempty word ...
cats1un 13475 Express a word with an ext...
wrdind 13476 Perform induction over the...
wrd2ind 13477 Perform induction over the...
ccats1swrdeqrex 13478 There exists a symbol such...
reuccats1lem 13479 Lemma for ~ reuccats1 . (...
reuccats1 13480 A set of words having the ...
reuccats1v 13481 A set of words having the ...
swrdccatfn 13482 The subword of a concatena...
swrdccatin1 13483 The subword of a concatena...
swrdccatin12lem1 13484 Lemma 1 for ~ swrdccatin12...
swrdccatin12lem2a 13485 Lemma 1 for ~ swrdccatin12...
swrdccatin12lem2b 13486 Lemma 2 for ~ swrdccatin12...
swrdccatin2 13487 The subword of a concatena...
swrdccatin12lem2c 13488 Lemma for ~ swrdccatin12le...
swrdccatin12lem2 13489 Lemma 2 for ~ swrdccatin12...
swrdccatin12lem3 13490 Lemma 3 for ~ swrdccatin12...
swrdccatin12 13491 The subword of a concatena...
swrdccat3 13492 The subword of a concatena...
swrdccat 13493 The subword of a concatena...
swrdccat3a 13494 A prefix of a concatenatio...
swrdccat3blem 13495 Lemma for ~ swrdccat3b . ...
swrdccat3b 13496 A suffix of a concatenatio...
swrdccatid 13497 A prefix of a concatenatio...
ccats1swrdeqbi 13498 A word is a prefix of a wo...
swrdccatin1d 13499 The subword of a concatena...
swrdccatin2d 13500 The subword of a concatena...
swrdccatin12d 13501 The subword of a concatena...
splval 13502 Value of the substring rep...
splcl 13503 Closure of the substring r...
splid 13504 Splicing a subword for the...
spllen 13505 The length of a splice. (...
splfv1 13506 Symbols to the left of a s...
splfv2a 13507 Symbols within the replace...
splval2 13508 Value of a splice, assumin...
revval 13509 Value of the word reversin...
revcl 13510 The reverse of a word is a...
revlen 13511 The reverse of a word has ...
revfv 13512 Reverse of a word at a poi...
rev0 13513 The empty word is its own ...
revs1 13514 Singleton words are their ...
revccat 13515 Antiautomorphic property o...
revrev 13516 Reversion is an involution...
reps 13517 Construct a function mappi...
repsundef 13518 A function mapping a half-...
repsconst 13519 Construct a function mappi...
repsf 13520 The constructed function m...
repswsymb 13521 The symbols of a "repeated...
repsw 13522 A function mapping a half-...
repswlen 13523 The length of a "repeated ...
repsw0 13524 The "repeated symbol word"...
repsdf2 13525 Alternative definition of ...
repswsymball 13526 All the symbols of a "repe...
repswsymballbi 13527 A word is a "repeated symb...
repswfsts 13528 The first symbol of a none...
repswlsw 13529 The last symbol of a nonem...
repsw1 13530 The "repeated symbol word"...
repswswrd 13531 A subword of a "repeated s...
repswccat 13532 The concatenation of two "...
repswrevw 13533 The reverse of a "repeated...
cshfn 13536 Perform a cyclical shift f...
cshword 13537 Perform a cyclical shift f...
cshnz 13538 A cyclical shift is the em...
0csh0 13539 Cyclically shifting an emp...
cshw0 13540 A word cyclically shifted ...
cshwmodn 13541 Cyclically shifting a word...
cshwsublen 13542 Cyclically shifting a word...
cshwn 13543 A word cyclically shifted ...
cshwcl 13544 A cyclically shifted word ...
cshwlen 13545 The length of a cyclically...
cshwf 13546 A cyclically shifted word ...
cshwfn 13547 A cyclically shifted word ...
cshwrn 13548 The range of a cyclically ...
cshwidxmod 13549 The symbol at a given inde...
cshwidxmodr 13550 The symbol at a given inde...
cshwidx0mod 13551 The symbol at index 0 of a...
cshwidx0 13552 The symbol at index 0 of a...
cshwidxm1 13553 The symbol at index ((n-N)...
cshwidxm 13554 The symbol at index (n-N) ...
cshwidxn 13555 The symbol at index (n-1) ...
cshf1 13556 Cyclically shifting a word...
cshinj 13557 If a word is injectiv (reg...
repswcshw 13558 A cyclically shifted "repe...
2cshw 13559 Cyclically shifting a word...
2cshwid 13560 Cyclically shifting a word...
lswcshw 13561 The last symbol of a word ...
2cshwcom 13562 Cyclically shifting a word...
cshwleneq 13563 If the results of cyclical...
3cshw 13564 Cyclically shifting a word...
cshweqdif2 13565 If cyclically shifting two...
cshweqdifid 13566 If cyclically shifting a w...
cshweqrep 13567 If cyclically shifting a w...
cshw1 13568 If cyclically shifting a w...
cshw1repsw 13569 If cyclically shifting a w...
cshwsexa 13570 The class of (different!) ...
2cshwcshw 13571 If a word is a cyclically ...
scshwfzeqfzo 13572 For a nonempty word the se...
cshwcshid 13573 A cyclically shifted word ...
cshwcsh2id 13574 A cyclically shifted word ...
cshimadifsn 13575 The image of a cyclically ...
cshimadifsn0 13576 The image of a cyclically ...
wrdco 13577 Mapping a word by a functi...
lenco 13578 Length of a mapped word is...
s1co 13579 Mapping of a singleton wor...
revco 13580 Mapping of words commutes ...
ccatco 13581 Mapping of words commutes ...
cshco 13582 Mapping of words commutes ...
swrdco 13583 Mapping of words commutes ...
lswco 13584 Mapping of (nonempty) word...
repsco 13585 Mapping of words commutes ...
cats1cld 13600 Closure of concatenation w...
cats1co 13601 Closure of concatenation w...
cats1cli 13602 Closure of concatenation w...
cats1fvn 13603 The last symbol of a conca...
cats1fv 13604 A symbol other than the la...
cats1len 13605 The length of concatenatio...
cats1cat 13606 Closure of concatenation w...
cats2cat 13607 Closure of concatenation o...
s2eqd 13608 Equality theorem for a dou...
s3eqd 13609 Equality theorem for a len...
s4eqd 13610 Equality theorem for a len...
s5eqd 13611 Equality theorem for a len...
s6eqd 13612 Equality theorem for a len...
s7eqd 13613 Equality theorem for a len...
s8eqd 13614 Equality theorem for a len...
s3eq2 13615 Equality theorem for a len...
s2cld 13616 A doubleton word is a word...
s3cld 13617 A length 3 string is a wor...
s4cld 13618 A length 4 string is a wor...
s5cld 13619 A length 5 string is a wor...
s6cld 13620 A length 6 string is a wor...
s7cld 13621 A length 7 string is a wor...
s8cld 13622 A length 7 string is a wor...
s2cl 13623 A doubleton word is a word...
s3cl 13624 A length 3 string is a wor...
s2cli 13625 A doubleton word is a word...
s3cli 13626 A length 3 string is a wor...
s4cli 13627 A length 4 string is a wor...
s5cli 13628 A length 5 string is a wor...
s6cli 13629 A length 6 string is a wor...
s7cli 13630 A length 7 string is a wor...
s8cli 13631 A length 8 string is a wor...
s2fv0 13632 Extract the first symbol f...
s2fv1 13633 Extract the second symbol ...
s2len 13634 The length of a doubleton ...
s2dm 13635 The domain of a doubleton ...
s3fv0 13636 Extract the first symbol f...
s3fv1 13637 Extract the second symbol ...
s3fv2 13638 Extract the third symbol f...
s3len 13639 The length of a length 3 s...
s4fv0 13640 Extract the first symbol f...
s4fv1 13641 Extract the second symbol ...
s4fv2 13642 Extract the third symbol f...
s4fv3 13643 Extract the fourth symbol ...
s4len 13644 The length of a length 4 s...
s5len 13645 The length of a length 5 s...
s6len 13646 The length of a length 6 s...
s7len 13647 The length of a length 7 s...
s8len 13648 The length of a length 8 s...
lsws2 13649 The last symbol of a doubl...
lsws3 13650 The last symbol of a 3 let...
lsws4 13651 The last symbol of a 4 let...
s2prop 13652 A length 2 word is an unor...
s2dmALT 13653 Alternate version of ~ s2d...
s3tpop 13654 A length 3 word is an unor...
s4prop 13655 A length 4 word is a union...
s3fn 13656 A length 3 word is a funct...
funcnvs1 13657 The converse of a singleto...
funcnvs2 13658 The converse of a length 2...
funcnvs3 13659 The converse of a length 3...
funcnvs4 13660 The converse of a length 4...
s2f1o 13661 A length 2 word with mutua...
f1oun2prg 13662 A union of unordered pairs...
s4f1o 13663 A length 4 word with mutua...
s4dom 13664 The domain of a length 4 w...
s2co 13665 Mapping a doubleton word b...
s3co 13666 Mapping a length 3 string ...
s0s1 13667 Concatenation of fixed len...
s1s2 13668 Concatenation of fixed len...
s1s3 13669 Concatenation of fixed len...
s1s4 13670 Concatenation of fixed len...
s1s5 13671 Concatenation of fixed len...
s1s6 13672 Concatenation of fixed len...
s1s7 13673 Concatenation of fixed len...
s2s2 13674 Concatenation of fixed len...
s4s2 13675 Concatenation of fixed len...
s4s3 13676 Concatenation of fixed len...
s4s4 13677 Concatenation of fixed len...
s3s4 13678 Concatenation of fixed len...
s2s5 13679 Concatenation of fixed len...
s5s2 13680 Concatenation of fixed len...
s2eq2s1eq 13681 Two length 2 words are equ...
s2eq2seq 13682 Two length 2 words are equ...
s3eqs2s1eq 13683 Two length 3 words are equ...
s3eq3seq 13684 Two length 3 words are equ...
swrds2 13685 Extract two adjacent symbo...
wrdlen2i 13686 Implications of a word of ...
wrd2pr2op 13687 A word of length 2 represe...
wrdlen2 13688 A word of length 2. (Cont...
wrdlen2s2 13689 A word of length 2 as doub...
wrdl2exs2 13690 A word of length 2 is a do...
wrd3tpop 13691 A word of length 3 represe...
wrdlen3s3 13692 A word of length 3 as leng...
repsw2 13693 The "repeated symbol word"...
repsw3 13694 The "repeated symbol word"...
swrd2lsw 13695 Extract the last two symbo...
2swrd2eqwrdeq 13696 Two words of length at lea...
ccatw2s1ccatws2 13697 The concatenation of a wor...
ccat2s1fvwALT 13698 Alternate proof of ~ ccat2...
wwlktovf 13699 Lemma 1 for ~ wrd2f1tovbij...
wwlktovf1 13700 Lemma 2 for ~ wrd2f1tovbij...
wwlktovfo 13701 Lemma 3 for ~ wrd2f1tovbij...
wwlktovf1o 13702 Lemma 4 for ~ wrd2f1tovbij...
wrd2f1tovbij 13703 There is a bijection betwe...
eqwrds3 13704 A word is equal with a len...
wrdl3s3 13705 A word of length 3 is a le...
s3sndisj 13706 The singletons consisting ...
s3iunsndisj 13707 The union of singletons co...
ofccat 13708 Letterwise operations on w...
ofs1 13709 Letterwise operations on a...
ofs2 13710 Letterwise operations on a...
coss12d 13711 Subset deduction for compo...
trrelssd 13712 The composition of subclas...
xpcogend 13713 The most interesting case ...
xpcoidgend 13714 If two classes are not dis...
cotr2g 13715 Two ways of saying that th...
cotr2 13716 Two ways of saying a relat...
cotr3 13717 Two ways of saying a relat...
coemptyd 13718 Deduction about compositio...
xptrrel 13719 The cross product is alway...
0trrel 13720 The empty class is a trans...
cleq1lem 13721 Equality implies bijection...
cleq1 13722 Equality of relations impl...
clsslem 13723 The closure of a subclass ...
trcleq1 13728 Equality of relations impl...
trclsslem 13729 The transitive closure (as...
trcleq2lem 13730 Equality implies bijection...
cvbtrcl 13731 Change of bound variable i...
trcleq12lem 13732 Equality implies bijection...
trclexlem 13733 Existence of relation impl...
trclublem 13734 If a relation exists then ...
trclubi 13735 The Cartesian product of t...
trclubiOLD 13736 Obsolete version of ~ trcl...
trclubgi 13737 The union with the Cartesi...
trclubgiOLD 13738 Obsolete version of ~ trcl...
trclub 13739 The Cartesian product of t...
trclubg 13740 The union with the Cartesi...
trclfv 13741 The transitive closure of ...
brintclab 13742 Two ways to express a bina...
brtrclfv 13743 Two ways of expressing the...
brcnvtrclfv 13744 Two ways of expressing the...
brtrclfvcnv 13745 Two ways of expressing the...
brcnvtrclfvcnv 13746 Two ways of expressing the...
trclfvss 13747 The transitive closure (as...
trclfvub 13748 The transitive closure of ...
trclfvlb 13749 The transitive closure of ...
trclfvcotr 13750 The transitive closure of ...
trclfvlb2 13751 The transitive closure of ...
trclfvlb3 13752 The transitive closure of ...
cotrtrclfv 13753 The transitive closure of ...
trclidm 13754 The transitive closure of ...
trclun 13755 Transitive closure of a un...
trclfvg 13756 The value of the transitiv...
trclfvcotrg 13757 The value of the transitiv...
reltrclfv 13758 The transitive closure of ...
dmtrclfv 13759 The domain of the transiti...
relexp0g 13762 A relation composed zero t...
relexp0 13763 A relation composed zero t...
relexp0d 13764 A relation composed zero t...
relexpsucnnr 13765 A reduction for relation e...
relexp1g 13766 A relation composed once i...
dfid5 13767 Identity relation is equal...
dfid6 13768 Identity relation expresse...
relexpsucr 13769 A reduction for relation e...
relexpsucrd 13770 A reduction for relation e...
relexp1d 13771 A relation composed once i...
relexpsucnnl 13772 A reduction for relation e...
relexpsucl 13773 A reduction for relation e...
relexpsucld 13774 A reduction for relation e...
relexpcnv 13775 Commutation of converse an...
relexpcnvd 13776 Commutation of converse an...
relexp0rel 13777 The exponentiation of a cl...
relexprelg 13778 The exponentiation of a cl...
relexprel 13779 The exponentiation of a re...
relexpreld 13780 The exponentiation of a re...
relexpnndm 13781 The domain of an exponenti...
relexpdmg 13782 The domain of an exponenti...
relexpdm 13783 The domain of an exponenti...
relexpdmd 13784 The domain of an exponenti...
relexpnnrn 13785 The range of an exponentia...
relexprng 13786 The range of an exponentia...
relexprn 13787 The range of an exponentia...
relexprnd 13788 The range of an exponentia...
relexpfld 13789 The field of an exponentia...
relexpfldd 13790 The field of an exponentia...
relexpaddnn 13791 Relation composition becom...
relexpuzrel 13792 The exponentiation of a cl...
relexpaddg 13793 Relation composition becom...
relexpaddd 13794 Relation composition becom...
dfrtrclrec2 13797 If two elements are connec...
rtrclreclem1 13798 The reflexive, transitive ...
rtrclreclem2 13799 The reflexive, transitive ...
rtrclreclem3 13800 The reflexive, transitive ...
rtrclreclem4 13801 The reflexive, transitive ...
dfrtrcl2 13802 The two definitions ` t* `...
relexpindlem 13803 Principle of transitive in...
relexpind 13804 Principle of transitive in...
rtrclind 13805 Principle of transitive in...
shftlem 13808 Two ways to write a shifte...
shftuz 13809 A shift of the upper integ...
shftfval 13810 The value of the sequence ...
shftdm 13811 Domain of a relation shift...
shftfib 13812 Value of a fiber of the re...
shftfn 13813 Functionality and domain o...
shftval 13814 Value of a sequence shifte...
shftval2 13815 Value of a sequence shifte...
shftval3 13816 Value of a sequence shifte...
shftval4 13817 Value of a sequence shifte...
shftval5 13818 Value of a shifted sequenc...
shftf 13819 Functionality of a shifted...
2shfti 13820 Composite shift operations...
shftidt2 13821 Identity law for the shift...
shftidt 13822 Identity law for the shift...
shftcan1 13823 Cancellation law for the s...
shftcan2 13824 Cancellation law for the s...
seqshft 13825 Shifting the index set of ...
sgnval 13828 Value of Signum function. ...
sgn0 13829 Proof that signum of 0 is ...
sgnp 13830 Proof that signum of posit...
sgnrrp 13831 Proof that signum of posit...
sgn1 13832 Proof that the signum of 1...
sgnpnf 13833 Proof that the signum of `...
sgnn 13834 Proof that signum of negat...
sgnmnf 13835 Proof that the signum of `...
cjval 13842 The value of the conjugate...
cjth 13843 The defining property of t...
cjf 13844 Domain and codomain of the...
cjcl 13845 The conjugate of a complex...
reval 13846 The value of the real part...
imval 13847 The value of the imaginary...
imre 13848 The imaginary part of a co...
reim 13849 The real part of a complex...
recl 13850 The real part of a complex...
imcl 13851 The imaginary part of a co...
ref 13852 Domain and codomain of the...
imf 13853 Domain and codomain of the...
crre 13854 The real part of a complex...
crim 13855 The real part of a complex...
replim 13856 Reconstruct a complex numb...
remim 13857 Value of the conjugate of ...
reim0 13858 The imaginary part of a re...
reim0b 13859 A number is real iff its i...
rereb 13860 A number is real iff it eq...
mulre 13861 A product with a nonzero r...
rere 13862 A real number equals its r...
cjreb 13863 A number is real iff it eq...
recj 13864 Real part of a complex con...
reneg 13865 Real part of negative. (C...
readd 13866 Real part distributes over...
resub 13867 Real part distributes over...
remullem 13868 Lemma for ~ remul , ~ immu...
remul 13869 Real part of a product. (...
remul2 13870 Real part of a product. (...
rediv 13871 Real part of a division. ...
imcj 13872 Imaginary part of a comple...
imneg 13873 The imaginary part of a ne...
imadd 13874 Imaginary part distributes...
imsub 13875 Imaginary part distributes...
immul 13876 Imaginary part of a produc...
immul2 13877 Imaginary part of a produc...
imdiv 13878 Imaginary part of a divisi...
cjre 13879 A real number equals its c...
cjcj 13880 The conjugate of the conju...
cjadd 13881 Complex conjugate distribu...
cjmul 13882 Complex conjugate distribu...
ipcnval 13883 Standard inner product on ...
cjmulrcl 13884 A complex number times its...
cjmulval 13885 A complex number times its...
cjmulge0 13886 A complex number times its...
cjneg 13887 Complex conjugate of negat...
addcj 13888 A number plus its conjugat...
cjsub 13889 Complex conjugate distribu...
cjexp 13890 Complex conjugate of posit...
imval2 13891 The imaginary part of a nu...
re0 13892 The real part of zero. (C...
im0 13893 The imaginary part of zero...
re1 13894 The real part of one. (Co...
im1 13895 The imaginary part of one....
rei 13896 The real part of ` _i ` . ...
imi 13897 The imaginary part of ` _i...
cj0 13898 The conjugate of zero. (C...
cji 13899 The complex conjugate of t...
cjreim 13900 The conjugate of a represe...
cjreim2 13901 The conjugate of the repre...
cj11 13902 Complex conjugate is a one...
cjne0 13903 A number is nonzero iff it...
cjdiv 13904 Complex conjugate distribu...
cnrecnv 13905 The inverse to the canonic...
sqeqd 13906 A deduction for showing tw...
recli 13907 The real part of a complex...
imcli 13908 The imaginary part of a co...
cjcli 13909 Closure law for complex co...
replimi 13910 Construct a complex number...
cjcji 13911 The conjugate of the conju...
reim0bi 13912 A number is real iff its i...
rerebi 13913 A real number equals its r...
cjrebi 13914 A number is real iff it eq...
recji 13915 Real part of a complex con...
imcji 13916 Imaginary part of a comple...
cjmulrcli 13917 A complex number times its...
cjmulvali 13918 A complex number times its...
cjmulge0i 13919 A complex number times its...
renegi 13920 Real part of negative. (C...
imnegi 13921 Imaginary part of negative...
cjnegi 13922 Complex conjugate of negat...
addcji 13923 A number plus its conjugat...
readdi 13924 Real part distributes over...
imaddi 13925 Imaginary part distributes...
remuli 13926 Real part of a product. (...
immuli 13927 Imaginary part of a produc...
cjaddi 13928 Complex conjugate distribu...
cjmuli 13929 Complex conjugate distribu...
ipcni 13930 Standard inner product on ...
cjdivi 13931 Complex conjugate distribu...
crrei 13932 The real part of a complex...
crimi 13933 The imaginary part of a co...
recld 13934 The real part of a complex...
imcld 13935 The imaginary part of a co...
cjcld 13936 Closure law for complex co...
replimd 13937 Construct a complex number...
remimd 13938 Value of the conjugate of ...
cjcjd 13939 The conjugate of the conju...
reim0bd 13940 A number is real iff its i...
rerebd 13941 A real number equals its r...
cjrebd 13942 A number is real iff it eq...
cjne0d 13943 A number is nonzero iff it...
recjd 13944 Real part of a complex con...
imcjd 13945 Imaginary part of a comple...
cjmulrcld 13946 A complex number times its...
cjmulvald 13947 A complex number times its...
cjmulge0d 13948 A complex number times its...
renegd 13949 Real part of negative. (C...
imnegd 13950 Imaginary part of negative...
cjnegd 13951 Complex conjugate of negat...
addcjd 13952 A number plus its conjugat...
cjexpd 13953 Complex conjugate of posit...
readdd 13954 Real part distributes over...
imaddd 13955 Imaginary part distributes...
resubd 13956 Real part distributes over...
imsubd 13957 Imaginary part distributes...
remuld 13958 Real part of a product. (...
immuld 13959 Imaginary part of a produc...
cjaddd 13960 Complex conjugate distribu...
cjmuld 13961 Complex conjugate distribu...
ipcnd 13962 Standard inner product on ...
cjdivd 13963 Complex conjugate distribu...
rered 13964 A real number equals its r...
reim0d 13965 The imaginary part of a re...
cjred 13966 A real number equals its c...
remul2d 13967 Real part of a product. (...
immul2d 13968 Imaginary part of a produc...
redivd 13969 Real part of a division. ...
imdivd 13970 Imaginary part of a divisi...
crred 13971 The real part of a complex...
crimd 13972 The imaginary part of a co...
sqrtval 13977 Value of square root funct...
absval 13978 The absolute value (modulu...
rennim 13979 A real number does not lie...
cnpart 13980 The specification of restr...
sqr0lem 13981 Square root of zero. (Con...
sqrt0 13982 Square root of zero. (Con...
sqrlem1 13983 Lemma for ~ 01sqrex . (Co...
sqrlem2 13984 Lemma for ~ 01sqrex . (Co...
sqrlem3 13985 Lemma for ~ 01sqrex . (Co...
sqrlem4 13986 Lemma for ~ 01sqrex . (Co...
sqrlem5 13987 Lemma for ~ 01sqrex . (Co...
sqrlem6 13988 Lemma for ~ 01sqrex . (Co...
sqrlem7 13989 Lemma for ~ 01sqrex . (Co...
01sqrex 13990 Existence of a square root...
resqrex 13991 Existence of a square root...
sqrmo 13992 Uniqueness for the square ...
resqreu 13993 Existence and uniqueness f...
resqrtcl 13994 Closure of the square root...
resqrtthlem 13995 Lemma for ~ resqrtth . (C...
resqrtth 13996 Square root theorem over t...
remsqsqrt 13997 Square of square root. (C...
sqrtge0 13998 The square root function i...
sqrtgt0 13999 The square root function i...
sqrtmul 14000 Square root distributes ov...
sqrtle 14001 Square root is monotonic. ...
sqrtlt 14002 Square root is strictly mo...
sqrt11 14003 The square root function i...
sqrt00 14004 A square root is zero iff ...
rpsqrtcl 14005 The square root of a posit...
sqrtdiv 14006 Square root distributes ov...
sqrtneglem 14007 The square root of a negat...
sqrtneg 14008 The square root of a negat...
sqrtsq2 14009 Relationship between squar...
sqrtsq 14010 Square root of square. (C...
sqrtmsq 14011 Square root of square. (C...
sqrt1 14012 The square root of 1 is 1....
sqrt4 14013 The square root of 4 is 2....
sqrt9 14014 The square root of 9 is 3....
sqrt2gt1lt2 14015 The square root of 2 is bo...
sqrtm1 14016 The imaginary unit is the ...
absneg 14017 Absolute value of negative...
abscl 14018 Real closure of absolute v...
abscj 14019 The absolute value of a nu...
absvalsq 14020 Square of value of absolut...
absvalsq2 14021 Square of value of absolut...
sqabsadd 14022 Square of absolute value o...
sqabssub 14023 Square of absolute value o...
absval2 14024 Value of absolute value fu...
abs0 14025 The absolute value of 0. ...
absi 14026 The absolute value of the ...
absge0 14027 Absolute value is nonnegat...
absrpcl 14028 The absolute value of a no...
abs00 14029 The absolute value of a nu...
abs00ad 14030 A complex number is zero i...
abs00bd 14031 If a complex number is zer...
absreimsq 14032 Square of the absolute val...
absreim 14033 Absolute value of a number...
absmul 14034 Absolute value distributes...
absdiv 14035 Absolute value distributes...
absid 14036 A nonnegative number is it...
abs1 14037 The absolute value of 1. ...
absnid 14038 A negative number is the n...
leabs 14039 A real number is less than...
absor 14040 The absolute value of a re...
absre 14041 Absolute value of a real n...
absresq 14042 Square of the absolute val...
absmod0 14043 ` A ` is divisible by ` B ...
absexp 14044 Absolute value of positive...
absexpz 14045 Absolute value of integer ...
abssq 14046 Square can be moved in and...
sqabs 14047 The squares of two reals a...
absrele 14048 The absolute value of a co...
absimle 14049 The absolute value of a co...
max0add 14050 The sum of the positive an...
absz 14051 A real number is an intege...
nn0abscl 14052 The absolute value of an i...
zabscl 14053 The absolute value of an i...
abslt 14054 Absolute value and 'less t...
absle 14055 Absolute value and 'less t...
abssubne0 14056 If the absolute value of a...
absdiflt 14057 The absolute value of a di...
absdifle 14058 The absolute value of a di...
elicc4abs 14059 Membership in a symmetric ...
lenegsq 14060 Comparison to a nonnegativ...
releabs 14061 The real part of a number ...
recval 14062 Reciprocal expressed with ...
absidm 14063 The absolute value functio...
absgt0 14064 The absolute value of a no...
nnabscl 14065 The absolute value of a no...
abssub 14066 Swapping order of subtract...
abssubge0 14067 Absolute value of a nonneg...
abssuble0 14068 Absolute value of a nonpos...
absmax 14069 The maximum of two numbers...
abstri 14070 Triangle inequality for ab...
abs3dif 14071 Absolute value of differen...
abs2dif 14072 Difference of absolute val...
abs2dif2 14073 Difference of absolute val...
abs2difabs 14074 Absolute value of differen...
abs1m 14075 For any complex number, th...
recan 14076 Cancellation law involving...
absf 14077 Mapping domain and codomai...
abs3lem 14078 Lemma involving absolute v...
abslem2 14079 Lemma involving absolute v...
rddif 14080 The difference between a r...
absrdbnd 14081 Bound on the absolute valu...
fzomaxdiflem 14082 Lemma for ~ fzomaxdif . (...
fzomaxdif 14083 A bound on the separation ...
uzin2 14084 The upper integers are clo...
rexanuz 14085 Combine two different uppe...
rexanre 14086 Combine two different uppe...
rexfiuz 14087 Combine finitely many diff...
rexuz3 14088 Restrict the base of the u...
rexanuz2 14089 Combine two different uppe...
r19.29uz 14090 A version of ~ 19.29 for u...
r19.2uz 14091 A version of ~ r19.2z for ...
rexuzre 14092 Convert an upper real quan...
rexico 14093 Restrict the base of an up...
cau3lem 14094 Lemma for ~ cau3 . (Contr...
cau3 14095 Convert between three-quan...
cau4 14096 Change the base of a Cauch...
caubnd2 14097 A Cauchy sequence of compl...
caubnd 14098 A Cauchy sequence of compl...
sqreulem 14099 Lemma for ~ sqreu : write ...
sqreu 14100 Existence and uniqueness f...
sqrtcl 14101 Closure of the square root...
sqrtthlem 14102 Lemma for ~ sqrtth . (Con...
sqrtf 14103 Mapping domain and codomai...
sqrtth 14104 Square root theorem over t...
sqrtrege0 14105 The square root function m...
eqsqrtor 14106 Solve an equation containi...
eqsqrtd 14107 A deduction for showing th...
eqsqrt2d 14108 A deduction for showing th...
amgm2 14109 Arithmetic-geometric mean ...
sqrtthi 14110 Square root theorem. Theo...
sqrtcli 14111 The square root of a nonne...
sqrtgt0i 14112 The square root of a posit...
sqrtmsqi 14113 Square root of square. (C...
sqrtsqi 14114 Square root of square. (C...
sqsqrti 14115 Square of square root. (C...
sqrtge0i 14116 The square root of a nonne...
absidi 14117 A nonnegative number is it...
absnidi 14118 A negative number is the n...
leabsi 14119 A real number is less than...
absori 14120 The absolute value of a re...
absrei 14121 Absolute value of a real n...
sqrtpclii 14122 The square root of a posit...
sqrtgt0ii 14123 The square root of a posit...
sqrt11i 14124 The square root function i...
sqrtmuli 14125 Square root distributes ov...
sqrtmulii 14126 Square root distributes ov...
sqrtmsq2i 14127 Relationship between squar...
sqrtlei 14128 Square root is monotonic. ...
sqrtlti 14129 Square root is strictly mo...
abslti 14130 Absolute value and 'less t...
abslei 14131 Absolute value and 'less t...
absvalsqi 14132 Square of value of absolut...
absvalsq2i 14133 Square of value of absolut...
abscli 14134 Real closure of absolute v...
absge0i 14135 Absolute value is nonnegat...
absval2i 14136 Value of absolute value fu...
abs00i 14137 The absolute value of a nu...
absgt0i 14138 The absolute value of a no...
absnegi 14139 Absolute value of negative...
abscji 14140 The absolute value of a nu...
releabsi 14141 The real part of a number ...
abssubi 14142 Swapping order of subtract...
absmuli 14143 Absolute value distributes...
sqabsaddi 14144 Square of absolute value o...
sqabssubi 14145 Square of absolute value o...
absdivzi 14146 Absolute value distributes...
abstrii 14147 Triangle inequality for ab...
abs3difi 14148 Absolute value of differen...
abs3lemi 14149 Lemma involving absolute v...
rpsqrtcld 14150 The square root of a posit...
sqrtgt0d 14151 The square root of a posit...
absnidd 14152 A negative number is the n...
leabsd 14153 A real number is less than...
absord 14154 The absolute value of a re...
absred 14155 Absolute value of a real n...
resqrtcld 14156 The square root of a nonne...
sqrtmsqd 14157 Square root of square. (C...
sqrtsqd 14158 Square root of square. (C...
sqrtge0d 14159 The square root of a nonne...
sqrtnegd 14160 The square root of a negat...
absidd 14161 A nonnegative number is it...
sqrtdivd 14162 Square root distributes ov...
sqrtmuld 14163 Square root distributes ov...
sqrtsq2d 14164 Relationship between squar...
sqrtled 14165 Square root is monotonic. ...
sqrtltd 14166 Square root is strictly mo...
sqr11d 14167 The square root function i...
absltd 14168 Absolute value and 'less t...
absled 14169 Absolute value and 'less t...
abssubge0d 14170 Absolute value of a nonneg...
abssuble0d 14171 Absolute value of a nonpos...
absdifltd 14172 The absolute value of a di...
absdifled 14173 The absolute value of a di...
icodiamlt 14174 Two elements in a half-ope...
abscld 14175 Real closure of absolute v...
sqrtcld 14176 Closure of the square root...
sqrtrege0d 14177 The real part of the squar...
sqsqrtd 14178 Square root theorem. Theo...
msqsqrtd 14179 Square root theorem. Theo...
sqr00d 14180 A square root is zero iff ...
absvalsqd 14181 Square of value of absolut...
absvalsq2d 14182 Square of value of absolut...
absge0d 14183 Absolute value is nonnegat...
absval2d 14184 Value of absolute value fu...
abs00d 14185 The absolute value of a nu...
absne0d 14186 The absolute value of a nu...
absrpcld 14187 The absolute value of a no...
absnegd 14188 Absolute value of negative...
abscjd 14189 The absolute value of a nu...
releabsd 14190 The real part of a number ...
absexpd 14191 Absolute value of positive...
abssubd 14192 Swapping order of subtract...
absmuld 14193 Absolute value distributes...
absdivd 14194 Absolute value distributes...
abstrid 14195 Triangle inequality for ab...
abs2difd 14196 Difference of absolute val...
abs2dif2d 14197 Difference of absolute val...
abs2difabsd 14198 Absolute value of differen...
abs3difd 14199 Absolute value of differen...
abs3lemd 14200 Lemma involving absolute v...
limsupgord 14203 Ordering property of the s...
limsupcl 14204 Closure of the superior li...
limsupval 14205 The superior limit of an i...
limsupgf 14206 Closure of the superior li...
limsupgval 14207 Value of the superior limi...
limsupgle 14208 The defining property of t...
limsuple 14209 The defining property of t...
limsuplt 14210 The defining property of t...
limsupval2 14211 The superior limit, relati...
limsupgre 14212 If a sequence of real numb...
limsupbnd1 14213 If a sequence is eventuall...
limsupbnd2 14214 If a sequence is eventuall...
climrel 14223 The limit relation is a re...
rlimrel 14224 The limit relation is a re...
clim 14225 Express the predicate: Th...
rlim 14226 Express the predicate: Th...
rlim2 14227 Rewrite ~ rlim for a mappi...
rlim2lt 14228 Use strictly less-than in ...
rlim3 14229 Restrict the range of the ...
climcl 14230 Closure of the limit of a ...
rlimpm 14231 Closure of a function with...
rlimf 14232 Closure of a function with...
rlimss 14233 Domain closure of a functi...
rlimcl 14234 Closure of the limit of a ...
clim2 14235 Express the predicate: Th...
clim2c 14236 Express the predicate ` F ...
clim0 14237 Express the predicate ` F ...
clim0c 14238 Express the predicate ` F ...
rlim0 14239 Express the predicate ` B ...
rlim0lt 14240 Use strictly less-than in ...
climi 14241 Convergence of a sequence ...
climi2 14242 Convergence of a sequence ...
climi0 14243 Convergence of a sequence ...
rlimi 14244 Convergence at infinity of...
rlimi2 14245 Convergence at infinity of...
ello1 14246 Elementhood in the set of ...
ello12 14247 Elementhood in the set of ...
ello12r 14248 Sufficient condition for e...
lo1f 14249 An eventually upper bounde...
lo1dm 14250 An eventually upper bounde...
lo1bdd 14251 The defining property of a...
ello1mpt 14252 Elementhood in the set of ...
ello1mpt2 14253 Elementhood in the set of ...
ello1d 14254 Sufficient condition for e...
lo1bdd2 14255 If an eventually bounded f...
lo1bddrp 14256 Refine ~ o1bdd2 to give a ...
elo1 14257 Elementhood in the set of ...
elo12 14258 Elementhood in the set of ...
elo12r 14259 Sufficient condition for e...
o1f 14260 An eventually bounded func...
o1dm 14261 An eventually bounded func...
o1bdd 14262 The defining property of a...
lo1o1 14263 A function is eventually b...
lo1o12 14264 A function is eventually b...
elo1mpt 14265 Elementhood in the set of ...
elo1mpt2 14266 Elementhood in the set of ...
elo1d 14267 Sufficient condition for e...
o1lo1 14268 A real function is eventua...
o1lo12 14269 A lower bounded real funct...
o1lo1d 14270 A real eventually bounded ...
icco1 14271 Derive eventual boundednes...
o1bdd2 14272 If an eventually bounded f...
o1bddrp 14273 Refine ~ o1bdd2 to give a ...
climconst 14274 An (eventually) constant s...
rlimconst 14275 A constant sequence conver...
rlimclim1 14276 Forward direction of ~ rli...
rlimclim 14277 A sequence on an upper int...
climrlim2 14278 Produce a real limit from ...
climconst2 14279 A constant sequence conver...
climz 14280 The zero sequence converge...
rlimuni 14281 A real function whose doma...
rlimdm 14282 Two ways to express that a...
climuni 14283 An infinite sequence of co...
fclim 14284 The limit relation is func...
climdm 14285 Two ways to express that a...
climeu 14286 An infinite sequence of co...
climreu 14287 An infinite sequence of co...
climmo 14288 An infinite sequence of co...
rlimres 14289 The restriction of a funct...
lo1res 14290 The restriction of an even...
o1res 14291 The restriction of an even...
rlimres2 14292 The restriction of a funct...
lo1res2 14293 The restriction of a funct...
o1res2 14294 The restriction of a funct...
lo1resb 14295 The restriction of a funct...
rlimresb 14296 The restriction of a funct...
o1resb 14297 The restriction of a funct...
climeq 14298 Two functions that are eve...
lo1eq 14299 Two functions that are eve...
rlimeq 14300 Two functions that are eve...
o1eq 14301 Two functions that are eve...
climmpt 14302 Exhibit a function ` G ` w...
2clim 14303 If two sequences converge ...
climmpt2 14304 Relate an integer limit on...
climshftlem 14305 A shifted function converg...
climres 14306 A function restricted to u...
climshft 14307 A shifted function converg...
serclim0 14308 The zero series converges ...
rlimcld2 14309 If ` D ` is a closed set i...
rlimrege0 14310 The limit of a sequence of...
rlimrecl 14311 The limit of a real sequen...
rlimge0 14312 The limit of a sequence of...
climshft2 14313 A shifted function converg...
climrecl 14314 The limit of a convergent ...
climge0 14315 A nonnegative sequence con...
climabs0 14316 Convergence to zero of the...
o1co 14317 Sufficient condition for t...
o1compt 14318 Sufficient condition for t...
rlimcn1 14319 Image of a limit under a c...
rlimcn1b 14320 Image of a limit under a c...
rlimcn2 14321 Image of a limit under a c...
climcn1 14322 Image of a limit under a c...
climcn2 14323 Image of a limit under a c...
addcn2 14324 Complex number addition is...
subcn2 14325 Complex number subtraction...
mulcn2 14326 Complex number multiplicat...
reccn2 14327 The reciprocal function is...
cn1lem 14328 A sufficient condition for...
abscn2 14329 The absolute value functio...
cjcn2 14330 The complex conjugate func...
recn2 14331 The real part function is ...
imcn2 14332 The imaginary part functio...
climcn1lem 14333 The limit of a continuous ...
climabs 14334 Limit of the absolute valu...
climcj 14335 Limit of the complex conju...
climre 14336 Limit of the real part of ...
climim 14337 Limit of the imaginary par...
rlimmptrcl 14338 Reverse closure for a real...
rlimabs 14339 Limit of the absolute valu...
rlimcj 14340 Limit of the complex conju...
rlimre 14341 Limit of the real part of ...
rlimim 14342 Limit of the imaginary par...
o1of2 14343 Show that a binary operati...
o1add 14344 The sum of two eventually ...
o1mul 14345 The product of two eventua...
o1sub 14346 The difference of two even...
rlimo1 14347 Any function with a finite...
rlimdmo1 14348 A convergent function is e...
o1rlimmul 14349 The product of an eventual...
o1const 14350 A constant function is eve...
lo1const 14351 A constant function is eve...
lo1mptrcl 14352 Reverse closure for an eve...
o1mptrcl 14353 Reverse closure for an eve...
o1add2 14354 The sum of two eventually ...
o1mul2 14355 The product of two eventua...
o1sub2 14356 The product of two eventua...
lo1add 14357 The sum of two eventually ...
lo1mul 14358 The product of an eventual...
lo1mul2 14359 The product of an eventual...
o1dif 14360 If the difference of two f...
lo1sub 14361 The difference of an event...
climadd 14362 Limit of the sum of two co...
climmul 14363 Limit of the product of tw...
climsub 14364 Limit of the difference of...
climaddc1 14365 Limit of a constant ` C ` ...
climaddc2 14366 Limit of a constant ` C ` ...
climmulc2 14367 Limit of a sequence multip...
climsubc1 14368 Limit of a constant ` C ` ...
climsubc2 14369 Limit of a constant ` C ` ...
climle 14370 Comparison of the limits o...
climsqz 14371 Convergence of a sequence ...
climsqz2 14372 Convergence of a sequence ...
rlimadd 14373 Limit of the sum of two co...
rlimsub 14374 Limit of the difference of...
rlimmul 14375 Limit of the product of tw...
rlimdiv 14376 Limit of the quotient of t...
rlimneg 14377 Limit of the negative of a...
rlimle 14378 Comparison of the limits o...
rlimsqzlem 14379 Lemma for ~ rlimsqz and ~ ...
rlimsqz 14380 Convergence of a sequence ...
rlimsqz2 14381 Convergence of a sequence ...
lo1le 14382 Transfer eventual upper bo...
o1le 14383 Transfer eventual boundedn...
rlimno1 14384 A function whose inverse c...
clim2ser 14385 The limit of an infinite s...
clim2ser2 14386 The limit of an infinite s...
iserex 14387 An infinite series converg...
isermulc2 14388 Multiplication of an infin...
climlec2 14389 Comparison of a constant t...
iserle 14390 Comparison of the limits o...
iserge0 14391 The limit of an infinite s...
climub 14392 The limit of a monotonic s...
climserle 14393 The partial sums of a conv...
isershft 14394 Index shift of the limit o...
isercolllem1 14395 Lemma for ~ isercoll . (C...
isercolllem2 14396 Lemma for ~ isercoll . (C...
isercolllem3 14397 Lemma for ~ isercoll . (C...
isercoll 14398 Rearrange an infinite seri...
isercoll2 14399 Generalize ~ isercoll so t...
climsup 14400 A bounded monotonic sequen...
climcau 14401 A converging sequence of c...
climbdd 14402 A converging sequence of c...
caucvgrlem 14403 Lemma for ~ caurcvgr . (C...
caurcvgr 14404 A Cauchy sequence of real ...
caucvgrlem2 14405 Lemma for ~ caucvgr . (Co...
caucvgr 14406 A Cauchy sequence of compl...
caurcvg 14407 A Cauchy sequence of real ...
caurcvg2 14408 A Cauchy sequence of real ...
caucvg 14409 A Cauchy sequence of compl...
caucvgb 14410 A function is convergent i...
serf0 14411 If an infinite series conv...
iseraltlem1 14412 Lemma for ~ iseralt . A d...
iseraltlem2 14413 Lemma for ~ iseralt . The...
iseraltlem3 14414 Lemma for ~ iseralt . Fro...
iseralt 14415 The alternating series tes...
sumex 14418 A sum is a set. (Contribu...
sumeq1 14419 Equality theorem for a sum...
nfsum1 14420 Bound-variable hypothesis ...
nfsum 14421 Bound-variable hypothesis ...
sumeq2w 14422 Equality theorem for sum, ...
sumeq2ii 14423 Equality theorem for sum, ...
sumeq2 14424 Equality theorem for sum. ...
cbvsum 14425 Change bound variable in a...
cbvsumv 14426 Change bound variable in a...
cbvsumi 14427 Change bound variable in a...
sumeq1i 14428 Equality inference for sum...
sumeq2i 14429 Equality inference for sum...
sumeq12i 14430 Equality inference for sum...
sumeq1d 14431 Equality deduction for sum...
sumeq2d 14432 Equality deduction for sum...
sumeq2dv 14433 Equality deduction for sum...
sumeq2ad 14434 Equality deduction for sum...
sumeq2sdv 14435 Equality deduction for sum...
2sumeq2dv 14436 Equality deduction for dou...
sumeq12dv 14437 Equality deduction for sum...
sumeq12rdv 14438 Equality deduction for sum...
sum2id 14439 The second class argument ...
sumfc 14440 A lemma to facilitate conv...
fz1f1o 14441 A lemma for working with f...
sumrblem 14442 Lemma for ~ sumrb . (Cont...
fsumcvg 14443 The sequence of partial su...
sumrb 14444 Rebase the starting point ...
summolem3 14445 Lemma for ~ summo . (Cont...
summolem2a 14446 Lemma for ~ summo . (Cont...
summolem2 14447 Lemma for ~ summo . (Cont...
summo 14448 A sum has at most one limi...
zsum 14449 Series sum with index set ...
isum 14450 Series sum with an upper i...
fsum 14451 The value of a sum over a ...
sum0 14452 Any sum over the empty set...
sumz 14453 Any sum of zero over a sum...
fsumf1o 14454 Re-index a finite sum usin...
sumss 14455 Change the index set to a ...
fsumss 14456 Change the index set to a ...
sumss2 14457 Change the index set of a ...
fsumcvg2 14458 The sequence of partial su...
fsumsers 14459 Special case of series sum...
fsumcvg3 14460 A finite sum is convergent...
fsumser 14461 A finite sum expressed in ...
fsumcl2lem 14462 - Lemma for finite sum clo...
fsumcllem 14463 - Lemma for finite sum clo...
fsumcl 14464 Closure of a finite sum of...
fsumrecl 14465 Closure of a finite sum of...
fsumzcl 14466 Closure of a finite sum of...
fsumnn0cl 14467 Closure of a finite sum of...
fsumrpcl 14468 Closure of a finite sum of...
fsumzcl2 14469 A finite sum with integer ...
fsumadd 14470 The sum of two finite sums...
fsumsplit 14471 Split a sum into two parts...
fsumsplitf 14472 Split a sum into two parts...
sumsnf 14473 A sum of a singleton is th...
fsumsplitsn 14474 Separate out a term in a f...
sumsn 14475 A sum of a singleton is th...
fsum1 14476 The finite sum of ` A ( k ...
sumpr 14477 A sum over a pair is the s...
sumtp 14478 A sum over a triple is the...
sumsns 14479 A sum of a singleton is th...
fsumm1 14480 Separate out the last term...
fzosump1 14481 Separate out the last term...
fsum1p 14482 Separate out the first ter...
fsummsnunz 14483 A finite sum all of whose ...
fsumsplitsnun 14484 Separate out a term in a f...
fsummsnunzOLD 14485 Obsolete version of ~ fsum...
fsumsplitsnunOLD 14486 Obsolete version of ~ fsum...
fsump1 14487 The addition of the next t...
isumclim 14488 An infinite sum equals the...
isumclim2 14489 A converging series conver...
isumclim3 14490 The sequence of partial fi...
sumnul 14491 The sum of a non-convergen...
isumcl 14492 The sum of a converging in...
isummulc2 14493 An infinite sum multiplied...
isummulc1 14494 An infinite sum multiplied...
isumdivc 14495 An infinite sum divided by...
isumrecl 14496 The sum of a converging in...
isumge0 14497 An infinite sum of nonnega...
isumadd 14498 Addition of infinite sums....
sumsplit 14499 Split a sum into two parts...
fsump1i 14500 Optimized version of ~ fsu...
fsum2dlem 14501 Lemma for ~ fsum2d - induc...
fsum2d 14502 Write a double sum as a su...
fsumxp 14503 Combine two sums into a si...
fsumcnv 14504 Transform a region of summ...
fsumcom2 14505 Interchange order of summa...
fsumcom2OLD 14506 Obsolete proof of ~ fsumco...
fsumcom 14507 Interchange order of summa...
fsum0diaglem 14508 Lemma for ~ fsum0diag . (...
fsum0diag 14509 Two ways to express "the s...
mptfzshft 14510 1-1 onto function in maps-...
fsumrev 14511 Reversal of a finite sum. ...
fsumshft 14512 Index shift of a finite su...
fsumshftm 14513 Negative index shift of a ...
fsumrev2 14514 Reversal of a finite sum. ...
fsum0diag2 14515 Two ways to express "the s...
fsummulc2 14516 A finite sum multiplied by...
fsummulc1 14517 A finite sum multiplied by...
fsumdivc 14518 A finite sum divided by a ...
fsumneg 14519 Negation of a finite sum. ...
fsumsub 14520 Split a finite sum over a ...
fsum2mul 14521 Separate the nested sum of...
fsumconst 14522 The sum of constant terms ...
fsumdifsnconst 14523 The sum of constant terms ...
modfsummodslem1 14524 Lemma 1 for ~ modfsummods ...
modfsummods 14525 Induction step for ~ modfs...
modfsummod 14526 A finite sum modulo a posi...
fsumge0 14527 If all of the terms of a f...
fsumless 14528 A shorter sum of nonnegati...
fsumge1 14529 A sum of nonnegative numbe...
fsum00 14530 A sum of nonnegative numbe...
fsumle 14531 If all of the terms of fin...
fsumlt 14532 If every term in one finit...
fsumabs 14533 Generalized triangle inequ...
telfsumo 14534 Sum of a telescoping serie...
telfsumo2 14535 Sum of a telescoping serie...
telfsum 14536 Sum of a telescoping serie...
telfsum2 14537 Sum of a telescoping serie...
fsumparts 14538 Summation by parts. (Cont...
fsumrelem 14539 Lemma for ~ fsumre , ~ fsu...
fsumre 14540 The real part of a sum. (...
fsumim 14541 The imaginary part of a su...
fsumcj 14542 The complex conjugate of a...
fsumrlim 14543 Limit of a finite sum of c...
fsumo1 14544 The finite sum of eventual...
o1fsum 14545 If ` A ( k ) ` is O(1), th...
seqabs 14546 Generalized triangle inequ...
iserabs 14547 Generalized triangle inequ...
cvgcmp 14548 A comparison test for conv...
cvgcmpub 14549 An upper bound for the lim...
cvgcmpce 14550 A comparison test for conv...
abscvgcvg 14551 An absolutely convergent s...
climfsum 14552 Limit of a finite sum of c...
fsumiun 14553 Sum over a disjoint indexe...
hashiun 14554 The cardinality of a disjo...
hash2iun 14555 The cardinality of a neste...
hash2iun1dif1 14556 The cardinality of a neste...
hashrabrex 14557 The number of elements in ...
hashuni 14558 The cardinality of a disjo...
qshash 14559 The cardinality of a set w...
ackbijnn 14560 Translate the Ackermann bi...
binomlem 14561 Lemma for ~ binom (binomia...
binom 14562 The binomial theorem: ` ( ...
binom1p 14563 Special case of the binomi...
binom11 14564 Special case of the binomi...
binom1dif 14565 A summation for the differ...
bcxmaslem1 14566 Lemma for ~ bcxmas . (Con...
bcxmas 14567 Parallel summation (Christ...
incexclem 14568 Lemma for ~ incexc . (Con...
incexc 14569 The inclusion/exclusion pr...
incexc2 14570 The inclusion/exclusion pr...
isumshft 14571 Index shift of an infinite...
isumsplit 14572 Split off the first ` N ` ...
isum1p 14573 The infinite sum of a conv...
isumnn0nn 14574 Sum from 0 to infinity in ...
isumrpcl 14575 The infinite sum of positi...
isumle 14576 Comparison of two infinite...
isumless 14577 A finite sum of nonnegativ...
isumsup2 14578 An infinite sum of nonnega...
isumsup 14579 An infinite sum of nonnega...
isumltss 14580 A partial sum of a series ...
climcndslem1 14581 Lemma for ~ climcnds : bou...
climcndslem2 14582 Lemma for ~ climcnds : bou...
climcnds 14583 The Cauchy condensation te...
divrcnv 14584 The sequence of reciprocal...
divcnv 14585 The sequence of reciprocal...
flo1 14586 The floor function satisfi...
divcnvshft 14587 Limit of a ratio function....
supcvg 14588 Extract a sequence ` f ` i...
infcvgaux1i 14589 Auxiliary theorem for appl...
infcvgaux2i 14590 Auxiliary theorem for appl...
harmonic 14591 The harmonic series ` H ` ...
arisum 14592 Arithmetic series sum of t...
arisum2 14593 Arithmetic series sum of t...
trireciplem 14594 Lemma for ~ trirecip . Sh...
trirecip 14595 The sum of the reciprocals...
expcnv 14596 A sequence of powers of a ...
explecnv 14597 A sequence of terms conver...
geoserg 14598 The value of the finite ge...
geoser 14599 The value of the finite ge...
pwm1geoser 14600 The n-th power of a number...
geolim 14601 The partial sums in the in...
geolim2 14602 The partial sums in the ge...
georeclim 14603 The limit of a geometric s...
geo2sum 14604 The value of the finite ge...
geo2sum2 14605 The value of the finite ge...
geo2lim 14606 The value of the infinite ...
geomulcvg 14607 The geometric series conve...
geoisum 14608 The infinite sum of ` 1 + ...
geoisumr 14609 The infinite sum of recipr...
geoisum1 14610 The infinite sum of ` A ^ ...
geoisum1c 14611 The infinite sum of ` A x....
0.999... 14612 The recurring decimal 0.99...
0.999...OLD 14613 Obsolete version of ~ 0.99...
geoihalfsum 14614 Prove that the infinite ge...
cvgrat 14615 Ratio test for convergence...
mertenslem1 14616 Lemma for ~ mertens . (Co...
mertenslem2 14617 Lemma for ~ mertens . (Co...
mertens 14618 Mertens' theorem. If ` A ...
prodf 14619 An infinite product of com...
clim2prod 14620 The limit of an infinite p...
clim2div 14621 The limit of an infinite p...
prodfmul 14622 The product of two infinit...
prodf1 14623 The value of the partial p...
prodf1f 14624 A one-valued infinite prod...
prodfclim1 14625 The constant one product c...
prodfn0 14626 No term of a nonzero infin...
prodfrec 14627 The reciprocal of an infin...
prodfdiv 14628 The quotient of two infini...
ntrivcvg 14629 A non-trivially converging...
ntrivcvgn0 14630 A product that converges t...
ntrivcvgfvn0 14631 Any value of a product seq...
ntrivcvgtail 14632 A tail of a non-trivially ...
ntrivcvgmullem 14633 Lemma for ~ ntrivcvgmul . ...
ntrivcvgmul 14634 The product of two non-tri...
prodex 14637 A product is a set. (Cont...
prodeq1f 14638 Equality theorem for a pro...
prodeq1 14639 Equality theorem for a pro...
nfcprod1 14640 Bound-variable hypothesis ...
nfcprod 14641 Bound-variable hypothesis ...
prodeq2w 14642 Equality theorem for produ...
prodeq2ii 14643 Equality theorem for produ...
prodeq2 14644 Equality theorem for produ...
cbvprod 14645 Change bound variable in a...
cbvprodv 14646 Change bound variable in a...
cbvprodi 14647 Change bound variable in a...
prodeq1i 14648 Equality inference for pro...
prodeq2i 14649 Equality inference for pro...
prodeq12i 14650 Equality inference for pro...
prodeq1d 14651 Equality deduction for pro...
prodeq2d 14652 Equality deduction for pro...
prodeq2dv 14653 Equality deduction for pro...
prodeq2sdv 14654 Equality deduction for pro...
2cprodeq2dv 14655 Equality deduction for dou...
prodeq12dv 14656 Equality deduction for pro...
prodeq12rdv 14657 Equality deduction for pro...
prod2id 14658 The second class argument ...
prodrblem 14659 Lemma for ~ prodrb . (Con...
fprodcvg 14660 The sequence of partial pr...
prodrblem2 14661 Lemma for ~ prodrb . (Con...
prodrb 14662 Rebase the starting point ...
prodmolem3 14663 Lemma for ~ prodmo . (Con...
prodmolem2a 14664 Lemma for ~ prodmo . (Con...
prodmolem2 14665 Lemma for ~ prodmo . (Con...
prodmo 14666 A product has at most one ...
zprod 14667 Series product with index ...
iprod 14668 Series product with an upp...
zprodn0 14669 Nonzero series product wit...
iprodn0 14670 Nonzero series product wit...
fprod 14671 The value of a product ove...
fprodntriv 14672 A non-triviality lemma for...
prod0 14673 A product over the empty s...
prod1 14674 Any product of one over a ...
prodfc 14675 A lemma to facilitate conv...
fprodf1o 14676 Re-index a finite product ...
prodss 14677 Change the index set to a ...
fprodss 14678 Change the index set to a ...
fprodser 14679 A finite product expressed...
fprodcl2lem 14680 Finite product closure lem...
fprodcllem 14681 Finite product closure lem...
fprodcl 14682 Closure of a finite produc...
fprodrecl 14683 Closure of a finite produc...
fprodzcl 14684 Closure of a finite produc...
fprodnncl 14685 Closure of a finite produc...
fprodrpcl 14686 Closure of a finite produc...
fprodnn0cl 14687 Closure of a finite produc...
fprodcllemf 14688 Finite product closure lem...
fprodreclf 14689 Closure of a finite produc...
fprodmul 14690 The product of two finite ...
fproddiv 14691 The quotient of two finite...
prodsn 14692 A product of a singleton i...
fprod1 14693 A finite product of only o...
prodsnf 14694 A product of a singleton i...
climprod1 14695 The limit of a product ove...
fprodsplit 14696 Split a finite product int...
fprodm1 14697 Separate out the last term...
fprod1p 14698 Separate out the first ter...
fprodp1 14699 Multiply in the last term ...
fprodm1s 14700 Separate out the last term...
fprodp1s 14701 Multiply in the last term ...
prodsns 14702 A product of the singleton...
fprodfac 14703 Factorial using product no...
fprodabs 14704 The absolute value of a fi...
fprodeq0 14705 Anything finite product co...
fprodshft 14706 Shift the index of a finit...
fprodrev 14707 Reversal of a finite produ...
fprodconst 14708 The product of constant te...
fprodn0 14709 A finite product of nonzer...
fprod2dlem 14710 Lemma for ~ fprod2d - indu...
fprod2d 14711 Write a double product as ...
fprodxp 14712 Combine two products into ...
fprodcnv 14713 Transform a product region...
fprodcom2 14714 Interchange order of multi...
fprodcom2OLD 14715 Obsolete proof of ~ fprodc...
fprodcom 14716 Interchange product order....
fprod0diag 14717 Two ways to express "the p...
fproddivf 14718 The quotient of two finite...
fprodsplitf 14719 Split a finite product int...
fprodsplitsn 14720 Separate out a term in a f...
fprodsplit1f 14721 Separate out a term in a f...
fprodn0f 14722 A finite product of nonzer...
fprodclf 14723 Closure of a finite produc...
fprodge0 14724 If all the terms of a fini...
fprodeq0g 14725 Any finite product contain...
fprodge1 14726 If all of the terms of a f...
fprodle 14727 If all the terms of two fi...
fprodmodd 14728 If all factors of two fini...
iprodclim 14729 An infinite product equals...
iprodclim2 14730 A converging product conve...
iprodclim3 14731 The sequence of partial fi...
iprodcl 14732 The product of a non-trivi...
iprodrecl 14733 The product of a non-trivi...
iprodmul 14734 Multiplication of infinite...
risefacval 14739 The value of the rising fa...
fallfacval 14740 The value of the falling f...
risefacval2 14741 One-based value of rising ...
fallfacval2 14742 One-based value of falling...
fallfacval3 14743 A product representation o...
risefaccllem 14744 Lemma for rising factorial...
fallfaccllem 14745 Lemma for falling factoria...
risefaccl 14746 Closure law for rising fac...
fallfaccl 14747 Closure law for falling fa...
rerisefaccl 14748 Closure law for rising fac...
refallfaccl 14749 Closure law for falling fa...
nnrisefaccl 14750 Closure law for rising fac...
zrisefaccl 14751 Closure law for rising fac...
zfallfaccl 14752 Closure law for falling fa...
nn0risefaccl 14753 Closure law for rising fac...
rprisefaccl 14754 Closure law for rising fac...
risefallfac 14755 A relationship between ris...
fallrisefac 14756 A relationship between fal...
risefall0lem 14757 Lemma for ~ risefac0 and ~...
risefac0 14758 The value of the rising fa...
fallfac0 14759 The value of the falling f...
risefacp1 14760 The value of the rising fa...
fallfacp1 14761 The value of the falling f...
risefacp1d 14762 The value of the rising fa...
fallfacp1d 14763 The value of the falling f...
risefac1 14764 The value of rising factor...
fallfac1 14765 The value of falling facto...
risefacfac 14766 Relate rising factorial to...
fallfacfwd 14767 The forward difference of ...
0fallfac 14768 The value of the zero fall...
0risefac 14769 The value of the zero risi...
binomfallfaclem1 14770 Lemma for ~ binomfallfac ....
binomfallfaclem2 14771 Lemma for ~ binomfallfac ....
binomfallfac 14772 A version of the binomial ...
binomrisefac 14773 A version of the binomial ...
fallfacval4 14774 Represent the falling fact...
bcfallfac 14775 Binomial coefficient in te...
fallfacfac 14776 Relate falling factorial t...
bpolylem 14779 Lemma for ~ bpolyval . (C...
bpolyval 14780 The value of the Bernoulli...
bpoly0 14781 The value of the Bernoulli...
bpoly1 14782 The value of the Bernoulli...
bpolycl 14783 Closure law for Bernoulli ...
bpolysum 14784 A sum for Bernoulli polyno...
bpolydiflem 14785 Lemma for ~ bpolydif . (C...
bpolydif 14786 Calculate the difference b...
fsumkthpow 14787 A closed-form expression f...
bpoly2 14788 The Bernoulli polynomials ...
bpoly3 14789 The Bernoulli polynomials ...
bpoly4 14790 The Bernoulli polynomials ...
fsumcube 14791 Express the sum of cubes i...
eftcl 14804 Closure of a term in the s...
reeftcl 14805 The terms of the series ex...
eftabs 14806 The absolute value of a te...
eftval 14807 The value of a term in the...
efcllem 14808 Lemma for ~ efcl . The se...
ef0lem 14809 The series defining the ex...
efval 14810 Value of the exponential f...
esum 14811 Value of Euler's constant ...
eff 14812 Domain and codomain of the...
efcl 14813 Closure law for the expone...
efval2 14814 Value of the exponential f...
efcvg 14815 The series that defines th...
efcvgfsum 14816 Exponential function conve...
reefcl 14817 The exponential function i...
reefcld 14818 The exponential function i...
ere 14819 Euler's constant ` _e ` = ...
ege2le3 14820 Lemma for ~ egt2lt3 . (Co...
ef0 14821 Value of the exponential f...
efcj 14822 Exponential function of a ...
efaddlem 14823 Lemma for ~ efadd (exponen...
efadd 14824 Sum of exponents law for e...
fprodefsum 14825 Move the exponential funct...
efcan 14826 Cancellation of law for ex...
efne0 14827 The exponential function n...
efneg 14828 Exponent of a negative num...
eff2 14829 The exponential function m...
efsub 14830 Difference of exponents la...
efexp 14831 Exponential function to an...
efzval 14832 Value of the exponential f...
efgt0 14833 The exponential function o...
rpefcl 14834 The exponential function o...
rpefcld 14835 The exponential function o...
eftlcvg 14836 The tail series of the exp...
eftlcl 14837 Closure of the sum of an i...
reeftlcl 14838 Closure of the sum of an i...
eftlub 14839 An upper bound on the abso...
efsep 14840 Separate out the next term...
effsumlt 14841 The partial sums of the se...
eft0val 14842 The value of the first ter...
ef4p 14843 Separate out the first fou...
efgt1p2 14844 The exponential function o...
efgt1p 14845 The exponential function o...
efgt1 14846 The exponential function o...
eflt 14847 The exponential function o...
efle 14848 The exponential function o...
reef11 14849 The exponential function o...
reeff1 14850 The exponential function m...
eflegeo 14851 The exponential function o...
sinval 14852 Value of the sine function...
cosval 14853 Value of the cosine functi...
sinf 14854 Domain and codomain of the...
cosf 14855 Domain and codomain of the...
sincl 14856 Closure of the sine functi...
coscl 14857 Closure of the cosine func...
tanval 14858 Value of the tangent funct...
tancl 14859 The closure of the tangent...
sincld 14860 Closure of the sine functi...
coscld 14861 Closure of the cosine func...
tancld 14862 Closure of the tangent fun...
tanval2 14863 Express the tangent functi...
tanval3 14864 Express the tangent functi...
resinval 14865 The sine of a real number ...
recosval 14866 The cosine of a real numbe...
efi4p 14867 Separate out the first fou...
resin4p 14868 Separate out the first fou...
recos4p 14869 Separate out the first fou...
resincl 14870 The sine of a real number ...
recoscl 14871 The cosine of a real numbe...
retancl 14872 The closure of the tangent...
resincld 14873 Closure of the sine functi...
recoscld 14874 Closure of the cosine func...
retancld 14875 Closure of the tangent fun...
sinneg 14876 The sine of a negative is ...
cosneg 14877 The cosines of a number an...
tanneg 14878 The tangent of a negative ...
sin0 14879 Value of the sine function...
cos0 14880 Value of the cosine functi...
tan0 14881 The value of the tangent f...
efival 14882 The exponential function i...
efmival 14883 The exponential function i...
sinhval 14884 Value of the hyperbolic si...
coshval 14885 Value of the hyperbolic co...
resinhcl 14886 The hyperbolic sine of a r...
rpcoshcl 14887 The hyperbolic cosine of a...
recoshcl 14888 The hyperbolic cosine of a...
retanhcl 14889 The hyperbolic tangent of ...
tanhlt1 14890 The hyperbolic tangent of ...
tanhbnd 14891 The hyperbolic tangent of ...
efeul 14892 Eulerian representation of...
efieq 14893 The exponentials of two im...
sinadd 14894 Addition formula for sine....
cosadd 14895 Addition formula for cosin...
tanaddlem 14896 A useful intermediate step...
tanadd 14897 Addition formula for tange...
sinsub 14898 Sine of difference. (Cont...
cossub 14899 Cosine of difference. (Co...
addsin 14900 Sum of sines. (Contribute...
subsin 14901 Difference of sines. (Con...
sinmul 14902 Product of sines can be re...
cosmul 14903 Product of cosines can be ...
addcos 14904 Sum of cosines. (Contribu...
subcos 14905 Difference of cosines. (C...
sincossq 14906 Sine squared plus cosine s...
sin2t 14907 Double-angle formula for s...
cos2t 14908 Double-angle formula for c...
cos2tsin 14909 Double-angle formula for c...
sinbnd 14910 The sine of a real number ...
cosbnd 14911 The cosine of a real numbe...
sinbnd2 14912 The sine of a real number ...
cosbnd2 14913 The cosine of a real numbe...
ef01bndlem 14914 Lemma for ~ sin01bnd and ~...
sin01bnd 14915 Bounds on the sine of a po...
cos01bnd 14916 Bounds on the cosine of a ...
cos1bnd 14917 Bounds on the cosine of 1....
cos2bnd 14918 Bounds on the cosine of 2....
sinltx 14919 The sine of a positive rea...
sin01gt0 14920 The sine of a positive rea...
cos01gt0 14921 The cosine of a positive r...
sin02gt0 14922 The sine of a positive rea...
sincos1sgn 14923 The signs of the sine and ...
sincos2sgn 14924 The signs of the sine and ...
sin4lt0 14925 The sine of 4 is negative....
absefi 14926 The absolute value of the ...
absef 14927 The absolute value of the ...
absefib 14928 A number is real iff its i...
efieq1re 14929 A number whose imaginary e...
demoivre 14930 De Moivre's Formula. Proo...
demoivreALT 14931 Alternate proof of ~ demoi...
eirrlem 14932 Lemma for ~ eirr . (Contr...
eirr 14933 ` _e ` is irrational. (Co...
egt2lt3 14934 Euler's constant ` _e ` = ...
epos 14935 Euler's constant ` _e ` is...
epr 14936 Euler's constant ` _e ` is...
ene0 14937 ` _e ` is not 0. (Contrib...
ene1 14938 ` _e ` is not 1. (Contrib...
xpnnen 14939 The Cartesian product of t...
znnenlem 14940 Lemma for ~ znnen . (Cont...
znnen 14941 The set of integers and th...
qnnen 14942 The rational numbers are c...
rpnnen2lem1 14943 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem2 14944 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem3 14945 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem4 14946 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem5 14947 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem6 14948 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem7 14949 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem8 14950 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem9 14951 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem10 14952 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem11 14953 Lemma for ~ rpnnen2 . (Co...
rpnnen2lem12 14954 Lemma for ~ rpnnen2 . (Co...
rpnnen2 14955 The other half of ~ rpnnen...
rpnnen 14956 The cardinality of the con...
rexpen 14957 The real numbers are equin...
cpnnen 14958 The complex numbers are eq...
rucALT 14959 Alternate proof of ~ ruc ....
ruclem1 14960 Lemma for ~ ruc (the reals...
ruclem2 14961 Lemma for ~ ruc . Orderin...
ruclem3 14962 Lemma for ~ ruc . The con...
ruclem4 14963 Lemma for ~ ruc . Initial...
ruclem6 14964 Lemma for ~ ruc . Domain ...
ruclem7 14965 Lemma for ~ ruc . Success...
ruclem8 14966 Lemma for ~ ruc . The int...
ruclem9 14967 Lemma for ~ ruc . The fir...
ruclem10 14968 Lemma for ~ ruc . Every f...
ruclem11 14969 Lemma for ~ ruc . Closure...
ruclem12 14970 Lemma for ~ ruc . The sup...
ruclem13 14971 Lemma for ~ ruc . There i...
ruc 14972 The set of positive intege...
resdomq 14973 The set of rationals is st...
aleph1re 14974 There are at least aleph-o...
aleph1irr 14975 There are at least aleph-o...
cnso 14976 The complex numbers can be...
sqrt2irrlem 14977 Lemma for ~ sqrt2irr . Th...
sqrt2irrlemOLD 14978 Obsolete proof of ~ sqrt2i...
sqrt2irr 14979 The square root of 2 is ir...
sqrt2re 14980 The square root of 2 exist...
nthruc 14981 The sequence ` NN ` , ` ZZ...
nthruz 14982 The sequence ` NN ` , ` NN...
divides 14985 Define the divides relatio...
dvdsval2 14986 One nonzero integer divide...
dvdsval3 14987 One nonzero integer divide...
dvdszrcl 14988 Reverse closure for the di...
nndivdvds 14989 Strong form of ~ dvdsval2 ...
nndivides 14990 Definition of the divides ...
moddvds 14991 Two ways to say ` A == B `...
dvds0lem 14992 A lemma to assist theorems...
dvds1lem 14993 A lemma to assist theorems...
dvds2lem 14994 A lemma to assist theorems...
iddvds 14995 An integer divides itself....
1dvds 14996 1 divides any integer. Th...
dvds0 14997 Any integer divides 0. Th...
negdvdsb 14998 An integer divides another...
dvdsnegb 14999 An integer divides another...
absdvdsb 15000 An integer divides another...
dvdsabsb 15001 An integer divides another...
0dvds 15002 Only 0 is divisible by 0. ...
dvdsmul1 15003 An integer divides a multi...
dvdsmul2 15004 An integer divides a multi...
iddvdsexp 15005 An integer divides a posit...
muldvds1 15006 If a product divides an in...
muldvds2 15007 If a product divides an in...
dvdscmul 15008 Multiplication by a consta...
dvdsmulc 15009 Multiplication by a consta...
dvdscmulr 15010 Cancellation law for the d...
dvdsmulcr 15011 Cancellation law for the d...
summodnegmod 15012 The sum of two integers mo...
modmulconst 15013 Constant multiplication in...
dvds2ln 15014 If an integer divides each...
dvds2add 15015 If an integer divides each...
dvds2sub 15016 If an integer divides each...
dvds2subd 15017 Natural deduction form of ...
dvdstr 15018 The divides relation is tr...
dvdsmultr1 15019 If an integer divides anot...
dvdsmultr1d 15020 Natural deduction form of ...
dvdsmultr2 15021 If an integer divides anot...
ordvdsmul 15022 If an integer divides eith...
dvdssub2 15023 If an integer divides a di...
dvdsadd 15024 An integer divides another...
dvdsaddr 15025 An integer divides another...
dvdssub 15026 An integer divides another...
dvdssubr 15027 An integer divides another...
dvdsadd2b 15028 Adding a multiple of the b...
dvdsaddre2b 15029 Adding a multiple of the b...
fsumdvds 15030 If every term in a sum is ...
dvdslelem 15031 Lemma for ~ dvdsle . (Con...
dvdsle 15032 The divisors of a positive...
dvdsleabs 15033 The divisors of a nonzero ...
dvdsleabs2 15034 Transfer divisibility to a...
dvdsabseq 15035 If two integers divide eac...
dvdseq 15036 If two nonnegative integer...
divconjdvds 15037 If a nonzero integer ` M `...
dvdsdivcl 15038 The complement of a diviso...
dvdsflip 15039 An involution of the divis...
dvdsssfz1 15040 The set of divisors of a n...
dvds1 15041 The only nonnegative integ...
alzdvds 15042 Only 0 is divisible by all...
dvdsext 15043 Poset extensionality for d...
fzm1ndvds 15044 No number between ` 1 ` an...
fzo0dvdseq 15045 Zero is the only one of th...
fzocongeq 15046 Two different elements of ...
addmodlteqALT 15047 Two nonnegative integers l...
dvdsfac 15048 A positive integer divides...
dvdsexp 15049 A power divides a power wi...
dvdsmod 15050 Any number ` K ` whose mod...
mulmoddvds 15051 If an integer is divisible...
3dvds 15052 A rule for divisibility by...
3dvdsOLD 15053 Obsolete version of ~ 3dvd...
3dvdsdec 15054 A decimal number is divisi...
3dvdsdecOLD 15055 Obsolete proof of ~ 3dvdsd...
3dvds2dec 15056 A decimal number is divisi...
3dvds2decOLD 15057 Old version of ~ 3dvds2dec...
fprodfvdvdsd 15058 A finite product of intege...
fproddvdsd 15059 A finite product of intege...
evenelz 15060 An even number is an integ...
zeo3 15061 An integer is even or odd....
zeo4 15062 An integer is even or odd ...
zeneo 15063 No even integer equals an ...
odd2np1lem 15064 Lemma for ~ odd2np1 . (Co...
odd2np1 15065 An integer is odd iff it i...
even2n 15066 An integer is even iff it ...
oddm1even 15067 An integer is odd iff its ...
oddp1even 15068 An integer is odd iff its ...
oexpneg 15069 The exponential of the neg...
mod2eq0even 15070 An integer is 0 modulo 2 i...
mod2eq1n2dvds 15071 An integer is 1 modulo 2 i...
oddnn02np1 15072 A nonnegative integer is o...
oddge22np1 15073 An integer greater than on...
evennn02n 15074 A nonnegative integer is e...
evennn2n 15075 A positive integer is even...
2tp1odd 15076 A number which is twice an...
mulsucdiv2z 15077 An integer multiplied with...
sqoddm1div8z 15078 A squared odd number minus...
2teven 15079 A number which is twice an...
zeo5 15080 An integer is either even ...
evend2 15081 An integer is even iff its...
oddp1d2 15082 An integer is odd iff its ...
zob 15083 Alternate characterization...
oddm1d2 15084 An integer is odd iff its ...
ltoddhalfle 15085 An integer is less than ha...
halfleoddlt 15086 An integer is greater than...
opoe 15087 The sum of two odds is eve...
omoe 15088 The difference of two odds...
opeo 15089 The sum of an odd and an e...
omeo 15090 The difference of an odd a...
m1expe 15091 Exponentiation of -1 by an...
m1expo 15092 Exponentiation of -1 by an...
m1exp1 15093 Exponentiation of negative...
nn0enne 15094 A positive integer is an e...
nn0ehalf 15095 The half of an even nonneg...
nnehalf 15096 The half of an even positi...
nn0o1gt2 15097 An odd nonnegative integer...
nno 15098 An alternate characterizat...
nn0o 15099 An alternate characterizat...
nn0ob 15100 Alternate characterization...
nn0oddm1d2 15101 A positive integer is odd ...
nnoddm1d2 15102 A positive integer is odd ...
z0even 15103 0 is even. (Contributed b...
n2dvds1 15104 2 does not divide 1 (commo...
n2dvdsm1 15105 2 does not divide -1. Tha...
z2even 15106 2 is even. (Contributed b...
n2dvds3 15107 2 does not divide 3, i.e. ...
z4even 15108 4 is an even number. (Con...
4dvdseven 15109 An integer which is divisi...
sumeven 15110 If every term in a sum is ...
sumodd 15111 If every term in a sum is ...
evensumodd 15112 If every term in a sum wit...
oddsumodd 15113 If every term in a sum wit...
pwp1fsum 15114 The n-th power of a number...
oddpwp1fsum 15115 An odd power of a number i...
divalglem0 15116 Lemma for ~ divalg . (Con...
divalglem1 15117 Lemma for ~ divalg . (Con...
divalglem2 15118 Lemma for ~ divalg . (Con...
divalglem4 15119 Lemma for ~ divalg . (Con...
divalglem5 15120 Lemma for ~ divalg . (Con...
divalglem6 15121 Lemma for ~ divalg . (Con...
divalglem7 15122 Lemma for ~ divalg . (Con...
divalglem8 15123 Lemma for ~ divalg . (Con...
divalglem9 15124 Lemma for ~ divalg . (Con...
divalglem10 15125 Lemma for ~ divalg . (Con...
divalg 15126 The division algorithm (th...
divalgb 15127 Express the division algor...
divalg2 15128 The division algorithm (th...
divalgmod 15129 The result of the ` mod ` ...
divalgmodOLD 15130 Obsolete proof of ~ divalg...
divalgmodcl 15131 The result of the ` mod ` ...
modremain 15132 The result of the modulo o...
ndvdssub 15133 Corollary of the division ...
ndvdsadd 15134 Corollary of the division ...
ndvdsp1 15135 Special case of ~ ndvdsadd...
ndvdsi 15136 A quick test for non-divis...
flodddiv4 15137 The floor of an odd intege...
fldivndvdslt 15138 The floor of an integer di...
flodddiv4lt 15139 The floor of an odd number...
flodddiv4t2lthalf 15140 The floor of an odd number...
bitsfval 15145 Expand the definition of t...
bitsval 15146 Expand the definition of t...
bitsval2 15147 Expand the definition of t...
bitsss 15148 The set of bits of an inte...
bitsf 15149 The ` bits ` function is a...
bits0 15150 Value of the zeroth bit. ...
bits0e 15151 The zeroth bit of an even ...
bits0o 15152 The zeroth bit of an odd n...
bitsp1 15153 The ` M + 1 ` -th bit of `...
bitsp1e 15154 The ` M + 1 ` -th bit of `...
bitsp1o 15155 The ` M + 1 ` -th bit of `...
bitsfzolem 15156 Lemma for ~ bitsfzo . (Co...
bitsfzo 15157 The bits of a number are a...
bitsmod 15158 Truncating the bit sequenc...
bitsfi 15159 Every number is associated...
bitscmp 15160 The bit complement of ` N ...
0bits 15161 The bits of zero. (Contri...
m1bits 15162 The bits of negative one. ...
bitsinv1lem 15163 Lemma for ~ bitsinv1 . (C...
bitsinv1 15164 There is an explicit inver...
bitsinv2 15165 There is an explicit inver...
bitsf1ocnv 15166 The ` bits ` function rest...
bitsf1o 15167 The ` bits ` function rest...
bitsf1 15168 The ` bits ` function is a...
2ebits 15169 The bits of a power of two...
bitsinv 15170 The inverse of the ` bits ...
bitsinvp1 15171 Recursive definition of th...
sadadd2lem2 15172 The core of the proof of ~...
sadfval 15174 Define the addition of two...
sadcf 15175 The carry sequence is a se...
sadc0 15176 The initial element of the...
sadcp1 15177 The carry sequence (which ...
sadval 15178 The full adder sequence is...
sadcaddlem 15179 Lemma for ~ sadcadd . (Co...
sadcadd 15180 Non-recursive definition o...
sadadd2lem 15181 Lemma for ~ sadadd2 . (Co...
sadadd2 15182 Sum of initial segments of...
sadadd3 15183 Sum of initial segments of...
sadcl 15184 The sum of two sequences i...
sadcom 15185 The adder sequence functio...
saddisjlem 15186 Lemma for ~ sadadd . (Con...
saddisj 15187 The sum of disjoint sequen...
sadaddlem 15188 Lemma for ~ sadadd . (Con...
sadadd 15189 For sequences that corresp...
sadid1 15190 The adder sequence functio...
sadid2 15191 The adder sequence functio...
sadasslem 15192 Lemma for ~ sadass . (Con...
sadass 15193 Sequence addition is assoc...
sadeq 15194 Any element of a sequence ...
bitsres 15195 Restrict the bits of a num...
bitsuz 15196 The bits of a number are a...
bitsshft 15197 Shifting a bit sequence to...
smufval 15199 The multiplication of two ...
smupf 15200 The sequence of partial su...
smup0 15201 The initial element of the...
smupp1 15202 The initial element of the...
smuval 15203 Define the addition of two...
smuval2 15204 The partial sum sequence s...
smupvallem 15205 If ` A ` only has elements...
smucl 15206 The product of two sequenc...
smu01lem 15207 Lemma for ~ smu01 and ~ sm...
smu01 15208 Multiplication of a sequen...
smu02 15209 Multiplication of a sequen...
smupval 15210 Rewrite the elements of th...
smup1 15211 Rewrite ~ smupp1 using onl...
smueqlem 15212 Any element of a sequence ...
smueq 15213 Any element of a sequence ...
smumullem 15214 Lemma for ~ smumul . (Con...
smumul 15215 For sequences that corresp...
gcdval 15218 The value of the ` gcd ` o...
gcd0val 15219 The value, by convention, ...
gcdn0val 15220 The value of the ` gcd ` o...
gcdcllem1 15221 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem2 15222 Lemma for ~ gcdn0cl , ~ gc...
gcdcllem3 15223 Lemma for ~ gcdn0cl , ~ gc...
gcdn0cl 15224 Closure of the ` gcd ` ope...
gcddvds 15225 The gcd of two integers di...
dvdslegcd 15226 An integer which divides b...
nndvdslegcd 15227 A positive integer which d...
gcdcl 15228 Closure of the ` gcd ` ope...
gcdnncl 15229 Closure of the ` gcd ` ope...
gcdcld 15230 Closure of the ` gcd ` ope...
gcd2n0cl 15231 Closure of the ` gcd ` ope...
zeqzmulgcd 15232 An integer is the product ...
divgcdz 15233 An integer divided by the ...
gcdf 15234 Domain and codomain of the...
gcdcom 15235 The ` gcd ` operator is co...
divgcdnn 15236 A positive integer divided...
divgcdnnr 15237 A positive integer divided...
gcdeq0 15238 The gcd of two integers is...
gcdn0gt0 15239 The gcd of two integers is...
gcd0id 15240 The gcd of 0 and an intege...
gcdid0 15241 The gcd of an integer and ...
nn0gcdid0 15242 The gcd of a nonnegative i...
gcdneg 15243 Negating one operand of th...
neggcd 15244 Negating one operand of th...
gcdaddmlem 15245 Lemma for ~ gcdaddm . (Co...
gcdaddm 15246 Adding a multiple of one o...
gcdadd 15247 The GCD of two numbers is ...
gcdid 15248 The gcd of a number and it...
gcd1 15249 The gcd of a number with 1...
gcdabs 15250 The gcd of two integers is...
gcdabs1 15251 ` gcd ` of the absolute va...
gcdabs2 15252 ` gcd ` of the absolute va...
modgcd 15253 The gcd remains unchanged ...
1gcd 15254 The GCD of one and an inte...
6gcd4e2 15255 The greatest common diviso...
bezoutlem1 15256 Lemma for ~ bezout . (Con...
bezoutlem2 15257 Lemma for ~ bezout . (Con...
bezoutlem3 15258 Lemma for ~ bezout . (Con...
bezoutlem4 15259 Lemma for ~ bezout . (Con...
bezout 15260 Bézout's identity: ...
dvdsgcd 15261 An integer which divides e...
dvdsgcdb 15262 Biconditional form of ~ dv...
dfgcd2 15263 Alternate definition of th...
gcdass 15264 Associative law for ` gcd ...
mulgcd 15265 Distribute multiplication ...
absmulgcd 15266 Distribute absolute value ...
mulgcdr 15267 Reverse distribution law f...
gcddiv 15268 Division law for GCD. (Con...
gcdmultiple 15269 The GCD of a multiple of a...
gcdmultiplez 15270 Extend ~ gcdmultiple so ` ...
gcdzeq 15271 A positive integer ` A ` i...
gcdeq 15272 ` A ` is equal to its gcd ...
dvdssqim 15273 Unidirectional form of ~ d...
dvdsmulgcd 15274 A divisibility equivalent ...
rpmulgcd 15275 If ` K ` and ` M ` are rel...
rplpwr 15276 If ` A ` and ` B ` are rel...
rppwr 15277 If ` A ` and ` B ` are rel...
sqgcd 15278 Square distributes over GC...
dvdssqlem 15279 Lemma for ~ dvdssq . (Con...
dvdssq 15280 Two numbers are divisible ...
bezoutr 15281 Partial converse to ~ bezo...
bezoutr1 15282 Converse of ~ bezout for w...
nn0seqcvgd 15283 A strictly-decreasing nonn...
seq1st 15284 A sequence whose iteration...
algr0 15285 The value of the algorithm...
algrf 15286 An algorithm is a step fun...
algrp1 15287 The value of the algorithm...
alginv 15288 If ` I ` is an invariant o...
algcvg 15289 One way to prove that an a...
algcvgblem 15290 Lemma for ~ algcvgb . (Co...
algcvgb 15291 Two ways of expressing tha...
algcvga 15292 The countdown function ` C...
algfx 15293 If ` F ` reaches a fixed p...
eucalgval2 15294 The value of the step func...
eucalgval 15295 Euclid's Algorithm ~ eucal...
eucalgf 15296 Domain and codomain of the...
eucalginv 15297 The invariant of the step ...
eucalglt 15298 The second member of the s...
eucalgcvga 15299 Once Euclid's Algorithm ha...
eucalg 15300 Euclid's Algorithm compute...
lcmval 15305 Value of the ` lcm ` opera...
lcmcom 15306 The ` lcm ` operator is co...
lcm0val 15307 The value, by convention, ...
lcmn0val 15308 The value of the ` lcm ` o...
lcmcllem 15309 Lemma for ~ lcmn0cl and ~ ...
lcmn0cl 15310 Closure of the ` lcm ` ope...
dvdslcm 15311 The lcm of two integers is...
lcmledvds 15312 A positive integer which b...
lcmeq0 15313 The lcm of two integers is...
lcmcl 15314 Closure of the ` lcm ` ope...
gcddvdslcm 15315 The greatest common diviso...
lcmneg 15316 Negating one operand of th...
neglcm 15317 Negating one operand of th...
lcmabs 15318 The lcm of two integers is...
lcmgcdlem 15319 Lemma for ~ lcmgcd and ~ l...
lcmgcd 15320 The product of two numbers...
lcmdvds 15321 The lcm of two integers di...
lcmid 15322 The lcm of an integer and ...
lcm1 15323 The lcm of an integer and ...
lcmgcdnn 15324 The product of two positiv...
lcmgcdeq 15325 Two integers' absolute val...
lcmdvdsb 15326 Biconditional form of ~ lc...
lcmass 15327 Associative law for ` lcm ...
3lcm2e6woprm 15328 The least common multiple ...
6lcm4e12 15329 The least common multiple ...
absproddvds 15330 The absolute value of the ...
absprodnn 15331 The absolute value of the ...
fissn0dvds 15332 For each finite subset of ...
fissn0dvdsn0 15333 For each finite subset of ...
lcmfval 15334 Value of the ` _lcm ` func...
lcmf0val 15335 The value, by convention, ...
lcmfn0val 15336 The value of the ` _lcm ` ...
lcmfnnval 15337 The value of the ` _lcm ` ...
lcmfcllem 15338 Lemma for ~ lcmfn0cl and ~...
lcmfn0cl 15339 Closure of the ` _lcm ` fu...
lcmfpr 15340 The value of the ` _lcm ` ...
lcmfcl 15341 Closure of the ` _lcm ` fu...
lcmfnncl 15342 Closure of the ` _lcm ` fu...
lcmfeq0b 15343 The least common multiple ...
dvdslcmf 15344 The least common multiple ...
lcmfledvds 15345 A positive integer which i...
lcmf 15346 Characterization of the le...
lcmf0 15347 The least common multiple ...
lcmfsn 15348 The least common multiple ...
lcmftp 15349 The least common multiple ...
lcmfunsnlem1 15350 Lemma for ~ lcmfdvds and ~...
lcmfunsnlem2lem1 15351 Lemma 1 for ~ lcmfunsnlem2...
lcmfunsnlem2lem2 15352 Lemma 2 for ~ lcmfunsnlem2...
lcmfunsnlem2 15353 Lemma for ~ lcmfunsn and ~...
lcmfunsnlem 15354 Lemma for ~ lcmfdvds and ~...
lcmfdvds 15355 The least common multiple ...
lcmfdvdsb 15356 Biconditional form of ~ lc...
lcmfunsn 15357 The ` _lcm ` function for ...
lcmfun 15358 The ` _lcm ` function for ...
lcmfass 15359 Associative law for the ` ...
lcmf2a3a4e12 15360 The least common multiple ...
lcmflefac 15361 The least common multiple ...
coprmgcdb 15362 Two positive integers are ...
ncoprmgcdne1b 15363 Two positive integers are ...
ncoprmgcdgt1b 15364 Two positive integers are ...
coprmdvds1 15365 If two positive integers a...
coprmdvds 15366 Euclid's Lemma (see ProofW...
coprmdvdsOLD 15367 If an integer divides the ...
coprmdvds2 15368 If an integer is divisible...
mulgcddvds 15369 One half of ~ rpmulgcd2 , ...
rpmulgcd2 15370 If ` M ` is relatively pri...
qredeq 15371 Two equal reduced fraction...
qredeu 15372 Every rational number has ...
rpmul 15373 If ` K ` is relatively pri...
rpdvds 15374 If ` K ` is relatively pri...
coprmprod 15375 The product of the element...
coprmproddvdslem 15376 Lemma for ~ coprmproddvds ...
coprmproddvds 15377 If a positive integer is d...
congr 15378 Definition of congruence b...
divgcdcoprm0 15379 Integers divided by gcd ar...
divgcdcoprmex 15380 Integers divided by gcd ar...
cncongr1 15381 One direction of the bicon...
cncongr2 15382 The other direction of the...
cncongr 15383 Cancellability of Congruen...
cncongrcoprm 15384 Corollary 1 of Cancellabil...
isprm 15387 The predicate "is a prime ...
prmnn 15388 A prime number is a positi...
prmz 15389 A prime number is an integ...
prmssnn 15390 The prime numbers are a su...
prmex 15391 The set of prime numbers e...
1nprm 15392 1 is not a prime number. ...
1idssfct 15393 The positive divisors of a...
isprm2lem 15394 Lemma for ~ isprm2 . (Con...
isprm2 15395 The predicate "is a prime ...
isprm3 15396 The predicate "is a prime ...
isprm4 15397 The predicate "is a prime ...
prmind2 15398 A variation on ~ prmind as...
prmind 15399 Perform induction over the...
dvdsprime 15400 If ` M ` divides a prime, ...
nprm 15401 A product of two integers ...
nprmi 15402 An inference for composite...
dvdsnprmd 15403 If a number is divisible b...
prm2orodd 15404 A prime number is either 2...
2prm 15405 2 is a prime number. (Con...
3prm 15406 3 is a prime number. (Con...
4nprm 15407 4 is not a prime number. ...
prmuz2 15408 A prime number is an integ...
prmgt1 15409 A prime number is an integ...
prmm2nn0 15410 Subtracting 2 from a prime...
oddprmgt2 15411 An odd prime is greater th...
oddprmge3 15412 An odd prime is greater th...
prmn2uzge3OLD 15413 Obsolete version of ~ oddp...
sqnprm 15414 A square is never prime. ...
dvdsprm 15415 An integer greater than or...
exprmfct 15416 Every integer greater than...
prmdvdsfz 15417 Each integer greater than ...
nprmdvds1 15418 No prime number divides 1....
isprm5 15419 One need only check prime ...
isprm7 15420 One need only check prime ...
maxprmfct 15421 The set of prime factors o...
divgcdodd 15422 Either ` A / ( A gcd B ) `...
coprm 15423 A prime number either divi...
prmrp 15424 Unequal prime numbers are ...
euclemma 15425 Euclid's lemma. A prime n...
isprm6 15426 A number is prime iff it s...
prmdvdsexp 15427 A prime divides a positive...
prmdvdsexpb 15428 A prime divides a positive...
prmdvdsexpr 15429 If a prime divides a nonne...
prmexpb 15430 Two positive prime powers ...
prmfac1 15431 The factorial of a number ...
rpexp 15432 If two numbers ` A ` and `...
rpexp1i 15433 Relative primality passes ...
rpexp12i 15434 Relative primality passes ...
prmndvdsfaclt 15435 A prime number does not di...
ncoprmlnprm 15436 If two positive integers a...
cncongrprm 15437 Corollary 2 of Cancellabil...
isevengcd2 15438 The predicate "is an even ...
isoddgcd1 15439 The predicate "is an odd n...
3lcm2e6 15440 The least common multiple ...
qnumval 15445 Value of the canonical num...
qdenval 15446 Value of the canonical den...
qnumdencl 15447 Lemma for ~ qnumcl and ~ q...
qnumcl 15448 The canonical numerator of...
qdencl 15449 The canonical denominator ...
fnum 15450 Canonical numerator define...
fden 15451 Canonical denominator defi...
qnumdenbi 15452 Two numbers are the canoni...
qnumdencoprm 15453 The canonical representati...
qeqnumdivden 15454 Recover a rational number ...
qmuldeneqnum 15455 Multiplying a rational by ...
divnumden 15456 Calculate the reduced form...
divdenle 15457 Reducing a quotient never ...
qnumgt0 15458 A rational is positive iff...
qgt0numnn 15459 A rational is positive iff...
nn0gcdsq 15460 Squaring commutes with GCD...
zgcdsq 15461 ~ nn0gcdsq extended to int...
numdensq 15462 Squaring a rational square...
numsq 15463 Square commutes with canon...
densq 15464 Square commutes with canon...
qden1elz 15465 A rational is an integer i...
zsqrtelqelz 15466 If an integer has a ration...
nonsq 15467 Any integer strictly betwe...
phival 15472 Value of the Euler ` phi `...
phicl2 15473 Bounds and closure for the...
phicl 15474 Closure for the value of t...
phibndlem 15475 Lemma for ~ phibnd . (Con...
phibnd 15476 A slightly tighter bound o...
phicld 15477 Closure for the value of t...
phi1 15478 Value of the Euler ` phi `...
dfphi2 15479 Alternate definition of th...
hashdvds 15480 The number of numbers in a...
phiprmpw 15481 Value of the Euler ` phi `...
phiprm 15482 Value of the Euler ` phi `...
crth 15483 The Chinese Remainder Theo...
phimullem 15484 Lemma for ~ phimul . (Con...
phimul 15485 The Euler ` phi ` function...
eulerthlem1 15486 Lemma for ~ eulerth . (Co...
eulerthlem2 15487 Lemma for ~ eulerth . (Co...
eulerth 15488 Euler's theorem, a general...
fermltl 15489 Fermat's little theorem. ...
prmdiv 15490 Show an explicit expressio...
prmdiveq 15491 The modular inverse of ` A...
prmdivdiv 15492 The (modular) inverse of t...
hashgcdlem 15493 A correspondence between e...
hashgcdeq 15494 Number of initial positive...
phisum 15495 The divisor sum identity o...
odzval 15496 Value of the order functio...
odzcllem 15497 - Lemma for ~ odzcl , show...
odzcl 15498 The order of a group eleme...
odzid 15499 Any element raised to the ...
odzdvds 15500 The only powers of ` A ` t...
odzphi 15501 The order of any group ele...
modprm1div 15502 A prime number divides an ...
m1dvdsndvds 15503 If an integer minus 1 is d...
modprminv 15504 Show an explicit expressio...
modprminveq 15505 The modular inverse of ` A...
vfermltl 15506 Variant of Fermat's little...
vfermltlALT 15507 Alternate proof of ~ vferm...
powm2modprm 15508 If an integer minus 1 is d...
reumodprminv 15509 For any prime number and f...
modprm0 15510 For two positive integers ...
nnnn0modprm0 15511 For a positive integer and...
modprmn0modprm0 15512 For an integer not being 0...
coprimeprodsq 15513 If three numbers are copri...
coprimeprodsq2 15514 If three numbers are copri...
oddprm 15515 A prime not equal to ` 2 `...
nnoddn2prm 15516 A prime not equal to ` 2 `...
oddn2prm 15517 A prime not equal to ` 2 `...
nnoddn2prmb 15518 A number is a prime number...
prm23lt5 15519 A prime less than 5 is eit...
prm23ge5 15520 A prime is either 2 or 3 o...
pythagtriplem1 15521 Lemma for ~ pythagtrip . ...
pythagtriplem2 15522 Lemma for ~ pythagtrip . ...
pythagtriplem3 15523 Lemma for ~ pythagtrip . ...
pythagtriplem4 15524 Lemma for ~ pythagtrip . ...
pythagtriplem10 15525 Lemma for ~ pythagtrip . ...
pythagtriplem6 15526 Lemma for ~ pythagtrip . ...
pythagtriplem7 15527 Lemma for ~ pythagtrip . ...
pythagtriplem8 15528 Lemma for ~ pythagtrip . ...
pythagtriplem9 15529 Lemma for ~ pythagtrip . ...
pythagtriplem11 15530 Lemma for ~ pythagtrip . ...
pythagtriplem12 15531 Lemma for ~ pythagtrip . ...
pythagtriplem13 15532 Lemma for ~ pythagtrip . ...
pythagtriplem14 15533 Lemma for ~ pythagtrip . ...
pythagtriplem15 15534 Lemma for ~ pythagtrip . ...
pythagtriplem16 15535 Lemma for ~ pythagtrip . ...
pythagtriplem17 15536 Lemma for ~ pythagtrip . ...
pythagtriplem18 15537 Lemma for ~ pythagtrip . ...
pythagtriplem19 15538 Lemma for ~ pythagtrip . ...
pythagtrip 15539 Parameterize the Pythagore...
iserodd 15540 Collect the odd terms in a...
pclem 15543 - Lemma for the prime powe...
pcprecl 15544 Closure of the prime power...
pcprendvds 15545 Non-divisibility property ...
pcprendvds2 15546 Non-divisibility property ...
pcpre1 15547 Value of the prime power p...
pcpremul 15548 Multiplicative property of...
pcval 15549 The value of the prime pow...
pceulem 15550 Lemma for ~ pceu . (Contr...
pceu 15551 Uniqueness for the prime p...
pczpre 15552 Connect the prime count pr...
pczcl 15553 Closure of the prime power...
pccl 15554 Closure of the prime power...
pccld 15555 Closure of the prime power...
pcmul 15556 Multiplication property of...
pcdiv 15557 Division property of the p...
pcqmul 15558 Multiplication property of...
pc0 15559 The value of the prime pow...
pc1 15560 Value of the prime count f...
pcqcl 15561 Closure of the general pri...
pcqdiv 15562 Division property of the p...
pcrec 15563 Prime power of a reciproca...
pcexp 15564 Prime power of an exponent...
pcxcl 15565 Extended real closure of t...
pcge0 15566 The prime count of an inte...
pczdvds 15567 Defining property of the p...
pcdvds 15568 Defining property of the p...
pczndvds 15569 Defining property of the p...
pcndvds 15570 Defining property of the p...
pczndvds2 15571 The remainder after dividi...
pcndvds2 15572 The remainder after dividi...
pcdvdsb 15573 ` P ^ A ` divides ` N ` if...
pcelnn 15574 There are a positive numbe...
pceq0 15575 There are zero powers of a...
pcidlem 15576 The prime count of a prime...
pcid 15577 The prime count of a prime...
pcneg 15578 The prime count of a negat...
pcabs 15579 The prime count of an abso...
pcdvdstr 15580 The prime count increases ...
pcgcd1 15581 The prime count of a GCD i...
pcgcd 15582 The prime count of a GCD i...
pc2dvds 15583 A characterization of divi...
pc11 15584 The prime count function, ...
pcz 15585 The prime count function c...
pcprmpw2 15586 Self-referential expressio...
pcprmpw 15587 Self-referential expressio...
dvdsprmpweq 15588 If a positive integer divi...
dvdsprmpweqnn 15589 If an integer greater than...
dvdsprmpweqle 15590 If a positive integer divi...
difsqpwdvds 15591 If the difference of two s...
pcaddlem 15592 Lemma for ~ pcadd . The o...
pcadd 15593 An inequality for the prim...
pcadd2 15594 The inequality of ~ pcadd ...
pcmptcl 15595 Closure for the prime powe...
pcmpt 15596 Construct a function with ...
pcmpt2 15597 Dividing two prime count m...
pcmptdvds 15598 The partial products of th...
pcprod 15599 The product of the primes ...
sumhash 15600 The sum of 1 over a set is...
fldivp1 15601 The difference between the...
pcfaclem 15602 Lemma for ~ pcfac . (Cont...
pcfac 15603 Calculate the prime count ...
pcbc 15604 Calculate the prime count ...
qexpz 15605 If a power of a rational n...
expnprm 15606 A second or higher power o...
oddprmdvds 15607 Every positive integer whi...
prmpwdvds 15608 A relation involving divis...
pockthlem 15609 Lemma for ~ pockthg . (Co...
pockthg 15610 The generalized Pocklingto...
pockthi 15611 Pocklington's theorem, whi...
unbenlem 15612 Lemma for ~ unben . (Cont...
unben 15613 An unbounded set of positi...
infpnlem1 15614 Lemma for ~ infpn . The s...
infpnlem2 15615 Lemma for ~ infpn . For a...
infpn 15616 There exist infinitely man...
infpn2 15617 There exist infinitely man...
prmunb 15618 The primes are unbounded. ...
prminf 15619 There are an infinite numb...
prmreclem1 15620 Lemma for ~ prmrec . Prop...
prmreclem2 15621 Lemma for ~ prmrec . Ther...
prmreclem3 15622 Lemma for ~ prmrec . The ...
prmreclem4 15623 Lemma for ~ prmrec . Show...
prmreclem5 15624 Lemma for ~ prmrec . Here...
prmreclem6 15625 Lemma for ~ prmrec . If t...
prmrec 15626 The sum of the reciprocals...
1arithlem1 15627 Lemma for ~ 1arith . (Con...
1arithlem2 15628 Lemma for ~ 1arith . (Con...
1arithlem3 15629 Lemma for ~ 1arith . (Con...
1arithlem4 15630 Lemma for ~ 1arith . (Con...
1arith 15631 Fundamental theorem of ari...
1arith2 15632 Fundamental theorem of ari...
elgz 15635 Elementhood in the gaussia...
gzcn 15636 A gaussian integer is a co...
zgz 15637 An integer is a gaussian i...
igz 15638 ` _i ` is a gaussian integ...
gznegcl 15639 The gaussian integers are ...
gzcjcl 15640 The gaussian integers are ...
gzaddcl 15641 The gaussian integers are ...
gzmulcl 15642 The gaussian integers are ...
gzreim 15643 Construct a gaussian integ...
gzsubcl 15644 The gaussian integers are ...
gzabssqcl 15645 The squared norm of a gaus...
4sqlem5 15646 Lemma for ~ 4sq . (Contri...
4sqlem6 15647 Lemma for ~ 4sq . (Contri...
4sqlem7 15648 Lemma for ~ 4sq . (Contri...
4sqlem8 15649 Lemma for ~ 4sq . (Contri...
4sqlem9 15650 Lemma for ~ 4sq . (Contri...
4sqlem10 15651 Lemma for ~ 4sq . (Contri...
4sqlem1 15652 Lemma for ~ 4sq . The set...
4sqlem2 15653 Lemma for ~ 4sq . Change ...
4sqlem3 15654 Lemma for ~ 4sq . Suffici...
4sqlem4a 15655 Lemma for ~ 4sqlem4 . (Co...
4sqlem4 15656 Lemma for ~ 4sq . We can ...
mul4sqlem 15657 Lemma for ~ mul4sq : algeb...
mul4sq 15658 Euler's four-square identi...
4sqlem11 15659 Lemma for ~ 4sq . Use the...
4sqlem12 15660 Lemma for ~ 4sq . For any...
4sqlem13 15661 Lemma for ~ 4sq . (Contri...
4sqlem14 15662 Lemma for ~ 4sq . (Contri...
4sqlem15 15663 Lemma for ~ 4sq . (Contri...
4sqlem16 15664 Lemma for ~ 4sq . (Contri...
4sqlem17 15665 Lemma for ~ 4sq . (Contri...
4sqlem18 15666 Lemma for ~ 4sq . Inducti...
4sqlem19 15667 Lemma for ~ 4sq . The pro...
4sq 15668 Lagrange's four-square the...
vdwapfval 15675 Define the arithmetic prog...
vdwapf 15676 The arithmetic progression...
vdwapval 15677 Value of the arithmetic pr...
vdwapun 15678 Remove the first element o...
vdwapid1 15679 The first element of an ar...
vdwap0 15680 Value of a length-1 arithm...
vdwap1 15681 Value of a length-1 arithm...
vdwmc 15682 The predicate " The ` <. R...
vdwmc2 15683 Expand out the definition ...
vdwpc 15684 The predicate " The colori...
vdwlem1 15685 Lemma for ~ vdw . (Contri...
vdwlem2 15686 Lemma for ~ vdw . (Contri...
vdwlem3 15687 Lemma for ~ vdw . (Contri...
vdwlem4 15688 Lemma for ~ vdw . (Contri...
vdwlem5 15689 Lemma for ~ vdw . (Contri...
vdwlem6 15690 Lemma for ~ vdw . (Contri...
vdwlem7 15691 Lemma for ~ vdw . (Contri...
vdwlem8 15692 Lemma for ~ vdw . (Contri...
vdwlem9 15693 Lemma for ~ vdw . (Contri...
vdwlem10 15694 Lemma for ~ vdw . Set up ...
vdwlem11 15695 Lemma for ~ vdw . (Contri...
vdwlem12 15696 Lemma for ~ vdw . ` K = 2 ...
vdwlem13 15697 Lemma for ~ vdw . Main in...
vdw 15698 Van der Waerden's theorem....
vdwnnlem1 15699 Corollary of ~ vdw , and l...
vdwnnlem2 15700 Lemma for ~ vdwnn . The s...
vdwnnlem3 15701 Lemma for ~ vdwnn . (Cont...
vdwnn 15702 Van der Waerden's theorem,...
ramtlecl 15704 The set ` T ` of numbers w...
hashbcval 15706 Value of the "binomial set...
hashbccl 15707 The binomial set is a fini...
hashbcss 15708 Subset relation for the bi...
hashbc0 15709 The set of subsets of size...
hashbc2 15710 The size of the binomial s...
0hashbc 15711 There are no subsets of th...
ramval 15712 The value of the Ramsey nu...
ramcl2lem 15713 Lemma for extended real cl...
ramtcl 15714 The Ramsey number has the ...
ramtcl2 15715 The Ramsey number is an in...
ramtub 15716 The Ramsey number is a low...
ramub 15717 The Ramsey number is a low...
ramub2 15718 It is sufficient to check ...
rami 15719 The defining property of a...
ramcl2 15720 The Ramsey number is eithe...
ramxrcl 15721 The Ramsey number is an ex...
ramubcl 15722 If the Ramsey number is up...
ramlb 15723 Establish a lower bound on...
0ram 15724 The Ramsey number when ` M...
0ram2 15725 The Ramsey number when ` M...
ram0 15726 The Ramsey number when ` R...
0ramcl 15727 Lemma for ~ ramcl : Exist...
ramz2 15728 The Ramsey number when ` F...
ramz 15729 The Ramsey number when ` F...
ramub1lem1 15730 Lemma for ~ ramub1 . (Con...
ramub1lem2 15731 Lemma for ~ ramub1 . (Con...
ramub1 15732 Inductive step for Ramsey'...
ramcl 15733 Ramsey's theorem: the Rams...
ramsey 15734 Ramsey's theorem with the ...
prmoval 15737 Value of the primorial fun...
prmocl 15738 Closure of the primorial f...
prmone0 15739 The primorial function is ...
prmo0 15740 The primorial of 0. (Cont...
prmo1 15741 The primorial of 1. (Cont...
prmop1 15742 The primorial of a success...
prmonn2 15743 Value of the primorial fun...
prmo2 15744 The primorial of 2. (Cont...
prmo3 15745 The primorial of 3. (Cont...
prmdvdsprmo 15746 The primorial of a number ...
prmdvdsprmop 15747 The primorial of a number ...
fvprmselelfz 15748 The value of the prime sel...
fvprmselgcd1 15749 The greatest common diviso...
prmolefac 15750 The primorial of a positiv...
prmodvdslcmf 15751 The primorial of a nonnega...
prmolelcmf 15752 The primorial of a positiv...
prmgaplem1 15753 Lemma for ~ prmgap : The ...
prmgaplem2 15754 Lemma for ~ prmgap : The ...
prmgaplcmlem1 15755 Lemma for ~ prmgaplcm : T...
prmgaplcmlem2 15756 Lemma for ~ prmgaplcm : T...
prmgaplem3 15757 Lemma for ~ prmgap . (Con...
prmgaplem4 15758 Lemma for ~ prmgap . (Con...
prmgaplem5 15759 Lemma for ~ prmgap : for e...
prmgaplem6 15760 Lemma for ~ prmgap : for e...
prmgaplem7 15761 Lemma for ~ prmgap . (Con...
prmgaplem8 15762 Lemma for ~ prmgap . (Con...
prmgap 15763 The prime gap theorem: for...
prmgaplcm 15764 Alternate proof of ~ prmga...
prmgapprmolem 15765 Lemma for ~ prmgapprmo : ...
prmgapprmo 15766 Alternate proof of ~ prmga...
dec2dvds 15767 Divisibility by two is obv...
dec5dvds 15768 Divisibility by five is ob...
dec5dvds2 15769 Divisibility by five is ob...
dec5nprm 15770 Divisibility by five is ob...
dec2nprm 15771 Divisibility by two is obv...
modxai 15772 Add exponents in a power m...
mod2xi 15773 Double exponents in a powe...
modxp1i 15774 Add one to an exponent in ...
mod2xnegi 15775 Version of ~ mod2xi with a...
modsubi 15776 Subtract from within a mod...
gcdi 15777 Calculate a GCD via Euclid...
gcdmodi 15778 Calculate a GCD via Euclid...
decexp2 15779 Calculate a power of two. ...
numexp0 15780 Calculate an integer power...
numexp1 15781 Calculate an integer power...
numexpp1 15782 Calculate an integer power...
numexp2x 15783 Double an integer power. ...
decsplit0b 15784 Split a decimal number int...
decsplit0 15785 Split a decimal number int...
decsplit1 15786 Split a decimal number int...
decsplit 15787 Split a decimal number int...
decsplit0bOLD 15788 Obsolete version of ~ decs...
decsplit0OLD 15789 Obsolete version of ~ decs...
decsplit1OLD 15790 Obsolete version of ~ decs...
decsplitOLD 15791 Obsolete version of ~ decs...
karatsuba 15792 The Karatsuba multiplicati...
karatsubaOLD 15793 Obsolete version of ~ kara...
2exp4 15794 Two to the fourth power is...
2exp6 15795 Two to the sixth power is ...
2exp8 15796 Two to the eighth power is...
2exp16 15797 Two to the sixteenth power...
3exp3 15798 Three to the third power i...
2expltfac 15799 The factorial grows faster...
cshwsidrepsw 15800 If cyclically shifting a w...
cshwsidrepswmod0 15801 If cyclically shifting a w...
cshwshashlem1 15802 If cyclically shifting a w...
cshwshashlem2 15803 If cyclically shifting a w...
cshwshashlem3 15804 If cyclically shifting a w...
cshwsdisj 15805 The singletons resulting b...
cshwsiun 15806 The set of (different!) wo...
cshwsex 15807 The class of (different!) ...
cshws0 15808 The size of the set of (di...
cshwrepswhash1 15809 The size of the set of (di...
cshwshashnsame 15810 If a word (not consisting ...
cshwshash 15811 If a word has a length bei...
prmlem0 15812 Lemma for ~ prmlem1 and ~ ...
prmlem1a 15813 A quick proof skeleton to ...
prmlem1 15814 A quick proof skeleton to ...
5prm 15815 5 is a prime number. (Con...
6nprm 15816 6 is not a prime number. ...
7prm 15817 7 is a prime number. (Con...
8nprm 15818 8 is not a prime number. ...
9nprm 15819 9 is not a prime number. ...
10nprm 15820 10 is not a prime number. ...
10nprmOLD 15821 Obsolete version of ~ 10np...
11prm 15822 11 is a prime number. (Co...
13prm 15823 13 is a prime number. (Co...
17prm 15824 17 is a prime number. (Co...
19prm 15825 19 is a prime number. (Co...
23prm 15826 23 is a prime number. (Co...
prmlem2 15827 Our last proving session g...
37prm 15828 37 is a prime number. (Co...
43prm 15829 43 is a prime number. (Co...
83prm 15830 83 is a prime number. (Co...
139prm 15831 139 is a prime number. (C...
163prm 15832 163 is a prime number. (C...
317prm 15833 317 is a prime number. (C...
631prm 15834 631 is a prime number. (C...
prmo4 15835 The primorial of 4. (Cont...
prmo5 15836 The primorial of 5. (Cont...
prmo6 15837 The primorial of 6. (Cont...
1259lem1 15838 Lemma for ~ 1259prm . Cal...
1259lem2 15839 Lemma for ~ 1259prm . Cal...
1259lem3 15840 Lemma for ~ 1259prm . Cal...
1259lem4 15841 Lemma for ~ 1259prm . Cal...
1259lem5 15842 Lemma for ~ 1259prm . Cal...
1259prm 15843 1259 is a prime number. (...
2503lem1 15844 Lemma for ~ 2503prm . Cal...
2503lem2 15845 Lemma for ~ 2503prm . Cal...
2503lem3 15846 Lemma for ~ 2503prm . Cal...
2503prm 15847 2503 is a prime number. (...
4001lem1 15848 Lemma for ~ 4001prm . Cal...
4001lem2 15849 Lemma for ~ 4001prm . Cal...
4001lem3 15850 Lemma for ~ 4001prm . Cal...
4001lem4 15851 Lemma for ~ 4001prm . Cal...
4001prm 15852 4001 is a prime number. (...
sloteq 15862 Equality theorem for the `...
brstruct 15866 The structure relation is ...
isstruct2 15867 The property of being a st...
structex 15868 A structure is a set. (Co...
structn0fun 15869 A structure witout the emp...
isstruct 15870 The property of being a st...
structcnvcnv 15871 Two ways to express the re...
structfung 15872 The converse of the conver...
structfun 15873 Convert between two kinds ...
structfn 15874 Convert between two kinds ...
slotfn 15875 A slot is a function on se...
strfvnd 15876 Deduction version of ~ str...
basfn 15877 The base set extractor is ...
wunndx 15878 Closure of the index extra...
strfvn 15879 Value of a structure compo...
strfvss 15880 A structure component extr...
wunstr 15881 Closure of a structure ind...
ndxarg 15882 Get the numeric argument f...
ndxid 15883 A structure component extr...
ndxidOLD 15884 Obsolete proof of ~ ndxid ...
strndxid 15885 The value of a structure c...
reldmsets 15886 The structure override ope...
setsvalg 15887 Value of the structure rep...
setsval 15888 Value of the structure rep...
setsidvald 15889 Value of the structure rep...
fvsetsid 15890 The value of the structure...
fsets 15891 The structure replacement ...
setsdm 15892 The domain of a structure ...
setsfun 15893 A structure with replaceme...
setsfun0 15894 A structure with replaceme...
setsn0fun 15895 The value of the structure...
setsstruct2 15896 An extensible structure wi...
setsexstruct2 15897 An extensible structure wi...
setsstruct 15898 An extensible structure wi...
setsstructOLD 15899 Obsolete version of ~ sets...
wunsets 15900 Closure of structure repla...
setsres 15901 The structure replacement ...
setsabs 15902 Replacing the same compone...
setscom 15903 Component-setting is commu...
strfvd 15904 Deduction version of ~ str...
strfv2d 15905 Deduction version of ~ str...
strfv2 15906 A variation on ~ strfv to ...
strfv 15907 Extract a structure compon...
strfv3 15908 Variant on ~ strfv for lar...
strssd 15909 Deduction version of ~ str...
strss 15910 Propagate component extrac...
str0 15911 All components of the empt...
base0 15912 The base set of the empty ...
strfvi 15913 Structure slot extractors ...
setsid 15914 Value of the structure rep...
setsnid 15915 Value of the structure rep...
sbcie2s 15916 A special version of class...
sbcie3s 15917 A special version of class...
baseval 15918 Value of the base set extr...
baseid 15919 Utility theorem: index-ind...
elbasfv 15920 Utility theorem: reverse c...
elbasov 15921 Utility theorem: reverse c...
strov2rcl 15922 Partial reverse closure fo...
basendx 15923 Index value of the base se...
basendxnn 15924 The index value of the bas...
basprssdmsets 15925 The pair of the base index...
reldmress 15926 The structure restriction ...
ressval 15927 Value of structure restric...
ressid2 15928 General behavior of trivia...
ressval2 15929 Value of nontrivial struct...
ressbas 15930 Base set of a structure re...
ressbas2 15931 Base set of a structure re...
ressbasss 15932 The base set of a restrict...
resslem 15933 Other elements of a struct...
ress0 15934 All restrictions of the nu...
ressid 15935 Behavior of trivial restri...
ressinbas 15936 Restriction only cares abo...
ressval3d 15937 Value of structure restric...
ressress 15938 Restriction composition la...
ressabs 15939 Restriction absorption law...
wunress 15940 Closure of structure restr...
dfpleOLD 15962 Obsolete version of ~ df-p...
strlemor0OLD 15968 Structure definition utili...
strlemor1OLD 15969 Add one element to the end...
strlemor2OLD 15970 Add two elements to the en...
strlemor3OLD 15971 Add three elements to the ...
strleun 15972 Combine two structures int...
strle1 15973 Make a structure from a si...
strle2 15974 Make a structure from a pa...
strle3 15975 Make a structure from a tr...
plusgndx 15976 Index value of the ~ df-pl...
plusgid 15977 Utility theorem: index-ind...
opelstrbas 15978 The base set of a structur...
1strstr 15979 A constructed one-slot str...
1strbas 15980 The base set of a construc...
1strwunbndx 15981 A constructed one-slot str...
1strwun 15982 A constructed one-slot str...
2strstr 15983 A constructed two-slot str...
2strbas 15984 The base set of a construc...
2strop 15985 The other slot of a constr...
2strstr1 15986 A constructed two-slot str...
2strbas1 15987 The base set of a construc...
2strop1 15988 The other slot of a constr...
basendxnplusgndx 15989 The slot for the base set ...
grpstr 15990 A constructed group is a s...
grpbase 15991 The base set of a construc...
grpplusg 15992 The operation of a constru...
ressplusg 15993 ` +g ` is unaffected by re...
grpbasex 15994 The base of an explicitly ...
grpplusgx 15995 The operation of an explic...
mulrndx 15996 Index value of the ~ df-mu...
mulrid 15997 Utility theorem: index-ind...
plusgndxnmulrndx 15998 The slot for the group (ad...
basendxnmulrndx 15999 The slot for the base set ...
rngstr 16000 A constructed ring is a st...
rngbase 16001 The base set of a construc...
rngplusg 16002 The additive operation of ...
rngmulr 16003 The multiplicative operati...
starvndx 16004 Index value of the ~ df-st...
starvid 16005 Utility theorem: index-ind...
ressmulr 16006 ` .r ` is unaffected by re...
ressstarv 16007 ` *r ` is unaffected by re...
srngfn 16008 A constructed star ring is...
srngbase 16009 The base set of a construc...
srngplusg 16010 The addition operation of ...
srngmulr 16011 The multiplication operati...
srnginvl 16012 The involution function of...
scandx 16013 Index value of the ~ df-sc...
scaid 16014 Utility theorem: index-ind...
vscandx 16015 Index value of the ~ df-vs...
vscaid 16016 Utility theorem: index-ind...
lmodstr 16017 A constructed left module ...
lmodbase 16018 The base set of a construc...
lmodplusg 16019 The additive operation of ...
lmodsca 16020 The set of scalars of a co...
lmodvsca 16021 The scalar product operati...
ipndx 16022 Index value of the ~ df-ip...
ipid 16023 Utility theorem: index-ind...
ipsstr 16024 Lemma to shorten proofs of...
ipsbase 16025 The base set of a construc...
ipsaddg 16026 The additive operation of ...
ipsmulr 16027 The multiplicative operati...
ipssca 16028 The set of scalars of a co...
ipsvsca 16029 The scalar product operati...
ipsip 16030 The multiplicative operati...
resssca 16031 ` Scalar ` is unaffected b...
ressvsca 16032 ` .s ` is unaffected by re...
ressip 16033 The inner product is unaff...
phlstr 16034 A constructed pre-Hilbert ...
phlbase 16035 The base set of a construc...
phlplusg 16036 The additive operation of ...
phlsca 16037 The ring of scalars of a c...
phlvsca 16038 The scalar product operati...
phlip 16039 The inner product (Hermiti...
tsetndx 16040 Index value of the ~ df-ts...
tsetid 16041 Utility theorem: index-ind...
topgrpstr 16042 A constructed topological ...
topgrpbas 16043 The base set of a construc...
topgrpplusg 16044 The additive operation of ...
topgrptset 16045 The topology of a construc...
resstset 16046 ` TopSet ` is unaffected b...
plendx 16047 Index value of the ~ df-pl...
plendxOLD 16048 Obsolete version of ~ df-p...
pleid 16049 Utility theorem: self-refe...
pleidOLD 16050 Obsolete version of ~ otps...
otpsstr 16051 Functionality of a topolog...
otpsbas 16052 The base set of a topologi...
otpstset 16053 The open sets of a topolog...
otpsle 16054 The order of a topological...
otpsstrOLD 16055 Obsolete version of ~ otps...
otpsbasOLD 16056 Obsolete version of ~ otps...
otpstsetOLD 16057 Obsolete version of ~ otps...
otpsleOLD 16058 Obsolete version of ~ otps...
ressle 16059 ` le ` is unaffected by re...
ocndx 16060 Index value of the ~ df-oc...
ocid 16061 Utility theorem: index-ind...
dsndx 16062 Index value of the ~ df-ds...
dsid 16063 Utility theorem: index-ind...
unifndx 16064 Index value of the ~ df-un...
unifid 16065 Utility theorem: index-ind...
odrngstr 16066 Functionality of an ordere...
odrngbas 16067 The base set of an ordered...
odrngplusg 16068 The addition operation of ...
odrngmulr 16069 The multiplication operati...
odrngtset 16070 The open sets of an ordere...
odrngle 16071 The order of an ordered me...
odrngds 16072 The metric of an ordered m...
ressds 16073 ` dist ` is unaffected by ...
homndx 16074 Index value of the ~ df-ho...
homid 16075 Utility theorem: index-ind...
ccondx 16076 Index value of the ~ df-cc...
ccoid 16077 Utility theorem: index-ind...
resshom 16078 ` Hom ` is unaffected by r...
ressco 16079 ` comp ` is unaffected by ...
slotsbhcdif 16080 The slots ` Base ` , ` Hom...
restfn 16085 The subspace topology oper...
topnfn 16086 The topology extractor fun...
restval 16087 The subspace topology indu...
elrest 16088 The predicate "is an open ...
elrestr 16089 Sufficient condition for b...
0rest 16090 Value of the structure res...
restid2 16091 The subspace topology over...
restsspw 16092 The subspace topology is a...
firest 16093 The finite intersections o...
restid 16094 The subspace topology of t...
topnval 16095 Value of the topology extr...
topnid 16096 Value of the topology extr...
topnpropd 16097 The topology extractor fun...
reldmprds 16109 The structure product is a...
prdsbasex 16111 Lemma for structure produc...
imasvalstr 16112 Structure product value is...
prdsvalstr 16113 Structure product value is...
prdsvallem 16114 Lemma for ~ prdsbas and si...
prdsval 16115 Value of the structure pro...
prdssca 16116 Scalar ring of a structure...
prdsbas 16117 Base set of a structure pr...
prdsplusg 16118 Addition in a structure pr...
prdsmulr 16119 Multiplication in a struct...
prdsvsca 16120 Scalar multiplication in a...
prdsip 16121 Inner product in a structu...
prdsle 16122 Structure product weak ord...
prdsless 16123 Closure of the order relat...
prdsds 16124 Structure product distance...
prdsdsfn 16125 Structure product distance...
prdstset 16126 Structure product topology...
prdshom 16127 Structure product hom-sets...
prdsco 16128 Structure product composit...
prdsbas2 16129 The base set of a structur...
prdsbasmpt 16130 A constructed tuple is a p...
prdsbasfn 16131 Points in the structure pr...
prdsbasprj 16132 Each point in a structure ...
prdsplusgval 16133 Value of a componentwise s...
prdsplusgfval 16134 Value of a structure produ...
prdsmulrval 16135 Value of a componentwise r...
prdsmulrfval 16136 Value of a structure produ...
prdsleval 16137 Value of the product order...
prdsdsval 16138 Value of the metric in a s...
prdsvscaval 16139 Scalar multiplication in a...
prdsvscafval 16140 Scalar multiplication of a...
prdsbas3 16141 The base set of an indexed...
prdsbasmpt2 16142 A constructed tuple is a p...
prdsbascl 16143 An element of the base has...
prdsdsval2 16144 Value of the metric in a s...
prdsdsval3 16145 Value of the metric in a s...
pwsval 16146 Value of a structure power...
pwsbas 16147 Base set of a structure po...
pwselbasb 16148 Membership in the base set...
pwselbas 16149 An element of a structure ...
pwsplusgval 16150 Value of addition in a str...
pwsmulrval 16151 Value of multiplication in...
pwsle 16152 Ordering in a structure po...
pwsleval 16153 Ordering in a structure po...
pwsvscafval 16154 Scalar multiplication in a...
pwsvscaval 16155 Scalar multiplication of a...
pwssca 16156 The ring of scalars of a s...
pwsdiagel 16157 Membership of diagonal ele...
pwssnf1o 16158 Triviality of singleton po...
imasval 16171 Value of an image structur...
imasbas 16172 The base set of an image s...
imasds 16173 The distance function of a...
imasdsfn 16174 The distance function is a...
imasdsval 16175 The distance function of a...
imasdsval2 16176 The distance function of a...
imasplusg 16177 The group operation in an ...
imasmulr 16178 The ring multiplication in...
imassca 16179 The scalar field of an ima...
imasvsca 16180 The scalar multiplication ...
imasip 16181 The inner product of an im...
imastset 16182 The topology of an image s...
imasle 16183 The ordering of an image s...
f1ocpbllem 16184 Lemma for ~ f1ocpbl . (Co...
f1ocpbl 16185 An injection is compatible...
f1ovscpbl 16186 An injection is compatible...
f1olecpbl 16187 An injection is compatible...
imasaddfnlem 16188 The image structure operat...
imasaddvallem 16189 The operation of an image ...
imasaddflem 16190 The image set operations a...
imasaddfn 16191 The image structure's grou...
imasaddval 16192 The value of an image stru...
imasaddf 16193 The image structure's grou...
imasmulfn 16194 The image structure's ring...
imasmulval 16195 The value of an image stru...
imasmulf 16196 The image structure's ring...
imasvscafn 16197 The image structure's scal...
imasvscaval 16198 The value of an image stru...
imasvscaf 16199 The image structure's scal...
imasless 16200 The order relation defined...
imasleval 16201 The value of the image str...
qusval 16202 Value of a quotient struct...
quslem 16203 The function in ~ qusval i...
qusin 16204 Restrict the equivalence r...
qusbas 16205 Base set of a quotient str...
quss 16206 The scalar field of a quot...
divsfval 16207 Value of the function in ~...
ercpbllem 16208 Lemma for ~ ercpbl . (Con...
ercpbl 16209 Translate the function com...
erlecpbl 16210 Translate the relation com...
qusaddvallem 16211 Value of an operation defi...
qusaddflem 16212 The operation of a quotien...
qusaddval 16213 The base set of an image s...
qusaddf 16214 The base set of an image s...
qusmulval 16215 The base set of an image s...
qusmulf 16216 The base set of an image s...
xpsc 16217 A short expression for the...
xpscg 16218 A short expression for the...
xpscfn 16219 The pair function is a fun...
xpsc0 16220 The pair function maps ` 0...
xpsc1 16221 The pair function maps ` 1...
xpscfv 16222 The value of the pair func...
xpsfrnel 16223 Elementhood in the target ...
xpsfeq 16224 A function on ` 2o ` is de...
xpsfrnel2 16225 Elementhood in the target ...
xpscf 16226 Equivalent condition for t...
xpsfval 16227 The value of the function ...
xpsff1o 16228 The function appearing in ...
xpsfrn 16229 A short expression for the...
xpsfrn2 16230 A short expression for the...
xpsff1o2 16231 The function appearing in ...
xpsval 16232 Value of the binary struct...
xpslem 16233 The indexed structure prod...
xpsbas 16234 The base set of the binary...
xpsaddlem 16235 Lemma for ~ xpsadd and ~ x...
xpsadd 16236 Value of the addition oper...
xpsmul 16237 Value of the multiplicatio...
xpssca 16238 Value of the scalar field ...
xpsvsca 16239 Value of the scalar multip...
xpsless 16240 Closure of the ordering in...
xpsle 16241 Value of the ordering in a...
ismre 16250 Property of being a Moore ...
fnmre 16251 The Moore collection gener...
mresspw 16252 A Moore collection is a su...
mress 16253 A Moore-closed subset is a...
mre1cl 16254 In any Moore collection th...
mreintcl 16255 A nonempty collection of c...
mreiincl 16256 A nonempty indexed interse...
mrerintcl 16257 The relative intersection ...
mreriincl 16258 The relative intersection ...
mreincl 16259 Two closed sets have a clo...
mreuni 16260 Since the entire base set ...
mreunirn 16261 Two ways to express the no...
ismred 16262 Properties that determine ...
ismred2 16263 Properties that determine ...
mremre 16264 The Moore collections of s...
submre 16265 The subcollection of a clo...
mrcflem 16266 The domain and range of th...
fnmrc 16267 Moore-closure is a well-be...
mrcfval 16268 Value of the function expr...
mrcf 16269 The Moore closure is a fun...
mrcval 16270 Evaluation of the Moore cl...
mrccl 16271 The Moore closure of a set...
mrcsncl 16272 The Moore closure of a sin...
mrcid 16273 The closure of a closed se...
mrcssv 16274 The closure of a set is a ...
mrcidb 16275 A set is closed iff it is ...
mrcss 16276 Closure preserves subset o...
mrcssid 16277 The closure of a set is a ...
mrcidb2 16278 A set is closed iff it con...
mrcidm 16279 The closure operation is i...
mrcsscl 16280 The closure is the minimal...
mrcuni 16281 Idempotence of closure und...
mrcun 16282 Idempotence of closure und...
mrcssvd 16283 The Moore closure of a set...
mrcssd 16284 Moore closure preserves su...
mrcssidd 16285 A set is contained in its ...
mrcidmd 16286 Moore closure is idempoten...
mressmrcd 16287 In a Moore system, if a se...
submrc 16288 In a closure system which ...
mrieqvlemd 16289 In a Moore system, if ` Y ...
mrisval 16290 Value of the set of indepe...
ismri 16291 Criterion for a set to be ...
ismri2 16292 Criterion for a subset of ...
ismri2d 16293 Criterion for a subset of ...
ismri2dd 16294 Definition of independence...
mriss 16295 An independent set of a Mo...
mrissd 16296 An independent set of a Mo...
ismri2dad 16297 Consequence of a set in a ...
mrieqvd 16298 In a Moore system, a set i...
mrieqv2d 16299 In a Moore system, a set i...
mrissmrcd 16300 In a Moore system, if an i...
mrissmrid 16301 In a Moore system, subsets...
mreexd 16302 In a Moore system, the clo...
mreexmrid 16303 In a Moore system whose cl...
mreexexlemd 16304 This lemma is used to gene...
mreexexlem2d 16305 Used in ~ mreexexlem4d to ...
mreexexlem3d 16306 Base case of the induction...
mreexexlem4d 16307 Induction step of the indu...
mreexexd 16308 Exchange-type theorem. In...
mreexexdOLD 16309 Obsolete proof of ~ mreexe...
mreexdomd 16310 In a Moore system whose cl...
mreexfidimd 16311 In a Moore system whose cl...
isacs 16312 A set is an algebraic clos...
acsmre 16313 Algebraic closure systems ...
isacs2 16314 In the definition of an al...
acsfiel 16315 A set is closed in an alge...
acsfiel2 16316 A set is closed in an alge...
acsmred 16317 An algebraic closure syste...
isacs1i 16318 A closure system determine...
mreacs 16319 Algebraicity is a composab...
acsfn 16320 Algebraicity of a conditio...
acsfn0 16321 Algebraicity of a point cl...
acsfn1 16322 Algebraicity of a one-argu...
acsfn1c 16323 Algebraicity of a one-argu...
acsfn2 16324 Algebraicity of a two-argu...
iscat 16333 The predicate "is a catego...
iscatd 16334 Properties that determine ...
catidex 16335 Each object in a category ...
catideu 16336 Each object in a category ...
cidfval 16337 Each object in a category ...
cidval 16338 Each object in a category ...
cidffn 16339 The identity arrow constru...
cidfn 16340 The identity arrow operato...
catidd 16341 Deduce the identity arrow ...
iscatd2 16342 Version of ~ iscatd with a...
catidcl 16343 Each object in a category ...
catlid 16344 Left identity property of ...
catrid 16345 Right identity property of...
catcocl 16346 Closure of a composition a...
catass 16347 Associativity of compositi...
0catg 16348 Any structure with an empt...
0cat 16349 The empty set is a categor...
homffval 16350 Value of the functionalize...
fnhomeqhomf 16351 If the Hom-set operation i...
homfval 16352 Value of the functionalize...
homffn 16353 The functionalized Hom-set...
homfeq 16354 Condition for two categori...
homfeqd 16355 If two structures have the...
homfeqbas 16356 Deduce equality of base se...
homfeqval 16357 Value of the functionalize...
comfffval 16358 Value of the functionalize...
comffval 16359 Value of the functionalize...
comfval 16360 Value of the functionalize...
comfffval2 16361 Value of the functionalize...
comffval2 16362 Value of the functionalize...
comfval2 16363 Value of the functionalize...
comfffn 16364 The functionalized composi...
comffn 16365 The functionalized composi...
comfeq 16366 Condition for two categori...
comfeqd 16367 Condition for two categori...
comfeqval 16368 Equality of two compositio...
catpropd 16369 Two structures with the sa...
cidpropd 16370 Two structures with the sa...
oppcval 16373 Value of the opposite cate...
oppchomfval 16374 Hom-sets of the opposite c...
oppchom 16375 Hom-sets of the opposite c...
oppccofval 16376 Composition in the opposit...
oppcco 16377 Composition in the opposit...
oppcbas 16378 Base set of an opposite ca...
oppccatid 16379 Lemma for ~ oppccat . (Co...
oppchomf 16380 Hom-sets of the opposite c...
oppcid 16381 Identity function of an op...
oppccat 16382 An opposite category is a ...
2oppcbas 16383 The double opposite catego...
2oppchomf 16384 The double opposite catego...
2oppccomf 16385 The double opposite catego...
oppchomfpropd 16386 If two categories have the...
oppccomfpropd 16387 If two categories have the...
monfval 16392 Definition of a monomorphi...
ismon 16393 Definition of a monomorphi...
ismon2 16394 Write out the monomorphism...
monhom 16395 A monomorphism is a morphi...
moni 16396 Property of a monomorphism...
monpropd 16397 If two categories have the...
oppcmon 16398 A monomorphism in the oppo...
oppcepi 16399 An epimorphism in the oppo...
isepi 16400 Definition of an epimorphi...
isepi2 16401 Write out the epimorphism ...
epihom 16402 An epimorphism is a morphi...
epii 16403 Property of an epimorphism...
sectffval 16410 Value of the section opera...
sectfval 16411 Value of the section relat...
sectss 16412 The section relation is a ...
issect 16413 The property " ` F ` is a ...
issect2 16414 Property of being a sectio...
sectcan 16415 If ` G ` is a section of `...
sectco 16416 Composition of two section...
isofval 16417 Function value of the func...
invffval 16418 Value of the inverse relat...
invfval 16419 Value of the inverse relat...
isinv 16420 Value of the inverse relat...
invss 16421 The inverse relation is a ...
invsym 16422 The inverse relation is sy...
invsym2 16423 The inverse relation is sy...
invfun 16424 The inverse relation is a ...
isoval 16425 The isomorphisms are the d...
inviso1 16426 If ` G ` is an inverse to ...
inviso2 16427 If ` G ` is an inverse to ...
invf 16428 The inverse relation is a ...
invf1o 16429 The inverse relation is a ...
invinv 16430 The inverse of the inverse...
invco 16431 The composition of two iso...
dfiso2 16432 Alternate definition of an...
dfiso3 16433 Alternate definition of an...
inveq 16434 If there are two inverses ...
isofn 16435 The function value of the ...
isohom 16436 An isomorphism is a homomo...
isoco 16437 The composition of two iso...
oppcsect 16438 A section in the opposite ...
oppcsect2 16439 A section in the opposite ...
oppcinv 16440 An inverse in the opposite...
oppciso 16441 An isomorphism in the oppo...
sectmon 16442 If ` F ` is a section of `...
monsect 16443 If ` F ` is a monomorphism...
sectepi 16444 If ` F ` is a section of `...
episect 16445 If ` F ` is an epimorphism...
sectid 16446 The identity is a section ...
invid 16447 The inverse of the identit...
idiso 16448 The identity is an isomorp...
idinv 16449 The inverse of the identit...
invisoinvl 16450 The inverse of an isomorph...
invisoinvr 16451 The inverse of an isomorph...
invcoisoid 16452 The inverse of an isomorph...
isocoinvid 16453 The inverse of an isomorph...
rcaninv 16454 Right cancellation of an i...
cicfval 16457 The set of isomorphic obje...
brcic 16458 The relation "is isomorphi...
cic 16459 Objects ` X ` and ` Y ` in...
brcici 16460 Prove that two objects are...
cicref 16461 Isomorphism is reflexive. ...
ciclcl 16462 Isomorphism implies the le...
cicrcl 16463 Isomorphism implies the ri...
cicsym 16464 Isomorphism is symmetric. ...
cictr 16465 Isomorphism is transitive....
cicer 16466 Isomorphism is an equivale...
sscrel 16473 The subcategory subset rel...
brssc 16474 The subcategory subset rel...
sscpwex 16475 An analogue of ~ pwex for ...
subcrcl 16476 Reverse closure for the su...
sscfn1 16477 The subcategory subset rel...
sscfn2 16478 The subcategory subset rel...
ssclem 16479 Lemma for ~ ssc1 and simil...
isssc 16480 Value of the subcategory s...
ssc1 16481 Infer subset relation on o...
ssc2 16482 Infer subset relation on m...
sscres 16483 Any function restricted to...
sscid 16484 The subcategory subset rel...
ssctr 16485 The subcategory subset rel...
ssceq 16486 The subcategory subset rel...
rescval 16487 Value of the category rest...
rescval2 16488 Value of the category rest...
rescbas 16489 Base set of the category r...
reschom 16490 Hom-sets of the category r...
reschomf 16491 Hom-sets of the category r...
rescco 16492 Composition in the categor...
rescabs 16493 Restriction absorption law...
rescabs2 16494 Restriction absorption law...
issubc 16495 Elementhood in the set of ...
issubc2 16496 Elementhood in the set of ...
0ssc 16497 For any category ` C ` , t...
0subcat 16498 For any category ` C ` , t...
catsubcat 16499 For any category ` C ` , `...
subcssc 16500 An element in the set of s...
subcfn 16501 An element in the set of s...
subcss1 16502 The objects of a subcatego...
subcss2 16503 The morphisms of a subcate...
subcidcl 16504 The identity of the origin...
subccocl 16505 A subcategory is closed un...
subccatid 16506 A subcategory is a categor...
subcid 16507 The identity in a subcateg...
subccat 16508 A subcategory is a categor...
issubc3 16509 Alternate definition of a ...
fullsubc 16510 The full subcategory gener...
fullresc 16511 The category formed by str...
resscat 16512 A category restricted to a...
subsubc 16513 A subcategory of a subcate...
relfunc 16522 The set of functors is a r...
funcrcl 16523 Reverse closure for a func...
isfunc 16524 Value of the set of functo...
isfuncd 16525 Deduce that an operation i...
funcf1 16526 The object part of a funct...
funcixp 16527 The morphism part of a fun...
funcf2 16528 The morphism part of a fun...
funcfn2 16529 The morphism part of a fun...
funcid 16530 A functor maps each identi...
funcco 16531 A functor maps composition...
funcsect 16532 The image of a section und...
funcinv 16533 The image of an inverse un...
funciso 16534 The image of an isomorphis...
funcoppc 16535 A functor on categories yi...
idfuval 16536 Value of the identity func...
idfu2nd 16537 Value of the morphism part...
idfu2 16538 Value of the morphism part...
idfu1st 16539 Value of the object part o...
idfu1 16540 Value of the object part o...
idfucl 16541 The identity functor is a ...
cofuval 16542 Value of the composition o...
cofu1st 16543 Value of the object part o...
cofu1 16544 Value of the object part o...
cofu2nd 16545 Value of the morphism part...
cofu2 16546 Value of the morphism part...
cofuval2 16547 Value of the composition o...
cofucl 16548 The composition of two fun...
cofuass 16549 Functor composition is ass...
cofulid 16550 The identity functor is a ...
cofurid 16551 The identity functor is a ...
resfval 16552 Value of the functor restr...
resfval2 16553 Value of the functor restr...
resf1st 16554 Value of the functor restr...
resf2nd 16555 Value of the functor restr...
funcres 16556 A functor restricted to a ...
funcres2b 16557 Condition for a functor to...
funcres2 16558 A functor into a restricte...
wunfunc 16559 A weak universe is closed ...
funcpropd 16560 If two categories have the...
funcres2c 16561 Condition for a functor to...
fullfunc 16566 A full functor is a functo...
fthfunc 16567 A faithful functor is a fu...
relfull 16568 The set of full functors i...
relfth 16569 The set of faithful functo...
isfull 16570 Value of the set of full f...
isfull2 16571 Equivalent condition for a...
fullfo 16572 The morphism map of a full...
fulli 16573 The morphism map of a full...
isfth 16574 Value of the set of faithf...
isfth2 16575 Equivalent condition for a...
isffth2 16576 A fully faithful functor i...
fthf1 16577 The morphism map of a fait...
fthi 16578 The morphism map of a fait...
ffthf1o 16579 The morphism map of a full...
fullpropd 16580 If two categories have the...
fthpropd 16581 If two categories have the...
fulloppc 16582 The opposite functor of a ...
fthoppc 16583 The opposite functor of a ...
ffthoppc 16584 The opposite functor of a ...
fthsect 16585 A faithful functor reflect...
fthinv 16586 A faithful functor reflect...
fthmon 16587 A faithful functor reflect...
fthepi 16588 A faithful functor reflect...
ffthiso 16589 A fully faithful functor r...
fthres2b 16590 Condition for a faithful f...
fthres2c 16591 Condition for a faithful f...
fthres2 16592 A faithful functor into a ...
idffth 16593 The identity functor is a ...
cofull 16594 The composition of two ful...
cofth 16595 The composition of two fai...
coffth 16596 The composition of two ful...
rescfth 16597 The inclusion functor from...
ressffth 16598 The inclusion functor from...
fullres2c 16599 Condition for a full funct...
ffthres2c 16600 Condition for a fully fait...
fnfuc 16605 The ` FuncCat ` operation ...
natfval 16606 Value of the function givi...
isnat 16607 Property of being a natura...
isnat2 16608 Property of being a natura...
natffn 16609 The natural transformation...
natrcl 16610 Reverse closure for a natu...
nat1st2nd 16611 Rewrite the natural transf...
natixp 16612 A natural transformation i...
natcl 16613 A component of a natural t...
natfn 16614 A natural transformation i...
nati 16615 Naturality property of a n...
wunnat 16616 A weak universe is closed ...
catstr 16617 A category structure is a ...
fucval 16618 Value of the functor categ...
fuccofval 16619 Value of the functor categ...
fucbas 16620 The objects of the functor...
fuchom 16621 The morphisms in the funct...
fucco 16622 Value of the composition o...
fuccoval 16623 Value of the functor categ...
fuccocl 16624 The composition of two nat...
fucidcl 16625 The identity natural trans...
fuclid 16626 Left identity of natural t...
fucrid 16627 Right identity of natural ...
fucass 16628 Associativity of natural t...
fuccatid 16629 The functor category is a ...
fuccat 16630 The functor category is a ...
fucid 16631 The identity morphism in t...
fucsect 16632 Two natural transformation...
fucinv 16633 Two natural transformation...
invfuc 16634 If ` V ( x ) ` is an inver...
fuciso 16635 A natural transformation i...
natpropd 16636 If two categories have the...
fucpropd 16637 If two categories have the...
initorcl 16644 Reverse closure for an ini...
termorcl 16645 Reverse closure for a term...
zeroorcl 16646 Reverse closure for a zero...
initoval 16647 The value of the initial o...
termoval 16648 The value of the terminal ...
zerooval 16649 The value of the zero obje...
isinito 16650 The predicate "is an initi...
istermo 16651 The predicate "is a termin...
iszeroo 16652 The predicate "is a zero o...
isinitoi 16653 Implication of a class bei...
istermoi 16654 Implication of a class bei...
initoid 16655 For an initial object, the...
termoid 16656 For a terminal object, the...
initoo 16657 An initial object is an ob...
termoo 16658 A terminal object is an ob...
iszeroi 16659 Implication of a class bei...
2initoinv 16660 Morphisms between two init...
initoeu1 16661 Initial objects are essent...
initoeu1w 16662 Initial objects are essent...
initoeu2lem0 16663 Lemma 0 for ~ initoeu2 . ...
initoeu2lem1 16664 Lemma 1 for ~ initoeu2 . ...
initoeu2lem2 16665 Lemma 2 for ~ initoeu2 . ...
initoeu2 16666 Initial objects are essent...
2termoinv 16667 Morphisms between two term...
termoeu1 16668 Terminal objects are essen...
termoeu1w 16669 Terminal objects are essen...
homarcl 16678 Reverse closure for an arr...
homafval 16679 Value of the disjointified...
homaf 16680 Functionality of the disjo...
homaval 16681 Value of the disjointified...
elhoma 16682 Value of the disjointified...
elhomai 16683 Produce an arrow from a mo...
elhomai2 16684 Produce an arrow from a mo...
homarcl2 16685 Reverse closure for the do...
homarel 16686 An arrow is an ordered pai...
homa1 16687 The first component of an ...
homahom2 16688 The second component of an...
homahom 16689 The second component of an...
homadm 16690 The domain of an arrow wit...
homacd 16691 The codomain of an arrow w...
homadmcd 16692 Decompose an arrow into do...
arwval 16693 The set of arrows is the u...
arwrcl 16694 The first component of an ...
arwhoma 16695 An arrow is contained in t...
homarw 16696 A hom-set is a subset of t...
arwdm 16697 The domain of an arrow is ...
arwcd 16698 The codomain of an arrow i...
dmaf 16699 The domain function is a f...
cdaf 16700 The codomain function is a...
arwhom 16701 The second component of an...
arwdmcd 16702 Decompose an arrow into do...
idafval 16707 Value of the identity arro...
idaval 16708 Value of the identity arro...
ida2 16709 Morphism part of the ident...
idahom 16710 Domain and codomain of the...
idadm 16711 Domain of the identity arr...
idacd 16712 Codomain of the identity a...
idaf 16713 The identity arrow functio...
coafval 16714 The value of the compositi...
eldmcoa 16715 A pair ` <. G , F >. ` is ...
dmcoass 16716 The domain of composition ...
homdmcoa 16717 If ` F : X --> Y ` and ` G...
coaval 16718 Value of composition for c...
coa2 16719 The morphism part of arrow...
coahom 16720 The composition of two com...
coapm 16721 Composition of arrows is a...
arwlid 16722 Left identity of a categor...
arwrid 16723 Right identity of a catego...
arwass 16724 Associativity of compositi...
setcval 16727 Value of the category of s...
setcbas 16728 Set of objects of the cate...
setchomfval 16729 Set of arrows of the categ...
setchom 16730 Set of arrows of the categ...
elsetchom 16731 A morphism of sets is a fu...
setccofval 16732 Composition in the categor...
setcco 16733 Composition in the categor...
setccatid 16734 Lemma for ~ setccat . (Co...
setccat 16735 The category of sets is a ...
setcid 16736 The identity arrow in the ...
setcmon 16737 A monomorphism of sets is ...
setcepi 16738 An epimorphism of sets is ...
setcsect 16739 A section in the category ...
setcinv 16740 An inverse in the category...
setciso 16741 An isomorphism in the cate...
resssetc 16742 The restriction of the cat...
funcsetcres2 16743 A functor into a smaller c...
catcval 16746 Value of the category of c...
catcbas 16747 Set of objects of the cate...
catchomfval 16748 Set of arrows of the categ...
catchom 16749 Set of arrows of the categ...
catccofval 16750 Composition in the categor...
catcco 16751 Composition in the categor...
catccatid 16752 Lemma for ~ catccat . (Co...
catcid 16753 The identity arrow in the ...
catccat 16754 The category of categories...
resscatc 16755 The restriction of the cat...
catcisolem 16756 Lemma for ~ catciso . (Co...
catciso 16757 A functor is an isomorphis...
catcoppccl 16758 The category of categories...
catcfuccl 16759 The category of categories...
fncnvimaeqv 16760 The inverse images of the ...
bascnvimaeqv 16761 The inverse image of the u...
estrcval 16764 Value of the category of e...
estrcbas 16765 Set of objects of the cate...
estrchomfval 16766 Set of morphisms ("arrows"...
estrchom 16767 The morphisms between exte...
elestrchom 16768 A morphism between extensi...
estrccofval 16769 Composition in the categor...
estrcco 16770 Composition in the categor...
estrcbasbas 16771 An element of the base set...
estrccatid 16772 Lemma for ~ estrccat . (C...
estrccat 16773 The category of extensible...
estrcid 16774 The identity arrow in the ...
estrchomfn 16775 The Hom-set operation in t...
estrchomfeqhom 16776 The functionalized Hom-set...
estrreslem1 16777 Lemma 1 for ~ estrres . (...
estrreslem2 16778 Lemma 2 for ~ estrres . (...
estrres 16779 Any restriction of a categ...
funcestrcsetclem1 16780 Lemma 1 for ~ funcestrcset...
funcestrcsetclem2 16781 Lemma 2 for ~ funcestrcset...
funcestrcsetclem3 16782 Lemma 3 for ~ funcestrcset...
funcestrcsetclem4 16783 Lemma 4 for ~ funcestrcset...
funcestrcsetclem5 16784 Lemma 5 for ~ funcestrcset...
funcestrcsetclem6 16785 Lemma 6 for ~ funcestrcset...
funcestrcsetclem7 16786 Lemma 7 for ~ funcestrcset...
funcestrcsetclem8 16787 Lemma 8 for ~ funcestrcset...
funcestrcsetclem9 16788 Lemma 9 for ~ funcestrcset...
funcestrcsetc 16789 The "natural forgetful fun...
fthestrcsetc 16790 The "natural forgetful fun...
fullestrcsetc 16791 The "natural forgetful fun...
equivestrcsetc 16792 The "natural forgetful fun...
setc1strwun 16793 A constructed one-slot str...
funcsetcestrclem1 16794 Lemma 1 for ~ funcsetcestr...
funcsetcestrclem2 16795 Lemma 2 for ~ funcsetcestr...
funcsetcestrclem3 16796 Lemma 3 for ~ funcsetcestr...
embedsetcestrclem 16797 Lemma for ~ embedsetcestrc...
funcsetcestrclem4 16798 Lemma 4 for ~ funcsetcestr...
funcsetcestrclem5 16799 Lemma 5 for ~ funcsetcestr...
funcsetcestrclem6 16800 Lemma 6 for ~ funcsetcestr...
funcsetcestrclem7 16801 Lemma 7 for ~ funcsetcestr...
funcsetcestrclem8 16802 Lemma 8 for ~ funcsetcestr...
funcsetcestrclem9 16803 Lemma 9 for ~ funcsetcestr...
funcsetcestrc 16804 The "embedding functor" fr...
fthsetcestrc 16805 The "embedding functor" fr...
fullsetcestrc 16806 The "embedding functor" fr...
embedsetcestrc 16807 The "embedding functor" fr...
fnxpc 16816 The binary product of cate...
xpcval 16817 Value of the binary produc...
xpcbas 16818 Set of objects of the bina...
xpchomfval 16819 Set of morphisms of the bi...
xpchom 16820 Set of morphisms of the bi...
relxpchom 16821 A hom-set in the binary pr...
xpccofval 16822 Value of composition in th...
xpcco 16823 Value of composition in th...
xpcco1st 16824 Value of composition in th...
xpcco2nd 16825 Value of composition in th...
xpchom2 16826 Value of the set of morphi...
xpcco2 16827 Value of composition in th...
xpccatid 16828 The product of two categor...
xpcid 16829 The identity morphism in t...
xpccat 16830 The product of two categor...
1stfval 16831 Value of the first project...
1stf1 16832 Value of the first project...
1stf2 16833 Value of the first project...
2ndfval 16834 Value of the first project...
2ndf1 16835 Value of the first project...
2ndf2 16836 Value of the first project...
1stfcl 16837 The first projection funct...
2ndfcl 16838 The second projection func...
prfval 16839 Value of the pairing funct...
prf1 16840 Value of the pairing funct...
prf2fval 16841 Value of the pairing funct...
prf2 16842 Value of the pairing funct...
prfcl 16843 The pairing of functors ` ...
prf1st 16844 Cancellation of pairing wi...
prf2nd 16845 Cancellation of pairing wi...
1st2ndprf 16846 Break a functor into a pro...
catcxpccl 16847 The category of categories...
xpcpropd 16848 If two categories have the...
evlfval 16857 Value of the evaluation fu...
evlf2 16858 Value of the evaluation fu...
evlf2val 16859 Value of the evaluation na...
evlf1 16860 Value of the evaluation fu...
evlfcllem 16861 Lemma for ~ evlfcl . (Con...
evlfcl 16862 The evaluation functor is ...
curfval 16863 Value of the curry functor...
curf1fval 16864 Value of the object part o...
curf1 16865 Value of the object part o...
curf11 16866 Value of the double evalua...
curf12 16867 The partially evaluated cu...
curf1cl 16868 The partially evaluated cu...
curf2 16869 Value of the curry functor...
curf2val 16870 Value of a component of th...
curf2cl 16871 The curry functor at a mor...
curfcl 16872 The curry functor of a fun...
curfpropd 16873 If two categories have the...
uncfval 16874 Value of the uncurry funct...
uncfcl 16875 The uncurry operation take...
uncf1 16876 Value of the uncurry funct...
uncf2 16877 Value of the uncurry funct...
curfuncf 16878 Cancellation of curry with...
uncfcurf 16879 Cancellation of uncurry wi...
diagval 16880 Define the diagonal functo...
diagcl 16881 The diagonal functor is a ...
diag1cl 16882 The constant functor of ` ...
diag11 16883 Value of the constant func...
diag12 16884 Value of the constant func...
diag2 16885 Value of the diagonal func...
diag2cl 16886 The diagonal functor at a ...
curf2ndf 16887 As shown in ~ diagval , th...
hofval 16892 Value of the Hom functor, ...
hof1fval 16893 The object part of the Hom...
hof1 16894 The object part of the Hom...
hof2fval 16895 The morphism part of the H...
hof2val 16896 The morphism part of the H...
hof2 16897 The morphism part of the H...
hofcllem 16898 Lemma for ~ hofcl . (Cont...
hofcl 16899 Closure of the Hom functor...
oppchofcl 16900 Closure of the opposite Ho...
yonval 16901 Value of the Yoneda embedd...
yoncl 16902 The Yoneda embedding is a ...
yon1cl 16903 The Yoneda embedding at an...
yon11 16904 Value of the Yoneda embedd...
yon12 16905 Value of the Yoneda embedd...
yon2 16906 Value of the Yoneda embedd...
hofpropd 16907 If two categories have the...
yonpropd 16908 If two categories have the...
oppcyon 16909 Value of the opposite Yone...
oyoncl 16910 The opposite Yoneda embedd...
oyon1cl 16911 The opposite Yoneda embedd...
yonedalem1 16912 Lemma for ~ yoneda . (Con...
yonedalem21 16913 Lemma for ~ yoneda . (Con...
yonedalem3a 16914 Lemma for ~ yoneda . (Con...
yonedalem4a 16915 Lemma for ~ yoneda . (Con...
yonedalem4b 16916 Lemma for ~ yoneda . (Con...
yonedalem4c 16917 Lemma for ~ yoneda . (Con...
yonedalem22 16918 Lemma for ~ yoneda . (Con...
yonedalem3b 16919 Lemma for ~ yoneda . (Con...
yonedalem3 16920 Lemma for ~ yoneda . (Con...
yonedainv 16921 The Yoneda Lemma with expl...
yonffthlem 16922 Lemma for ~ yonffth . (Co...
yoneda 16923 The Yoneda Lemma. There i...
yonffth 16924 The Yoneda Lemma. The Yon...
yoniso 16925 If the codomain is recover...
isprs 16930 Property of being a preord...
prslem 16931 Lemma for ~ prsref and ~ p...
prsref 16932 Less-or-equal is reflexive...
prstr 16933 Less-or-equal is transitiv...
isdrs 16934 Property of being a direct...
drsdir 16935 Direction of a directed se...
drsprs 16936 A directed set is a preset...
drsbn0 16937 The base of a directed set...
drsdirfi 16938 Any _finite_ number of ele...
isdrs2 16939 Directed sets may be defin...
ispos 16947 The predicate "is a poset....
ispos2 16948 A poset is an antisymmetri...
posprs 16949 A poset is a preset. (Con...
posi 16950 Lemma for poset properties...
posref 16951 A poset ordering is reflex...
posasymb 16952 A poset ordering is asymme...
postr 16953 A poset ordering is transi...
0pos 16954 Technical lemma to simplif...
isposd 16955 Properties that determine ...
isposi 16956 Properties that determine ...
isposix 16957 Properties that determine ...
pltfval 16959 Value of the less-than rel...
pltval 16960 Less-than relation. ( ~ d...
pltle 16961 Less-than implies less-tha...
pltne 16962 Less-than relation. ( ~ d...
pltirr 16963 The less-than relation is ...
pleval2i 16964 One direction of ~ pleval2...
pleval2 16965 Less-than-or-equal in term...
pltnle 16966 Less-than implies not inve...
pltval3 16967 Alternate expression for l...
pltnlt 16968 The less-than relation imp...
pltn2lp 16969 The less-than relation has...
plttr 16970 The less-than relation is ...
pltletr 16971 Transitive law for chained...
plelttr 16972 Transitive law for chained...
pospo 16973 Write a poset structure in...
lubfval 16978 Value of the least upper b...
lubdm 16979 Domain of the least upper ...
lubfun 16980 The LUB is a function. (C...
lubeldm 16981 Member of the domain of th...
lubelss 16982 A member of the domain of ...
lubeu 16983 Unique existence proper of...
lubval 16984 Value of the least upper b...
lubcl 16985 The least upper bound func...
lubprop 16986 Properties of greatest low...
luble 16987 The greatest lower bound i...
lublecllem 16988 Lemma for ~ lublecl and ~ ...
lublecl 16989 The set of all elements le...
lubid 16990 The LUB of elements less t...
glbfval 16991 Value of the greatest lowe...
glbdm 16992 Domain of the greatest low...
glbfun 16993 The GLB is a function. (C...
glbeldm 16994 Member of the domain of th...
glbelss 16995 A member of the domain of ...
glbeu 16996 Unique existence proper of...
glbval 16997 Value of the greatest lowe...
glbcl 16998 The least upper bound func...
glbprop 16999 Properties of greatest low...
glble 17000 The greatest lower bound i...
joinfval 17001 Value of join function for...
joinfval2 17002 Value of join function for...
joindm 17003 Domain of join function fo...
joindef 17004 Two ways to say that a joi...
joinval 17005 Join value. Since both si...
joincl 17006 Closure of join of element...
joindmss 17007 Subset property of domain ...
joinval2lem 17008 Lemma for ~ joinval2 and ~...
joinval2 17009 Value of join for a poset ...
joineu 17010 Uniqueness of join of elem...
joinlem 17011 Lemma for join properties....
lejoin1 17012 A join's first argument is...
lejoin2 17013 A join's second argument i...
joinle 17014 A join is less than or equ...
meetfval 17015 Value of meet function for...
meetfval2 17016 Value of meet function for...
meetdm 17017 Domain of meet function fo...
meetdef 17018 Two ways to say that a mee...
meetval 17019 Meet value. Since both si...
meetcl 17020 Closure of meet of element...
meetdmss 17021 Subset property of domain ...
meetval2lem 17022 Lemma for ~ meetval2 and ~...
meetval2 17023 Value of meet for a poset ...
meeteu 17024 Uniqueness of meet of elem...
meetlem 17025 Lemma for meet properties....
lemeet1 17026 A meet's first argument is...
lemeet2 17027 A meet's second argument i...
meetle 17028 A meet is less than or equ...
joincomALT 17029 The join of a poset commut...
joincom 17030 The join of a poset commut...
meetcomALT 17031 The meet of a poset commut...
meetcom 17032 The meet of a poset commut...
istos 17035 The predicate "is a toset....
tosso 17036 Write the totally ordered ...
p0val 17041 Value of poset zero. (Con...
p1val 17042 Value of poset zero. (Con...
p0le 17043 Any element is less than o...
ple1 17044 Any element is less than o...
islat 17047 The predicate "is a lattic...
latcl2 17048 The join and meet of any t...
latlem 17049 Lemma for lattice properti...
latpos 17050 A lattice is a poset. (Co...
latjcl 17051 Closure of join operation ...
latmcl 17052 Closure of meet operation ...
latref 17053 A lattice ordering is refl...
latasymb 17054 A lattice ordering is asym...
latasym 17055 A lattice ordering is asym...
lattr 17056 A lattice ordering is tran...
latasymd 17057 Deduce equality from latti...
lattrd 17058 A lattice ordering is tran...
latjcom 17059 The join of a lattice comm...
latlej1 17060 A join's first argument is...
latlej2 17061 A join's second argument i...
latjle12 17062 A join is less than or equ...
latleeqj1 17063 Less-than-or-equal-to in t...
latleeqj2 17064 Less-than-or-equal-to in t...
latjlej1 17065 Add join to both sides of ...
latjlej2 17066 Add join to both sides of ...
latjlej12 17067 Add join to both sides of ...
latnlej 17068 An idiom to express that a...
latnlej1l 17069 An idiom to express that a...
latnlej1r 17070 An idiom to express that a...
latnlej2 17071 An idiom to express that a...
latnlej2l 17072 An idiom to express that a...
latnlej2r 17073 An idiom to express that a...
latjidm 17074 Lattice join is idempotent...
latmcom 17075 The join of a lattice comm...
latmle1 17076 A meet is less than or equ...
latmle2 17077 A meet is less than or equ...
latlem12 17078 An element is less than or...
latleeqm1 17079 Less-than-or-equal-to in t...
latleeqm2 17080 Less-than-or-equal-to in t...
latmlem1 17081 Add meet to both sides of ...
latmlem2 17082 Add meet to both sides of ...
latmlem12 17083 Add join to both sides of ...
latnlemlt 17084 Negation of less-than-or-e...
latnle 17085 Equivalent expressions for...
latmidm 17086 Lattice join is idempotent...
latabs1 17087 Lattice absorption law. F...
latabs2 17088 Lattice absorption law. F...
latledi 17089 An ortholattice is distrib...
latmlej11 17090 Ordering of a meet and joi...
latmlej12 17091 Ordering of a meet and joi...
latmlej21 17092 Ordering of a meet and joi...
latmlej22 17093 Ordering of a meet and joi...
lubsn 17094 The least upper bound of a...
latjass 17095 Lattice join is associativ...
latj12 17096 Swap 1st and 2nd members o...
latj32 17097 Swap 2nd and 3rd members o...
latj13 17098 Swap 1st and 3rd members o...
latj31 17099 Swap 2nd and 3rd members o...
latjrot 17100 Rotate lattice join of 3 c...
latj4 17101 Rearrangement of lattice j...
latj4rot 17102 Rotate lattice join of 4 c...
latjjdi 17103 Lattice join distributes o...
latjjdir 17104 Lattice join distributes o...
mod1ile 17105 The weak direction of the ...
mod2ile 17106 The weak direction of the ...
isclat 17109 The predicate "is a comple...
clatpos 17110 A complete lattice is a po...
clatlem 17111 Lemma for properties of a ...
clatlubcl 17112 Any subset of the base set...
clatlubcl2 17113 Any subset of the base set...
clatglbcl 17114 Any subset of the base set...
clatglbcl2 17115 Any subset of the base set...
clatl 17116 A complete lattice is a la...
isglbd 17117 Properties that determine ...
lublem 17118 Lemma for the least upper ...
lubub 17119 The LUB of a complete latt...
lubl 17120 The LUB of a complete latt...
lubss 17121 Subset law for least upper...
lubel 17122 An element of a set is les...
lubun 17123 The LUB of a union. (Cont...
clatglb 17124 Properties of greatest low...
clatglble 17125 The greatest lower bound i...
clatleglb 17126 Two ways of expressing "le...
clatglbss 17127 Subset law for greatest lo...
oduval 17130 Value of an order dual str...
oduleval 17131 Value of the less-equal re...
oduleg 17132 Truth of the less-equal re...
odubas 17133 Base set of an order dual ...
pospropd 17134 Posethood is determined on...
odupos 17135 Being a poset is a self-du...
oduposb 17136 Being a poset is a self-du...
meet0 17137 Lemma for ~ odujoin . (Co...
join0 17138 Lemma for ~ odumeet . (Co...
oduglb 17139 Greatest lower bounds in a...
odumeet 17140 Meets in a dual order are ...
odulub 17141 Least upper bounds in a du...
odujoin 17142 Joins in a dual order are ...
odulatb 17143 Being a lattice is self-du...
oduclatb 17144 Being a complete lattice i...
odulat 17145 Being a lattice is self-du...
poslubmo 17146 Least upper bounds in a po...
posglbmo 17147 Greatest lower bounds in a...
poslubd 17148 Properties which determine...
poslubdg 17149 Properties which determine...
posglbd 17150 Properties which determine...
ipostr 17153 The structure of ~ df-ipo ...
ipoval 17154 Value of the inclusion pos...
ipobas 17155 Base set of the inclusion ...
ipolerval 17156 Relation of the inclusion ...
ipotset 17157 Topology of the inclusion ...
ipole 17158 Weak order condition of th...
ipolt 17159 Strict order condition of ...
ipopos 17160 The inclusion poset on a f...
isipodrs 17161 Condition for a family of ...
ipodrscl 17162 Direction by inclusion as ...
ipodrsfi 17163 Finite upper bound propert...
fpwipodrs 17164 The finite subsets of any ...
ipodrsima 17165 The monotone image of a di...
isacs3lem 17166 An algebraic closure syste...
acsdrsel 17167 An algebraic closure syste...
isacs4lem 17168 In a closure system in whi...
isacs5lem 17169 If closure commutes with d...
acsdrscl 17170 In an algebraic closure sy...
acsficl 17171 A closure in an algebraic ...
isacs5 17172 A closure system is algebr...
isacs4 17173 A closure system is algebr...
isacs3 17174 A closure system is algebr...
acsficld 17175 In an algebraic closure sy...
acsficl2d 17176 In an algebraic closure sy...
acsfiindd 17177 In an algebraic closure sy...
acsmapd 17178 In an algebraic closure sy...
acsmap2d 17179 In an algebraic closure sy...
acsinfd 17180 In an algebraic closure sy...
acsdomd 17181 In an algebraic closure sy...
acsinfdimd 17182 In an algebraic closure sy...
acsexdimd 17183 In an algebraic closure sy...
mrelatglb 17184 Greatest lower bounds in a...
mrelatglb0 17185 The empty intersection in ...
mrelatlub 17186 Least upper bounds in a Mo...
mreclatBAD 17187 A Moore space is a complet...
latmass 17188 Lattice meet is associativ...
latdisdlem 17189 Lemma for ~ latdisd . (Co...
latdisd 17190 In a lattice, joins distri...
isdlat 17193 Property of being a distri...
dlatmjdi 17194 In a distributive lattice,...
dlatl 17195 A distributive lattice is ...
odudlatb 17196 The dual of a distributive...
dlatjmdi 17197 In a distributive lattice,...
isps 17202 The predicate "is a poset"...
psrel 17203 A poset is a relation. (C...
psref2 17204 A poset is antisymmetric a...
pstr2 17205 A poset is transitive. (C...
pslem 17206 Lemma for ~ psref and othe...
psdmrn 17207 The domain and range of a ...
psref 17208 A poset is reflexive. (Co...
psrn 17209 The range of a poset equal...
psasym 17210 A poset is antisymmetric. ...
pstr 17211 A poset is transitive. (C...
cnvps 17212 The converse of a poset is...
cnvpsb 17213 The converse of a poset is...
psss 17214 Any subset of a partially ...
psssdm2 17215 Field of a subposet. (Con...
psssdm 17216 Field of a subposet. (Con...
istsr 17217 The predicate is a toset. ...
istsr2 17218 The predicate is a toset. ...
tsrlin 17219 A toset is a linear order....
tsrlemax 17220 Two ways of saying a numbe...
tsrps 17221 A toset is a poset. (Cont...
cnvtsr 17222 The converse of a toset is...
tsrss 17223 Any subset of a totally or...
ledm 17224 domain of ` <_ ` is ` RR* ...
lern 17225 The range of ` <_ ` is ` R...
lefld 17226 The field of the 'less or ...
letsr 17227 The "less than or equal to...
isdir 17232 A condition for a relation...
reldir 17233 A direction is a relation....
dirdm 17234 A direction's domain is eq...
dirref 17235 A direction is reflexive. ...
dirtr 17236 A direction is transitive....
dirge 17237 For any two elements of a ...
tsrdir 17238 A totally ordered set is a...
ismgm 17243 The predicate "is a magma"...
ismgmn0 17244 The predicate "is a magma"...
mgmcl 17245 Closure of the operation o...
isnmgm 17246 A condition for a structur...
plusffval 17247 The group addition operati...
plusfval 17248 The group addition operati...
plusfeq 17249 If the addition operation ...
plusffn 17250 The group addition operati...
mgmplusf 17251 The group addition functio...
issstrmgm 17252 Characterize a substructur...
intopsn 17253 The internal operation for...
mgmb1mgm1 17254 The only magma with a base...
mgm0 17255 Any set with an empty base...
mgm0b 17256 The structure with an empt...
mgm1 17257 The structure with one ele...
opifismgm 17258 A structure with a group a...
mgmidmo 17259 A two-sided identity eleme...
grpidval 17260 The value of the identity ...
grpidpropd 17261 If two structures have the...
fn0g 17262 The group zero extractor i...
0g0 17263 The identity element funct...
ismgmid 17264 The identity element of a ...
mgmidcl 17265 The identity element of a ...
mgmlrid 17266 The identity element of a ...
ismgmid2 17267 Show that a given element ...
grpidd 17268 Deduce the identity elemen...
mgmidsssn0 17269 Property of the set of ide...
gsumvalx 17270 Expand out the substitutio...
gsumval 17271 Expand out the substitutio...
gsumpropd 17272 The group sum depends only...
gsumpropd2lem 17273 Lemma for ~ gsumpropd2 . ...
gsumpropd2 17274 A stronger version of ~ gs...
gsummgmpropd 17275 A stronger version of ~ gs...
gsumress 17276 The group sum in a substru...
gsumval1 17277 Value of the group sum ope...
gsum0 17278 Value of the empty group s...
gsumval2a 17279 Value of the group sum ope...
gsumval2 17280 Value of the group sum ope...
gsumprval 17281 Value of the group sum ope...
gsumpr12val 17282 Value of the group sum ope...
issgrp 17285 The predicate "is a semigr...
issgrpv 17286 The predicate "is a semigr...
issgrpn0 17287 The predicate "is a semigr...
isnsgrp 17288 A condition for a structur...
sgrpmgm 17289 A semigroup is a magma. (...
sgrpass 17290 A semigroup operation is a...
sgrp0 17291 Any set with an empty base...
sgrp0b 17292 The structure with an empt...
sgrp1 17293 The structure with one ele...
ismnddef 17296 The predicate "is a monoid...
ismnd 17297 The predicate "is a monoid...
isnmnd 17298 A condition for a structur...
mndsgrp 17299 A monoid is a semigroup. ...
mndmgm 17300 A monoid is a magma. (Con...
mndcl 17301 Closure of the operation o...
mndass 17302 A monoid operation is asso...
mndid 17303 A monoid has a two-sided i...
mndideu 17304 The two-sided identity ele...
mnd32g 17305 Commutative/associative la...
mnd12g 17306 Commutative/associative la...
mnd4g 17307 Commutative/associative la...
mndidcl 17308 The identity element of a ...
mndplusf 17309 The group addition operati...
mndlrid 17310 A monoid's identity elemen...
mndlid 17311 The identity element of a ...
mndrid 17312 The identity element of a ...
ismndd 17313 Deduce a monoid from its p...
mndpfo 17314 The addition operation of ...
mndfo 17315 The addition operation of ...
mndpropd 17316 If two structures have the...
mndprop 17317 If two structures have the...
issubmnd 17318 Characterize a submonoid b...
ress0g 17319 ` 0g ` is unaffected by re...
submnd0 17320 The zero of a submonoid is...
prdsplusgcl 17321 Structure product pointwis...
prdsidlem 17322 Characterization of identi...
prdsmndd 17323 The product of a family of...
prds0g 17324 Zero in a product of monoi...
pwsmnd 17325 The structure power of a m...
pws0g 17326 Zero in a product of monoi...
imasmnd2 17327 The image structure of a m...
imasmnd 17328 The image structure of a m...
imasmndf1 17329 The image of a monoid unde...
xpsmnd 17330 The binary product of mono...
mnd1 17331 The (smallest) structure r...
mnd1id 17332 The singleton element of a...
ismhm 17337 Property of a monoid homom...
mhmrcl1 17338 Reverse closure of a monoi...
mhmrcl2 17339 Reverse closure of a monoi...
mhmf 17340 A monoid homomorphism is a...
mhmpropd 17341 Monoid homomorphism depend...
mhmlin 17342 A monoid homomorphism comm...
mhm0 17343 A monoid homomorphism pres...
idmhm 17344 The identity homomorphism ...
mhmf1o 17345 A monoid homomorphism is b...
submrcl 17346 Reverse closure for submon...
issubm 17347 Expand definition of a sub...
issubm2 17348 Submonoids are subsets tha...
issubmd 17349 Deduction for proving a su...
submss 17350 Submonoids are subsets of ...
submid 17351 Every monoid is trivially ...
subm0cl 17352 Submonoids contain zero. ...
submcl 17353 Submonoids are closed unde...
submmnd 17354 Submonoids are themselves ...
submbas 17355 The base set of a submonoi...
subm0 17356 Submonoids have the same i...
subsubm 17357 A submonoid of a submonoid...
0mhm 17358 The constant zero linear f...
resmhm 17359 Restriction of a monoid ho...
resmhm2 17360 One direction of ~ resmhm2...
resmhm2b 17361 Restriction of the codomai...
mhmco 17362 The composition of monoid ...
mhmima 17363 The homomorphic image of a...
mhmeql 17364 The equalizer of two monoi...
submacs 17365 Submonoids are an algebrai...
mrcmndind 17366 (( From SO's determinants ...
prdspjmhm 17367 A projection from a produc...
pwspjmhm 17368 A projection from a produc...
pwsdiagmhm 17369 Diagonal monoid homomorphi...
pwsco1mhm 17370 Right composition with a f...
pwsco2mhm 17371 Left composition with a mo...
gsumvallem2 17372 Lemma for properties of th...
gsumsubm 17373 Evaluate a group sum in a ...
gsumz 17374 Value of a group sum over ...
gsumwsubmcl 17375 Closure of the composite i...
gsumws1 17376 A singleton composite reco...
gsumwcl 17377 Closure of the composite o...
gsumccat 17378 Homomorphic property of co...
gsumws2 17379 Valuation of a pair in a m...
gsumccatsn 17380 Homomorphic property of co...
gsumspl 17381 The primary purpose of the...
gsumwmhm 17382 Behavior of homomorphisms ...
gsumwspan 17383 The submonoid generated by...
frmdval 17388 Value of the free monoid c...
frmdbas 17389 The base set of a free mon...
frmdelbas 17390 An element of the base set...
frmdplusg 17391 The monoid operation of a ...
frmdadd 17392 Value of the monoid operat...
vrmdfval 17393 The canonical injection fr...
vrmdval 17394 The value of the generatin...
vrmdf 17395 The mapping from the index...
frmdmnd 17396 A free monoid is a monoid....
frmd0 17397 The identity of the free m...
frmdsssubm 17398 The set of words taking va...
frmdgsum 17399 Any word in a free monoid ...
frmdss2 17400 A subset of generators is ...
frmdup1 17401 Any assignment of the gene...
frmdup2 17402 The evaluation map has the...
frmdup3lem 17403 Lemma for ~ frmdup3 . (Co...
frmdup3 17404 Universal property of the ...
mgm2nsgrplem1 17405 Lemma 1 for ~ mgm2nsgrp : ...
mgm2nsgrplem2 17406 Lemma 2 for ~ mgm2nsgrp . ...
mgm2nsgrplem3 17407 Lemma 3 for ~ mgm2nsgrp . ...
mgm2nsgrplem4 17408 Lemma 4 for ~ mgm2nsgrp : ...
mgm2nsgrp 17409 A small magma (with two el...
sgrp2nmndlem1 17410 Lemma 1 for ~ sgrp2nmnd : ...
sgrp2nmndlem2 17411 Lemma 2 for ~ sgrp2nmnd . ...
sgrp2nmndlem3 17412 Lemma 3 for ~ sgrp2nmnd . ...
sgrp2rid2 17413 A small semigroup (with tw...
sgrp2rid2ex 17414 A small semigroup (with tw...
sgrp2nmndlem4 17415 Lemma 4 for ~ sgrp2nmnd : ...
sgrp2nmndlem5 17416 Lemma 5 for ~ sgrp2nmnd : ...
sgrp2nmnd 17417 A small semigroup (with tw...
mgmnsgrpex 17418 There is a magma which is ...
sgrpnmndex 17419 There is a semigroup which...
sgrpssmgm 17420 The class of all semigroup...
mndsssgrp 17421 The class of all monoids i...
isgrp 17428 The predicate "is a group....
grpmnd 17429 A group is a monoid. (Con...
grpcl 17430 Closure of the operation o...
grpass 17431 A group operation is assoc...
grpinvex 17432 Every member of a group ha...
grpideu 17433 The two-sided identity ele...
grpplusf 17434 The group addition operati...
grpplusfo 17435 The group addition operati...
resgrpplusfrn 17436 The underlying set of a gr...
grppropd 17437 If two structures have the...
grpprop 17438 If two structures have the...
grppropstr 17439 Generalize a specific 2-el...
grpss 17440 Show that a structure exte...
isgrpd2e 17441 Deduce a group from its pr...
isgrpd2 17442 Deduce a group from its pr...
isgrpde 17443 Deduce a group from its pr...
isgrpd 17444 Deduce a group from its pr...
isgrpi 17445 Properties that determine ...
grpsgrp 17446 A group is a semigroup. (...
dfgrp2 17447 Alternate definition of a ...
dfgrp2e 17448 Alternate definition of a ...
isgrpix 17449 Properties that determine ...
grpidcl 17450 The identity element of a ...
grpbn0 17451 The base set of a group is...
grplid 17452 The identity element of a ...
grprid 17453 The identity element of a ...
grpn0 17454 A group is not empty. (Co...
grprcan 17455 Right cancellation law for...
grpinveu 17456 The left inverse element o...
grpid 17457 Two ways of saying that an...
isgrpid2 17458 Properties showing that an...
grpidd2 17459 Deduce the identity elemen...
grpinvfval 17460 The inverse function of a ...
grpinvval 17461 The inverse of a group ele...
grpinvfn 17462 Functionality of the group...
grpinvfvi 17463 The group inverse function...
grpsubfval 17464 Group subtraction (divisio...
grpsubval 17465 Group subtraction (divisio...
grpinvf 17466 The group inversion operat...
grpinvcl 17467 A group element's inverse ...
grplinv 17468 The left inverse of a grou...
grprinv 17469 The right inverse of a gro...
grpinvid1 17470 The inverse of a group ele...
grpinvid2 17471 The inverse of a group ele...
isgrpinv 17472 Properties showing that a ...
grplrinv 17473 In a group, every member h...
grpidinv2 17474 A group's properties using...
grpidinv 17475 A group has a left and rig...
grpinvid 17476 The inverse of the identit...
grplcan 17477 Left cancellation law for ...
grpasscan1 17478 An associative cancellatio...
grpasscan2 17479 An associative cancellatio...
grpidrcan 17480 If right adding an element...
grpidlcan 17481 If left adding an element ...
grpinvinv 17482 Double inverse law for gro...
grpinvcnv 17483 The group inverse is its o...
grpinv11 17484 The group inverse is one-t...
grpinvf1o 17485 The group inverse is a one...
grpinvnz 17486 The inverse of a nonzero g...
grpinvnzcl 17487 The inverse of a nonzero g...
grpsubinv 17488 Subtraction of an inverse....
grplmulf1o 17489 Left multiplication by a g...
grpinvpropd 17490 If two structures have the...
grpidssd 17491 If the base set of a group...
grpinvssd 17492 If the base set of a group...
grpinvadd 17493 The inverse of the group o...
grpsubf 17494 Functionality of group sub...
grpsubcl 17495 Closure of group subtracti...
grpsubrcan 17496 Right cancellation law for...
grpinvsub 17497 Inverse of a group subtrac...
grpinvval2 17498 A ~ df-neg -like equation ...
grpsubid 17499 Subtraction of a group ele...
grpsubid1 17500 Subtraction of the identit...
grpsubeq0 17501 If the difference between ...
grpsubadd0sub 17502 Subtraction expressed as a...
grpsubadd 17503 Relationship between group...
grpsubsub 17504 Double group subtraction. ...
grpaddsubass 17505 Associative-type law for g...
grppncan 17506 Cancellation law for subtr...
grpnpcan 17507 Cancellation law for subtr...
grpsubsub4 17508 Double group subtraction (...
grppnpcan2 17509 Cancellation law for mixed...
grpnpncan 17510 Cancellation law for group...
grpnpncan0 17511 Cancellation law for group...
grpnnncan2 17512 Cancellation law for group...
dfgrp3lem 17513 Lemma for ~ dfgrp3 . (Con...
dfgrp3 17514 Alternate definition of a ...
dfgrp3e 17515 Alternate definition of a ...
grplactfval 17516 The left group action of e...
grplactval 17517 The value of the left grou...
grplactcnv 17518 The left group action of e...
grplactf1o 17519 The left group action of e...
grpsubpropd 17520 Weak property deduction fo...
grpsubpropd2 17521 Strong property deduction ...
grp1 17522 The (smallest) structure r...
grp1inv 17523 The inverse function of th...
prdsinvlem 17524 Characterization of invers...
prdsgrpd 17525 The product of a family of...
prdsinvgd 17526 Negation in a product of g...
pwsgrp 17527 The product of a family of...
pwsinvg 17528 Negation in a group power....
pwssub 17529 Subtraction in a group pow...
imasgrp2 17530 The image structure of a g...
imasgrp 17531 The image structure of a g...
imasgrpf1 17532 The image of a group under...
qusgrp2 17533 Prove that a quotient stru...
xpsgrp 17534 The binary product of grou...
mhmlem 17535 Lemma for ~ mhmmnd and ~ g...
mhmid 17536 A surjective monoid morphi...
mhmmnd 17537 The image of a monoid ` G ...
mhmfmhm 17538 The function fulfilling th...
ghmgrp 17539 The image of a group ` G `...
mulgfval 17542 Group multiple (exponentia...
mulgval 17543 Value of the group multipl...
mulgfn 17544 Functionality of the group...
mulgfvi 17545 The group multiple operati...
mulg0 17546 Group multiple (exponentia...
mulgnn 17547 Group multiple (exponentia...
mulg1 17548 Group multiple (exponentia...
mulgnnp1 17549 Group multiple (exponentia...
mulg2 17550 Group multiple (exponentia...
mulgnegnn 17551 Group multiple (exponentia...
mulgnn0p1 17552 Group multiple (exponentia...
mulgnnsubcl 17553 Closure of the group multi...
mulgnn0subcl 17554 Closure of the group multi...
mulgsubcl 17555 Closure of the group multi...
mulgnncl 17556 Closure of the group multi...
mulgnnclOLD 17557 Obsolete proof of ~ mulgnn...
mulgnn0cl 17558 Closure of the group multi...
mulgcl 17559 Closure of the group multi...
mulgneg 17560 Group multiple (exponentia...
mulgnegneg 17561 The inverse of a negative ...
mulgm1 17562 Group multiple (exponentia...
mulgaddcomlem 17563 Lemma for ~ mulgaddcom . ...
mulgaddcom 17564 The group multiple operato...
mulginvcom 17565 The group multiple operato...
mulginvinv 17566 The group multiple operato...
mulgnn0z 17567 A group multiple of the id...
mulgz 17568 A group multiple of the id...
mulgnndir 17569 Sum of group multiples, fo...
mulgnndirOLD 17570 Obsolete proof of ~ mulgnn...
mulgnn0dir 17571 Sum of group multiples, ge...
mulgdirlem 17572 Lemma for ~ mulgdir . (Co...
mulgdir 17573 Sum of group multiples, ge...
mulgp1 17574 Group multiple (exponentia...
mulgneg2 17575 Group multiple (exponentia...
mulgnnass 17576 Product of group multiples...
mulgnnassOLD 17577 Obsolete proof of ~ mulgnn...
mulgnn0ass 17578 Product of group multiples...
mulgass 17579 Product of group multiples...
mulgassr 17580 Reversed product of group ...
mulgmodid 17581 Casting out multiples of t...
mulgsubdir 17582 Subtraction of a group ele...
mhmmulg 17583 A homomorphism of monoids ...
mulgpropd 17584 Two structures with the sa...
submmulgcl 17585 Closure of the group multi...
submmulg 17586 A group multiple is the sa...
pwsmulg 17587 Value of a group multiple ...
issubg 17594 The subgroup predicate. (...
subgss 17595 A subgroup is a subset. (...
subgid 17596 A group is a subgroup of i...
subggrp 17597 A subgroup is a group. (C...
subgbas 17598 The base of the restricted...
subgrcl 17599 Reverse closure for the su...
subg0 17600 A subgroup of a group must...
subginv 17601 The inverse of an element ...
subg0cl 17602 The group identity is an e...
subginvcl 17603 The inverse of an element ...
subgcl 17604 A subgroup is closed under...
subgsubcl 17605 A subgroup is closed under...
subgsub 17606 The subtraction of element...
subgmulgcl 17607 Closure of the group multi...
subgmulg 17608 A group multiple is the sa...
issubg2 17609 Characterize the subgroups...
issubgrpd2 17610 Prove a subgroup by closur...
issubgrpd 17611 Prove a subgroup by closur...
issubg3 17612 A subgroup is a symmetric ...
issubg4 17613 A subgroup is a nonempty s...
grpissubg 17614 If the base set of a group...
resgrpisgrp 17615 If the base set of a group...
subgsubm 17616 A subgroup is a submonoid....
subsubg 17617 A subgroup of a subgroup i...
subgint 17618 The intersection of a none...
0subg 17619 The zero subgroup of an ar...
cycsubgcl 17620 The set of integer powers ...
cycsubgss 17621 The cyclic subgroup genera...
cycsubg 17622 The cyclic group generated...
isnsg 17623 Property of being a normal...
isnsg2 17624 Weaken the condition of ~ ...
nsgbi 17625 Defining property of a nor...
nsgsubg 17626 A normal subgroup is a sub...
nsgconj 17627 The conjugation of an elem...
isnsg3 17628 A subgroup is normal iff t...
subgacs 17629 Subgroups are an algebraic...
nsgacs 17630 Normal subgroups form an a...
cycsubg2 17631 The subgroup generated by ...
cycsubg2cl 17632 Any multiple of an element...
elnmz 17633 Elementhood in the normali...
nmzbi 17634 Defining property of the n...
nmzsubg 17635 The normalizer N_G(S) of a...
ssnmz 17636 A subgroup is a subset of ...
isnsg4 17637 A subgroup is normal iff i...
nmznsg 17638 Any subgroup is a normal s...
0nsg 17639 The zero subgroup is norma...
nsgid 17640 The whole group is a norma...
releqg 17641 The left coset equivalence...
eqgfval 17642 Value of the subgroup left...
eqgval 17643 Value of the subgroup left...
eqger 17644 The subgroup coset equival...
eqglact 17645 A left coset can be expres...
eqgid 17646 The left coset containing ...
eqgen 17647 Each coset is equipotent t...
eqgcpbl 17648 The subgroup coset equival...
qusgrp 17649 If ` Y ` is a normal subgr...
quseccl 17650 Closure of the quotient ma...
qusadd 17651 Value of the group operati...
qus0 17652 Value of the group identit...
qusinv 17653 Value of the group inverse...
qussub 17654 Value of the group subtrac...
lagsubg2 17655 Lagrange's theorem for fin...
lagsubg 17656 Lagrange theorem for Group...
reldmghm 17659 Lemma for group homomorphi...
isghm 17660 Property of being a homomo...
isghm3 17661 Property of a group homomo...
ghmgrp1 17662 A group homomorphism is on...
ghmgrp2 17663 A group homomorphism is on...
ghmf 17664 A group homomorphism is a ...
ghmlin 17665 A homomorphism of groups i...
ghmid 17666 A homomorphism of groups p...
ghminv 17667 A homomorphism of groups p...
ghmsub 17668 Linearity of subtraction t...
isghmd 17669 Deduction for a group homo...
ghmmhm 17670 A group homomorphism is a ...
ghmmhmb 17671 Group homomorphisms and mo...
ghmmulg 17672 A homomorphism of monoids ...
ghmrn 17673 The range of a homomorphis...
0ghm 17674 The constant zero linear f...
idghm 17675 The identity homomorphism ...
resghm 17676 Restriction of a homomorph...
resghm2 17677 One direction of ~ resghm2...
resghm2b 17678 Restriction of the codomai...
ghmghmrn 17679 A group homomorphism from ...
ghmco 17680 The composition of group h...
ghmima 17681 The image of a subgroup un...
ghmpreima 17682 The inverse image of a sub...
ghmeql 17683 The equalizer of two group...
ghmnsgima 17684 The image of a normal subg...
ghmnsgpreima 17685 The inverse image of a nor...
ghmker 17686 The kernel of a homomorphi...
ghmeqker 17687 Two source points map to t...
pwsdiagghm 17688 Diagonal homomorphism into...
ghmf1 17689 Two ways of saying a group...
ghmf1o 17690 A bijective group homomorp...
conjghm 17691 Conjugation is an automorp...
conjsubg 17692 A conjugated subgroup is a...
conjsubgen 17693 A conjugated subgroup is e...
conjnmz 17694 A subgroup is unchanged un...
conjnmzb 17695 Alternative condition for ...
conjnsg 17696 A normal subgroup is uncha...
qusghm 17697 If ` Y ` is a normal subgr...
ghmpropd 17698 Group homomorphism depends...
gimfn 17703 The group isomorphism func...
isgim 17704 An isomorphism of groups i...
gimf1o 17705 An isomorphism of groups i...
gimghm 17706 An isomorphism of groups i...
isgim2 17707 A group isomorphism is a h...
subggim 17708 Behavior of subgroups unde...
gimcnv 17709 The converse of a bijectiv...
gimco 17710 The composition of group i...
brgic 17711 The relation "is isomorphi...
brgici 17712 Prove isomorphic by an exp...
gicref 17713 Isomorphism is reflexive. ...
giclcl 17714 Isomorphism implies the le...
gicrcl 17715 Isomorphism implies the ri...
gicsym 17716 Isomorphism is symmetric. ...
gictr 17717 Isomorphism is transitive....
gicer 17718 Isomorphism is an equivale...
gicerOLD 17719 Obsolete proof of ~ gicer ...
gicen 17720 Isomorphic groups have equ...
gicsubgen 17721 A less trivial example of ...
isga 17724 The predicate "is a (left)...
gagrp 17725 The left argument of a gro...
gaset 17726 The right argument of a gr...
gagrpid 17727 The identity of the group ...
gaf 17728 The mapping of the group a...
gafo 17729 A group action is onto its...
gaass 17730 An "associative" property ...
ga0 17731 The action of a group on t...
gaid 17732 The trivial action of a gr...
subgga 17733 A subgroup acts on its par...
gass 17734 A subset of a group action...
gasubg 17735 The restriction of a group...
gaid2 17736 A group operation is a lef...
galcan 17737 The action of a particular...
gacan 17738 Group inverses cancel in a...
gapm 17739 The action of a particular...
gaorb 17740 The orbit equivalence rela...
gaorber 17741 The orbit equivalence rela...
gastacl 17742 The stabilizer subgroup in...
gastacos 17743 Write the coset relation f...
orbstafun 17744 Existence and uniqueness f...
orbstaval 17745 Value of the function at a...
orbsta 17746 The Orbit-Stabilizer theor...
orbsta2 17747 Relation between the size ...
cntrval 17752 Substitute definition of t...
cntzfval 17753 First level substitution f...
cntzval 17754 Definition substitution fo...
elcntz 17755 Elementhood in the central...
cntzel 17756 Membership in a centralize...
cntzsnval 17757 Special substitution for t...
elcntzsn 17758 Value of the centralizer o...
sscntz 17759 A centralizer expression f...
cntzrcl 17760 Reverse closure for elemen...
cntzssv 17761 The centralizer is uncondi...
cntzi 17762 Membership in a centralize...
cntri 17763 Defining property of the c...
resscntz 17764 Centralizer in a substruct...
cntz2ss 17765 Centralizers reverse the s...
cntzrec 17766 Reciprocity relationship f...
cntziinsn 17767 Express any centralizer as...
cntzsubm 17768 Centralizers in a monoid a...
cntzsubg 17769 Centralizers in a group ar...
cntzidss 17770 If the elements of ` S ` c...
cntzmhm 17771 Centralizers in a monoid a...
cntzmhm2 17772 Centralizers in a monoid a...
cntrsubgnsg 17773 A central subgroup is norm...
cntrnsg 17774 The center of a group is a...
oppgval 17777 Value of the opposite grou...
oppgplusfval 17778 Value of the addition oper...
oppgplus 17779 Value of the addition oper...
oppglem 17780 Lemma for ~ oppgbas . (Co...
oppgbas 17781 Base set of an opposite gr...
oppgtset 17782 Topology of an opposite gr...
oppgtopn 17783 Topology of an opposite gr...
oppgmnd 17784 The opposite of a monoid i...
oppgmndb 17785 Bidirectional form of ~ op...
oppgid 17786 Zero in a monoid is a symm...
oppggrp 17787 The opposite of a group is...
oppggrpb 17788 Bidirectional form of ~ op...
oppginv 17789 Inverses in a group are a ...
invoppggim 17790 The inverse is an antiauto...
oppggic 17791 Every group is (naturally)...
oppgsubm 17792 Being a submonoid is a sym...
oppgsubg 17793 Being a subgroup is a symm...
oppgcntz 17794 A centralizer in a group i...
oppgcntr 17795 The center of a group is t...
gsumwrev 17796 A sum in an opposite monoi...
symgval 17799 The value of the symmetric...
symgbas 17800 The base set of the symmet...
elsymgbas2 17801 Two ways of saying a funct...
elsymgbas 17802 Two ways of saying a funct...
symgbasf1o 17803 Elements in the symmetric ...
symgbasf 17804 A permutation (element of ...
symghash 17805 The symmetric group on ` n...
symgbasfi 17806 The symmetric group on a f...
symgfv 17807 The function value of a pe...
symgfvne 17808 The function values of a p...
symgplusg 17809 The group operation of a s...
symgov 17810 The value of the group ope...
symgcl 17811 The group operation of the...
symgmov1 17812 For a permutation of a set...
symgmov2 17813 For a permutation of a set...
symgbas0 17814 The base set of the symmet...
symg1hash 17815 The symmetric group on a s...
symg1bas 17816 The symmetric group on a s...
symg2hash 17817 The symmetric group on a (...
symg2bas 17818 The symmetric group on a p...
symgtset 17819 The topology of the symmet...
symggrp 17820 The symmetric group on a s...
symgid 17821 The group identity element...
symginv 17822 The group inverse in the s...
galactghm 17823 The currying of a group ac...
lactghmga 17824 The converse of ~ galactgh...
symgtopn 17825 The topology of the symmet...
symgga 17826 The symmetric group induce...
pgrpsubgsymgbi 17827 Every permutation group is...
pgrpsubgsymg 17828 Every permutation group is...
idresperm 17829 The identity function rest...
idressubgsymg 17830 The singleton containing o...
idrespermg 17831 The structure with the sin...
cayleylem1 17832 Lemma for ~ cayley . (Con...
cayleylem2 17833 Lemma for ~ cayley . (Con...
cayley 17834 Cayley's Theorem (construc...
cayleyth 17835 Cayley's Theorem (existenc...
symgfix2 17836 If a permutation does not ...
symgextf 17837 The extension of a permuta...
symgextfv 17838 The function value of the ...
symgextfve 17839 The function value of the ...
symgextf1lem 17840 Lemma for ~ symgextf1 . (...
symgextf1 17841 The extension of a permuta...
symgextfo 17842 The extension of a permuta...
symgextf1o 17843 The extension of a permuta...
symgextsymg 17844 The extension of a permuta...
symgextres 17845 The restriction of the ext...
gsumccatsymgsn 17846 Homomorphic property of co...
gsmsymgrfixlem1 17847 Lemma 1 for ~ gsmsymgrfix ...
gsmsymgrfix 17848 The composition of permuta...
fvcosymgeq 17849 The values of two composit...
gsmsymgreqlem1 17850 Lemma 1 for ~ gsmsymgreq ....
gsmsymgreqlem2 17851 Lemma 2 for ~ gsmsymgreq ....
gsmsymgreq 17852 Two combination of permuta...
symgfixelq 17853 A permutation of a set fix...
symgfixels 17854 The restriction of a permu...
symgfixelsi 17855 The restriction of a permu...
symgfixf 17856 The mapping of a permutati...
symgfixf1 17857 The mapping of a permutati...
symgfixfolem1 17858 Lemma 1 for ~ symgfixfo . ...
symgfixfo 17859 The mapping of a permutati...
symgfixf1o 17860 The mapping of a permutati...
f1omvdmvd 17863 A permutation of any class...
f1omvdcnv 17864 A permutation and its inve...
mvdco 17865 Composing two permutations...
f1omvdconj 17866 Conjugation of a permutati...
f1otrspeq 17867 A transposition is charact...
f1omvdco2 17868 If exactly one of two perm...
f1omvdco3 17869 If a point is moved by exa...
pmtrfval 17870 The function generating tr...
pmtrval 17871 A generated transposition,...
pmtrfv 17872 General value of mapping a...
pmtrprfv 17873 In a transposition of two ...
pmtrprfv3 17874 In a transposition of two ...
pmtrf 17875 Functionality of a transpo...
pmtrmvd 17876 A transposition moves prec...
pmtrrn 17877 Transposing two points giv...
pmtrfrn 17878 A transposition (as a kind...
pmtrffv 17879 Mapping of a point under a...
pmtrrn2 17880 For any transposition ther...
pmtrfinv 17881 A transposition function i...
pmtrfmvdn0 17882 A transposition moves at l...
pmtrff1o 17883 A transposition function i...
pmtrfcnv 17884 A transposition function i...
pmtrfb 17885 An intrinsic characterizat...
pmtrfconj 17886 Any conjugate of a transpo...
symgsssg 17887 The symmetric group has su...
symgfisg 17888 The symmetric group has a ...
symgtrf 17889 Transpositions are element...
symggen 17890 The span of the transposit...
symggen2 17891 A finite permutation group...
symgtrinv 17892 To invert a permutation re...
pmtr3ncomlem1 17893 Lemma 1 for ~ pmtr3ncom . ...
pmtr3ncomlem2 17894 Lemma 2 for ~ pmtr3ncom . ...
pmtr3ncom 17895 Transpositions over sets w...
pmtrdifellem1 17896 Lemma 1 for ~ pmtrdifel . ...
pmtrdifellem2 17897 Lemma 2 for ~ pmtrdifel . ...
pmtrdifellem3 17898 Lemma 3 for ~ pmtrdifel . ...
pmtrdifellem4 17899 Lemma 4 for ~ pmtrdifel . ...
pmtrdifel 17900 A transposition of element...
pmtrdifwrdellem1 17901 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdellem2 17902 Lemma 2 for ~ pmtrdifwrdel...
pmtrdifwrdellem3 17903 Lemma 3 for ~ pmtrdifwrdel...
pmtrdifwrdel2lem1 17904 Lemma 1 for ~ pmtrdifwrdel...
pmtrdifwrdel 17905 A sequence of transpositio...
pmtrdifwrdel2 17906 A sequence of transpositio...
pmtrprfval 17907 The transpositions on a pa...
pmtrprfvalrn 17908 The range of the transposi...
psgnunilem1 17913 Lemma for ~ psgnuni . Giv...
psgnunilem5 17914 Lemma for ~ psgnuni . It ...
psgnunilem2 17915 Lemma for ~ psgnuni . Ind...
psgnunilem3 17916 Lemma for ~ psgnuni . Any...
psgnunilem4 17917 Lemma for ~ psgnuni . An ...
m1expaddsub 17918 Addition and subtraction o...
psgnuni 17919 If the same permutation ca...
psgnfval 17920 Function definition of the...
psgnfn 17921 Functionality and domain o...
psgndmsubg 17922 The finitary permutations ...
psgneldm 17923 Property of being a finita...
psgneldm2 17924 The finitary permutations ...
psgneldm2i 17925 A sequence of transpositio...
psgneu 17926 A finitary permutation has...
psgnval 17927 Value of the permutation s...
psgnvali 17928 A finitary permutation has...
psgnvalii 17929 Any representation of a pe...
psgnpmtr 17930 All transpositions are odd...
psgn0fv0 17931 The permutation sign funct...
sygbasnfpfi 17932 The class of non-fixed poi...
psgnfvalfi 17933 Function definition of the...
psgnvalfi 17934 Value of the permutation s...
psgnran 17935 The range of the permutati...
gsmtrcl 17936 The group sum of transposi...
psgnfitr 17937 A permutation of a finite ...
psgnfieu 17938 A permutation of a finite ...
pmtrsn 17939 The value of the transposi...
psgnsn 17940 The permutation sign funct...
psgnprfval 17941 The permutation sign funct...
psgnprfval1 17942 The permutation sign of th...
psgnprfval2 17943 The permutation sign of th...
odfval 17952 Value of the order functio...
odval 17953 Second substitution for th...
odlem1 17954 The group element order is...
odcl 17955 The order of a group eleme...
odf 17956 Functionality of the group...
odid 17957 Any element to the power o...
odlem2 17958 Any positive annihilator o...
odmodnn0 17959 Reduce the argument of a g...
mndodconglem 17960 Lemma for ~ mndodcong . (...
mndodcong 17961 If two multipliers are con...
mndodcongi 17962 If two multipliers are con...
oddvdsnn0 17963 The only multiples of ` A ...
odnncl 17964 If a nonzero multiple of a...
odmod 17965 Reduce the argument of a g...
oddvds 17966 The only multiples of ` A ...
oddvdsi 17967 Any group element is annih...
odcong 17968 If two multipliers are con...
odeq 17969 The ~ oddvds property uniq...
odval2 17970 A non-conditional definiti...
odmulgid 17971 A relationship between the...
odmulg2 17972 The order of a multiple di...
odmulg 17973 Relationship between the o...
odmulgeq 17974 A multiple of a point of f...
odbezout 17975 If ` N ` is coprime to the...
od1 17976 The order of the group ide...
odeq1 17977 The group identity is the ...
odinv 17978 The order of the inverse o...
odf1 17979 The multiples of an elemen...
odinf 17980 The multiples of an elemen...
dfod2 17981 An alternative definition ...
odcl2 17982 The order of an element of...
oddvds2 17983 The order of an element of...
submod 17984 The order of an element is...
subgod 17985 The order of an element is...
odsubdvds 17986 The order of an element of...
odf1o1 17987 An element with zero order...
odf1o2 17988 An element with nonzero or...
odhash 17989 An element of zero order g...
odhash2 17990 If an element has nonzero ...
odhash3 17991 An element which generates...
odngen 17992 A cyclic subgroup of size ...
gexval 17993 Value of the exponent of a...
gexlem1 17994 The group element order is...
gexcl 17995 The exponent of a group is...
gexid 17996 Any element to the power o...
gexlem2 17997 Any positive annihilator o...
gexdvdsi 17998 Any group element is annih...
gexdvds 17999 The only ` N ` that annihi...
gexdvds2 18000 An integer divides the gro...
gexod 18001 Any group element is annih...
gexcl3 18002 If the order of every grou...
gexnnod 18003 Every group element has fi...
gexcl2 18004 The exponent of a finite g...
gexdvds3 18005 The exponent of a finite g...
gex1 18006 A group or monoid has expo...
ispgp 18007 A group is a ` P ` -group ...
pgpprm 18008 Reverse closure for the fi...
pgpgrp 18009 Reverse closure for the se...
pgpfi1 18010 A finite group with order ...
pgp0 18011 The identity subgroup is a...
subgpgp 18012 A subgroup of a p-group is...
sylow1lem1 18013 Lemma for ~ sylow1 . The ...
sylow1lem2 18014 Lemma for ~ sylow1 . The ...
sylow1lem3 18015 Lemma for ~ sylow1 . One ...
sylow1lem4 18016 Lemma for ~ sylow1 . The ...
sylow1lem5 18017 Lemma for ~ sylow1 . Usin...
sylow1 18018 Sylow's first theorem. If...
odcau 18019 Cauchy's theorem for the o...
pgpfi 18020 The converse to ~ pgpfi1 ....
pgpfi2 18021 Alternate version of ~ pgp...
pgphash 18022 The order of a p-group. (...
isslw 18023 The property of being a Sy...
slwprm 18024 Reverse closure for the fi...
slwsubg 18025 A Sylow ` P ` -subgroup is...
slwispgp 18026 Defining property of a Syl...
slwpss 18027 A proper superset of a Syl...
slwpgp 18028 A Sylow ` P ` -subgroup is...
pgpssslw 18029 Every ` P ` -subgroup is c...
slwn0 18030 Every finite group contain...
subgslw 18031 A Sylow subgroup that is c...
sylow2alem1 18032 Lemma for ~ sylow2a . An ...
sylow2alem2 18033 Lemma for ~ sylow2a . All...
sylow2a 18034 A named lemma of Sylow's s...
sylow2blem1 18035 Lemma for ~ sylow2b . Eva...
sylow2blem2 18036 Lemma for ~ sylow2b . Lef...
sylow2blem3 18037 Sylow's second theorem. P...
sylow2b 18038 Sylow's second theorem. A...
slwhash 18039 A sylow subgroup has cardi...
fislw 18040 The sylow subgroups of a f...
sylow2 18041 Sylow's second theorem. S...
sylow3lem1 18042 Lemma for ~ sylow3 , first...
sylow3lem2 18043 Lemma for ~ sylow3 , first...
sylow3lem3 18044 Lemma for ~ sylow3 , first...
sylow3lem4 18045 Lemma for ~ sylow3 , first...
sylow3lem5 18046 Lemma for ~ sylow3 , secon...
sylow3lem6 18047 Lemma for ~ sylow3 , secon...
sylow3 18048 Sylow's third theorem. Th...
lsmfval 18053 The subgroup sum function ...
lsmvalx 18054 Subspace sum value (for a ...
lsmelvalx 18055 Subspace sum membership (f...
lsmelvalix 18056 Subspace sum membership (f...
oppglsm 18057 The subspace sum operation...
lsmssv 18058 Subgroup sum is a subset o...
lsmless1x 18059 Subset implies subgroup su...
lsmless2x 18060 Subset implies subgroup su...
lsmub1x 18061 Subgroup sum is an upper b...
lsmub2x 18062 Subgroup sum is an upper b...
lsmval 18063 Subgroup sum value (for a ...
lsmelval 18064 Subgroup sum membership (f...
lsmelvali 18065 Subgroup sum membership (f...
lsmelvalm 18066 Subgroup sum membership an...
lsmelvalmi 18067 Membership of vector subtr...
lsmsubm 18068 The sum of two commuting s...
lsmsubg 18069 The sum of two commuting s...
lsmcom2 18070 Subgroup sum commutes. (C...
lsmub1 18071 Subgroup sum is an upper b...
lsmub2 18072 Subgroup sum is an upper b...
lsmunss 18073 Union of subgroups is a su...
lsmless1 18074 Subset implies subgroup su...
lsmless2 18075 Subset implies subgroup su...
lsmless12 18076 Subset implies subgroup su...
lsmidm 18077 Subgroup sum is idempotent...
lsmlub 18078 The least upper bound prop...
lsmss1 18079 Subgroup sum with a subset...
lsmss1b 18080 Subgroup sum with a subset...
lsmss2 18081 Subgroup sum with a subset...
lsmss2b 18082 Subgroup sum with a subset...
lsmass 18083 Subgroup sum is associativ...
lsm01 18084 Subgroup sum with the zero...
lsm02 18085 Subgroup sum with the zero...
subglsm 18086 The subgroup sum evaluated...
lssnle 18087 Equivalent expressions for...
lsmmod 18088 The modular law holds for ...
lsmmod2 18089 Modular law dual for subgr...
lsmpropd 18090 If two structures have the...
cntzrecd 18091 Commute the "subgroups com...
lsmcntz 18092 The "subgroups commute" pr...
lsmcntzr 18093 The "subgroups commute" pr...
lsmdisj 18094 Disjointness from a subgro...
lsmdisj2 18095 Association of the disjoin...
lsmdisj3 18096 Association of the disjoin...
lsmdisjr 18097 Disjointness from a subgro...
lsmdisj2r 18098 Association of the disjoin...
lsmdisj3r 18099 Association of the disjoin...
lsmdisj2a 18100 Association of the disjoin...
lsmdisj2b 18101 Association of the disjoin...
lsmdisj3a 18102 Association of the disjoin...
lsmdisj3b 18103 Association of the disjoin...
subgdisj1 18104 Vectors belonging to disjo...
subgdisj2 18105 Vectors belonging to disjo...
subgdisjb 18106 Vectors belonging to disjo...
pj1fval 18107 The left projection functi...
pj1val 18108 The left projection functi...
pj1eu 18109 Uniqueness of a left proje...
pj1f 18110 The left projection functi...
pj2f 18111 The right projection funct...
pj1id 18112 Any element of a direct su...
pj1eq 18113 Any element of a direct su...
pj1lid 18114 The left projection functi...
pj1rid 18115 The left projection functi...
pj1ghm 18116 The left projection functi...
pj1ghm2 18117 The left projection functi...
lsmhash 18118 The order of the direct pr...
efgmval 18125 Value of the formal invers...
efgmf 18126 The formal inverse operati...
efgmnvl 18127 The inversion function on ...
efgrcl 18128 Lemma for ~ efgval . (Con...
efglem 18129 Lemma for ~ efgval . (Con...
efgval 18130 Value of the free group co...
efger 18131 Value of the free group co...
efgi 18132 Value of the free group co...
efgi0 18133 Value of the free group co...
efgi1 18134 Value of the free group co...
efgtf 18135 Value of the free group co...
efgtval 18136 Value of the extension fun...
efgval2 18137 Value of the free group co...
efgi2 18138 Value of the free group co...
efgtlen 18139 Value of the free group co...
efginvrel2 18140 The inverse of the reverse...
efginvrel1 18141 The inverse of the reverse...
efgsf 18142 Value of the auxiliary fun...
efgsdm 18143 Elementhood in the domain ...
efgsval 18144 Value of the auxiliary fun...
efgsdmi 18145 Property of the last link ...
efgsval2 18146 Value of the auxiliary fun...
efgsrel 18147 The start and end of any e...
efgs1 18148 A singleton of an irreduci...
efgs1b 18149 Every extension sequence e...
efgsp1 18150 If ` F ` is an extension s...
efgsres 18151 An initial segment of an e...
efgsfo 18152 For any word, there is a s...
efgredlema 18153 The reduced word that form...
efgredlemf 18154 Lemma for ~ efgredleme . ...
efgredlemg 18155 Lemma for ~ efgred . (Con...
efgredleme 18156 Lemma for ~ efgred . (Con...
efgredlemd 18157 The reduced word that form...
efgredlemc 18158 The reduced word that form...
efgredlemb 18159 The reduced word that form...
efgredlem 18160 The reduced word that form...
efgred 18161 The reduced word that form...
efgrelexlema 18162 If two words ` A , B ` are...
efgrelexlemb 18163 If two words ` A , B ` are...
efgrelex 18164 If two words ` A , B ` are...
efgredeu 18165 There is a unique reduced ...
efgred2 18166 Two extension sequences ha...
efgcpbllema 18167 Lemma for ~ efgrelex . De...
efgcpbllemb 18168 Lemma for ~ efgrelex . Sh...
efgcpbl 18169 Two extension sequences ha...
efgcpbl2 18170 Two extension sequences ha...
frgpval 18171 Value of the free group co...
frgpcpbl 18172 Compatibility of the group...
frgp0 18173 The free group is a group....
frgpeccl 18174 Closure of the quotient ma...
frgpgrp 18175 The free group is a group....
frgpadd 18176 Addition in the free group...
frgpinv 18177 The inverse of an element ...
frgpmhm 18178 The "natural map" from wor...
vrgpfval 18179 The canonical injection fr...
vrgpval 18180 The value of the generatin...
vrgpf 18181 The mapping from the index...
vrgpinv 18182 The inverse of a generatin...
frgpuptf 18183 Any assignment of the gene...
frgpuptinv 18184 Any assignment of the gene...
frgpuplem 18185 Any assignment of the gene...
frgpupf 18186 Any assignment of the gene...
frgpupval 18187 Any assignment of the gene...
frgpup1 18188 Any assignment of the gene...
frgpup2 18189 The evaluation map has the...
frgpup3lem 18190 The evaluation map has the...
frgpup3 18191 Universal property of the ...
0frgp 18192 The free group on zero gen...
isabl 18197 The predicate "is an Abeli...
ablgrp 18198 An Abelian group is a grou...
ablcmn 18199 An Abelian group is a comm...
iscmn 18200 The predicate "is a commut...
isabl2 18201 The predicate "is an Abeli...
cmnpropd 18202 If two structures have the...
ablpropd 18203 If two structures have the...
ablprop 18204 If two structures have the...
iscmnd 18205 Properties that determine ...
isabld 18206 Properties that determine ...
isabli 18207 Properties that determine ...
cmnmnd 18208 A commutative monoid is a ...
cmncom 18209 A commutative monoid is co...
ablcom 18210 An Abelian group operation...
cmn32 18211 Commutative/associative la...
cmn4 18212 Commutative/associative la...
cmn12 18213 Commutative/associative la...
abl32 18214 Commutative/associative la...
ablinvadd 18215 The inverse of an Abelian ...
ablsub2inv 18216 Abelian group subtraction ...
ablsubadd 18217 Relationship between Abeli...
ablsub4 18218 Commutative/associative su...
abladdsub4 18219 Abelian group addition/sub...
abladdsub 18220 Associative-type law for g...
ablpncan2 18221 Cancellation law for subtr...
ablpncan3 18222 A cancellation law for com...
ablsubsub 18223 Law for double subtraction...
ablsubsub4 18224 Law for double subtraction...
ablpnpcan 18225 Cancellation law for mixed...
ablnncan 18226 Cancellation law for group...
ablsub32 18227 Swap the second and third ...
ablnnncan 18228 Cancellation law for group...
ablnnncan1 18229 Cancellation law for group...
ablsubsub23 18230 Swap subtrahend and result...
mulgnn0di 18231 Group multiple of a sum, f...
mulgdi 18232 Group multiple of a sum. ...
mulgmhm 18233 The map from ` x ` to ` n ...
mulgghm 18234 The map from ` x ` to ` n ...
mulgsubdi 18235 Group multiple of a differ...
ghmfghm 18236 The function fulfilling th...
ghmcmn 18237 The image of a commutative...
ghmabl 18238 The image of an abelian gr...
invghm 18239 The inversion map is a gro...
eqgabl 18240 Value of the subgroup cose...
subgabl 18241 A subgroup of an abelian g...
subcmn 18242 A submonoid of a commutati...
submcmn 18243 A submonoid of a commutati...
submcmn2 18244 A submonoid is commutative...
cntzcmn 18245 The centralizer of any sub...
cntzcmnss 18246 Any subset in a commutativ...
cntzspan 18247 If the generators commute,...
cntzcmnf 18248 Discharge the centralizer ...
ghmplusg 18249 The pointwise sum of two l...
ablnsg 18250 Every subgroup of an abeli...
odadd1 18251 The order of a product in ...
odadd2 18252 The order of a product in ...
odadd 18253 The order of a product is ...
gex2abl 18254 A group with exponent 2 (o...
gexexlem 18255 Lemma for ~ gexex . (Cont...
gexex 18256 In an abelian group with f...
torsubg 18257 The set of all elements of...
oddvdssubg 18258 The set of all elements wh...
lsmcomx 18259 Subgroup sum commutes (ext...
ablcntzd 18260 All subgroups in an abelia...
lsmcom 18261 Subgroup sum commutes. (C...
lsmsubg2 18262 The sum of two subgroups i...
lsm4 18263 Commutative/associative la...
prdscmnd 18264 The product of a family of...
prdsabld 18265 The product of a family of...
pwscmn 18266 The structure power on a c...
pwsabl 18267 The structure power on an ...
qusabl 18268 If ` Y ` is a subgroup of ...
abl1 18269 The (smallest) structure r...
abln0 18270 Abelian groups (and theref...
cnaddablx 18271 The complex numbers are an...
cnaddabl 18272 The complex numbers are an...
cnaddid 18273 The group identity element...
cnaddinv 18274 Value of the group inverse...
zaddablx 18275 The integers are an Abelia...
frgpnabllem1 18276 Lemma for ~ frgpnabl . (C...
frgpnabllem2 18277 Lemma for ~ frgpnabl . (C...
frgpnabl 18278 The free group on two or m...
iscyg 18281 Definition of a cyclic gro...
iscyggen 18282 The property of being a cy...
iscyggen2 18283 The property of being a cy...
iscyg2 18284 A cyclic group is a group ...
cyggeninv 18285 The inverse of a cyclic ge...
cyggenod 18286 An element is the generato...
cyggenod2 18287 In an infinite cyclic grou...
iscyg3 18288 Definition of a cyclic gro...
iscygd 18289 Definition of a cyclic gro...
iscygodd 18290 Show that a group with an ...
cyggrp 18291 A cyclic group is a group....
cygabl 18292 A cyclic group is abelian....
cygctb 18293 A cyclic group is countabl...
0cyg 18294 The trivial group is cycli...
prmcyg 18295 A group with prime order i...
lt6abl 18296 A group with fewer than ` ...
ghmcyg 18297 The image of a cyclic grou...
cyggex2 18298 The exponent of a cyclic g...
cyggex 18299 The exponent of a finite c...
cyggexb 18300 A finite abelian group is ...
giccyg 18301 Cyclicity is a group prope...
cycsubgcyg 18302 The cyclic subgroup genera...
cycsubgcyg2 18303 The cyclic subgroup genera...
gsumval3a 18304 Value of the group sum ope...
gsumval3eu 18305 The group sum as defined i...
gsumval3lem1 18306 Lemma 1 for ~ gsumval3 . ...
gsumval3lem2 18307 Lemma 2 for ~ gsumval3 . ...
gsumval3 18308 Value of the group sum ope...
gsumcllem 18309 Lemma for ~ gsumcl and rel...
gsumzres 18310 Extend a finite group sum ...
gsumzcl2 18311 Closure of a finite group ...
gsumzcl 18312 Closure of a finite group ...
gsumzf1o 18313 Re-index a finite group su...
gsumres 18314 Extend a finite group sum ...
gsumcl2 18315 Closure of a finite group ...
gsumcl 18316 Closure of a finite group ...
gsumf1o 18317 Re-index a finite group su...
gsumzsubmcl 18318 Closure of a group sum in ...
gsumsubmcl 18319 Closure of a group sum in ...
gsumsubgcl 18320 Closure of a group sum in ...
gsumzaddlem 18321 The sum of two group sums....
gsumzadd 18322 The sum of two group sums....
gsumadd 18323 The sum of two group sums....
gsummptfsadd 18324 The sum of two group sums ...
gsummptfidmadd 18325 The sum of two group sums ...
gsummptfidmadd2 18326 The sum of two group sums ...
gsumzsplit 18327 Split a group sum into two...
gsumsplit 18328 Split a group sum into two...
gsumsplit2 18329 Split a group sum into two...
gsummptfidmsplit 18330 Split a group sum expresse...
gsummptfidmsplitres 18331 Split a group sum expresse...
gsummptfzsplit 18332 Split a group sum expresse...
gsummptfzsplitl 18333 Split a group sum expresse...
gsumconst 18334 Sum of a constant series. ...
gsumconstf 18335 Sum of a constant series. ...
gsummptshft 18336 Index shift of a finite gr...
gsumzmhm 18337 Apply a group homomorphism...
gsummhm 18338 Apply a group homomorphism...
gsummhm2 18339 Apply a group homomorphism...
gsummptmhm 18340 Apply a group homomorphism...
gsummulglem 18341 Lemma for ~ gsummulg and ~...
gsummulg 18342 Nonnegative multiple of a ...
gsummulgz 18343 Integer multiple of a grou...
gsumzoppg 18344 The opposite of a group su...
gsumzinv 18345 Inverse of a group sum. (...
gsuminv 18346 Inverse of a group sum. (...
gsummptfidminv 18347 Inverse of a group sum exp...
gsumsub 18348 The difference of two grou...
gsummptfssub 18349 The difference of two grou...
gsummptfidmsub 18350 The difference of two grou...
gsumsnfd 18351 Group sum of a singleton, ...
gsumsnd 18352 Group sum of a singleton, ...
gsumsnf 18353 Group sum of a singleton, ...
gsumsn 18354 Group sum of a singleton. ...
gsumzunsnd 18355 Append an element to a fin...
gsumunsnfd 18356 Append an element to a fin...
gsumunsnd 18357 Append an element to a fin...
gsumunsnf 18358 Append an element to a fin...
gsumunsn 18359 Append an element to a fin...
gsumdifsnd 18360 Extract a summand from a f...
gsumpt 18361 Sum of a family that is no...
gsummptf1o 18362 Re-index a finite group su...
gsummptun 18363 Group sum of a disjoint un...
gsummpt1n0 18364 If only one summand in a f...
gsummptif1n0 18365 If only one summand in a f...
gsummptcl 18366 Closure of a finite group ...
gsummptfif1o 18367 Re-index a finite group su...
gsummptfzcl 18368 Closure of a finite group ...
gsum2dlem1 18369 Lemma 1 for ~ gsum2d . (C...
gsum2dlem2 18370 Lemma for ~ gsum2d . (Con...
gsum2d 18371 Write a sum over a two-dim...
gsum2d2lem 18372 Lemma for ~ gsum2d2 : show...
gsum2d2 18373 Write a group sum over a t...
gsumcom2 18374 Two-dimensional commutatio...
gsumxp 18375 Write a group sum over a c...
gsumcom 18376 Commute the arguments of a...
prdsgsum 18377 Finite commutative sums in...
pwsgsum 18378 Finite commutative sums in...
fsfnn0gsumfsffz 18379 Replacing a finitely suppo...
nn0gsumfz 18380 Replacing a finitely suppo...
nn0gsumfz0 18381 Replacing a finitely suppo...
gsummptnn0fz 18382 A final group sum over a f...
gsummptnn0fzv 18383 A final group sum over a f...
gsummptnn0fzfv 18384 A final group sum over a f...
telgsumfzslem 18385 Lemma for ~ telgsumfzs (in...
telgsumfzs 18386 Telescoping group sum rang...
telgsumfz 18387 Telescoping group sum rang...
telgsumfz0s 18388 Telescoping finite group s...
telgsumfz0 18389 Telescoping finite group s...
telgsums 18390 Telescoping finitely suppo...
telgsum 18391 Telescoping finitely suppo...
reldmdprd 18396 The domain of the internal...
dmdprd 18397 The domain of definition o...
dmdprdd 18398 Show that a given family i...
dprddomprc 18399 A family of subgroups inde...
dprddomcld 18400 If a family of subgroups i...
dprdval0prc 18401 The internal direct produc...
dprdval 18402 The value of the internal ...
eldprd 18403 A class ` A ` is an intern...
dprdgrp 18404 Reverse closure for the in...
dprdf 18405 The function ` S ` is a fa...
dprdf2 18406 The function ` S ` is a fa...
dprdcntz 18407 The function ` S ` is a fa...
dprddisj 18408 The function ` S ` is a fa...
dprdw 18409 The property of being a fi...
dprdwd 18410 A mapping being a finitely...
dprdff 18411 A finitely supported funct...
dprdfcl 18412 A finitely supported funct...
dprdffsupp 18413 A finitely supported funct...
dprdfcntz 18414 A function on the elements...
dprdssv 18415 The internal direct produc...
dprdfid 18416 A function mapping all but...
eldprdi 18417 The domain of definition o...
dprdfinv 18418 Take the inverse of a grou...
dprdfadd 18419 Take the sum of group sums...
dprdfsub 18420 Take the difference of gro...
dprdfeq0 18421 The zero function is the o...
dprdf11 18422 Two group sums over a dire...
dprdsubg 18423 The internal direct produc...
dprdub 18424 Each factor is a subset of...
dprdlub 18425 The direct product is smal...
dprdspan 18426 The direct product is the ...
dprdres 18427 Restriction of a direct pr...
dprdss 18428 Create a direct product by...
dprdz 18429 A family consisting entire...
dprd0 18430 The empty family is an int...
dprdf1o 18431 Rearrange the index set of...
dprdf1 18432 Rearrange the index set of...
subgdmdprd 18433 A direct product in a subg...
subgdprd 18434 A direct product in a subg...
dprdsn 18435 A singleton family is an i...
dmdprdsplitlem 18436 Lemma for ~ dmdprdsplit . ...
dprdcntz2 18437 The function ` S ` is a fa...
dprddisj2 18438 The function ` S ` is a fa...
dprd2dlem2 18439 The direct product of a co...
dprd2dlem1 18440 The direct product of a co...
dprd2da 18441 The direct product of a co...
dprd2db 18442 The direct product of a co...
dprd2d2 18443 The direct product of a co...
dmdprdsplit2lem 18444 Lemma for ~ dmdprdsplit . ...
dmdprdsplit2 18445 The direct product splits ...
dmdprdsplit 18446 The direct product splits ...
dprdsplit 18447 The direct product is the ...
dmdprdpr 18448 A singleton family is an i...
dprdpr 18449 A singleton family is an i...
dpjlem 18450 Lemma for theorems about d...
dpjcntz 18451 The two subgroups that app...
dpjdisj 18452 The two subgroups that app...
dpjlsm 18453 The two subgroups that app...
dpjfval 18454 Value of the direct produc...
dpjval 18455 Value of the direct produc...
dpjf 18456 The ` X ` -th index projec...
dpjidcl 18457 The key property of projec...
dpjeq 18458 Decompose a group sum into...
dpjid 18459 The key property of projec...
dpjlid 18460 The ` X ` -th index projec...
dpjrid 18461 The ` Y ` -th index projec...
dpjghm 18462 The direct product is the ...
dpjghm2 18463 The direct product is the ...
ablfacrplem 18464 Lemma for ~ ablfacrp2 . (...
ablfacrp 18465 A finite abelian group who...
ablfacrp2 18466 The factors ` K , L ` of ~...
ablfac1lem 18467 Lemma for ~ ablfac1b . Sa...
ablfac1a 18468 The factors of ~ ablfac1b ...
ablfac1b 18469 Any abelian group is the d...
ablfac1c 18470 The factors of ~ ablfac1b ...
ablfac1eulem 18471 Lemma for ~ ablfac1eu . (...
ablfac1eu 18472 The factorization of ~ abl...
pgpfac1lem1 18473 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem2 18474 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3a 18475 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem3 18476 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem4 18477 Lemma for ~ pgpfac1 . (Co...
pgpfac1lem5 18478 Lemma for ~ pgpfac1 . (Co...
pgpfac1 18479 Factorization of a finite ...
pgpfaclem1 18480 Lemma for ~ pgpfac . (Con...
pgpfaclem2 18481 Lemma for ~ pgpfac . (Con...
pgpfaclem3 18482 Lemma for ~ pgpfac . (Con...
pgpfac 18483 Full factorization of a fi...
ablfaclem1 18484 Lemma for ~ ablfac . (Con...
ablfaclem2 18485 Lemma for ~ ablfac . (Con...
ablfaclem3 18486 Lemma for ~ ablfac . (Con...
ablfac 18487 The Fundamental Theorem of...
ablfac2 18488 Choose generators for each...
fnmgp 18491 The multiplicative group o...
mgpval 18492 Value of the multiplicatio...
mgpplusg 18493 Value of the group operati...
mgplem 18494 Lemma for ~ mgpbas . (Con...
mgpbas 18495 Base set of the multiplica...
mgpsca 18496 The multiplication monoid ...
mgptset 18497 Topology component of the ...
mgptopn 18498 Topology of the multiplica...
mgpds 18499 Distance function of the m...
mgpress 18500 Subgroup commutes with the...
ringidval 18503 The value of the unity ele...
dfur2 18504 The multiplicative identit...
issrg 18507 The predicate "is a semiri...
srgcmn 18508 A semiring is a commutativ...
srgmnd 18509 A semiring is a monoid. (...
srgmgp 18510 A semiring is a monoid und...
srgi 18511 Properties of a semiring. ...
srgcl 18512 Closure of the multiplicat...
srgass 18513 Associative law for the mu...
srgideu 18514 The unit element of a semi...
srgfcl 18515 Functionality of the multi...
srgdi 18516 Distributive law for the m...
srgdir 18517 Distributive law for the m...
srgidcl 18518 The unit element of a semi...
srg0cl 18519 The zero element of a semi...
srgidmlem 18520 Lemma for ~ srglidm and ~ ...
srglidm 18521 The unit element of a semi...
srgridm 18522 The unit element of a semi...
issrgid 18523 Properties showing that an...
srgacl 18524 Closure of the addition op...
srgcom 18525 Commutativity of the addit...
srgrz 18526 The zero of a semiring is ...
srglz 18527 The zero of a semiring is ...
srgisid 18528 In a semiring, the only le...
srg1zr 18529 The only semiring with a b...
srgen1zr 18530 The only semiring with one...
srgmulgass 18531 An associative property be...
srgpcomp 18532 If two elements of a semir...
srgpcompp 18533 If two elements of a semir...
srgpcomppsc 18534 If two elements of a semir...
srglmhm 18535 Left-multiplication in a s...
srgrmhm 18536 Right-multiplication in a ...
srgsummulcr 18537 A finite semiring sum mult...
sgsummulcl 18538 A finite semiring sum mult...
srg1expzeq1 18539 The exponentiation (by a n...
srgbinomlem1 18540 Lemma 1 for ~ srgbinomlem ...
srgbinomlem2 18541 Lemma 2 for ~ srgbinomlem ...
srgbinomlem3 18542 Lemma 3 for ~ srgbinomlem ...
srgbinomlem4 18543 Lemma 4 for ~ srgbinomlem ...
srgbinomlem 18544 Lemma for ~ srgbinom . In...
srgbinom 18545 The binomial theorem for c...
csrgbinom 18546 The binomial theorem for c...
isring 18551 The predicate "is a (unita...
ringgrp 18552 A ring is a group. (Contr...
ringmgp 18553 A ring is a monoid under m...
iscrng 18554 A commutative ring is a ri...
crngmgp 18555 A commutative ring's multi...
ringmnd 18556 A ring is a monoid under a...
ringmgm 18557 A ring is a magma. (Contr...
crngring 18558 A commutative ring is a ri...
mgpf 18559 Restricted functionality o...
ringi 18560 Properties of a unital rin...
ringcl 18561 Closure of the multiplicat...
crngcom 18562 A commutative ring's multi...
iscrng2 18563 A commutative ring is a ri...
ringass 18564 Associative law for the mu...
ringideu 18565 The unit element of a ring...
ringdi 18566 Distributive law for the m...
ringdir 18567 Distributive law for the m...
ringidcl 18568 The unit element of a ring...
ring0cl 18569 The zero element of a ring...
ringidmlem 18570 Lemma for ~ ringlidm and ~...
ringlidm 18571 The unit element of a ring...
ringridm 18572 The unit element of a ring...
isringid 18573 Properties showing that an...
ringid 18574 The multiplication operati...
ringadd2 18575 A ring element plus itself...
rngo2times 18576 A ring element plus itself...
ringidss 18577 A subset of the multiplica...
ringacl 18578 Closure of the addition op...
ringcom 18579 Commutativity of the addit...
ringabl 18580 A ring is an Abelian group...
ringcmn 18581 A ring is a commutative mo...
ringpropd 18582 If two structures have the...
crngpropd 18583 If two structures have the...
ringprop 18584 If two structures have the...
isringd 18585 Properties that determine ...
iscrngd 18586 Properties that determine ...
ringlz 18587 The zero of a unital ring ...
ringrz 18588 The zero of a unital ring ...
ringsrg 18589 Any ring is also a semirin...
ring1eq0 18590 If one and zero are equal,...
ring1ne0 18591 If a ring has at least two...
ringinvnz1ne0 18592 In a unitary ring, a left ...
ringinvnzdiv 18593 In a unitary ring, a left ...
ringnegl 18594 Negation in a ring is the ...
rngnegr 18595 Negation in a ring is the ...
ringmneg1 18596 Negation of a product in a...
ringmneg2 18597 Negation of a product in a...
ringm2neg 18598 Double negation of a produ...
ringsubdi 18599 Ring multiplication distri...
rngsubdir 18600 Ring multiplication distri...
mulgass2 18601 An associative property be...
ring1 18602 The (smallest) structure r...
ringn0 18603 Rings exist. (Contributed...
ringlghm 18604 Left-multiplication in a r...
ringrghm 18605 Right-multiplication in a ...
gsummulc1 18606 A finite ring sum multipli...
gsummulc2 18607 A finite ring sum multipli...
gsummgp0 18608 If one factor in a finite ...
gsumdixp 18609 Distribute a binary produc...
prdsmgp 18610 The multiplicative monoid ...
prdsmulrcl 18611 A structure product of rin...
prdsringd 18612 A product of rings is a ri...
prdscrngd 18613 A product of commutative r...
prds1 18614 Value of the ring unit in ...
pwsring 18615 A structure power of a rin...
pws1 18616 Value of the ring unit in ...
pwscrng 18617 A structure power of a com...
pwsmgp 18618 The multiplicative group o...
imasring 18619 The image structure of a r...
qusring2 18620 The quotient structure of ...
crngbinom 18621 The binomial theorem for c...
opprval 18624 Value of the opposite ring...
opprmulfval 18625 Value of the multiplicatio...
opprmul 18626 Value of the multiplicatio...
crngoppr 18627 In a commutative ring, the...
opprlem 18628 Lemma for ~ opprbas and ~ ...
opprbas 18629 Base set of an opposite ri...
oppradd 18630 Addition operation of an o...
opprring 18631 An opposite ring is a ring...
opprringb 18632 Bidirectional form of ~ op...
oppr0 18633 Additive identity of an op...
oppr1 18634 Multiplicative identity of...
opprneg 18635 The negative function in a...
opprsubg 18636 Being a subgroup is a symm...
mulgass3 18637 An associative property be...
reldvdsr 18644 The divides relation is a ...
dvdsrval 18645 Value of the divides relat...
dvdsr 18646 Value of the divides relat...
dvdsr2 18647 Value of the divides relat...
dvdsrmul 18648 A left-multiple of ` X ` i...
dvdsrcl 18649 Closure of a dividing elem...
dvdsrcl2 18650 Closure of a dividing elem...
dvdsrid 18651 An element in a (unital) r...
dvdsrtr 18652 Divisibility is transitive...
dvdsrmul1 18653 The divisibility relation ...
dvdsrneg 18654 An element divides its neg...
dvdsr01 18655 In a ring, zero is divisib...
dvdsr02 18656 Only zero is divisible by ...
isunit 18657 Property of being a unit o...
1unit 18658 The multiplicative identit...
unitcl 18659 A unit is an element of th...
unitss 18660 The set of units is contai...
opprunit 18661 Being a unit is a symmetri...
crngunit 18662 Property of being a unit i...
dvdsunit 18663 A divisor of a unit is a u...
unitmulcl 18664 The product of units is a ...
unitmulclb 18665 Reversal of ~ unitmulcl in...
unitgrpbas 18666 The base set of the group ...
unitgrp 18667 The group of units is a gr...
unitabl 18668 The group of units of a co...
unitgrpid 18669 The identity of the multip...
unitsubm 18670 The group of units is a su...
invrfval 18673 Multiplicative inverse fun...
unitinvcl 18674 The inverse of a unit exis...
unitinvinv 18675 The inverse of the inverse...
ringinvcl 18676 The inverse of a unit is a...
unitlinv 18677 A unit times its inverse i...
unitrinv 18678 A unit times its inverse i...
1rinv 18679 The inverse of the identit...
0unit 18680 The additive identity is a...
unitnegcl 18681 The negative of a unit is ...
dvrfval 18684 Division operation in a ri...
dvrval 18685 Division operation in a ri...
dvrcl 18686 Closure of division operat...
unitdvcl 18687 The units are closed under...
dvrid 18688 A cancellation law for div...
dvr1 18689 A cancellation law for div...
dvrass 18690 An associative law for div...
dvrcan1 18691 A cancellation law for div...
dvrcan3 18692 A cancellation law for div...
dvreq1 18693 A cancellation law for div...
ringinvdv 18694 Write the inverse function...
rngidpropd 18695 The ring identity depends ...
dvdsrpropd 18696 The divisibility relation ...
unitpropd 18697 The set of units depends o...
invrpropd 18698 The ring inverse function ...
isirred 18699 An irreducible element of ...
isnirred 18700 The property of being a no...
isirred2 18701 Expand out the class diffe...
opprirred 18702 Irreducibility is symmetri...
irredn0 18703 The additive identity is n...
irredcl 18704 An irreducible element is ...
irrednu 18705 An irreducible element is ...
irredn1 18706 The multiplicative identit...
irredrmul 18707 The product of an irreduci...
irredlmul 18708 The product of a unit and ...
irredmul 18709 If product of two elements...
irredneg 18710 The negative of an irreduc...
irrednegb 18711 An element is irreducible ...
dfrhm2 18717 The property of a ring hom...
rhmrcl1 18719 Reverse closure of a ring ...
rhmrcl2 18720 Reverse closure of a ring ...
isrhm 18721 A function is a ring homom...
rhmmhm 18722 A ring homomorphism is a h...
isrim0 18723 An isomorphism of rings is...
rimrcl 18724 Reverse closure for an iso...
rhmghm 18725 A ring homomorphism is an ...
rhmf 18726 A ring homomorphism is a f...
rhmmul 18727 A homomorphism of rings pr...
isrhm2d 18728 Demonstration of ring homo...
isrhmd 18729 Demonstration of ring homo...
rhm1 18730 Ring homomorphisms are req...
idrhm 18731 The identity homomorphism ...
rhmf1o 18732 A ring homomorphism is bij...
isrim 18733 An isomorphism of rings is...
rimf1o 18734 An isomorphism of rings is...
rimrhm 18735 An isomorphism of rings is...
rimgim 18736 An isomorphism of rings is...
rhmco 18737 The composition of ring ho...
pwsco1rhm 18738 Right composition with a f...
pwsco2rhm 18739 Left composition with a ri...
f1rhm0to0 18740 If a ring homomorphism ` F...
f1rhm0to0ALT 18741 Alternate proof for ~ f1rh...
rim0to0 18742 A ring isomorphism maps th...
kerf1hrm 18743 A ring homomorphism ` F ` ...
brric 18744 The relation "is isomorphi...
brric2 18745 The relation "is isomorphi...
ricgic 18746 If two rings are (ring) is...
isdrng 18751 The predicate "is a divisi...
drngunit 18752 Elementhood in the set of ...
drngui 18753 The set of units of a divi...
drngring 18754 A division ring is a ring....
drnggrp 18755 A division ring is a group...
isfld 18756 A field is a commutative d...
isdrng2 18757 A division ring can equiva...
drngprop 18758 If two structures have the...
drngmgp 18759 A division ring contains a...
drngmcl 18760 The product of two nonzero...
drngid 18761 A division ring's unit is ...
drngunz 18762 A division ring's unit is ...
drngid2 18763 Properties showing that an...
drnginvrcl 18764 Closure of the multiplicat...
drnginvrn0 18765 The multiplicative inverse...
drnginvrl 18766 Property of the multiplica...
drnginvrr 18767 Property of the multiplica...
drngmul0or 18768 A product is zero iff one ...
drngmulne0 18769 A product is nonzero iff b...
drngmuleq0 18770 An element is zero iff its...
opprdrng 18771 The opposite of a division...
isdrngd 18772 Properties that determine ...
isdrngrd 18773 Properties that determine ...
drngpropd 18774 If two structures have the...
fldpropd 18775 If two structures have the...
issubrg 18780 The subring predicate. (C...
subrgss 18781 A subring is a subset. (C...
subrgid 18782 Every ring is a subring of...
subrgring 18783 A subring is a ring. (Con...
subrgcrng 18784 A subring of a commutative...
subrgrcl 18785 Reverse closure for a subr...
subrgsubg 18786 A subring is a subgroup. ...
subrg0 18787 A subring always has the s...
subrg1cl 18788 A subring contains the mul...
subrgbas 18789 Base set of a subring stru...
subrg1 18790 A subring always has the s...
subrgacl 18791 A subring is closed under ...
subrgmcl 18792 A subgroup is closed under...
subrgsubm 18793 A subring is a submonoid o...
subrgdvds 18794 If an element divides anot...
subrguss 18795 A unit of a subring is a u...
subrginv 18796 A subring always has the s...
subrgdv 18797 A subring always has the s...
subrgunit 18798 An element of a ring is a ...
subrgugrp 18799 The units of a subring for...
issubrg2 18800 Characterize the subrings ...
opprsubrg 18801 Being a subring is a symme...
subrgint 18802 The intersection of a none...
subrgin 18803 The intersection of two su...
subrgmre 18804 The subrings of a ring are...
issubdrg 18805 Characterize the subfields...
subsubrg 18806 A subring of a subring is ...
subsubrg2 18807 The set of subrings of a s...
issubrg3 18808 A subring is an additive s...
resrhm 18809 Restriction of a ring homo...
rhmeql 18810 The equalizer of two ring ...
rhmima 18811 The homomorphic image of a...
cntzsubr 18812 Centralizers in a ring are...
pwsdiagrhm 18813 Diagonal homomorphism into...
subrgpropd 18814 If two structures have the...
rhmpropd 18815 Ring homomorphism depends ...
abvfval 18818 Value of the set of absolu...
isabv 18819 Elementhood in the set of ...
isabvd 18820 Properties that determine ...
abvrcl 18821 Reverse closure for the ab...
abvfge0 18822 An absolute value is a fun...
abvf 18823 An absolute value is a fun...
abvcl 18824 An absolute value is a fun...
abvge0 18825 The absolute value of a nu...
abveq0 18826 The value of an absolute v...
abvne0 18827 The absolute value of a no...
abvgt0 18828 The absolute value of a no...
abvmul 18829 An absolute value distribu...
abvtri 18830 An absolute value satisfie...
abv0 18831 The absolute value of zero...
abv1z 18832 The absolute value of one ...
abv1 18833 The absolute value of one ...
abvneg 18834 The absolute value of a ne...
abvsubtri 18835 An absolute value satisfie...
abvrec 18836 The absolute value distrib...
abvdiv 18837 The absolute value distrib...
abvdom 18838 Any ring with an absolute ...
abvres 18839 The restriction of an abso...
abvtrivd 18840 The trivial absolute value...
abvtriv 18841 The trivial absolute value...
abvpropd 18842 If two structures have the...
staffval 18847 The functionalization of t...
stafval 18848 The functionalization of t...
staffn 18849 The functionalization is e...
issrng 18850 The predicate "is a star r...
srngrhm 18851 The involution function in...
srngring 18852 A star ring is a ring. (C...
srngcnv 18853 The involution function in...
srngf1o 18854 The involution function in...
srngcl 18855 The involution function in...
srngnvl 18856 The involution function in...
srngadd 18857 The involution function in...
srngmul 18858 The involution function in...
srng1 18859 The conjugate of the ring ...
srng0 18860 The conjugate of the ring ...
issrngd 18861 Properties that determine ...
idsrngd 18862 A commutative ring is a st...
islmod 18867 The predicate "is a left m...
lmodlema 18868 Lemma for properties of a ...
islmodd 18869 Properties that determine ...
lmodgrp 18870 A left module is a group. ...
lmodring 18871 The scalar component of a ...
lmodfgrp 18872 The scalar component of a ...
lmodbn0 18873 The base set of a left mod...
lmodacl 18874 Closure of ring addition f...
lmodmcl 18875 Closure of ring multiplica...
lmodsn0 18876 The set of scalars in a le...
lmodvacl 18877 Closure of vector addition...
lmodass 18878 Left module vector sum is ...
lmodlcan 18879 Left cancellation law for ...
lmodvscl 18880 Closure of scalar product ...
scaffval 18881 The scalar multiplication ...
scafval 18882 The scalar multiplication ...
scafeq 18883 If the scalar multiplicati...
scaffn 18884 The scalar multiplication ...
lmodscaf 18885 The scalar multiplication ...
lmodvsdi 18886 Distributive law for scala...
lmodvsdir 18887 Distributive law for scala...
lmodvsass 18888 Associative law for scalar...
lmod0cl 18889 The ring zero in a left mo...
lmod1cl 18890 The ring unit in a left mo...
lmodvs1 18891 Scalar product with ring u...
lmod0vcl 18892 The zero vector is a vecto...
lmod0vlid 18893 Left identity law for the ...
lmod0vrid 18894 Right identity law for the...
lmod0vid 18895 Identity equivalent to the...
lmod0vs 18896 Zero times a vector is the...
lmodvs0 18897 Anything times the zero ve...
lmodvsmmulgdi 18898 Distributive law for a gro...
lmodfopnelem1 18899 Lemma 1 for ~ lmodfopne . ...
lmodfopnelem2 18900 Lemma 2 for ~ lmodfopne . ...
lmodfopne 18901 The (functionalized) opera...
lcomf 18902 A linear-combination sum i...
lcomfsupp 18903 A linear-combination sum i...
lmodvnegcl 18904 Closure of vector negative...
lmodvnegid 18905 Addition of a vector with ...
lmodvneg1 18906 Minus 1 times a vector is ...
lmodvsneg 18907 Multiplication of a vector...
lmodvsubcl 18908 Closure of vector subtract...
lmodcom 18909 Left module vector sum is ...
lmodabl 18910 A left module is an abelia...
lmodcmn 18911 A left module is a commuta...
lmodnegadd 18912 Distribute negation throug...
lmod4 18913 Commutative/associative la...
lmodvsubadd 18914 Relationship between vecto...
lmodvaddsub4 18915 Vector addition/subtractio...
lmodvpncan 18916 Addition/subtraction cance...
lmodvnpcan 18917 Cancellation law for vecto...
lmodvsubval2 18918 Value of vector subtractio...
lmodsubvs 18919 Subtraction of a scalar pr...
lmodsubdi 18920 Scalar multiplication dist...
lmodsubdir 18921 Scalar multiplication dist...
lmodsubeq0 18922 If the difference between ...
lmodsubid 18923 Subtraction of a vector fr...
lmodvsghm 18924 Scalar multiplication of t...
lmodprop2d 18925 If two structures have the...
lmodpropd 18926 If two structures have the...
gsumvsmul 18927 Pull a scalar multiplicati...
mptscmfsupp0 18928 A mapping to a scalar prod...
mptscmfsuppd 18929 A function mapping to a sc...
rmodislmodlem 18930 Lemma for ~ rmodislmod . ...
rmodislmod 18931 The right module ` R ` ind...
lssset 18934 The set of all (not necess...
islss 18935 The predicate "is a subspa...
islssd 18936 Properties that determine ...
lssss 18937 A subspace is a set of vec...
lssel 18938 A subspace member is a vec...
lss1 18939 The set of vectors in a le...
lssuni 18940 The union of all subspaces...
lssn0 18941 A subspace is not empty. ...
00lss 18942 The empty structure has no...
lsscl 18943 Closure property of a subs...
lssvsubcl 18944 Closure of vector subtract...
lssvancl1 18945 Non-closure: if one vector...
lssvancl2 18946 Non-closure: if one vector...
lss0cl 18947 The zero vector belongs to...
lsssn0 18948 The singleton of the zero ...
lss0ss 18949 The zero subspace is inclu...
lssle0 18950 No subspace is smaller tha...
lssne0 18951 A nonzero subspace has a n...
lssneln0 18952 A vector which doesn't bel...
lssssr 18953 Conclude subspace ordering...
lssvacl 18954 Closure of vector addition...
lssvscl 18955 Closure of scalar product ...
lssvnegcl 18956 Closure of negative vector...
lsssubg 18957 All subspaces are subgroup...
lsssssubg 18958 All subspaces are subgroup...
islss3 18959 A linear subspace of a mod...
lsslmod 18960 A submodule is a module. ...
lsslss 18961 The subspaces of a subspac...
islss4 18962 A linear subspace is a sub...
lss1d 18963 One-dimensional subspace (...
lssintcl 18964 The intersection of a none...
lssincl 18965 The intersection of two su...
lssmre 18966 The subspaces of a module ...
lssacs 18967 Submodules are an algebrai...
prdsvscacl 18968 Pointwise scalar multiplic...
prdslmodd 18969 The product of a family of...
pwslmod 18970 The product of a family of...
lspfval 18973 The span function for a le...
lspf 18974 The span operator on a lef...
lspval 18975 The span of a set of vecto...
lspcl 18976 The span of a set of vecto...
lspsncl 18977 The span of a singleton is...
lspprcl 18978 The span of a pair is a su...
lsptpcl 18979 The span of an unordered t...
lspsnsubg 18980 The span of a singleton is...
00lsp 18981 ~ fvco4i lemma for linear ...
lspid 18982 The span of a subspace is ...
lspssv 18983 A span is a set of vectors...
lspss 18984 Span preserves subset orde...
lspssid 18985 A set of vectors is a subs...
lspidm 18986 The span of a set of vecto...
lspun 18987 The span of union is the s...
lspssp 18988 If a set of vectors is a s...
mrclsp 18989 Moore closure generalizes ...
lspsnss 18990 The span of the singleton ...
lspsnel3 18991 A member of the span of th...
lspprss 18992 The span of a pair of vect...
lspsnid 18993 A vector belongs to the sp...
lspsnel6 18994 Relationship between a vec...
lspsnel5 18995 Relationship between a vec...
lspsnel5a 18996 Relationship between a vec...
lspprid1 18997 A member of a pair of vect...
lspprid2 18998 A member of a pair of vect...
lspprvacl 18999 The sum of two vectors bel...
lssats2 19000 A way to express atomistic...
lspsneli 19001 A scalar product with a ve...
lspsn 19002 Span of the singleton of a...
lspsnel 19003 Member of span of the sing...
lspsnvsi 19004 Span of a scalar product o...
lspsnss2 19005 Comparable spans of single...
lspsnneg 19006 Negation does not change t...
lspsnsub 19007 Swapping subtraction order...
lspsn0 19008 Span of the singleton of t...
lsp0 19009 Span of the empty set. (C...
lspuni0 19010 Union of the span of the e...
lspun0 19011 The span of a union with t...
lspsneq0 19012 Span of the singleton is t...
lspsneq0b 19013 Equal singleton spans impl...
lmodindp1 19014 Two independent (non-colin...
lsslsp 19015 Spans in submodules corres...
lss0v 19016 The zero vector in a submo...
lsspropd 19017 If two structures have the...
lsppropd 19018 If two structures have the...
reldmlmhm 19025 Lemma for module homomorph...
lmimfn 19026 Lemma for module isomorphi...
islmhm 19027 Property of being a homomo...
islmhm3 19028 Property of a module homom...
lmhmlem 19029 Non-quantified consequence...
lmhmsca 19030 A homomorphism of left mod...
lmghm 19031 A homomorphism of left mod...
lmhmlmod2 19032 A homomorphism of left mod...
lmhmlmod1 19033 A homomorphism of left mod...
lmhmf 19034 A homomorphism of left mod...
lmhmlin 19035 A homomorphism of left mod...
lmodvsinv 19036 Multiplication of a vector...
lmodvsinv2 19037 Multiplying a negated vect...
islmhm2 19038 A one-equation proof of li...
islmhmd 19039 Deduction for a module hom...
0lmhm 19040 The constant zero linear f...
idlmhm 19041 The identity function on a...
invlmhm 19042 The negative function on a...
lmhmco 19043 The composition of two mod...
lmhmplusg 19044 The pointwise sum of two l...
lmhmvsca 19045 The pointwise scalar produ...
lmhmf1o 19046 A bijective module homomor...
lmhmima 19047 The image of a subspace un...
lmhmpreima 19048 The inverse image of a sub...
lmhmlsp 19049 Homomorphisms preserve spa...
lmhmrnlss 19050 The range of a homomorphis...
lmhmkerlss 19051 The kernel of a homomorphi...
reslmhm 19052 Restriction of a homomorph...
reslmhm2 19053 Expansion of the codomain ...
reslmhm2b 19054 Expansion of the codomain ...
lmhmeql 19055 The equalizer of two modul...
lspextmo 19056 A linear function is compl...
pwsdiaglmhm 19057 Diagonal homomorphism into...
pwssplit0 19058 Splitting for structure po...
pwssplit1 19059 Splitting for structure po...
pwssplit2 19060 Splitting for structure po...
pwssplit3 19061 Splitting for structure po...
islmim 19062 An isomorphism of left mod...
lmimf1o 19063 An isomorphism of left mod...
lmimlmhm 19064 An isomorphism of modules ...
lmimgim 19065 An isomorphism of modules ...
islmim2 19066 An isomorphism of left mod...
lmimcnv 19067 The converse of a bijectiv...
brlmic 19068 The relation "is isomorphi...
brlmici 19069 Prove isomorphic by an exp...
lmiclcl 19070 Isomorphism implies the le...
lmicrcl 19071 Isomorphism implies the ri...
lmicsym 19072 Module isomorphism is symm...
lmhmpropd 19073 Module homomorphism depend...
islbs 19076 The predicate " ` B ` is a...
lbsss 19077 A basis is a set of vector...
lbsel 19078 An element of a basis is a...
lbssp 19079 The span of a basis is the...
lbsind 19080 A basis is linearly indepe...
lbsind2 19081 A basis is linearly indepe...
lbspss 19082 No proper subset of a basi...
lsmcl 19083 The sum of two subspaces i...
lsmspsn 19084 Member of subspace sum of ...
lsmelval2 19085 Subspace sum membership in...
lsmsp 19086 Subspace sum in terms of s...
lsmsp2 19087 Subspace sum of spans of s...
lsmssspx 19088 Subspace sum (in its exten...
lsmpr 19089 The span of a pair of vect...
lsppreli 19090 A vector expressed as a su...
lsmelpr 19091 Two ways to say that a vec...
lsppr0 19092 The span of a vector paire...
lsppr 19093 Span of a pair of vectors....
lspprel 19094 Member of the span of a pa...
lspprabs 19095 Absorption of vector sum i...
lspvadd 19096 The span of a vector sum i...
lspsntri 19097 Triangle-type inequality f...
lspsntrim 19098 Triangle-type inequality f...
lbspropd 19099 If two structures have the...
pj1lmhm 19100 The left projection functi...
pj1lmhm2 19101 The left projection functi...
islvec 19104 The predicate "is a left v...
lvecdrng 19105 The set of scalars of a le...
lveclmod 19106 A left vector space is a l...
lsslvec 19107 A vector subspace is a vec...
lvecvs0or 19108 If a scalar product is zer...
lvecvsn0 19109 A scalar product is nonzer...
lssvs0or 19110 If a scalar product belong...
lvecvscan 19111 Cancellation law for scala...
lvecvscan2 19112 Cancellation law for scala...
lvecinv 19113 Invert coefficient of scal...
lspsnvs 19114 A nonzero scalar product d...
lspsneleq 19115 Membership relation that i...
lspsncmp 19116 Comparable spans of nonzer...
lspsnne1 19117 Two ways to express that v...
lspsnne2 19118 Two ways to express that v...
lspsnnecom 19119 Swap two vectors with diff...
lspabs2 19120 Absorption law for span of...
lspabs3 19121 Absorption law for span of...
lspsneq 19122 Equal spans of singletons ...
lspsneu 19123 Nonzero vectors with equal...
lspsnel4 19124 A member of the span of th...
lspdisj 19125 The span of a vector not i...
lspdisjb 19126 A nonzero vector is not in...
lspdisj2 19127 Unequal spans are disjoint...
lspfixed 19128 Show membership in the spa...
lspexch 19129 Exchange property for span...
lspexchn1 19130 Exchange property for span...
lspexchn2 19131 Exchange property for span...
lspindpi 19132 Partial independence prope...
lspindp1 19133 Alternate way to say 3 vec...
lspindp2l 19134 Alternate way to say 3 vec...
lspindp2 19135 Alternate way to say 3 vec...
lspindp3 19136 Independence of 2 vectors ...
lspindp4 19137 (Partial) independence of ...
lvecindp 19138 Compute the ` X ` coeffici...
lvecindp2 19139 Sums of independent vector...
lspsnsubn0 19140 Unequal singleton spans im...
lsmcv 19141 Subspace sum has the cover...
lspsolvlem 19142 Lemma for ~ lspsolv . (Co...
lspsolv 19143 If ` X ` is in the span of...
lssacsex 19144 In a vector space, subspac...
lspsnat 19145 There is no subspace stric...
lspsncv0 19146 The span of a singleton co...
lsppratlem1 19147 Lemma for ~ lspprat . Let...
lsppratlem2 19148 Lemma for ~ lspprat . Sho...
lsppratlem3 19149 Lemma for ~ lspprat . In ...
lsppratlem4 19150 Lemma for ~ lspprat . In ...
lsppratlem5 19151 Lemma for ~ lspprat . Com...
lsppratlem6 19152 Lemma for ~ lspprat . Neg...
lspprat 19153 A proper subspace of the s...
islbs2 19154 An equivalent formulation ...
islbs3 19155 An equivalent formulation ...
lbsacsbs 19156 Being a basis in a vector ...
lvecdim 19157 The dimension theorem for ...
lbsextlem1 19158 Lemma for ~ lbsext . The ...
lbsextlem2 19159 Lemma for ~ lbsext . Sinc...
lbsextlem3 19160 Lemma for ~ lbsext . A ch...
lbsextlem4 19161 Lemma for ~ lbsext . ~ lbs...
lbsextg 19162 For any linearly independe...
lbsext 19163 For any linearly independe...
lbsexg 19164 Every vector space has a b...
lbsex 19165 Every vector space has a b...
lvecprop2d 19166 If two structures have the...
lvecpropd 19167 If two structures have the...
sraval 19176 Lemma for ~ srabase throug...
sralem 19177 Lemma for ~ srabase and si...
srabase 19178 Base set of a subring alge...
sraaddg 19179 Additive operation of a su...
sramulr 19180 Multiplicative operation o...
srasca 19181 The set of scalars of a su...
sravsca 19182 The scalar product operati...
sraip 19183 The inner product operatio...
sratset 19184 Topology component of a su...
sratopn 19185 Topology component of a su...
srads 19186 Distance function of a sub...
sralmod 19187 The subring algebra is a l...
sralmod0 19188 The subring module inherit...
issubrngd2 19189 Prove a subring by closure...
rlmfn 19190 ` ringLMod ` is a function...
rlmval 19191 Value of the ring module. ...
lidlval 19192 Value of the set of ring i...
rspval 19193 Value of the ring span fun...
rlmval2 19194 Value of the ring module e...
rlmbas 19195 Base set of the ring modul...
rlmplusg 19196 Vector addition in the rin...
rlm0 19197 Zero vector in the ring mo...
rlmsub 19198 Subtraction in the ring mo...
rlmmulr 19199 Ring multiplication in the...
rlmsca 19200 Scalars in the ring module...
rlmsca2 19201 Scalars in the ring module...
rlmvsca 19202 Scalar multiplication in t...
rlmtopn 19203 Topology component of the ...
rlmds 19204 Metric component of the ri...
rlmlmod 19205 The ring module is a modul...
rlmlvec 19206 The ring module over a div...
rlmvneg 19207 Vector negation in the rin...
rlmscaf 19208 Functionalized scalar mult...
ixpsnbasval 19209 The value of an infinite C...
lidlss 19210 An ideal is a subset of th...
islidl 19211 Predicate of being a (left...
lidl0cl 19212 An ideal contains 0. (Con...
lidlacl 19213 An ideal is closed under a...
lidlnegcl 19214 An ideal contains negative...
lidlsubg 19215 An ideal is a subgroup of ...
lidlsubcl 19216 An ideal is closed under s...
lidlmcl 19217 An ideal is closed under l...
lidl1el 19218 An ideal contains 1 iff it...
lidl0 19219 Every ring contains a zero...
lidl1 19220 Every ring contains a unit...
lidlacs 19221 The ideal system is an alg...
rspcl 19222 The span of a set of ring ...
rspssid 19223 The span of a set of ring ...
rsp1 19224 The span of the identity e...
rsp0 19225 The span of the zero eleme...
rspssp 19226 The ideal span of a set of...
mrcrsp 19227 Moore closure generalizes ...
lidlnz 19228 A nonzero ideal contains a...
drngnidl 19229 A division ring has only t...
lidlrsppropd 19230 The left ideals and ring s...
2idlval 19233 Definition of a two-sided ...
2idlcpbl 19234 The coset equivalence rela...
qus1 19235 The multiplicative identit...
qusring 19236 If ` S ` is a two-sided id...
qusrhm 19237 If ` S ` is a two-sided id...
crngridl 19238 In a commutative ring, the...
crng2idl 19239 In a commutative ring, a t...
quscrng 19240 The quotient of a commutat...
lpival 19245 Value of the set of princi...
islpidl 19246 Property of being a princi...
lpi0 19247 The zero ideal is always p...
lpi1 19248 The unit ideal is always p...
islpir 19249 Principal ideal rings are ...
lpiss 19250 Principal ideals are a sub...
islpir2 19251 Principal ideal rings are ...
lpirring 19252 Principal ideal rings are ...
drnglpir 19253 Division rings are princip...
rspsn 19254 Membership in principal id...
lidldvgen 19255 An element generates an id...
lpigen 19256 An ideal is principal iff ...
isnzr 19259 Property of a nonzero ring...
nzrnz 19260 One and zero are different...
nzrring 19261 A nonzero ring is a ring. ...
drngnzr 19262 All division rings are non...
isnzr2 19263 Equivalent characterizatio...
isnzr2hash 19264 Equivalent characterizatio...
opprnzr 19265 The opposite of a nonzero ...
ringelnzr 19266 A ring is nonzero if it ha...
nzrunit 19267 A unit is nonzero in any n...
subrgnzr 19268 A subring of a nonzero rin...
0ringnnzr 19269 A ring is a zero ring iff ...
0ring 19270 If a ring has only one ele...
0ring01eq 19271 In a ring with only one el...
01eq0ring 19272 If the zero and the identi...
0ring01eqbi 19273 In a unital ring the zero ...
rng1nnzr 19274 The (smallest) structure r...
ring1zr 19275 The only (unital) ring wit...
rngen1zr 19276 The only (unital) ring wit...
ringen1zr 19277 The only unital ring with ...
rng1nfld 19278 The zero ring is not a fie...
rrgval 19287 Value of the set or left-r...
isrrg 19288 Membership in the set of l...
rrgeq0i 19289 Property of a left-regular...
rrgeq0 19290 Left-multiplication by a l...
rrgsupp 19291 Left multiplication by a l...
rrgss 19292 Left-regular elements are ...
unitrrg 19293 Units are regular elements...
isdomn 19294 Expand definition of a dom...
domnnzr 19295 A domain is a nonzero ring...
domnring 19296 A domain is a ring. (Cont...
domneq0 19297 In a domain, a product is ...
domnmuln0 19298 In a domain, a product of ...
isdomn2 19299 A ring is a domain iff all...
domnrrg 19300 In a domain, any nonzero e...
opprdomn 19301 The opposite of a domain i...
abvn0b 19302 Another characterization o...
drngdomn 19303 A division ring is a domai...
isidom 19304 An integral domain is a co...
fldidom 19305 A field is an integral dom...
fidomndrnglem 19306 Lemma for ~ fidomndrng . ...
fidomndrng 19307 A finite domain is a divis...
fiidomfld 19308 A finite integral domain i...
isassa 19315 The properties of an assoc...
assalem 19316 The properties of an assoc...
assaass 19317 Left-associative property ...
assaassr 19318 Right-associative property...
assalmod 19319 An associative algebra is ...
assaring 19320 An associative algebra is ...
assasca 19321 An associative algebra's s...
assa2ass 19322 Left- and right-associativ...
isassad 19323 Sufficient condition for b...
issubassa 19324 The subalgebras of an asso...
sraassa 19325 The subring algebra over a...
rlmassa 19326 The ring module over a com...
assapropd 19327 If two structures have the...
aspval 19328 Value of the algebraic clo...
asplss 19329 The algebraic span of a se...
aspid 19330 The algebraic span of a su...
aspsubrg 19331 The algebraic span of a se...
aspss 19332 Span preserves subset orde...
aspssid 19333 A set of vectors is a subs...
asclfval 19334 Function value of the alge...
asclval 19335 Value of a mapped algebra ...
asclfn 19336 Unconditional functionalit...
asclf 19337 The algebra scalars functi...
asclghm 19338 The algebra scalars functi...
asclmul1 19339 Left multiplication by a l...
asclmul2 19340 Right multiplication by a ...
asclinvg 19341 The group inverse (negatio...
asclrhm 19342 The scalar injection is a ...
rnascl 19343 The set of injected scalar...
ressascl 19344 The injection of scalars i...
issubassa2 19345 A subring of a unital alge...
asclpropd 19346 If two structures have the...
aspval2 19347 The algebraic closure is t...
assamulgscmlem1 19348 Lemma 1 for ~ assamulgscm ...
assamulgscmlem2 19349 Lemma for ~ assamulgscm (i...
assamulgscm 19350 Exponentiation of a scalar...
reldmpsr 19361 The multivariate power ser...
psrval 19362 Value of the multivariate ...
psrvalstr 19363 The multivariate power ser...
psrbag 19364 Elementhood in the set of ...
psrbagf 19365 A finite bag is a function...
snifpsrbag 19366 A bag containing one eleme...
fczpsrbag 19367 The constant function equa...
psrbaglesupp 19368 The support of a dominated...
psrbaglecl 19369 The set of finite bags is ...
psrbagaddcl 19370 The sum of two finite bags...
psrbagcon 19371 The analogue of the statem...
psrbaglefi 19372 There are finitely many ba...
psrbagconcl 19373 The complement of a bag is...
psrbagconf1o 19374 Bag complementation is a b...
gsumbagdiaglem 19375 Lemma for ~ gsumbagdiag . ...
gsumbagdiag 19376 Two-dimensional commutatio...
psrass1lem 19377 A group sum commutation us...
psrbas 19378 The base set of the multiv...
psrelbas 19379 An element of the set of p...
psrelbasfun 19380 An element of the set of p...
psrplusg 19381 The addition operation of ...
psradd 19382 The addition operation of ...
psraddcl 19383 Closure of the power serie...
psrmulr 19384 The multiplication operati...
psrmulfval 19385 The multiplication operati...
psrmulval 19386 The multiplication operati...
psrmulcllem 19387 Closure of the power serie...
psrmulcl 19388 Closure of the power serie...
psrsca 19389 The scalar field of the mu...
psrvscafval 19390 The scalar multiplication ...
psrvsca 19391 The scalar multiplication ...
psrvscaval 19392 The scalar multiplication ...
psrvscacl 19393 Closure of the power serie...
psr0cl 19394 The zero element of the ri...
psr0lid 19395 The zero element of the ri...
psrnegcl 19396 The negative function in t...
psrlinv 19397 The negative function in t...
psrgrp 19398 The ring of power series i...
psr0 19399 The zero element of the ri...
psrneg 19400 The negative function of t...
psrlmod 19401 The ring of power series i...
psr1cl 19402 The identity element of th...
psrlidm 19403 The identity element of th...
psrridm 19404 The identity element of th...
psrass1 19405 Associative identity for t...
psrdi 19406 Distributive law for the r...
psrdir 19407 Distributive law for the r...
psrass23l 19408 Associative identity for t...
psrcom 19409 Commutative law for the ri...
psrass23 19410 Associative identities for...
psrring 19411 The ring of power series i...
psr1 19412 The identity element of th...
psrcrng 19413 The ring of power series i...
psrassa 19414 The ring of power series i...
resspsrbas 19415 A restricted power series ...
resspsradd 19416 A restricted power series ...
resspsrmul 19417 A restricted power series ...
resspsrvsca 19418 A restricted power series ...
subrgpsr 19419 A subring of the base ring...
mvrfval 19420 Value of the generating el...
mvrval 19421 Value of the generating el...
mvrval2 19422 Value of the generating el...
mvrid 19423 The ` X i ` -th coefficien...
mvrf 19424 The power series variable ...
mvrf1 19425 The power series variable ...
mvrcl2 19426 A power series variable is...
reldmmpl 19427 The multivariate polynomia...
mplval 19428 Value of the set of multiv...
mplbas 19429 Base set of the set of mul...
mplelbas 19430 Property of being a polyno...
mplval2 19431 Self-referential expressio...
mplbasss 19432 The set of polynomials is ...
mplelf 19433 A polynomial is defined as...
mplsubglem 19434 If ` A ` is an ideal of se...
mpllsslem 19435 If ` A ` is an ideal of su...
mplsubglem2 19436 Lemma for ~ mplsubg and ~ ...
mplsubg 19437 The set of polynomials is ...
mpllss 19438 The set of polynomials is ...
mplsubrglem 19439 Lemma for ~ mplsubrg . (C...
mplsubrg 19440 The set of polynomials is ...
mpl0 19441 The zero polynomial. (Con...
mpladd 19442 The addition operation on ...
mplmul 19443 The multiplication operati...
mpl1 19444 The identity element of th...
mplsca 19445 The scalar field of a mult...
mplvsca2 19446 The scalar multiplication ...
mplvsca 19447 The scalar multiplication ...
mplvscaval 19448 The scalar multiplication ...
mvrcl 19449 A power series variable is...
mplgrp 19450 The polynomial ring is a g...
mpllmod 19451 The polynomial ring is a l...
mplring 19452 The polynomial ring is a r...
mplcrng 19453 The polynomial ring is a c...
mplassa 19454 The polynomial ring is an ...
ressmplbas2 19455 The base set of a restrict...
ressmplbas 19456 A restricted polynomial al...
ressmpladd 19457 A restricted polynomial al...
ressmplmul 19458 A restricted polynomial al...
ressmplvsca 19459 A restricted power series ...
subrgmpl 19460 A subring of the base ring...
subrgmvr 19461 The variables in a subring...
subrgmvrf 19462 The variables in a polynom...
mplmon 19463 A monomial is a polynomial...
mplmonmul 19464 The product of two monomia...
mplcoe1 19465 Decompose a polynomial int...
mplcoe3 19466 Decompose a monomial in on...
mplcoe5lem 19467 Lemma for ~ mplcoe4 . (Co...
mplcoe5 19468 Decompose a monomial into ...
mplcoe2 19469 Decompose a monomial into ...
mplbas2 19470 An alternative expression ...
ltbval 19471 Value of the well-order on...
ltbwe 19472 The finite bag order is a ...
reldmopsr 19473 Lemma for ordered power se...
opsrval 19474 The value of the "ordered ...
opsrle 19475 An alternative expression ...
opsrval2 19476 Self-referential expressio...
opsrbaslem 19477 Get a component of the ord...
opsrbaslemOLD 19478 Obsolete version of ~ opsr...
opsrbas 19479 The base set of the ordere...
opsrplusg 19480 The addition operation of ...
opsrmulr 19481 The multiplication operati...
opsrvsca 19482 The scalar product operati...
opsrsca 19483 The scalar ring of the ord...
opsrtoslem1 19484 Lemma for ~ opsrtos . (Co...
opsrtoslem2 19485 Lemma for ~ opsrtos . (Co...
opsrtos 19486 The ordered power series s...
opsrso 19487 The ordered power series s...
opsrcrng 19488 The ring of ordered power ...
opsrassa 19489 The ring of ordered power ...
mplrcl 19490 Reverse closure for the po...
mplelsfi 19491 A polynomial treated as a ...
mvrf2 19492 The power series/polynomia...
mplmon2 19493 Express a scaled monomial....
psrbag0 19494 The empty bag is a bag. (...
psrbagsn 19495 A singleton bag is a bag. ...
mplascl 19496 Value of the scalar inject...
mplasclf 19497 The scalar injection is a ...
subrgascl 19498 The scalar injection funct...
subrgasclcl 19499 The scalars in a polynomia...
mplmon2cl 19500 A scaled monomial is a pol...
mplmon2mul 19501 Product of scaled monomial...
mplind 19502 Prove a property of polyno...
mplcoe4 19503 Decompose a polynomial int...
evlslem4 19508 The support of a tensor pr...
psrbagfsupp 19509 Finite bags have finite no...
psrbagev1 19510 A bag of multipliers provi...
psrbagev2 19511 Closure of a sum using a b...
evlslem2 19512 A linear function on the p...
evlslem6 19513 Lemma for ~ evlseu . Fini...
evlslem3 19514 Lemma for ~ evlseu . Poly...
evlslem1 19515 Lemma for ~ evlseu , give ...
evlseu 19516 For a given interpretation...
reldmevls 19517 Well-behaved binary operat...
mpfrcl 19518 Reverse closure for the se...
evlsval 19519 Value of the polynomial ev...
evlsval2 19520 Characterizing properties ...
evlsrhm 19521 Polynomial evaluation is a...
evlssca 19522 Polynomial evaluation maps...
evlsvar 19523 Polynomial evaluation maps...
evlval 19524 Value of the simple/same r...
evlrhm 19525 The simple evaluation map ...
evlsscasrng 19526 The evaluation of a scalar...
evlsca 19527 Simple polynomial evaluati...
evlsvarsrng 19528 The evaluation of the vari...
evlvar 19529 Simple polynomial evaluati...
mpfconst 19530 Constants are multivariate...
mpfproj 19531 Projections are multivaria...
mpfsubrg 19532 Polynomial functions are a...
mpff 19533 Polynomial functions are f...
mpfaddcl 19534 The sum of multivariate po...
mpfmulcl 19535 The product of multivariat...
mpfind 19536 Prove a property of polyno...
psr1baslem 19555 The set of finite bags on ...
psr1val 19556 Value of the ring of univa...
psr1crng 19557 The ring of univariate pow...
psr1assa 19558 The ring of univariate pow...
psr1tos 19559 The ordered power series s...
psr1bas2 19560 The base set of the ring o...
psr1bas 19561 The base set of the ring o...
vr1val 19562 The value of the generator...
vr1cl2 19563 The variable ` X ` is a me...
ply1val 19564 The value of the set of un...
ply1bas 19565 The value of the base set ...
ply1lss 19566 Univariate polynomials for...
ply1subrg 19567 Univariate polynomials for...
ply1crng 19568 The ring of univariate pol...
ply1assa 19569 The ring of univariate pol...
psr1bascl 19570 A univariate power series ...
psr1basf 19571 Univariate power series ba...
ply1basf 19572 Univariate polynomial base...
ply1bascl 19573 A univariate polynomial is...
ply1bascl2 19574 A univariate polynomial is...
coe1fval 19575 Value of the univariate po...
coe1fv 19576 Value of an evaluated coef...
fvcoe1 19577 Value of a multivariate co...
coe1fval3 19578 Univariate power series co...
coe1f2 19579 Functionality of univariat...
coe1fval2 19580 Univariate polynomial coef...
coe1f 19581 Functionality of univariat...
coe1fvalcl 19582 A coefficient of a univari...
coe1sfi 19583 Finite support of univaria...
coe1fsupp 19584 The coefficient vector of ...
mptcoe1fsupp 19585 A mapping involving coeffi...
coe1ae0 19586 The coefficient vector of ...
vr1cl 19587 The generator of a univari...
opsr0 19588 Zero in the ordered power ...
opsr1 19589 One in the ordered power s...
mplplusg 19590 Value of addition in a pol...
mplmulr 19591 Value of multiplication in...
psr1plusg 19592 Value of addition in a uni...
psr1vsca 19593 Value of scalar multiplica...
psr1mulr 19594 Value of multiplication in...
ply1plusg 19595 Value of addition in a uni...
ply1vsca 19596 Value of scalar multiplica...
ply1mulr 19597 Value of multiplication in...
ressply1bas2 19598 The base set of a restrict...
ressply1bas 19599 A restricted polynomial al...
ressply1add 19600 A restricted polynomial al...
ressply1mul 19601 A restricted polynomial al...
ressply1vsca 19602 A restricted power series ...
subrgply1 19603 A subring of the base ring...
gsumply1subr 19604 Evaluate a group sum in a ...
psrbaspropd 19605 Property deduction for pow...
psrplusgpropd 19606 Property deduction for pow...
mplbaspropd 19607 Property deduction for pol...
psropprmul 19608 Reversing multiplication i...
ply1opprmul 19609 Reversing multiplication i...
00ply1bas 19610 Lemma for ~ ply1basfvi and...
ply1basfvi 19611 Protection compatibility o...
ply1plusgfvi 19612 Protection compatibility o...
ply1baspropd 19613 Property deduction for uni...
ply1plusgpropd 19614 Property deduction for uni...
opsrring 19615 Ordered power series form ...
opsrlmod 19616 Ordered power series form ...
psr1ring 19617 Univariate power series fo...
ply1ring 19618 Univariate polynomials for...
psr1lmod 19619 Univariate power series fo...
psr1sca 19620 Scalars of a univariate po...
psr1sca2 19621 Scalars of a univariate po...
ply1lmod 19622 Univariate polynomials for...
ply1sca 19623 Scalars of a univariate po...
ply1sca2 19624 Scalars of a univariate po...
ply1mpl0 19625 The univariate polynomial ...
ply10s0 19626 Zero times a univariate po...
ply1mpl1 19627 The univariate polynomial ...
ply1ascl 19628 The univariate polynomial ...
subrg1ascl 19629 The scalar injection funct...
subrg1asclcl 19630 The scalars in a polynomia...
subrgvr1 19631 The variables in a subring...
subrgvr1cl 19632 The variables in a polynom...
coe1z 19633 The coefficient vector of ...
coe1add 19634 The coefficient vector of ...
coe1addfv 19635 A particular coefficient o...
coe1subfv 19636 A particular coefficient o...
coe1mul2lem1 19637 An equivalence for ~ coe1m...
coe1mul2lem2 19638 An equivalence for ~ coe1m...
coe1mul2 19639 The coefficient vector of ...
coe1mul 19640 The coefficient vector of ...
ply1moncl 19641 Closure of the expression ...
ply1tmcl 19642 Closure of the expression ...
coe1tm 19643 Coefficient vector of a po...
coe1tmfv1 19644 Nonzero coefficient of a p...
coe1tmfv2 19645 Zero coefficient of a poly...
coe1tmmul2 19646 Coefficient vector of a po...
coe1tmmul 19647 Coefficient vector of a po...
coe1tmmul2fv 19648 Function value of a right-...
coe1pwmul 19649 Coefficient vector of a po...
coe1pwmulfv 19650 Function value of a right-...
ply1scltm 19651 A scalar is a term with ze...
coe1sclmul 19652 Coefficient vector of a po...
coe1sclmulfv 19653 A single coefficient of a ...
coe1sclmul2 19654 Coefficient vector of a po...
ply1sclf 19655 A scalar polynomial is a p...
ply1sclcl 19656 The value of the algebra s...
coe1scl 19657 Coefficient vector of a sc...
ply1sclid 19658 Recover the base scalar fr...
ply1sclf1 19659 The polynomial scalar func...
ply1scl0 19660 The zero scalar is zero. ...
ply1scln0 19661 Nonzero scalars create non...
ply1scl1 19662 The one scalar is the unit...
ply1idvr1 19663 The identity of a polynomi...
cply1mul 19664 The product of two constan...
ply1coefsupp 19665 The decomposition of a uni...
ply1coe 19666 Decompose a univariate pol...
eqcoe1ply1eq 19667 Two polynomials over the s...
ply1coe1eq 19668 Two polynomials over the s...
cply1coe0 19669 All but the first coeffici...
cply1coe0bi 19670 A polynomial is constant (...
coe1fzgsumdlem 19671 Lemma for ~ coe1fzgsumd (i...
coe1fzgsumd 19672 Value of an evaluated coef...
gsumsmonply1 19673 A finite group sum of scal...
gsummoncoe1 19674 A coefficient of the polyn...
gsumply1eq 19675 Two univariate polynomials...
lply1binom 19676 The binomial theorem for l...
lply1binomsc 19677 The binomial theorem for l...
reldmevls1 19682 Well-behaved binary operat...
ply1frcl 19683 Reverse closure for the se...
evls1fval 19684 Value of the univariate po...
evls1val 19685 Value of the univariate po...
evls1rhmlem 19686 Lemma for ~ evl1rhm and ~ ...
evls1rhm 19687 Polynomial evaluation is a...
evls1sca 19688 Univariate polynomial eval...
evls1gsumadd 19689 Univariate polynomial eval...
evls1gsummul 19690 Univariate polynomial eval...
evls1varpw 19691 Univariate polynomial eval...
evl1fval 19692 Value of the simple/same r...
evl1val 19693 Value of the simple/same r...
evl1fval1lem 19694 Lemma for ~ evl1fval1 . (...
evl1fval1 19695 Value of the simple/same r...
evl1rhm 19696 Polynomial evaluation is a...
fveval1fvcl 19697 The function value of the ...
evl1sca 19698 Polynomial evaluation maps...
evl1scad 19699 Polynomial evaluation buil...
evl1var 19700 Polynomial evaluation maps...
evl1vard 19701 Polynomial evaluation buil...
evls1var 19702 Univariate polynomial eval...
evls1scasrng 19703 The evaluation of a scalar...
evls1varsrng 19704 The evaluation of the vari...
evl1addd 19705 Polynomial evaluation buil...
evl1subd 19706 Polynomial evaluation buil...
evl1muld 19707 Polynomial evaluation buil...
evl1vsd 19708 Polynomial evaluation buil...
evl1expd 19709 Polynomial evaluation buil...
pf1const 19710 Constants are polynomial f...
pf1id 19711 The identity is a polynomi...
pf1subrg 19712 Polynomial functions are a...
pf1rcl 19713 Reverse closure for the se...
pf1f 19714 Polynomial functions are f...
mpfpf1 19715 Convert a multivariate pol...
pf1mpf 19716 Convert a univariate polyn...
pf1addcl 19717 The sum of multivariate po...
pf1mulcl 19718 The product of multivariat...
pf1ind 19719 Prove a property of polyno...
evl1gsumdlem 19720 Lemma for ~ evl1gsumd (ind...
evl1gsumd 19721 Polynomial evaluation buil...
evl1gsumadd 19722 Univariate polynomial eval...
evl1gsumaddval 19723 Value of a univariate poly...
evl1gsummul 19724 Univariate polynomial eval...
evl1varpw 19725 Univariate polynomial eval...
evl1varpwval 19726 Value of a univariate poly...
evl1scvarpw 19727 Univariate polynomial eval...
evl1scvarpwval 19728 Value of a univariate poly...
evl1gsummon 19729 Value of a univariate poly...
cnfldstr 19748 The field of complex numbe...
cnfldex 19749 The field of complex numbe...
cnfldbas 19750 The base set of the field ...
cnfldadd 19751 The addition operation of ...
cnfldmul 19752 The multiplication operati...
cnfldcj 19753 The conjugation operation ...
cnfldtset 19754 The topology component of ...
cnfldle 19755 The ordering of the field ...
cnfldds 19756 The metric of the field of...
cnfldunif 19757 The uniform structure comp...
cnfldfun 19758 The field of complex numbe...
cnfldfunALT 19759 Alternate proof of ~ cnfld...
xrsstr 19760 The extended real structur...
xrsex 19761 The extended real structur...
xrsbas 19762 The base set of the extend...
xrsadd 19763 The addition operation of ...
xrsmul 19764 The multiplication operati...
xrstset 19765 The topology component of ...
xrsle 19766 The ordering of the extend...
cncrng 19767 The complex numbers form a...
cnring 19768 The complex numbers form a...
xrsmcmn 19769 The multiplicative group o...
cnfld0 19770 The zero element of the fi...
cnfld1 19771 The unit element of the fi...
cnfldneg 19772 The additive inverse in th...
cnfldplusf 19773 The functionalized additio...
cnfldsub 19774 The subtraction operator i...
cndrng 19775 The complex numbers form a...
cnflddiv 19776 The division operation in ...
cnfldinv 19777 The multiplicative inverse...
cnfldmulg 19778 The group multiple functio...
cnfldexp 19779 The exponentiation operato...
cnsrng 19780 The complex numbers form a...
xrsmgm 19781 The (additive group of the...
xrsnsgrp 19782 The (additive group of the...
xrsmgmdifsgrp 19783 The (additive group of the...
xrs1mnd 19784 The extended real numbers,...
xrs10 19785 The zero of the extended r...
xrs1cmn 19786 The extended real numbers ...
xrge0subm 19787 The nonnegative extended r...
xrge0cmn 19788 The nonnegative extended r...
xrsds 19789 The metric of the extended...
xrsdsval 19790 The metric of the extended...
xrsdsreval 19791 The metric of the extended...
xrsdsreclblem 19792 Lemma for ~ xrsdsreclb . ...
xrsdsreclb 19793 The metric of the extended...
cnsubmlem 19794 Lemma for ~ nn0subm and fr...
cnsubglem 19795 Lemma for ~ resubdrg and f...
cnsubrglem 19796 Lemma for ~ resubdrg and f...
cnsubdrglem 19797 Lemma for ~ resubdrg and f...
qsubdrg 19798 The rational numbers form ...
zsubrg 19799 The integers form a subrin...
gzsubrg 19800 The gaussian integers form...
nn0subm 19801 The nonnegative integers f...
rege0subm 19802 The nonnegative reals form...
absabv 19803 The regular absolute value...
zsssubrg 19804 The integers are a subset ...
qsssubdrg 19805 The rational numbers are a...
cnsubrg 19806 There are no subrings of t...
cnmgpabl 19807 The unit group of the comp...
cnmgpid 19808 The group identity element...
cnmsubglem 19809 Lemma for ~ rpmsubg and fr...
rpmsubg 19810 The positive reals form a ...
gzrngunitlem 19811 Lemma for ~ gzrngunit . (...
gzrngunit 19812 The units on ` ZZ [ _i ] `...
gsumfsum 19813 Relate a group sum on ` CC...
regsumfsum 19814 Relate a group sum on ` ( ...
expmhm 19815 Exponentiation is a monoid...
nn0srg 19816 The nonnegative integers f...
rge0srg 19817 The nonnegative real numbe...
zringcrng 19820 The ring of integers is a ...
zringring 19821 The ring of integers is a ...
zringabl 19822 The ring of integers is an...
zringgrp 19823 The ring of integers is an...
zringbas 19824 The integers are the base ...
zringplusg 19825 The addition operation of ...
zringmulg 19826 The multiplication (group ...
zringmulr 19827 The multiplication operati...
zring0 19828 The neutral element of the...
zring1 19829 The multiplicative neutral...
zringnzr 19830 The ring of integers is a ...
dvdsrzring 19831 Ring divisibility in the r...
zringlpirlem1 19832 Lemma for ~ zringlpir . A...
zringlpirlem2 19833 Lemma for ~ zringlpir . A...
zringlpirlem3 19834 Lemma for ~ zringlpir . A...
zringinvg 19835 The additive inverse of an...
zringunit 19836 The units of ` ZZ ` are th...
zringlpir 19837 The integers are a princip...
zringndrg 19838 The integers are not a div...
zringcyg 19839 The integers are a cyclic ...
zringmpg 19840 The multiplication group o...
prmirredlem 19841 A positive integer is irre...
dfprm2 19842 The positive irreducible e...
prmirred 19843 The irreducible elements o...
expghm 19844 Exponentiation is a group ...
mulgghm2 19845 The powers of a group elem...
mulgrhm 19846 The powers of the element ...
mulgrhm2 19847 The powers of the element ...
zrhval 19856 Define the unique homomorp...
zrhval2 19857 Alternate value of the ` Z...
zrhmulg 19858 Value of the ` ZRHom ` hom...
zrhrhmb 19859 The ` ZRHom ` homomorphism...
zrhrhm 19860 The ` ZRHom ` homomorphism...
zrh1 19861 Interpretation of 1 in a r...
zrh0 19862 Interpretation of 0 in a r...
zrhpropd 19863 The ` ZZ ` ring homomorphi...
zlmval 19864 Augment an abelian group w...
zlmlem 19865 Lemma for ~ zlmbas and ~ z...
zlmbas 19866 Base set of a ` ZZ ` -modu...
zlmplusg 19867 Group operation of a ` ZZ ...
zlmmulr 19868 Ring operation of a ` ZZ `...
zlmsca 19869 Scalar ring of a ` ZZ ` -m...
zlmvsca 19870 Scalar multiplication oper...
zlmlmod 19871 The ` ZZ ` -module operati...
zlmassa 19872 The ` ZZ ` -module operati...
chrval 19873 Definition substitution of...
chrcl 19874 Closure of the characteris...
chrid 19875 The canonical ` ZZ ` ring ...
chrdvds 19876 The ` ZZ ` ring homomorphi...
chrcong 19877 If two integers are congru...
chrnzr 19878 Nonzero rings are precisel...
chrrhm 19879 The characteristic restric...
domnchr 19880 The characteristic of a do...
znlidl 19881 The set ` n ZZ ` is an ide...
zncrng2 19882 The value of the ` Z/nZ ` ...
znval 19883 The value of the ` Z/nZ ` ...
znle 19884 The value of the ` Z/nZ ` ...
znval2 19885 Self-referential expressio...
znbaslem 19886 Lemma for ~ znbas . (Cont...
znbaslemOLD 19887 Obsolete version of ~ znba...
znbas2 19888 The base set of ` Z/nZ ` i...
znadd 19889 The additive structure of ...
znmul 19890 The multiplicative structu...
znzrh 19891 The ` ZZ ` ring homomorphi...
znbas 19892 The base set of ` Z/nZ ` s...
zncrng 19893 ` Z/nZ ` is a commutative ...
znzrh2 19894 The ` ZZ ` ring homomorphi...
znzrhval 19895 The ` ZZ ` ring homomorphi...
znzrhfo 19896 The ` ZZ ` ring homomorphi...
zncyg 19897 The group ` ZZ / n ZZ ` is...
zndvds 19898 Express equality of equiva...
zndvds0 19899 Special case of ~ zndvds w...
znf1o 19900 The function ` F ` enumera...
zzngim 19901 The ` ZZ ` ring homomorphi...
znle2 19902 The ordering of the ` Z/nZ...
znleval 19903 The ordering of the ` Z/nZ...
znleval2 19904 The ordering of the ` Z/nZ...
zntoslem 19905 Lemma for ~ zntos . (Cont...
zntos 19906 The ` Z/nZ ` structure is ...
znhash 19907 The ` Z/nZ ` structure has...
znfi 19908 The ` Z/nZ ` structure is ...
znfld 19909 The ` Z/nZ ` structure is ...
znidomb 19910 The ` Z/nZ ` structure is ...
znchr 19911 Cyclic rings are defined b...
znunit 19912 The units of ` Z/nZ ` are ...
znunithash 19913 The size of the unit group...
znrrg 19914 The regular elements of ` ...
cygznlem1 19915 Lemma for ~ cygzn . (Cont...
cygznlem2a 19916 Lemma for ~ cygzn . (Cont...
cygznlem2 19917 Lemma for ~ cygzn . (Cont...
cygznlem3 19918 A cyclic group with ` n ` ...
cygzn 19919 A cyclic group with ` n ` ...
cygth 19920 The "fundamental theorem o...
cyggic 19921 Cyclic groups are isomorph...
frgpcyg 19922 A free group is cyclic iff...
cnmsgnsubg 19923 The signs form a multiplic...
cnmsgnbas 19924 The base set of the sign s...
cnmsgngrp 19925 The group of signs under m...
psgnghm 19926 The sign is a homomorphism...
psgnghm2 19927 The sign is a homomorphism...
psgninv 19928 The sign of a permutation ...
psgnco 19929 Multiplicativity of the pe...
zrhpsgnmhm 19930 Embedding of permutation s...
zrhpsgninv 19931 The embedded sign of a per...
evpmss 19932 Even permutations are perm...
psgnevpmb 19933 A class is an even permuta...
psgnodpm 19934 A permutation which is odd...
psgnevpm 19935 A permutation which is eve...
psgnodpmr 19936 If a permutation has sign ...
zrhpsgnevpm 19937 The sign of an even permut...
zrhpsgnodpm 19938 The sign of an odd permuta...
zrhcofipsgn 19939 Composition of a ` ZRHom `...
zrhpsgnelbas 19940 Embedding of permutation s...
zrhcopsgnelbas 19941 Embedding of permutation s...
evpmodpmf1o 19942 The function for performin...
pmtrodpm 19943 A transposition is an odd ...
psgnfix1 19944 A permutation of a finite ...
psgnfix2 19945 A permutation of a finite ...
psgndiflemB 19946 Lemma 1 for ~ psgndif . (...
psgndiflemA 19947 Lemma 2 for ~ psgndif . (...
psgndif 19948 Embedding of permutation s...
zrhcopsgndif 19949 Embedding of permutation s...
rebase 19952 The base of the field of r...
remulg 19953 The multiplication (group ...
resubdrg 19954 The real numbers form a di...
resubgval 19955 Subtraction in the field o...
replusg 19956 The addition operation of ...
remulr 19957 The multiplication operati...
re0g 19958 The neutral element of the...
re1r 19959 The multiplicative neutral...
rele2 19960 The ordering relation of t...
relt 19961 The ordering relation of t...
reds 19962 The distance of the field ...
redvr 19963 The division operation of ...
retos 19964 The real numbers are a tot...
refld 19965 The real numbers form a fi...
refldcj 19966 The conjugation operation ...
recrng 19967 The real numbers form a st...
regsumsupp 19968 The group sum over the rea...
isphl 19973 The predicate "is a genera...
phllvec 19974 A pre-Hilbert space is a l...
phllmod 19975 A pre-Hilbert space is a l...
phlsrng 19976 The scalar ring of a pre-H...
phllmhm 19977 The inner product of a pre...
ipcl 19978 Closure of the inner produ...
ipcj 19979 Conjugate of an inner prod...
iporthcom 19980 Orthogonality (meaning inn...
ip0l 19981 Inner product with a zero ...
ip0r 19982 Inner product with a zero ...
ipeq0 19983 The inner product of a vec...
ipdir 19984 Distributive law for inner...
ipdi 19985 Distributive law for inner...
ip2di 19986 Distributive law for inner...
ipsubdir 19987 Distributive law for inner...
ipsubdi 19988 Distributive law for inner...
ip2subdi 19989 Distributive law for inner...
ipass 19990 Associative law for inner ...
ipassr 19991 "Associative" law for seco...
ipassr2 19992 "Associative" law for inne...
ipffval 19993 The inner product operatio...
ipfval 19994 The inner product operatio...
ipfeq 19995 If the inner product opera...
ipffn 19996 The inner product operatio...
phlipf 19997 The inner product operatio...
ip2eq 19998 Two vectors are equal iff ...
isphld 19999 Properties that determine ...
phlpropd 20000 If two structures have the...
ssipeq 20001 The inner product on a sub...
phssipval 20002 The inner product on a sub...
phssip 20003 The inner product (as a fu...
ocvfval 20010 The orthocomplement operat...
ocvval 20011 Value of the orthocompleme...
elocv 20012 Elementhood in the orthoco...
ocvi 20013 Property of a member of th...
ocvss 20014 The orthocomplement of a s...
ocvocv 20015 A set is contained in its ...
ocvlss 20016 The orthocomplement of a s...
ocv2ss 20017 Orthocomplements reverse s...
ocvin 20018 An orthocomplement has tri...
ocvsscon 20019 Two ways to say that ` S `...
ocvlsp 20020 The orthocomplement of a l...
ocv0 20021 The orthocomplement of the...
ocvz 20022 The orthocomplement of the...
ocv1 20023 The orthocomplement of the...
unocv 20024 The orthocomplement of a u...
iunocv 20025 The orthocomplement of an ...
cssval 20026 The set of closed subspace...
iscss 20027 The predicate "is a closed...
cssi 20028 Property of a closed subsp...
cssss 20029 A closed subspace is a sub...
iscss2 20030 It is sufficient to prove ...
ocvcss 20031 The orthocomplement of any...
cssincl 20032 The zero subspace is a clo...
css0 20033 The zero subspace is a clo...
css1 20034 The whole space is a close...
csslss 20035 A closed subspace of a pre...
lsmcss 20036 A subset of a pre-Hilbert ...
cssmre 20037 The closed subspaces of a ...
mrccss 20038 The Moore closure correspo...
thlval 20039 Value of the Hilbert latti...
thlbas 20040 Base set of the Hilbert la...
thlle 20041 Ordering on the Hilbert la...
thlleval 20042 Ordering on the Hilbert la...
thloc 20043 Orthocomplement on the Hil...
pjfval 20050 The value of the projectio...
pjdm 20051 A subspace is in the domai...
pjpm 20052 The projection map is a pa...
pjfval2 20053 Value of the projection ma...
pjval 20054 Value of the projection ma...
pjdm2 20055 A subspace is in the domai...
pjff 20056 A projection is a linear o...
pjf 20057 A projection is a function...
pjf2 20058 A projection is a function...
pjfo 20059 A projection is a surjecti...
pjcss 20060 A projection subspace is a...
ocvpj 20061 The orthocomplement of a p...
ishil 20062 The predicate "is a Hilber...
ishil2 20063 The predicate "is a Hilber...
isobs 20064 The predicate "is an ortho...
obsip 20065 The inner product of two e...
obsipid 20066 A basis element has unit l...
obsrcl 20067 Reverse closure for an ort...
obsss 20068 An orthonormal basis is a ...
obsne0 20069 A basis element is nonzero...
obsocv 20070 An orthonormal basis has t...
obs2ocv 20071 The double orthocomplement...
obselocv 20072 A basis element is in the ...
obs2ss 20073 A basis has no proper subs...
obslbs 20074 An orthogonal basis is a l...
reldmdsmm 20077 The direct sum is a well-b...
dsmmval 20078 Value of the module direct...
dsmmbase 20079 Base set of the module dir...
dsmmval2 20080 Self-referential definitio...
dsmmbas2 20081 Base set of the direct sum...
dsmmfi 20082 For finite products, the d...
dsmmelbas 20083 Membership in the finitely...
dsmm0cl 20084 The all-zero vector is con...
dsmmacl 20085 The finite hull is closed ...
prdsinvgd2 20086 Negation of a single coord...
dsmmsubg 20087 The finite hull of a produ...
dsmmlss 20088 The finite hull of a produ...
dsmmlmod 20089 The direct sum of a family...
frlmval 20092 Value of the free module. ...
frlmlmod 20093 The free module is a modul...
frlmpws 20094 The free module as a restr...
frlmlss 20095 The base set of the free m...
frlmpwsfi 20096 The finite free module is ...
frlmsca 20097 The ring of scalars of a f...
frlm0 20098 Zero in a free module (rin...
frlmbas 20099 Base set of the free modul...
frlmelbas 20100 Membership in the base set...
frlmrcl 20101 If a free module is inhabi...
frlmbasfsupp 20102 Elements of the free modul...
frlmbasmap 20103 Elements of the free modul...
frlmbasf 20104 Elements of the free modul...
frlmfibas 20105 The base set of the finite...
elfrlmbasn0 20106 If the dimension of a free...
frlmplusgval 20107 Addition in a free module....
frlmsubgval 20108 Subtraction in a free modu...
frlmvscafval 20109 Scalar multiplication in a...
frlmvscaval 20110 Scalar multiplication in a...
frlmgsum 20111 Finite commutative sums in...
frlmsplit2 20112 Restriction is homomorphic...
frlmsslss 20113 A subset of a free module ...
frlmsslss2 20114 A subset of a free module ...
frlmbas3 20115 An element of the base set...
mpt2frlmd 20116 Elements of the free modul...
frlmip 20117 The inner product of a fre...
frlmipval 20118 The inner product of a fre...
frlmphllem 20119 Lemma for ~ frlmphl . (Co...
frlmphl 20120 Conditions for a free modu...
uvcfval 20123 Value of the unit-vector g...
uvcval 20124 Value of a single unit vec...
uvcvval 20125 Value of a unit vector coo...
uvcvvcl 20126 A coodinate of a unit vect...
uvcvvcl2 20127 A unit vector coordinate i...
uvcvv1 20128 The unit vector is one at ...
uvcvv0 20129 The unit vector is zero at...
uvcff 20130 Domain and range of the un...
uvcf1 20131 In a nonzero ring, each un...
uvcresum 20132 Any element of a free modu...
frlmssuvc1 20133 A scalar multiple of a uni...
frlmssuvc2 20134 A nonzero scalar multiple ...
frlmsslsp 20135 A subset of a free module ...
frlmlbs 20136 The unit vectors comprise ...
frlmup1 20137 Any assignment of unit vec...
frlmup2 20138 The evaluation map has the...
frlmup3 20139 The range of such an evalu...
frlmup4 20140 Universal property of the ...
ellspd 20141 The elements of the span o...
elfilspd 20142 Simplified version of ~ el...
rellindf 20147 The independent-family pre...
islinds 20148 Property of an independent...
linds1 20149 An independent set of vect...
linds2 20150 An independent set of vect...
islindf 20151 Property of an independent...
islinds2 20152 Expanded property of an in...
islindf2 20153 Property of an independent...
lindff 20154 Functional property of a l...
lindfind 20155 A linearly independent fam...
lindsind 20156 A linearly independent set...
lindfind2 20157 In a linearly independent ...
lindsind2 20158 In a linearly independent ...
lindff1 20159 A linearly independent fam...
lindfrn 20160 The range of an independen...
f1lindf 20161 Rearranging and deleting e...
lindfres 20162 Any restriction of an inde...
lindsss 20163 Any subset of an independe...
f1linds 20164 A family constructed from ...
islindf3 20165 In a nonzero ring, indepen...
lindfmm 20166 Linear independence of a f...
lindsmm 20167 Linear independence of a s...
lindsmm2 20168 The monomorphic image of a...
lsslindf 20169 Linear independence is unc...
lsslinds 20170 Linear independence is unc...
islbs4 20171 A basis is an independent ...
lbslinds 20172 A basis is independent. (...
islinds3 20173 A subset is linearly indep...
islinds4 20174 A set is independent in a ...
lmimlbs 20175 The isomorphic image of a ...
lmiclbs 20176 Having a basis is an isomo...
islindf4 20177 A family is independent if...
islindf5 20178 A family is independent if...
indlcim 20179 An independent, spanning f...
lbslcic 20180 A module with a basis is i...
lmisfree 20181 A module has a basis iff i...
lvecisfrlm 20182 Every vector space is isom...
lmimco 20183 The composition of two iso...
lmictra 20184 Module isomorphism is tran...
uvcf1o 20185 In a nonzero ring, the map...
uvcendim 20186 In a nonzero ring, the num...
frlmisfrlm 20187 A free module is isomorphi...
frlmiscvec 20188 Every free module is isomo...
mamufval 20191 Functional value of the ma...
mamuval 20192 Multiplication of two matr...
mamufv 20193 A cell in the multiplicati...
mamudm 20194 The domain of the matrix m...
mamufacex 20195 Every solution of the equa...
mamures 20196 Rows in a matrix product a...
mndvcl 20197 Tuple-wise additive closur...
mndvass 20198 Tuple-wise associativity i...
mndvlid 20199 Tuple-wise left identity i...
mndvrid 20200 Tuple-wise right identity ...
grpvlinv 20201 Tuple-wise left inverse in...
grpvrinv 20202 Tuple-wise right inverse i...
mhmvlin 20203 Tuple extension of monoid ...
ringvcl 20204 Tuple-wise multiplication ...
gsumcom3 20205 A commutative law for fini...
gsumcom3fi 20206 A commutative law for fini...
mamucl 20207 Operation closure of matri...
mamuass 20208 Matrix multiplication is a...
mamudi 20209 Matrix multiplication dist...
mamudir 20210 Matrix multiplication dist...
mamuvs1 20211 Matrix multiplication dist...
mamuvs2 20212 Matrix multiplication dist...
matbas0pc 20215 There is no matrix with a ...
matbas0 20216 There is no matrix for a n...
matval 20217 Value of the matrix algebr...
matrcl 20218 Reverse closure for the ma...
matbas 20219 The matrix ring has the sa...
matplusg 20220 The matrix ring has the sa...
matsca 20221 The matrix ring has the sa...
matvsca 20222 The matrix ring has the sa...
mat0 20223 The matrix ring has the sa...
matinvg 20224 The matrix ring has the sa...
mat0op 20225 Value of a zero matrix as ...
matsca2 20226 The scalars of the matrix ...
matbas2 20227 The base set of the matrix...
matbas2i 20228 A matrix is a function. (...
matbas2d 20229 The base set of the matrix...
eqmat 20230 Two square matrices of the...
matecl 20231 Each entry (according to W...
matecld 20232 Each entry (according to W...
matplusg2 20233 Addition in the matrix rin...
matvsca2 20234 Scalar multiplication in t...
matlmod 20235 The matrix ring is a linea...
matgrp 20236 The matrix ring is a group...
matvscl 20237 Closure of the scalar mult...
matsubg 20238 The matrix ring has the sa...
matplusgcell 20239 Addition in the matrix rin...
matsubgcell 20240 Subtraction in the matrix ...
matinvgcell 20241 Additive inversion in the ...
matvscacell 20242 Scalar multiplication in t...
matgsum 20243 Finite commutative sums in...
matmulr 20244 Multiplication in the matr...
mamumat1cl 20245 The identity matrix (as op...
mat1comp 20246 The components of the iden...
mamulid 20247 The identity matrix (as op...
mamurid 20248 The identity matrix (as op...
matring 20249 Existence of the matrix ri...
matassa 20250 Existence of the matrix al...
matmulcell 20251 Multiplication in the matr...
mpt2matmul 20252 Multiplication of two N x ...
mat1 20253 Value of an identity matri...
mat1ov 20254 Entries of an identity mat...
mat1bas 20255 The identity matrix is a m...
matsc 20256 The identity matrix multip...
ofco2 20257 Distribution law for the f...
oftpos 20258 The transposition of the v...
mattposcl 20259 The transpose of a square ...
mattpostpos 20260 The transpose of the trans...
mattposvs 20261 The transposition of a mat...
mattpos1 20262 The transposition of the i...
tposmap 20263 The transposition of an I ...
mamutpos 20264 Behavior of transposes in ...
mattposm 20265 Multiplying two transposed...
matgsumcl 20266 Closure of a group sum ove...
madetsumid 20267 The identity summand in th...
matepmcl 20268 Each entry of a matrix wit...
matepm2cl 20269 Each entry of a matrix wit...
madetsmelbas 20270 A summand of the determina...
madetsmelbas2 20271 A summand of the determina...
mat0dimbas0 20272 The empty set is the one a...
mat0dim0 20273 The zero of the algebra of...
mat0dimid 20274 The identity of the algebr...
mat0dimscm 20275 The scalar multiplication ...
mat0dimcrng 20276 The algebra of matrices wi...
mat1dimelbas 20277 A matrix with dimension 1 ...
mat1dimbas 20278 A matrix with dimension 1 ...
mat1dim0 20279 The zero of the algebra of...
mat1dimid 20280 The identity of the algebr...
mat1dimscm 20281 The scalar multiplication ...
mat1dimmul 20282 The ring multiplication in...
mat1dimcrng 20283 The algebra of matrices wi...
mat1f1o 20284 There is a 1-1 function fr...
mat1rhmval 20285 The value of the ring homo...
mat1rhmelval 20286 The value of the ring homo...
mat1rhmcl 20287 The value of the ring homo...
mat1f 20288 There is a function from a...
mat1ghm 20289 There is a group homomorph...
mat1mhm 20290 There is a monoid homomorp...
mat1rhm 20291 There is a ring homomorphi...
mat1rngiso 20292 There is a ring isomorphis...
mat1ric 20293 A ring is isomorphic to th...
dmatval 20298 The set of ` N ` x ` N ` d...
dmatel 20299 A ` N ` x ` N ` diagonal m...
dmatmat 20300 An ` N ` x ` N ` diagonal ...
dmatid 20301 The identity matrix is a d...
dmatelnd 20302 An extradiagonal entry of ...
dmatmul 20303 The product of two diagona...
dmatsubcl 20304 The difference of two diag...
dmatsgrp 20305 The set of diagonal matric...
dmatmulcl 20306 The product of two diagona...
dmatsrng 20307 The set of diagonal matric...
dmatcrng 20308 The subring of diagonal ma...
dmatscmcl 20309 The multiplication of a di...
scmatval 20310 The set of ` N ` x ` N ` s...
scmatel 20311 An ` N ` x ` N ` scalar ma...
scmatscmid 20312 A scalar matrix can be exp...
scmatscmide 20313 An entry of a scalar matri...
scmatscmiddistr 20314 Distributive law for scala...
scmatmat 20315 An ` N ` x ` N ` scalar ma...
scmate 20316 An entry of an ` N ` x ` N...
scmatmats 20317 The set of an ` N ` x ` N ...
scmateALT 20318 Alternate proof of ~ scmat...
scmatscm 20319 The multiplication of a ma...
scmatid 20320 The identity matrix is a s...
scmatdmat 20321 A scalar matrix is a diago...
scmataddcl 20322 The sum of two scalar matr...
scmatsubcl 20323 The difference of two scal...
scmatmulcl 20324 The product of two scalar ...
scmatsgrp 20325 The set of scalar matrices...
scmatsrng 20326 The set of scalar matrices...
scmatcrng 20327 The subring of scalar matr...
scmatsgrp1 20328 The set of scalar matrices...
scmatsrng1 20329 The set of scalar matrices...
smatvscl 20330 Closure of the scalar mult...
scmatlss 20331 The set of scalar matrices...
scmatstrbas 20332 The set of scalar matrices...
scmatrhmval 20333 The value of the ring homo...
scmatrhmcl 20334 The value of the ring homo...
scmatf 20335 There is a function from a...
scmatfo 20336 There is a function from a...
scmatf1 20337 There is a 1-1 function fr...
scmatf1o 20338 There is a bijection betwe...
scmatghm 20339 There is a group homomorph...
scmatmhm 20340 There is a monoid homomorp...
scmatrhm 20341 There is a ring homomorphi...
scmatrngiso 20342 There is a ring isomorphis...
scmatric 20343 A ring is isomorphic to ev...
mat0scmat 20344 The empty matrix over a ri...
mat1scmat 20345 A 1-dimensional matrix ove...
mvmulfval 20348 Functional value of the ma...
mvmulval 20349 Multiplication of a vector...
mvmulfv 20350 A cell/element in the vect...
mavmulval 20351 Multiplication of a vector...
mavmulfv 20352 A cell/element in the vect...
mavmulcl 20353 Multiplication of an NxN m...
1mavmul 20354 Multiplication of the iden...
mavmulass 20355 Associativity of the multi...
mavmuldm 20356 The domain of the matrix v...
mavmulsolcl 20357 Every solution of the equa...
mavmul0 20358 Multiplication of a 0-dime...
mavmul0g 20359 The result of the 0-dimens...
mvmumamul1 20360 The multiplication of an M...
mavmumamul1 20361 The multiplication of an N...
marrepfval 20366 First substitution for the...
marrepval0 20367 Second substitution for th...
marrepval 20368 Third substitution for the...
marrepeval 20369 An entry of a matrix with ...
marrepcl 20370 Closure of the row replace...
marepvfval 20371 First substitution for the...
marepvval0 20372 Second substitution for th...
marepvval 20373 Third substitution for the...
marepveval 20374 An entry of a matrix with ...
marepvcl 20375 Closure of the column repl...
ma1repvcl 20376 Closure of the column repl...
ma1repveval 20377 An entry of an identity ma...
mulmarep1el 20378 Element by element multipl...
mulmarep1gsum1 20379 The sum of element by elem...
mulmarep1gsum2 20380 The sum of element by elem...
1marepvmarrepid 20381 Replacing the ith row by 0...
submabas 20384 Any subset of the index se...
submafval 20385 First substitution for a s...
submaval0 20386 Second substitution for a ...
submaval 20387 Third substitution for a s...
submaeval 20388 An entry of a submatrix of...
1marepvsma1 20389 The submatrix of the ident...
mdetfval 20392 First substitution for the...
mdetleib 20393 Full substitution of our d...
mdetleib2 20394 Leibniz' formula can also ...
nfimdetndef 20395 The determinant is not def...
mdetfval1 20396 First substitution of an a...
mdetleib1 20397 Full substitution of an al...
mdet0pr 20398 The determinant for 0-dime...
mdet0f1o 20399 The determinant for 0-dime...
mdet0fv0 20400 The determinant of a 0-dim...
mdetf 20401 Functionality of the deter...
mdetcl 20402 The determinant evaluates ...
m1detdiag 20403 The determinant of a 1-dim...
mdetdiaglem 20404 Lemma for ~ mdetdiag . Pr...
mdetdiag 20405 The determinant of a diago...
mdetdiagid 20406 The determinant of a diago...
mdet1 20407 The determinant of the ide...
mdetrlin 20408 The determinant function i...
mdetrsca 20409 The determinant function i...
mdetrsca2 20410 The determinant function i...
mdetr0 20411 The determinant of a matri...
mdet0 20412 The determinant of the zer...
mdetrlin2 20413 The determinant function i...
mdetralt 20414 The determinant function i...
mdetralt2 20415 The determinant function i...
mdetero 20416 The determinant function i...
mdettpos 20417 Determinant is invariant u...
mdetunilem1 20418 Lemma for ~ mdetuni . (Co...
mdetunilem2 20419 Lemma for ~ mdetuni . (Co...
mdetunilem3 20420 Lemma for ~ mdetuni . (Co...
mdetunilem4 20421 Lemma for ~ mdetuni . (Co...
mdetunilem5 20422 Lemma for ~ mdetuni . (Co...
mdetunilem6 20423 Lemma for ~ mdetuni . (Co...
mdetunilem7 20424 Lemma for ~ mdetuni . (Co...
mdetunilem8 20425 Lemma for ~ mdetuni . (Co...
mdetunilem9 20426 Lemma for ~ mdetuni . (Co...
mdetuni0 20427 Lemma for ~ mdetuni . (Co...
mdetuni 20428 According to the definitio...
mdetmul 20429 Multiplicativity of the de...
m2detleiblem1 20430 Lemma 1 for ~ m2detleib . ...
m2detleiblem5 20431 Lemma 5 for ~ m2detleib . ...
m2detleiblem6 20432 Lemma 6 for ~ m2detleib . ...
m2detleiblem7 20433 Lemma 7 for ~ m2detleib . ...
m2detleiblem2 20434 Lemma 2 for ~ m2detleib . ...
m2detleiblem3 20435 Lemma 3 for ~ m2detleib . ...
m2detleiblem4 20436 Lemma 4 for ~ m2detleib . ...
m2detleib 20437 Leibniz' Formula for 2x2-m...
mndifsplit 20442 Lemma for ~ maducoeval2 . ...
madufval 20443 First substitution for the...
maduval 20444 Second substitution for th...
maducoeval 20445 An entry of the adjunct (c...
maducoeval2 20446 An entry of the adjunct (c...
maduf 20447 Creating the adjunct of ma...
madutpos 20448 The adjuct of a transposed...
madugsum 20449 The determinant of a matri...
madurid 20450 Multiplying a matrix with ...
madulid 20451 Multiplying the adjunct of...
minmar1fval 20452 First substitution for the...
minmar1val0 20453 Second substitution for th...
minmar1val 20454 Third substitution for the...
minmar1eval 20455 An entry of a matrix for a...
minmar1marrep 20456 The minor matrix is a spec...
minmar1cl 20457 Closure of the row replace...
maducoevalmin1 20458 The coefficients of an adj...
symgmatr01lem 20459 Lemma for ~ symgmatr01 . ...
symgmatr01 20460 Applying a permutation tha...
gsummatr01lem1 20461 Lemma A for ~ gsummatr01 ....
gsummatr01lem2 20462 Lemma B for ~ gsummatr01 ....
gsummatr01lem3 20463 Lemma 1 for ~ gsummatr01 ....
gsummatr01lem4 20464 Lemma 2 for ~ gsummatr01 ....
gsummatr01 20465 Lemma 1 for ~ smadiadetlem...
marep01ma 20466 Replacing a row of a squar...
smadiadetlem0 20467 Lemma 0 for ~ smadiadet : ...
smadiadetlem1 20468 Lemma 1 for ~ smadiadet : ...
smadiadetlem1a 20469 Lemma 1a for ~ smadiadet :...
smadiadetlem2 20470 Lemma 2 for ~ smadiadet : ...
smadiadetlem3lem0 20471 Lemma 0 for ~ smadiadetlem...
smadiadetlem3lem1 20472 Lemma 1 for ~ smadiadetlem...
smadiadetlem3lem2 20473 Lemma 2 for ~ smadiadetlem...
smadiadetlem3 20474 Lemma 3 for ~ smadiadet . ...
smadiadetlem4 20475 Lemma 4 for ~ smadiadet . ...
smadiadet 20476 The determinant of a subma...
smadiadetglem1 20477 Lemma 1 for ~ smadiadetg ....
smadiadetglem2 20478 Lemma 2 for ~ smadiadetg ....
smadiadetg 20479 The determinant of a squar...
smadiadetg0 20480 Lemma for ~ smadiadetr : v...
smadiadetr 20481 The determinant of a squar...
invrvald 20482 If a matrix multiplied wit...
matinv 20483 The inverse of a matrix is...
matunit 20484 A matrix is a unit in the ...
slesolvec 20485 Every solution of a system...
slesolinv 20486 The solution of a system o...
slesolinvbi 20487 The solution of a system o...
slesolex 20488 Every system of linear equ...
cramerimplem1 20489 Lemma 1 for ~ cramerimp : ...
cramerimplem2 20490 Lemma 2 for ~ cramerimp : ...
cramerimplem3 20491 Lemma 3 for ~ cramerimp : ...
cramerimp 20492 One direction of Cramer's ...
cramerlem1 20493 Lemma 1 for ~ cramer . (C...
cramerlem2 20494 Lemma 2 for ~ cramer . (C...
cramerlem3 20495 Lemma 3 for ~ cramer . (C...
cramer0 20496 Special case of Cramer's r...
cramer 20497 Cramer's rule. According ...
pmatring 20498 The set of polynomial matr...
pmatlmod 20499 The set of polynomial matr...
pmat0op 20500 The zero polynomial matrix...
pmat1op 20501 The identity polynomial ma...
pmat1ovd 20502 Entries of the identity po...
pmat0opsc 20503 The zero polynomial matrix...
pmat1opsc 20504 The identity polynomial ma...
pmat1ovscd 20505 Entries of the identity po...
pmatcoe1fsupp 20506 For a polynomial matrix th...
1pmatscmul 20507 The scalar product of the ...
cpmat 20514 Value of the constructor o...
cpmatpmat 20515 A constant polynomial matr...
cpmatel 20516 Property of a constant pol...
cpmatelimp 20517 Implication of a set being...
cpmatel2 20518 Another property of a cons...
cpmatelimp2 20519 Another implication of a s...
1elcpmat 20520 The identity of the ring o...
cpmatacl 20521 The set of all constant po...
cpmatinvcl 20522 The set of all constant po...
cpmatmcllem 20523 Lemma for ~ cpmatmcl . (C...
cpmatmcl 20524 The set of all constant po...
cpmatsubgpmat 20525 The set of all constant po...
cpmatsrgpmat 20526 The set of all constant po...
0elcpmat 20527 The zero of the ring of al...
mat2pmatfval 20528 Value of the matrix transf...
mat2pmatval 20529 The result of a matrix tra...
mat2pmatvalel 20530 A (matrix) element of the ...
mat2pmatbas 20531 The result of a matrix tra...
mat2pmatbas0 20532 The result of a matrix tra...
mat2pmatf 20533 The matrix transformation ...
mat2pmatf1 20534 The matrix transformation ...
mat2pmatghm 20535 The transformation of matr...
mat2pmatmul 20536 The transformation of matr...
mat2pmat1 20537 The transformation of the ...
mat2pmatmhm 20538 The transformation of matr...
mat2pmatrhm 20539 The transformation of matr...
mat2pmatlin 20540 The transformation of matr...
0mat2pmat 20541 The transformed zero matri...
idmatidpmat 20542 The transformed identity m...
d0mat2pmat 20543 The transformed empty set ...
d1mat2pmat 20544 The transformation of a ma...
mat2pmatscmxcl 20545 A transformed matrix multi...
m2cpm 20546 The result of a matrix tra...
m2cpmf 20547 The matrix transformation ...
m2cpmf1 20548 The matrix transformation ...
m2cpmghm 20549 The transformation of matr...
m2cpmmhm 20550 The transformation of matr...
m2cpmrhm 20551 The transformation of matr...
m2pmfzmap 20552 The transformed values of ...
m2pmfzgsumcl 20553 Closure of the sum of scal...
cpm2mfval 20554 Value of the inverse matri...
cpm2mval 20555 The result of an inverse m...
cpm2mvalel 20556 A (matrix) element of the ...
cpm2mf 20557 The inverse matrix transfo...
m2cpminvid 20558 The inverse transformation...
m2cpminvid2lem 20559 Lemma for ~ m2cpminvid2 . ...
m2cpminvid2 20560 The transformation applied...
m2cpmfo 20561 The matrix transformation ...
m2cpmf1o 20562 The matrix transformation ...
m2cpmrngiso 20563 The transformation of matr...
matcpmric 20564 The ring of matrices over ...
m2cpminv 20565 The inverse matrix transfo...
m2cpminv0 20566 The inverse matrix transfo...
decpmatval0 20569 The matrix consisting of t...
decpmatval 20570 The matrix consisting of t...
decpmate 20571 An entry of the matrix con...
decpmatcl 20572 Closure of the decompositi...
decpmataa0 20573 The matrix consisting of t...
decpmatfsupp 20574 The mapping to the matrice...
decpmatid 20575 The matrix consisting of t...
decpmatmullem 20576 Lemma for ~ decpmatmul . ...
decpmatmul 20577 The matrix consisting of t...
decpmatmulsumfsupp 20578 Lemma 0 for ~ pm2mpmhm . ...
pmatcollpw1lem1 20579 Lemma 1 for ~ pmatcollpw1 ...
pmatcollpw1lem2 20580 Lemma 2 for ~ pmatcollpw1 ...
pmatcollpw1 20581 Write a polynomial matrix ...
pmatcollpw2lem 20582 Lemma for ~ pmatcollpw2 . ...
pmatcollpw2 20583 Write a polynomial matrix ...
monmatcollpw 20584 The matrix consisting of t...
pmatcollpwlem 20585 Lemma for ~ pmatcollpw . ...
pmatcollpw 20586 Write a polynomial matrix ...
pmatcollpwfi 20587 Write a polynomial matrix ...
pmatcollpw3lem 20588 Lemma for ~ pmatcollpw3 an...
pmatcollpw3 20589 Write a polynomial matrix ...
pmatcollpw3fi 20590 Write a polynomial matrix ...
pmatcollpw3fi1lem1 20591 Lemma 1 for ~ pmatcollpw3f...
pmatcollpw3fi1lem2 20592 Lemma 2 for ~ pmatcollpw3f...
pmatcollpw3fi1 20593 Write a polynomial matrix ...
pmatcollpwscmatlem1 20594 Lemma 1 for ~ pmatcollpwsc...
pmatcollpwscmatlem2 20595 Lemma 2 for ~ pmatcollpwsc...
pmatcollpwscmat 20596 Write a scalar matrix over...
pm2mpf1lem 20599 Lemma for ~ pm2mpf1 . (Co...
pm2mpval 20600 Value of the transformatio...
pm2mpfval 20601 A polynomial matrix transf...
pm2mpcl 20602 The transformation of poly...
pm2mpf 20603 The transformation of poly...
pm2mpf1 20604 The transformation of poly...
pm2mpcoe1 20605 A coefficient of the polyn...
idpm2idmp 20606 The transformation of the ...
mptcoe1matfsupp 20607 The mapping extracting the...
mply1topmatcllem 20608 Lemma for ~ mply1topmatcl ...
mply1topmatval 20609 A polynomial over matrices...
mply1topmatcl 20610 A polynomial over matrices...
mp2pm2mplem1 20611 Lemma 1 for ~ mp2pm2mp . ...
mp2pm2mplem2 20612 Lemma 2 for ~ mp2pm2mp . ...
mp2pm2mplem3 20613 Lemma 3 for ~ mp2pm2mp . ...
mp2pm2mplem4 20614 Lemma 4 for ~ mp2pm2mp . ...
mp2pm2mplem5 20615 Lemma 5 for ~ mp2pm2mp . ...
mp2pm2mp 20616 A polynomial over matrices...
pm2mpghmlem2 20617 Lemma 2 for ~ pm2mpghm . ...
pm2mpghmlem1 20618 Lemma 1 for pm2mpghm . (C...
pm2mpfo 20619 The transformation of poly...
pm2mpf1o 20620 The transformation of poly...
pm2mpghm 20621 The transformation of poly...
pm2mpgrpiso 20622 The transformation of poly...
pm2mpmhmlem1 20623 Lemma 1 for ~ pm2mpmhm . ...
pm2mpmhmlem2 20624 Lemma 2 for ~ pm2mpmhm . ...
pm2mpmhm 20625 The transformation of poly...
pm2mprhm 20626 The transformation of poly...
pm2mprngiso 20627 The transformation of poly...
pmmpric 20628 The ring of polynomial mat...
monmat2matmon 20629 The transformation of a po...
pm2mp 20630 The transformation of a su...
chmatcl 20633 Closure of the characteris...
chmatval 20634 The entries of the charact...
chpmatfval 20635 Value of the characteristi...
chpmatval 20636 The characteristic polynom...
chpmatply1 20637 The characteristic polynom...
chpmatval2 20638 The characteristic polynom...
chpmat0d 20639 The characteristic polynom...
chpmat1dlem 20640 Lemma for ~ chpmat1d . (C...
chpmat1d 20641 The characteristic polynom...
chpdmatlem0 20642 Lemma 0 for ~ chpdmat . (...
chpdmatlem1 20643 Lemma 1 for ~ chpdmat . (...
chpdmatlem2 20644 Lemma 2 for ~ chpdmat . (...
chpdmatlem3 20645 Lemma 3 for ~ chpdmat . (...
chpdmat 20646 The characteristic polynom...
chpscmat 20647 The characteristic polynom...
chpscmat0 20648 The characteristic polynom...
chpscmatgsumbin 20649 The characteristic polynom...
chpscmatgsummon 20650 The characteristic polynom...
chp0mat 20651 The characteristic polynom...
chpidmat 20652 The characteristic polynom...
chmaidscmat 20653 The characteristic polynom...
fvmptnn04if 20654 The function values of a m...
fvmptnn04ifa 20655 The function value of a ma...
fvmptnn04ifb 20656 The function value of a ma...
fvmptnn04ifc 20657 The function value of a ma...
fvmptnn04ifd 20658 The function value of a ma...
chfacfisf 20659 The "characteristic factor...
chfacfisfcpmat 20660 The "characteristic factor...
chfacffsupp 20661 The "characteristic factor...
chfacfscmulcl 20662 Closure of a scaled value ...
chfacfscmul0 20663 A scaled value of the "cha...
chfacfscmulfsupp 20664 A mapping of scaled values...
chfacfscmulgsum 20665 Breaking up a sum of value...
chfacfpmmulcl 20666 Closure of the value of th...
chfacfpmmul0 20667 The value of the "characte...
chfacfpmmulfsupp 20668 A mapping of values of the...
chfacfpmmulgsum 20669 Breaking up a sum of value...
chfacfpmmulgsum2 20670 Breaking up a sum of value...
cayhamlem1 20671 Lemma 1 for ~ cayleyhamilt...
cpmadurid 20672 The right-hand fundamental...
cpmidgsum 20673 Representation of the iden...
cpmidgsumm2pm 20674 Representation of the iden...
cpmidpmatlem1 20675 Lemma 1 for ~ cpmidpmat . ...
cpmidpmatlem2 20676 Lemma 2 for ~ cpmidpmat . ...
cpmidpmatlem3 20677 Lemma 3 for ~ cpmidpmat . ...
cpmidpmat 20678 Representation of the iden...
cpmadugsumlemB 20679 Lemma B for ~ cpmadugsum ....
cpmadugsumlemC 20680 Lemma C for ~ cpmadugsum ....
cpmadugsumlemF 20681 Lemma F for ~ cpmadugsum ....
cpmadugsumfi 20682 The product of the charact...
cpmadugsum 20683 The product of the charact...
cpmidgsum2 20684 Representation of the iden...
cpmidg2sum 20685 Equality of two sums repre...
cpmadumatpolylem1 20686 Lemma 1 for ~ cpmadumatpol...
cpmadumatpolylem2 20687 Lemma 2 for ~ cpmadumatpol...
cpmadumatpoly 20688 The product of the charact...
cayhamlem2 20689 Lemma for ~ cayhamlem3 . ...
chcoeffeqlem 20690 Lemma for ~ chcoeffeq . (...
chcoeffeq 20691 The coefficients of the ch...
cayhamlem3 20692 Lemma for ~ cayhamlem4 . ...
cayhamlem4 20693 Lemma for ~ cayleyhamilton...
cayleyhamilton0 20694 The Cayley-Hamilton theore...
cayleyhamilton 20695 The Cayley-Hamilton theore...
cayleyhamiltonALT 20696 Alternate proof of ~ cayle...
cayleyhamilton1 20697 The Cayley-Hamilton theore...
istopg 20700 Express the predicate " ` ...
istop2g 20701 Express the predicate " ` ...
uniopn 20702 The union of a subset of a...
iunopn 20703 The indexed union of a sub...
inopn 20704 The intersection of two op...
fitop 20705 A topology is closed under...
fiinopn 20706 The intersection of a none...
iinopn 20707 The intersection of a none...
unopn 20708 The union of two open sets...
0opn 20709 The empty set is an open s...
0ntop 20710 The empty set is not a top...
topopn 20711 The underlying set of a to...
eltopss 20712 A member of a topology is ...
riinopn 20713 A finite indexed relative ...
rintopn 20714 A finite relative intersec...
istopon 20717 Property of being a topolo...
topontop 20718 A topology on a given base...
toponuni 20719 The base set of a topology...
topontopi 20720 A topology on a given base...
toponunii 20721 The base set of a topology...
toptopon 20722 Alternative definition of ...
toptopon2 20723 A topology is the same thi...
topontopon 20724 A topology on a set is a t...
funtopon 20725 The class ` TopOn ` is a f...
toponsspwpw 20726 The set of topologies on a...
dmtopon 20727 The domain of ` TopOn ` is...
fntopon 20728 The class ` TopOn ` is a f...
toprntopon 20729 A topology is the same thi...
toponmax 20730 The base set of a topology...
toponss 20731 A member of a topology is ...
toponcom 20732 If ` K ` is a topology on ...
toponcomb 20733 Biconditional form of ~ to...
topgele 20734 The topologies over the sa...
topsn 20735 The only topology on a sin...
istps 20738 Express the predicate "is ...
istps2 20739 Express the predicate "is ...
tpsuni 20740 The base set of a topologi...
tpstop 20741 The topology extractor on ...
tpspropd 20742 A topological space depend...
tpsprop2d 20743 A topological space depend...
topontopn 20744 Express the predicate "is ...
tsettps 20745 If the topology component ...
istpsi 20746 Properties that determine ...
eltpsg 20747 Properties that determine ...
eltpsi 20748 Properties that determine ...
isbasisg 20751 Express the predicate " ` ...
isbasis2g 20752 Express the predicate " ` ...
isbasis3g 20753 Express the predicate " ` ...
basis1 20754 Property of a basis. (Con...
basis2 20755 Property of a basis. (Con...
fiinbas 20756 If a set is closed under f...
basdif0 20757 A basis is not affected by...
baspartn 20758 A disjoint system of sets ...
tgval 20759 The topology generated by ...
tgval2 20760 Definition of a topology g...
eltg 20761 Membership in a topology g...
eltg2 20762 Membership in a topology g...
eltg2b 20763 Membership in a topology g...
eltg4i 20764 An open set in a topology ...
eltg3i 20765 The union of a set of basi...
eltg3 20766 Membership in a topology g...
tgval3 20767 Alternate expression for t...
tg1 20768 Property of a member of a ...
tg2 20769 Property of a member of a ...
bastg 20770 A member of a basis is a s...
unitg 20771 The topology generated by ...
tgss 20772 Subset relation for genera...
tgcl 20773 Show that a basis generate...
tgclb 20774 The property ~ tgcl can be...
tgtopon 20775 A basis generates a topolo...
topbas 20776 A topology is its own basi...
tgtop 20777 A topology is its own basi...
eltop 20778 Membership in a topology, ...
eltop2 20779 Membership in a topology. ...
eltop3 20780 Membership in a topology. ...
fibas 20781 A collection of finite int...
tgdom 20782 A space has no more open s...
tgiun 20783 The indexed union of a set...
tgidm 20784 The topology generator fun...
bastop 20785 Two ways to express that a...
tgtop11 20786 The topology generation fu...
0top 20787 The singleton of the empty...
en1top 20788 ` { (/) } ` is the only to...
en2top 20789 If a topology has two elem...
tgss3 20790 A criterion for determinin...
tgss2 20791 A criterion for determinin...
basgen 20792 Given a topology ` J ` , s...
basgen2 20793 Given a topology ` J ` , s...
2basgen 20794 Conditions that determine ...
tgfiss 20795 If a subbase is included i...
tgdif0 20796 A generated topology is no...
bastop1 20797 A subset of a topology is ...
bastop2 20798 A version of ~ bastop1 tha...
distop 20799 The discrete topology on a...
topnex 20800 The class of all topologie...
distopon 20801 The discrete topology on a...
sn0topon 20802 The singleton of the empty...
sn0top 20803 The singleton of the empty...
indislem 20804 A lemma to eliminate some ...
indistopon 20805 The indiscrete topology on...
indistop 20806 The indiscrete topology on...
indisuni 20807 The base set of the indisc...
fctop 20808 The finite complement topo...
fctop2 20809 The finite complement topo...
cctop 20810 The countable complement t...
ppttop 20811 The particular point topol...
pptbas 20812 The particular point topol...
epttop 20813 The excluded point topolog...
indistpsx 20814 The indiscrete topology on...
indistps 20815 The indiscrete topology on...
indistps2 20816 The indiscrete topology on...
indistpsALT 20817 The indiscrete topology on...
indistps2ALT 20818 The indiscrete topology on...
distps 20819 The discrete topology on a...
fncld 20826 The closed-set generator i...
cldval 20827 The set of closed sets of ...
ntrfval 20828 The interior function on t...
clsfval 20829 The closure function on th...
cldrcl 20830 Reverse closure of the clo...
iscld 20831 The predicate " ` S ` is a...
iscld2 20832 A subset of the underlying...
cldss 20833 A closed set is a subset o...
cldss2 20834 The set of closed sets is ...
cldopn 20835 The complement of a closed...
isopn2 20836 A subset of the underlying...
opncld 20837 The complement of an open ...
difopn 20838 The difference of a closed...
topcld 20839 The underlying set of a to...
ntrval 20840 The interior of a subset o...
clsval 20841 The closure of a subset of...
0cld 20842 The empty set is closed. ...
iincld 20843 The indexed intersection o...
intcld 20844 The intersection of a set ...
uncld 20845 The union of two closed se...
cldcls 20846 A closed subset equals its...
incld 20847 The intersection of two cl...
riincld 20848 An indexed relative inters...
iuncld 20849 A finite indexed union of ...
unicld 20850 A finite union of closed s...
clscld 20851 The closure of a subset of...
clsf 20852 The closure function is a ...
ntropn 20853 The interior of a subset o...
clsval2 20854 Express closure in terms o...
ntrval2 20855 Interior expressed in term...
ntrdif 20856 An interior of a complemen...
clsdif 20857 A closure of a complement ...
clsss 20858 Subset relationship for cl...
ntrss 20859 Subset relationship for in...
sscls 20860 A subset of a topology's u...
ntrss2 20861 A subset includes its inte...
ssntr 20862 An open subset of a set is...
clsss3 20863 The closure of a subset of...
ntrss3 20864 The interior of a subset o...
ntrin 20865 A pairwise intersection of...
cmclsopn 20866 The complement of a closur...
cmntrcld 20867 The complement of an inter...
iscld3 20868 A subset is closed iff it ...
iscld4 20869 A subset is closed iff it ...
isopn3 20870 A subset is open iff it eq...
clsidm 20871 The closure operation is i...
ntridm 20872 The interior operation is ...
clstop 20873 The closure of a topology'...
ntrtop 20874 The interior of a topology...
0ntr 20875 A subset with an empty int...
clsss2 20876 If a subset is included in...
elcls 20877 Membership in a closure. ...
elcls2 20878 Membership in a closure. ...
clsndisj 20879 Any open set containing a ...
ntrcls0 20880 A subset whose closure has...
ntreq0 20881 Two ways to say that a sub...
cldmre 20882 The closed sets of a topol...
mrccls 20883 Moore closure generalizes ...
cls0 20884 The closure of the empty s...
ntr0 20885 The interior of the empty ...
isopn3i 20886 An open subset equals its ...
elcls3 20887 Membership in a closure in...
opncldf1 20888 A bijection useful for con...
opncldf2 20889 The values of the open-clo...
opncldf3 20890 The values of the converse...
isclo 20891 A set ` A ` is clopen iff ...
isclo2 20892 A set ` A ` is clopen iff ...
discld 20893 The open sets of a discret...
sn0cld 20894 The closed sets of the top...
indiscld 20895 The closed sets of an indi...
mretopd 20896 A Moore collection which i...
toponmre 20897 The topologies over a give...
cldmreon 20898 The closed sets of a topol...
iscldtop 20899 A family is the closed set...
mreclatdemoBAD 20900 The closed subspaces of a ...
neifval 20903 The neighborhood function ...
neif 20904 The neighborhood function ...
neiss2 20905 A set with a neighborhood ...
neival 20906 The set of neighborhoods o...
isnei 20907 The predicate " ` N ` is a...
neiint 20908 An intuitive definition of...
isneip 20909 The predicate " ` N ` is a...
neii1 20910 A neighborhood is included...
neisspw 20911 The neighborhoods of any s...
neii2 20912 Property of a neighborhood...
neiss 20913 Any neighborhood of a set ...
ssnei 20914 A set is included in its n...
elnei 20915 A point belongs to any of ...
0nnei 20916 The empty set is not a nei...
neips 20917 A neighborhood of a set is...
opnneissb 20918 An open set is a neighborh...
opnssneib 20919 Any superset of an open se...
ssnei2 20920 Any subset of ` X ` contai...
neindisj 20921 Any neighborhood of an ele...
opnneiss 20922 An open set is a neighborh...
opnneip 20923 An open set is a neighborh...
opnnei 20924 A set is open iff it is a ...
tpnei 20925 The underlying set of a to...
neiuni 20926 The union of the neighborh...
neindisj2 20927 A point ` P ` belongs to t...
topssnei 20928 A finer topology has more ...
innei 20929 The intersection of two ne...
opnneiid 20930 Only an open set is a neig...
neissex 20931 For any neighborhood ` N `...
0nei 20932 The empty set is a neighbo...
neipeltop 20933 Lemma for ~ neiptopreu . ...
neiptopuni 20934 Lemma for ~ neiptopreu . ...
neiptoptop 20935 Lemma for ~ neiptopreu . ...
neiptopnei 20936 Lemma for ~ neiptopreu . ...
neiptopreu 20937 If, to each element ` P ` ...
lpfval 20942 The limit point function o...
lpval 20943 The set of limit points of...
islp 20944 The predicate " ` P ` is a...
lpsscls 20945 The limit points of a subs...
lpss 20946 The limit points of a subs...
lpdifsn 20947 ` P ` is a limit point of ...
lpss3 20948 Subset relationship for li...
islp2 20949 The predicate " ` P ` is a...
islp3 20950 The predicate " ` P ` is a...
maxlp 20951 A point is a limit point o...
clslp 20952 The closure of a subset of...
islpi 20953 A point belonging to a set...
cldlp 20954 A subset of a topological ...
isperf 20955 Definition of a perfect sp...
isperf2 20956 Definition of a perfect sp...
isperf3 20957 A perfect space is a topol...
perflp 20958 The limit points of a perf...
perfi 20959 Property of a perfect spac...
perftop 20960 A perfect space is a topol...
restrcl 20961 Reverse closure for the su...
restbas 20962 A subspace topology basis ...
tgrest 20963 A subspace can be generate...
resttop 20964 A subspace topology is a t...
resttopon 20965 A subspace topology is a t...
restuni 20966 The underlying set of a su...
stoig 20967 The topological space buil...
restco 20968 Composition of subspaces. ...
restabs 20969 Equivalence of being a sub...
restin 20970 When the subspace region i...
restuni2 20971 The underlying set of a su...
resttopon2 20972 The underlying set of a su...
rest0 20973 The subspace topology indu...
restsn 20974 The only subspace topology...
restsn2 20975 The subspace topology indu...
restcld 20976 A closed set of a subspace...
restcldi 20977 A closed set is closed in ...
restcldr 20978 A set which is closed in t...
restopnb 20979 If ` B ` is an open subset...
ssrest 20980 If ` K ` is a finer topolo...
restopn2 20981 The if ` A ` is open, then...
restdis 20982 A subspace of a discrete t...
restfpw 20983 The restriction of the set...
neitr 20984 The neighborhood of a trac...
restcls 20985 A closure in a subspace to...
restntr 20986 An interior in a subspace ...
restlp 20987 The limit points of a subs...
restperf 20988 Perfection of a subspace. ...
perfopn 20989 An open subset of a perfec...
resstopn 20990 The topology of a restrict...
resstps 20991 A restricted topological s...
ordtbaslem 20992 Lemma for ~ ordtbas . In ...
ordtval 20993 Value of the order topolog...
ordtuni 20994 Value of the order topolog...
ordtbas2 20995 Lemma for ~ ordtbas . (Co...
ordtbas 20996 In a total order, the fini...
ordttopon 20997 Value of the order topolog...
ordtopn1 20998 An upward ray ` ( P , +oo ...
ordtopn2 20999 A downward ray ` ( -oo , P...
ordtopn3 21000 An open interval ` ( A , B...
ordtcld1 21001 A downward ray ` ( -oo , P...
ordtcld2 21002 An upward ray ` [ P , +oo ...
ordtcld3 21003 A closed interval ` [ A , ...
ordttop 21004 The order topology is a to...
ordtcnv 21005 The order dual generates t...
ordtrest 21006 The subspace topology of a...
ordtrest2lem 21007 Lemma for ~ ordtrest2 . (...
ordtrest2 21008 An interval-closed set ` A...
letopon 21009 The topology of the extend...
letop 21010 The topology of the extend...
letopuni 21011 The topology of the extend...
xrstopn 21012 The topology component of ...
xrstps 21013 The extended real number s...
leordtvallem1 21014 Lemma for ~ leordtval . (...
leordtvallem2 21015 Lemma for ~ leordtval . (...
leordtval2 21016 The topology of the extend...
leordtval 21017 The topology of the extend...
iccordt 21018 A closed interval is close...
iocpnfordt 21019 An unbounded above open in...
icomnfordt 21020 An unbounded above open in...
iooordt 21021 An open interval is open i...
reordt 21022 The real numbers are an op...
lecldbas 21023 The set of closed interval...
pnfnei 21024 A neighborhood of ` +oo ` ...
mnfnei 21025 A neighborhood of ` -oo ` ...
ordtrestixx 21026 The restriction of the les...
ordtresticc 21027 The restriction of the les...
lmrel 21034 The topological space conv...
lmrcl 21035 Reverse closure for the co...
lmfval 21036 The relation "sequence ` f...
cnfval 21037 The set of all continuous ...
cnpfval 21038 The function mapping the p...
iscn 21039 The predicate " ` F ` is a...
cnpval 21040 The set of all functions f...
iscnp 21041 The predicate " ` F ` is a...
iscn2 21042 The predicate " ` F ` is a...
iscnp2 21043 The predicate " ` F ` is a...
cntop1 21044 Reverse closure for a cont...
cntop2 21045 Reverse closure for a cont...
cnptop1 21046 Reverse closure for a func...
cnptop2 21047 Reverse closure for a func...
iscnp3 21048 The predicate " ` F ` is a...
cnprcl 21049 Reverse closure for a func...
cnf 21050 A continuous function is a...
cnpf 21051 A continuous function at p...
cnpcl 21052 The value of a continuous ...
cnf2 21053 A continuous function is a...
cnpf2 21054 A continuous function at p...
cnprcl2 21055 Reverse closure for a func...
tgcn 21056 The continuity predicate w...
tgcnp 21057 The "continuous at a point...
subbascn 21058 The continuity predicate w...
ssidcn 21059 The identity function is a...
cnpimaex 21060 Property of a function con...
idcn 21061 A restricted identity func...
lmbr 21062 Express the binary relatio...
lmbr2 21063 Express the binary relatio...
lmbrf 21064 Express the binary relatio...
lmconst 21065 A constant sequence conver...
lmcvg 21066 Convergence property of a ...
iscnp4 21067 The predicate " ` F ` is a...
cnpnei 21068 A condition for continuity...
cnima 21069 An open subset of the codo...
cnco 21070 The composition of two con...
cnpco 21071 The composition of two con...
cnclima 21072 A closed subset of the cod...
iscncl 21073 A definition of a continuo...
cncls2i 21074 Property of the preimage o...
cnntri 21075 Property of the preimage o...
cnclsi 21076 Property of the image of a...
cncls2 21077 Continuity in terms of clo...
cncls 21078 Continuity in terms of clo...
cnntr 21079 Continuity in terms of int...
cnss1 21080 If the topology ` K ` is f...
cnss2 21081 If the topology ` K ` is f...
cncnpi 21082 A continuous function is c...
cnsscnp 21083 The set of continuous func...
cncnp 21084 A continuous function is c...
cncnp2 21085 A continuous function is c...
cnnei 21086 Continuity in terms of nei...
cnconst2 21087 A constant function is con...
cnconst 21088 A constant function is con...
cnrest 21089 Continuity of a restrictio...
cnrest2 21090 Equivalence of continuity ...
cnrest2r 21091 Equivalence of continuity ...
cnpresti 21092 One direction of ~ cnprest...
cnprest 21093 Equivalence of continuity ...
cnprest2 21094 Equivalence of point-conti...
cndis 21095 Every function is continuo...
cnindis 21096 Every function is continuo...
cnpdis 21097 If ` A ` is an isolated po...
paste 21098 Pasting lemma. If ` A ` a...
lmfpm 21099 If ` F ` converges, then `...
lmfss 21100 Inclusion of a function ha...
lmcl 21101 Closure of a limit. (Cont...
lmss 21102 Limit on a subspace. (Con...
sslm 21103 A finer topology has fewer...
lmres 21104 A function converges iff i...
lmff 21105 If ` F ` converges, there ...
lmcls 21106 Any convergent sequence of...
lmcld 21107 Any convergent sequence of...
lmcnp 21108 The image of a convergent ...
lmcn 21109 The image of a convergent ...
ist0 21124 The predicate "is a T_0 sp...
ist1 21125 The predicate ` J ` is T_1...
ishaus 21126 Express the predicate " ` ...
iscnrm 21127 The property of being comp...
t0sep 21128 Any two topologically indi...
t0dist 21129 Any two distinct points in...
t1sncld 21130 In a T_1 space, one-point ...
t1ficld 21131 In a T_1 space, finite set...
hausnei 21132 Neighborhood property of a...
t0top 21133 A T_0 space is a topologic...
t1top 21134 A T_1 space is a topologic...
haustop 21135 A Hausdorff space is a top...
isreg 21136 The predicate "is a regula...
regtop 21137 A regular space is a topol...
regsep 21138 In a regular space, every ...
isnrm 21139 The predicate "is a normal...
nrmtop 21140 A normal space is a topolo...
cnrmtop 21141 A completely normal space ...
iscnrm2 21142 The property of being comp...
ispnrm 21143 The property of being perf...
pnrmnrm 21144 A perfectly normal space i...
pnrmtop 21145 A perfectly normal space i...
pnrmcld 21146 A closed set in a perfectl...
pnrmopn 21147 An open set in a perfectly...
ist0-2 21148 The predicate "is a T_0 sp...
ist0-3 21149 The predicate "is a T_0 sp...
cnt0 21150 The preimage of a T_0 topo...
ist1-2 21151 An alternate characterizat...
t1t0 21152 A T_1 space is a T_0 space...
ist1-3 21153 A space is T_1 iff every p...
cnt1 21154 The preimage of a T_1 topo...
ishaus2 21155 Express the predicate " ` ...
haust1 21156 A Hausdorff space is a T_1...
hausnei2 21157 The Hausdorff condition st...
cnhaus 21158 The preimage of a Hausdorf...
nrmsep3 21159 In a normal space, given a...
nrmsep2 21160 In a normal space, any two...
nrmsep 21161 In a normal space, disjoin...
isnrm2 21162 An alternate characterizat...
isnrm3 21163 A topological space is nor...
cnrmi 21164 A subspace of a completely...
cnrmnrm 21165 A completely normal space ...
restcnrm 21166 A subspace of a completely...
resthauslem 21167 Lemma for ~ resthaus and s...
lpcls 21168 The limit points of the cl...
perfcls 21169 A subset of a perfect spac...
restt0 21170 A subspace of a T_0 topolo...
restt1 21171 A subspace of a T_1 topolo...
resthaus 21172 A subspace of a Hausdorff ...
t1sep2 21173 Any two points in a T_1 sp...
t1sep 21174 Any two distinct points in...
sncld 21175 A singleton is closed in a...
sshauslem 21176 Lemma for ~ sshaus and sim...
sst0 21177 A topology finer than a T_...
sst1 21178 A topology finer than a T_...
sshaus 21179 A topology finer than a Ha...
regsep2 21180 In a regular space, a clos...
isreg2 21181 A topological space is reg...
dnsconst 21182 If a continuous mapping to...
ordtt1 21183 The order topology is T_1 ...
lmmo 21184 A sequence in a Hausdorff ...
lmfun 21185 The convergence relation i...
dishaus 21186 A discrete topology is Hau...
ordthauslem 21187 Lemma for ~ ordthaus . (C...
ordthaus 21188 The order topology of a to...
iscmp 21191 The predicate "is a compac...
cmpcov 21192 An open cover of a compact...
cmpcov2 21193 Rewrite ~ cmpcov for the c...
cmpcovf 21194 Combine ~ cmpcov with ~ ac...
cncmp 21195 Compactness is respected b...
fincmp 21196 A finite topology is compa...
0cmp 21197 The singleton of the empty...
cmptop 21198 A compact topology is a to...
rncmp 21199 The image of a compact set...
imacmp 21200 The image of a compact set...
discmp 21201 A discrete topology is com...
cmpsublem 21202 Lemma for ~ cmpsub . (Con...
cmpsub 21203 Two equivalent ways of des...
tgcmp 21204 A topology generated by a ...
cmpcld 21205 A closed subset of a compa...
uncmp 21206 The union of two compact s...
fiuncmp 21207 A finite union of compact ...
sscmp 21208 A subset of a compact topo...
hauscmplem 21209 Lemma for ~ hauscmp . (Co...
hauscmp 21210 A compact subspace of a T2...
cmpfi 21211 If a topology is compact a...
cmpfii 21212 In a compact topology, a s...
bwth 21213 The glorious Bolzano-Weier...
isconn 21216 The predicate ` J ` is a c...
isconn2 21217 The predicate ` J ` is a c...
connclo 21218 The only nonempty clopen s...
conndisj 21219 If a topology is connected...
conntop 21220 A connected topology is a ...
indisconn 21221 The indiscrete topology (o...
dfconn2 21222 An alternate definition of...
connsuba 21223 Connectedness for a subspa...
connsub 21224 Two equivalent ways of say...
cnconn 21225 Connectedness is respected...
nconnsubb 21226 Disconnectedness for a sub...
connsubclo 21227 If a clopen set meets a co...
connima 21228 The image of a connected s...
conncn 21229 A continuous function from...
iunconnlem 21230 Lemma for ~ iunconn . (Co...
iunconn 21231 The indexed union of conne...
unconn 21232 The union of two connected...
clsconn 21233 The closure of a connected...
conncompid 21234 The connected component co...
conncompconn 21235 The connected component co...
conncompss 21236 The connected component co...
conncompcld 21237 The connected component co...
conncompclo 21238 The connected component co...
t1connperf 21239 A connected T_1 space is p...
is1stc 21244 The predicate "is a first-...
is1stc2 21245 An equivalent way of sayin...
1stctop 21246 A first-countable topology...
1stcclb 21247 A property of points in a ...
1stcfb 21248 For any point ` A ` in a f...
is2ndc 21249 The property of being seco...
2ndctop 21250 A second-countable topolog...
2ndci 21251 A countable basis generate...
2ndcsb 21252 Having a countable subbase...
2ndcredom 21253 A second-countable space h...
2ndc1stc 21254 A second-countable space i...
1stcrestlem 21255 Lemma for ~ 1stcrest . (C...
1stcrest 21256 A subspace of a first-coun...
2ndcrest 21257 A subspace of a second-cou...
2ndcctbss 21258 If a topology is second-co...
2ndcdisj 21259 Any disjoint family of ope...
2ndcdisj2 21260 Any disjoint collection of...
2ndcomap 21261 A surjective continuous op...
2ndcsep 21262 A second-countable topolog...
dis2ndc 21263 A discrete space is second...
1stcelcls 21264 A point belongs to the clo...
1stccnp 21265 A mapping is continuous at...
1stccn 21266 A mapping ` X --> Y ` , wh...
islly 21271 The property of being a lo...
isnlly 21272 The property of being an n...
llyeq 21273 Equality theorem for the `...
nllyeq 21274 Equality theorem for the `...
llytop 21275 A locally ` A ` space is a...
nllytop 21276 A locally ` A ` space is a...
llyi 21277 The property of a locally ...
nllyi 21278 The property of an n-local...
nlly2i 21279 Eliminate the neighborhood...
llynlly 21280 A locally ` A ` space is n...
llyssnlly 21281 A locally ` A ` space is n...
llyss 21282 The "locally" predicate re...
nllyss 21283 The "n-locally" predicate ...
subislly 21284 The property of a subspace...
restnlly 21285 If the property ` A ` pass...
restlly 21286 If the property ` A ` pass...
islly2 21287 An alternative expression ...
llyrest 21288 An open subspace of a loca...
nllyrest 21289 An open subspace of an n-l...
loclly 21290 If ` A ` is a local proper...
llyidm 21291 Idempotence of the "locall...
nllyidm 21292 Idempotence of the "n-loca...
toplly 21293 A topology is locally a to...
topnlly 21294 A topology is n-locally a ...
hauslly 21295 A Hausdorff space is local...
hausnlly 21296 A Hausdorff space is n-loc...
hausllycmp 21297 A compact Hausdorff space ...
cldllycmp 21298 A closed subspace of a loc...
lly1stc 21299 First-countability is a lo...
dislly 21300 The discrete space ` ~P X ...
disllycmp 21301 A discrete space is locall...
dis1stc 21302 A discrete space is first-...
hausmapdom 21303 If ` X ` is a first-counta...
hauspwdom 21304 Simplify the cardinal ` A ...
refrel 21311 Refinement is a relation. ...
isref 21312 The property of being a re...
refbas 21313 A refinement covers the sa...
refssex 21314 Every set in a refinement ...
ssref 21315 A subcover is a refinement...
refref 21316 Reflexivity of refinement....
reftr 21317 Refinement is transitive. ...
refun0 21318 Adding the empty set prese...
isptfin 21319 The statement "is a point-...
islocfin 21320 The statement "is a locall...
finptfin 21321 A finite cover is a point-...
ptfinfin 21322 A point covered by a point...
finlocfin 21323 A finite cover of a topolo...
locfintop 21324 A locally finite cover cov...
locfinbas 21325 A locally finite cover mus...
locfinnei 21326 A point covered by a local...
lfinpfin 21327 A locally finite cover is ...
lfinun 21328 Adding a finite set preser...
locfincmp 21329 For a compact space, the l...
unisngl 21330 Taking the union of the se...
dissnref 21331 The set of singletons is a...
dissnlocfin 21332 The set of singletons is l...
locfindis 21333 The locally finite covers ...
locfincf 21334 A locally finite cover in ...
comppfsc 21335 A space where every open c...
kgenval 21338 Value of the compact gener...
elkgen 21339 Value of the compact gener...
kgeni 21340 Property of the open sets ...
kgentopon 21341 The compact generator gene...
kgenuni 21342 The base set of the compac...
kgenftop 21343 The compact generator gene...
kgenf 21344 The compact generator is a...
kgentop 21345 A compactly generated spac...
kgenss 21346 The compact generator gene...
kgenhaus 21347 The compact generator gene...
kgencmp 21348 The compact generator topo...
kgencmp2 21349 The compact generator topo...
kgenidm 21350 The compact generator is i...
iskgen2 21351 A space is compactly gener...
iskgen3 21352 Derive the usual definitio...
llycmpkgen2 21353 A locally compact space is...
cmpkgen 21354 A compact space is compact...
llycmpkgen 21355 A locally compact space is...
1stckgenlem 21356 The one-point compactifica...
1stckgen 21357 A first-countable space is...
kgen2ss 21358 The compact generator pres...
kgencn 21359 A function from a compactl...
kgencn2 21360 A function ` F : J --> K `...
kgencn3 21361 The set of continuous func...
kgen2cn 21362 A continuous function is a...
txval 21367 Value of the binary topolo...
txuni2 21368 The underlying set of the ...
txbasex 21369 The basis for the product ...
txbas 21370 The set of Cartesian produ...
eltx 21371 A set in a product is open...
txtop 21372 The product of two topolog...
ptval 21373 The value of the product t...
ptpjpre1 21374 The preimage of a projecti...
elpt 21375 Elementhood in the bases o...
elptr 21376 A basic open set in the pr...
elptr2 21377 A basic open set in the pr...
ptbasid 21378 The base set of the produc...
ptuni2 21379 The base set for the produ...
ptbasin 21380 The basis for a product to...
ptbasin2 21381 The basis for a product to...
ptbas 21382 The basis for a product to...
ptpjpre2 21383 The basis for a product to...
ptbasfi 21384 The basis for the product ...
pttop 21385 The product topology is a ...
ptopn 21386 A basic open set in the pr...
ptopn2 21387 A sub-basic open set in th...
xkotf 21388 Functionality of function ...
xkobval 21389 Alternative expression for...
xkoval 21390 Value of the compact-open ...
xkotop 21391 The compact-open topology ...
xkoopn 21392 A basic open set of the co...
txtopi 21393 The product of two topolog...
txtopon 21394 The underlying set of the ...
txuni 21395 The underlying set of the ...
txunii 21396 The underlying set of the ...
ptuni 21397 The base set for the produ...
ptunimpt 21398 Base set of a product topo...
pttopon 21399 The base set for the produ...
pttoponconst 21400 The base set for a product...
ptuniconst 21401 The base set for a product...
xkouni 21402 The base set of the compac...
xkotopon 21403 The base set of the compac...
ptval2 21404 The value of the product t...
txopn 21405 The product of two open se...
txcld 21406 The product of two closed ...
txcls 21407 Closure of a rectangle in ...
txss12 21408 Subset property of the top...
txbasval 21409 It is sufficient to consid...
neitx 21410 The Cartesian product of t...
txcnpi 21411 Continuity of a two-argume...
tx1cn 21412 Continuity of the first pr...
tx2cn 21413 Continuity of the second p...
ptpjcn 21414 Continuity of a projection...
ptpjopn 21415 The projection map is an o...
ptcld 21416 A closed box in the produc...
ptcldmpt 21417 A closed box in the produc...
ptclsg 21418 The closure of a box in th...
ptcls 21419 The closure of a box in th...
dfac14lem 21420 Lemma for ~ dfac14 . By e...
dfac14 21421 Theorem ~ ptcls is an equi...
xkoccn 21422 The "constant function" fu...
txcnp 21423 If two functions are conti...
ptcnplem 21424 Lemma for ~ ptcnp . (Cont...
ptcnp 21425 If every projection of a f...
upxp 21426 Universal property of the ...
txcnmpt 21427 A map into the product of ...
uptx 21428 Universal property of the ...
txcn 21429 A map into the product of ...
ptcn 21430 If every projection of a f...
prdstopn 21431 Topology of a structure pr...
prdstps 21432 A structure product of top...
pwstps 21433 A structure product of top...
txrest 21434 The subspace of a topologi...
txdis 21435 The topological product of...
txindislem 21436 Lemma for ~ txindis . (Co...
txindis 21437 The topological product of...
txdis1cn 21438 A function is jointly cont...
txlly 21439 If the property ` A ` is p...
txnlly 21440 If the property ` A ` is p...
pthaus 21441 The product of a collectio...
ptrescn 21442 Restriction is a continuou...
txtube 21443 The "tube lemma". If ` X ...
txcmplem1 21444 Lemma for ~ txcmp . (Cont...
txcmplem2 21445 Lemma for ~ txcmp . (Cont...
txcmp 21446 The topological product of...
txcmpb 21447 The topological product of...
hausdiag 21448 A topology is Hausdorff if...
hauseqlcld 21449 In a Hausdorff topology, t...
txhaus 21450 The topological product of...
txlm 21451 Two sequences converge iff...
lmcn2 21452 The image of a convergent ...
tx1stc 21453 The topological product of...
tx2ndc 21454 The topological product of...
txkgen 21455 The topological product of...
xkohaus 21456 If the codomain space is H...
xkoptsub 21457 The compact-open topology ...
xkopt 21458 The compact-open topology ...
xkopjcn 21459 Continuity of a projection...
xkoco1cn 21460 If ` F ` is a continuous f...
xkoco2cn 21461 If ` F ` is a continuous f...
xkococnlem 21462 Continuity of the composit...
xkococn 21463 Continuity of the composit...
cnmptid 21464 The identity function is c...
cnmptc 21465 A constant function is con...
cnmpt11 21466 The composition of continu...
cnmpt11f 21467 The composition of continu...
cnmpt1t 21468 The composition of continu...
cnmpt12f 21469 The composition of continu...
cnmpt12 21470 The composition of continu...
cnmpt1st 21471 The projection onto the fi...
cnmpt2nd 21472 The projection onto the se...
cnmpt2c 21473 A constant function is con...
cnmpt21 21474 The composition of continu...
cnmpt21f 21475 The composition of continu...
cnmpt2t 21476 The composition of continu...
cnmpt22 21477 The composition of continu...
cnmpt22f 21478 The composition of continu...
cnmpt1res 21479 The restriction of a conti...
cnmpt2res 21480 The restriction of a conti...
cnmptcom 21481 The argument converse of a...
cnmptkc 21482 The curried first projecti...
cnmptkp 21483 The evaluation of the inne...
cnmptk1 21484 The composition of a curri...
cnmpt1k 21485 The composition of a one-a...
cnmptkk 21486 The composition of two cur...
xkofvcn 21487 Joint continuity of the fu...
cnmptk1p 21488 The evaluation of a currie...
cnmptk2 21489 The uncurrying of a currie...
xkoinjcn 21490 Continuity of "injection",...
cnmpt2k 21491 The currying of a two-argu...
txconn 21492 The topological product of...
imasnopn 21493 If a relation graph is ope...
imasncld 21494 If a relation graph is clo...
imasncls 21495 If a relation graph is clo...
qtopval 21498 Value of the quotient topo...
qtopval2 21499 Value of the quotient topo...
elqtop 21500 Value of the quotient topo...
qtopres 21501 The quotient topology is u...
qtoptop2 21502 The quotient topology is a...
qtoptop 21503 The quotient topology is a...
elqtop2 21504 Value of the quotient topo...
qtopuni 21505 The base set of the quotie...
elqtop3 21506 Value of the quotient topo...
qtoptopon 21507 The base set of the quotie...
qtopid 21508 A quotient map is a contin...
idqtop 21509 The quotient topology indu...
qtopcmplem 21510 Lemma for ~ qtopcmp and ~ ...
qtopcmp 21511 A quotient of a compact sp...
qtopconn 21512 A quotient of a connected ...
qtopkgen 21513 A quotient of a compactly ...
basqtop 21514 An injection maps bases to...
tgqtop 21515 An injection maps generate...
qtopcld 21516 The property of being a cl...
qtopcn 21517 Universal property of a qu...
qtopss 21518 A surjective continuous fu...
qtopeu 21519 Universal property of the ...
qtoprest 21520 If ` A ` is a saturated op...
qtopomap 21521 If ` F ` is a surjective c...
qtopcmap 21522 If ` F ` is a surjective c...
imastopn 21523 The topology of an image s...
imastps 21524 The image of a topological...
qustps 21525 A quotient structure is a ...
kqfval 21526 Value of the function appe...
kqfeq 21527 Two points in the Kolmogor...
kqffn 21528 The topological indistingu...
kqval 21529 Value of the quotient topo...
kqtopon 21530 The Kolmogorov quotient is...
kqid 21531 The topological indistingu...
ist0-4 21532 The topological indistingu...
kqfvima 21533 When the image set is open...
kqsat 21534 Any open set is saturated ...
kqdisj 21535 A version of ~ imain for t...
kqcldsat 21536 Any closed set is saturate...
kqopn 21537 The topological indistingu...
kqcld 21538 The topological indistingu...
kqt0lem 21539 Lemma for ~ kqt0 . (Contr...
isr0 21540 The property " ` J ` is an...
r0cld 21541 The analogue of the T_1 ax...
regr1lem 21542 Lemma for ~ regr1 . (Cont...
regr1lem2 21543 A Kolmogorov quotient of a...
kqreglem1 21544 A Kolmogorov quotient of a...
kqreglem2 21545 If the Kolmogorov quotient...
kqnrmlem1 21546 A Kolmogorov quotient of a...
kqnrmlem2 21547 If the Kolmogorov quotient...
kqtop 21548 The Kolmogorov quotient is...
kqt0 21549 The Kolmogorov quotient is...
kqf 21550 The Kolmogorov quotient is...
r0sep 21551 The separation property of...
nrmr0reg 21552 A normal R_0 space is also...
regr1 21553 A regular space is R_1, wh...
kqreg 21554 The Kolmogorov quotient of...
kqnrm 21555 The Kolmogorov quotient of...
hmeofn 21560 The set of homeomorphisms ...
hmeofval 21561 The set of all the homeomo...
ishmeo 21562 The predicate F is a homeo...
hmeocn 21563 A homeomorphism is continu...
hmeocnvcn 21564 The converse of a homeomor...
hmeocnv 21565 The converse of a homeomor...
hmeof1o2 21566 A homeomorphism is a 1-1-o...
hmeof1o 21567 A homeomorphism is a 1-1-o...
hmeoima 21568 The image of an open set b...
hmeoopn 21569 Homeomorphisms preserve op...
hmeocld 21570 Homeomorphisms preserve cl...
hmeocls 21571 Homeomorphisms preserve cl...
hmeontr 21572 Homeomorphisms preserve in...
hmeoimaf1o 21573 The function mapping open ...
hmeores 21574 The restriction of a homeo...
hmeoco 21575 The composite of two homeo...
idhmeo 21576 The identity function is a...
hmeocnvb 21577 The converse of a homeomor...
hmeoqtop 21578 A homeomorphism is a quoti...
hmph 21579 Express the predicate ` J ...
hmphi 21580 If there is a homeomorphis...
hmphtop 21581 Reverse closure for the ho...
hmphtop1 21582 The relation "being homeom...
hmphtop2 21583 The relation "being homeom...
hmphref 21584 "Is homeomorphic to" is re...
hmphsym 21585 "Is homeomorphic to" is sy...
hmphtr 21586 "Is homeomorphic to" is tr...
hmpher 21587 "Is homeomorphic to" is an...
hmphen 21588 Homeomorphisms preserve th...
hmphsymb 21589 "Is homeomorphic to" is sy...
haushmphlem 21590 Lemma for ~ haushmph and s...
cmphmph 21591 Compactness is a topologic...
connhmph 21592 Connectedness is a topolog...
t0hmph 21593 T_0 is a topological prope...
t1hmph 21594 T_1 is a topological prope...
haushmph 21595 Hausdorff-ness is a topolo...
reghmph 21596 Regularity is a topologica...
nrmhmph 21597 Normality is a topological...
hmph0 21598 A topology homeomorphic to...
hmphdis 21599 Homeomorphisms preserve to...
hmphindis 21600 Homeomorphisms preserve to...
indishmph 21601 Equinumerous sets equipped...
hmphen2 21602 Homeomorphisms preserve th...
cmphaushmeo 21603 A continuous bijection fro...
ordthmeolem 21604 Lemma for ~ ordthmeo . (C...
ordthmeo 21605 An order isomorphism is a ...
txhmeo 21606 Lift a pair of homeomorphi...
txswaphmeolem 21607 Show inverse for the "swap...
txswaphmeo 21608 There is a homeomorphism f...
pt1hmeo 21609 The canonical homeomorphis...
ptuncnv 21610 Exhibit the converse funct...
ptunhmeo 21611 Define a homeomorphism fro...
xpstopnlem1 21612 The function ` F ` used in...
xpstps 21613 A binary product of topolo...
xpstopnlem2 21614 Lemma for ~ xpstopn . (Co...
xpstopn 21615 The topology on a binary p...
ptcmpfi 21616 A topological product of f...
xkocnv 21617 The inverse of the "curryi...
xkohmeo 21618 The Exponential Law for to...
qtopf1 21619 If a quotient map is injec...
qtophmeo 21620 If two functions on a base...
t0kq 21621 A topological space is T_0...
kqhmph 21622 A topological space is T_0...
ist1-5lem 21623 Lemma for ~ ist1-5 and sim...
t1r0 21624 A T_1 space is R_0. That ...
ist1-5 21625 A topological space is T_1...
ishaus3 21626 A topological space is Hau...
nrmreg 21627 A normal T_1 space is regu...
reghaus 21628 A regular T_0 space is Hau...
nrmhaus 21629 A T_1 normal space is Haus...
elmptrab 21630 Membership in a one-parame...
elmptrab2OLD 21631 Obsolete version of ~ elmp...
elmptrab2 21632 Membership in a one-parame...
isfbas 21633 The predicate " ` F ` is a...
fbasne0 21634 There are no empty filter ...
0nelfb 21635 No filter base contains th...
fbsspw 21636 A filter base on a set is ...
fbelss 21637 An element of the filter b...
fbdmn0 21638 The domain of a filter bas...
isfbas2 21639 The predicate " ` F ` is a...
fbasssin 21640 A filter base contains sub...
fbssfi 21641 A filter base contains sub...
fbssint 21642 A filter base contains sub...
fbncp 21643 A filter base does not con...
fbun 21644 A necessary and sufficient...
fbfinnfr 21645 No filter base containing ...
opnfbas 21646 The collection of open sup...
trfbas2 21647 Conditions for the trace o...
trfbas 21648 Conditions for the trace o...
isfil 21651 The predicate "is a filter...
filfbas 21652 A filter is a filter base....
0nelfil 21653 The empty set doesn't belo...
fileln0 21654 An element of a filter is ...
filsspw 21655 A filter is a subset of th...
filelss 21656 An element of a filter is ...
filss 21657 A filter is closed under t...
filin 21658 A filter is closed under t...
filtop 21659 The underlying set belongs...
isfil2 21660 Derive the standard axioms...
isfildlem 21661 Lemma for ~ isfild . (Con...
isfild 21662 Sufficient condition for a...
filfi 21663 A filter is closed under t...
filinn0 21664 The intersection of two el...
filintn0 21665 A filter has the finite in...
filn0 21666 The empty set is not a fil...
infil 21667 The intersection of two fi...
snfil 21668 A singleton is a filter. ...
fbasweak 21669 A filter base on any set i...
snfbas 21670 Condition for a singleton ...
fsubbas 21671 A condition for a set to g...
fbasfip 21672 A filter base has the fini...
fbunfip 21673 A helpful lemma for showin...
fgval 21674 The filter generating clas...
elfg 21675 A condition for elements o...
ssfg 21676 A filter base is a subset ...
fgss 21677 A bigger base generates a ...
fgss2 21678 A condition for a filter t...
fgfil 21679 A filter generates itself....
elfilss 21680 An element belongs to a fi...
filfinnfr 21681 No filter containing a fin...
fgcl 21682 A generated filter is a fi...
fgabs 21683 Absorption law for filter ...
neifil 21684 The neighborhoods of a non...
filunibas 21685 Recover the base set from ...
filunirn 21686 Two ways to express a filt...
filconn 21687 A filter gives rise to a c...
fbasrn 21688 Given a filter on a domain...
filuni 21689 The union of a nonempty se...
trfil1 21690 Conditions for the trace o...
trfil2 21691 Conditions for the trace o...
trfil3 21692 Conditions for the trace o...
trfilss 21693 If ` A ` is a member of th...
fgtr 21694 If ` A ` is a member of th...
trfg 21695 The trace operation and th...
trnei 21696 The trace, over a set ` A ...
cfinfil 21697 Relative complements of th...
csdfil 21698 The set of all elements wh...
supfil 21699 The supersets of a nonempt...
zfbas 21700 The set of upper sets of i...
uzrest 21701 The restriction of the set...
uzfbas 21702 The set of upper sets of i...
isufil 21707 The property of being an u...
ufilfil 21708 An ultrafilter is a filter...
ufilss 21709 For any subset of the base...
ufilb 21710 The complement is in an ul...
ufilmax 21711 Any filter finer than an u...
isufil2 21712 The maximal property of an...
ufprim 21713 An ultrafilter is a prime ...
trufil 21714 Conditions for the trace o...
filssufilg 21715 A filter is contained in s...
filssufil 21716 A filter is contained in s...
isufl 21717 Define the (strong) ultraf...
ufli 21718 Property of a set that sat...
numufl 21719 Consequence of ~ filssufil...
fiufl 21720 A finite set satisfies the...
acufl 21721 The axiom of choice implie...
ssufl 21722 If ` Y ` is a subset of ` ...
ufileu 21723 If the ultrafilter contain...
filufint 21724 A filter is equal to the i...
uffix 21725 Lemma for ~ fixufil and ~ ...
fixufil 21726 The condition describing a...
uffixfr 21727 An ultrafilter is either f...
uffix2 21728 A classification of fixed ...
uffixsn 21729 The singleton of the gener...
ufildom1 21730 An ultrafilter is generate...
uffinfix 21731 An ultrafilter containing ...
cfinufil 21732 An ultrafilter is free iff...
ufinffr 21733 An infinite subset is cont...
ufilen 21734 Any infinite set has an ul...
ufildr 21735 An ultrafilter gives rise ...
fin1aufil 21736 There are no definable fre...
fmval 21747 Introduce a function that ...
fmfil 21748 A mapping filter is a filt...
fmf 21749 Pushing-forward via a func...
fmss 21750 A finer filter produces a ...
elfm 21751 An element of a mapping fi...
elfm2 21752 An element of a mapping fi...
fmfg 21753 The image filter of a filt...
elfm3 21754 An alternate formulation o...
imaelfm 21755 An image of a filter eleme...
rnelfmlem 21756 Lemma for ~ rnelfm . (Con...
rnelfm 21757 A condition for a filter t...
fmfnfmlem1 21758 Lemma for ~ fmfnfm . (Con...
fmfnfmlem2 21759 Lemma for ~ fmfnfm . (Con...
fmfnfmlem3 21760 Lemma for ~ fmfnfm . (Con...
fmfnfmlem4 21761 Lemma for ~ fmfnfm . (Con...
fmfnfm 21762 A filter finer than an ima...
fmufil 21763 An image filter of an ultr...
fmid 21764 The filter map applied to ...
fmco 21765 Composition of image filte...
ufldom 21766 The ultrafilter lemma prop...
flimval 21767 The set of limit points of...
elflim2 21768 The predicate "is a limit ...
flimtop 21769 Reverse closure for the li...
flimneiss 21770 A filter contains the neig...
flimnei 21771 A filter contains all of t...
flimelbas 21772 A limit point of a filter ...
flimfil 21773 Reverse closure for the li...
flimtopon 21774 Reverse closure for the li...
elflim 21775 The predicate "is a limit ...
flimss2 21776 A limit point of a filter ...
flimss1 21777 A limit point of a filter ...
neiflim 21778 A point is a limit point o...
flimopn 21779 The condition for being a ...
fbflim 21780 A condition for a filter t...
fbflim2 21781 A condition for a filter b...
flimclsi 21782 The convergent points of a...
hausflimlem 21783 If ` A ` and ` B ` are bot...
hausflimi 21784 One direction of ~ hausfli...
hausflim 21785 A condition for a topology...
flimcf 21786 Fineness is properly chara...
flimrest 21787 The set of limit points in...
flimclslem 21788 Lemma for ~ flimcls . (Co...
flimcls 21789 Closure in terms of filter...
flimsncls 21790 If ` A ` is a limit point ...
hauspwpwf1 21791 Lemma for ~ hauspwpwdom . ...
hauspwpwdom 21792 If ` X ` is a Hausdorff sp...
flffval 21793 Given a topology and a fil...
flfval 21794 Given a function from a fi...
flfnei 21795 The property of being a li...
flfneii 21796 A neighborhood of a limit ...
isflf 21797 The property of being a li...
flfelbas 21798 A limit point of a functio...
flffbas 21799 Limit points of a function...
flftg 21800 Limit points of a function...
hausflf 21801 If a function has its valu...
hausflf2 21802 If a convergent function h...
cnpflfi 21803 Forward direction of ~ cnp...
cnpflf2 21804 ` F ` is continuous at poi...
cnpflf 21805 Continuity of a function a...
cnflf 21806 A function is continuous i...
cnflf2 21807 A function is continuous i...
flfcnp 21808 A continuous function pres...
lmflf 21809 The topological limit rela...
txflf 21810 Two sequences converge in ...
flfcnp2 21811 The image of a convergent ...
fclsval 21812 The set of all cluster poi...
isfcls 21813 A cluster point of a filte...
fclsfil 21814 Reverse closure for the cl...
fclstop 21815 Reverse closure for the cl...
fclstopon 21816 Reverse closure for the cl...
isfcls2 21817 A cluster point of a filte...
fclsopn 21818 Write the cluster point co...
fclsopni 21819 An open neighborhood of a ...
fclselbas 21820 A cluster point is in the ...
fclsneii 21821 A neighborhood of a cluste...
fclssscls 21822 The set of cluster points ...
fclsnei 21823 Cluster points in terms of...
supnfcls 21824 The filter of supersets of...
fclsbas 21825 Cluster points in terms of...
fclsss1 21826 A finer topology has fewer...
fclsss2 21827 A finer filter has fewer c...
fclsrest 21828 The set of cluster points ...
fclscf 21829 Characterization of finene...
flimfcls 21830 A limit point is a cluster...
fclsfnflim 21831 A filter clusters at a poi...
flimfnfcls 21832 A filter converges to a po...
fclscmpi 21833 Forward direction of ~ fcl...
fclscmp 21834 A space is compact iff eve...
uffclsflim 21835 The cluster points of an u...
ufilcmp 21836 A space is compact iff eve...
fcfval 21837 The set of cluster points ...
isfcf 21838 The property of being a cl...
fcfnei 21839 The property of being a cl...
fcfelbas 21840 A cluster point of a funct...
fcfneii 21841 A neighborhood of a cluste...
flfssfcf 21842 A limit point of a functio...
uffcfflf 21843 If the domain filter is an...
cnpfcfi 21844 Lemma for ~ cnpfcf . If a...
cnpfcf 21845 A function ` F ` is contin...
cnfcf 21846 Continuity of a function i...
flfcntr 21847 A continuous function's va...
alexsublem 21848 Lemma for ~ alexsub . (Co...
alexsub 21849 The Alexander Subbase Theo...
alexsubb 21850 Biconditional form of the ...
alexsubALTlem1 21851 Lemma for ~ alexsubALT . ...
alexsubALTlem2 21852 Lemma for ~ alexsubALT . ...
alexsubALTlem3 21853 Lemma for ~ alexsubALT . ...
alexsubALTlem4 21854 Lemma for ~ alexsubALT . ...
alexsubALT 21855 The Alexander Subbase Theo...
ptcmplem1 21856 Lemma for ~ ptcmp . (Cont...
ptcmplem2 21857 Lemma for ~ ptcmp . (Cont...
ptcmplem3 21858 Lemma for ~ ptcmp . (Cont...
ptcmplem4 21859 Lemma for ~ ptcmp . (Cont...
ptcmplem5 21860 Lemma for ~ ptcmp . (Cont...
ptcmpg 21861 Tychonoff's theorem: The ...
ptcmp 21862 Tychonoff's theorem: The ...
cnextval 21865 The function applying cont...
cnextfval 21866 The continuous extension o...
cnextrel 21867 In the general case, a con...
cnextfun 21868 If the target space is Hau...
cnextfvval 21869 The value of the continuou...
cnextf 21870 Extension by continuity. ...
cnextcn 21871 Extension by continuity. ...
cnextfres1 21872 ` F ` and its extension by...
cnextfres 21873 ` F ` and its extension by...
istmd 21878 The predicate "is a topolo...
tmdmnd 21879 A topological monoid is a ...
tmdtps 21880 A topological monoid is a ...
istgp 21881 The predicate "is a topolo...
tgpgrp 21882 A topological group is a g...
tgptmd 21883 A topological group is a t...
tgptps 21884 A topological group is a t...
tmdtopon 21885 The topology of a topologi...
tgptopon 21886 The topology of a topologi...
tmdcn 21887 In a topological monoid, t...
tgpcn 21888 In a topological group, th...
tgpinv 21889 In a topological group, th...
grpinvhmeo 21890 The inverse function in a ...
cnmpt1plusg 21891 Continuity of the group su...
cnmpt2plusg 21892 Continuity of the group su...
tmdcn2 21893 Write out the definition o...
tgpsubcn 21894 In a topological group, th...
istgp2 21895 A group with a topology is...
tmdmulg 21896 In a topological monoid, t...
tgpmulg 21897 In a topological group, th...
tgpmulg2 21898 In a topological monoid, t...
tmdgsum 21899 In a topological monoid, t...
tmdgsum2 21900 For any neighborhood ` U `...
oppgtmd 21901 The opposite of a topologi...
oppgtgp 21902 The opposite of a topologi...
distgp 21903 Any group equipped with th...
indistgp 21904 Any group equipped with th...
symgtgp 21905 The symmetric group is a t...
tmdlactcn 21906 The left group action of e...
tgplacthmeo 21907 The left group action of e...
submtmd 21908 A submonoid of a topologic...
subgtgp 21909 A subgroup of a topologica...
subgntr 21910 A subgroup of a topologica...
opnsubg 21911 An open subgroup of a topo...
clssubg 21912 The closure of a subgroup ...
clsnsg 21913 The closure of a normal su...
cldsubg 21914 A subgroup of finite index...
tgpconncompeqg 21915 The connected component co...
tgpconncomp 21916 The identity component, th...
tgpconncompss 21917 The identity component is ...
ghmcnp 21918 A group homomorphism on to...
snclseqg 21919 The coset of the closure o...
tgphaus 21920 A topological group is Hau...
tgpt1 21921 Hausdorff and T1 are equiv...
tgpt0 21922 Hausdorff and T0 are equiv...
qustgpopn 21923 A quotient map in a topolo...
qustgplem 21924 Lemma for ~ qustgp . (Con...
qustgp 21925 The quotient of a topologi...
qustgphaus 21926 The quotient of a topologi...
prdstmdd 21927 The product of a family of...
prdstgpd 21928 The product of a family of...
tsmsfbas 21931 The collection of all sets...
tsmslem1 21932 The finite partial sums of...
tsmsval2 21933 Definition of the topologi...
tsmsval 21934 Definition of the topologi...
tsmspropd 21935 The group sum depends only...
eltsms 21936 The property of being a su...
tsmsi 21937 The property of being a su...
tsmscl 21938 A sum in a topological gro...
haustsms 21939 In a Hausdorff topological...
haustsms2 21940 In a Hausdorff topological...
tsmscls 21941 One half of ~ tgptsmscls ,...
tsmsgsum 21942 The convergent points of a...
tsmsid 21943 If a sum is finite, the us...
haustsmsid 21944 In a Hausdorff topological...
tsms0 21945 The sum of zero is zero. ...
tsmssubm 21946 Evaluate an infinite group...
tsmsres 21947 Extend an infinite group s...
tsmsf1o 21948 Re-index an infinite group...
tsmsmhm 21949 Apply a continuous group h...
tsmsadd 21950 The sum of two infinite gr...
tsmsinv 21951 Inverse of an infinite gro...
tsmssub 21952 The difference of two infi...
tgptsmscls 21953 A sum in a topological gro...
tgptsmscld 21954 The set of limit points to...
tsmssplit 21955 Split a topological group ...
tsmsxplem1 21956 Lemma for ~ tsmsxp . (Con...
tsmsxplem2 21957 Lemma for ~ tsmsxp . (Con...
tsmsxp 21958 Write a sum over a two-dim...
istrg 21967 Express the predicate " ` ...
trgtmd 21968 The multiplicative monoid ...
istdrg 21969 Express the predicate " ` ...
tdrgunit 21970 The unit group of a topolo...
trgtgp 21971 A topological ring is a to...
trgtmd2 21972 A topological ring is a to...
trgtps 21973 A topological ring is a to...
trgring 21974 A topological ring is a ri...
trggrp 21975 A topological ring is a gr...
tdrgtrg 21976 A topological division rin...
tdrgdrng 21977 A topological division rin...
tdrgring 21978 A topological division rin...
tdrgtmd 21979 A topological division rin...
tdrgtps 21980 A topological division rin...
istdrg2 21981 A topological-ring divisio...
mulrcn 21982 The functionalization of t...
invrcn2 21983 The multiplicative inverse...
invrcn 21984 The multiplicative inverse...
cnmpt1mulr 21985 Continuity of ring multipl...
cnmpt2mulr 21986 Continuity of ring multipl...
dvrcn 21987 The division function is c...
istlm 21988 The predicate " ` W ` is a...
vscacn 21989 The scalar multiplication ...
tlmtmd 21990 A topological module is a ...
tlmtps 21991 A topological module is a ...
tlmlmod 21992 A topological module is a ...
tlmtrg 21993 The scalar ring of a topol...
tlmscatps 21994 The scalar ring of a topol...
istvc 21995 A topological vector space...
tvctdrg 21996 The scalar field of a topo...
cnmpt1vsca 21997 Continuity of scalar multi...
cnmpt2vsca 21998 Continuity of scalar multi...
tlmtgp 21999 A topological vector space...
tvctlm 22000 A topological vector space...
tvclmod 22001 A topological vector space...
tvclvec 22002 A topological vector space...
ustfn 22005 The defined uniform struct...
ustval 22006 The class of all uniform s...
isust 22007 The predicate " ` U ` is a...
ustssxp 22008 Entourages are subsets of ...
ustssel 22009 A uniform structure is upw...
ustbasel 22010 The full set is always an ...
ustincl 22011 A uniform structure is clo...
ustdiag 22012 The diagonal set is includ...
ustinvel 22013 If ` V ` is an entourage, ...
ustexhalf 22014 For each entourage ` V ` t...
ustrel 22015 The elements of uniform st...
ustfilxp 22016 A uniform structure on a n...
ustne0 22017 A uniform structure cannot...
ustssco 22018 In an uniform structure, a...
ustexsym 22019 In an uniform structure, f...
ustex2sym 22020 In an uniform structure, f...
ustex3sym 22021 In an uniform structure, f...
ustref 22022 Any element of the base se...
ust0 22023 The unique uniform structu...
ustn0 22024 The empty set is not an un...
ustund 22025 If two intersecting sets `...
ustelimasn 22026 Any point ` A ` is near en...
ustneism 22027 For a point ` A ` in ` X `...
elrnust 22028 First direction for ~ ustb...
ustbas2 22029 Second direction for ~ ust...
ustuni 22030 The set union of a uniform...
ustbas 22031 Recover the base of an uni...
ustimasn 22032 Lemma for ~ ustuqtop . (C...
trust 22033 The trace of a uniform str...
utopval 22036 The topology induced by a ...
elutop 22037 Open sets in the topology ...
utoptop 22038 The topology induced by a ...
utopbas 22039 The base of the topology i...
utoptopon 22040 Topology induced by a unif...
restutop 22041 Restriction of a topology ...
restutopopn 22042 The restriction of the top...
ustuqtoplem 22043 Lemma for ~ ustuqtop . (C...
ustuqtop0 22044 Lemma for ~ ustuqtop . (C...
ustuqtop1 22045 Lemma for ~ ustuqtop , sim...
ustuqtop2 22046 Lemma for ~ ustuqtop . (C...
ustuqtop3 22047 Lemma for ~ ustuqtop , sim...
ustuqtop4 22048 Lemma for ~ ustuqtop . (C...
ustuqtop5 22049 Lemma for ~ ustuqtop . (C...
ustuqtop 22050 For a given uniform struct...
utopsnneiplem 22051 The neighborhoods of a poi...
utopsnneip 22052 The neighborhoods of a poi...
utopsnnei 22053 Images of singletons by en...
utop2nei 22054 For any symmetrical entour...
utop3cls 22055 Relation between a topolog...
utopreg 22056 All Hausdorff uniform spac...
ussval 22063 The uniform structure on u...
ussid 22064 In case the base of the ` ...
isusp 22065 The predicate ` W ` is a u...
ressunif 22066 ` UnifSet ` is unaffected ...
ressuss 22067 Value of the uniform struc...
ressust 22068 The uniform structure of a...
ressusp 22069 The restriction of a unifo...
tusval 22070 The value of the uniform s...
tuslem 22071 Lemma for ~ tusbas , ~ tus...
tusbas 22072 The base set of a construc...
tusunif 22073 The uniform structure of a...
tususs 22074 The uniform structure of a...
tustopn 22075 The topology induced by a ...
tususp 22076 A constructed uniform spac...
tustps 22077 A constructed uniform spac...
uspreg 22078 If a uniform space is Haus...
ucnval 22081 The set of all uniformly c...
isucn 22082 The predicate " ` F ` is a...
isucn2 22083 The predicate " ` F ` is a...
ucnimalem 22084 Reformulate the ` G ` func...
ucnima 22085 An equivalent statement of...
ucnprima 22086 The preimage by a uniforml...
iducn 22087 The identity is uniformly ...
cstucnd 22088 A constant function is uni...
ucncn 22089 Uniform continuity implies...
iscfilu 22092 The predicate " ` F ` is a...
cfilufbas 22093 A Cauchy filter base is a ...
cfiluexsm 22094 For a Cauchy filter base a...
fmucndlem 22095 Lemma for ~ fmucnd . (Con...
fmucnd 22096 The image of a Cauchy filt...
cfilufg 22097 The filter generated by a ...
trcfilu 22098 Condition for the trace of...
cfiluweak 22099 A Cauchy filter base is al...
neipcfilu 22100 In an uniform space, a nei...
iscusp 22103 The predicate " ` W ` is a...
cuspusp 22104 A complete uniform space i...
cuspcvg 22105 In a complete uniform spac...
iscusp2 22106 The predicate " ` W ` is a...
cnextucn 22107 Extension by continuity. ...
ucnextcn 22108 Extension by continuity. ...
ispsmet 22109 Express the predicate " ` ...
psmetdmdm 22110 Recover the base set from ...
psmetf 22111 The distance function of a...
psmetcl 22112 Closure of the distance fu...
psmet0 22113 The distance function of a...
psmettri2 22114 Triangle inequality for th...
psmetsym 22115 The distance function of a...
psmettri 22116 Triangle inequality for th...
psmetge0 22117 The distance function of a...
psmetxrge0 22118 The distance function of a...
psmetres2 22119 Restriction of a pseudomet...
psmetlecl 22120 Real closure of an extende...
distspace 22121 A structure ` G ` with a d...
ismet 22128 Express the predicate " ` ...
isxmet 22129 Express the predicate " ` ...
ismeti 22130 Properties that determine ...
isxmetd 22131 Properties that determine ...
isxmet2d 22132 It is safe to only require...
metflem 22133 Lemma for ~ metf and other...
xmetf 22134 Mapping of the distance fu...
metf 22135 Mapping of the distance fu...
xmetcl 22136 Closure of the distance fu...
metcl 22137 Closure of the distance fu...
ismet2 22138 An extended metric is a me...
metxmet 22139 A metric is an extended me...
xmetdmdm 22140 Recover the base set from ...
metdmdm 22141 Recover the base set from ...
xmetunirn 22142 Two ways to express an ext...
xmeteq0 22143 The value of an extended m...
meteq0 22144 The value of a metric is z...
xmettri2 22145 Triangle inequality for th...
mettri2 22146 Triangle inequality for th...
xmet0 22147 The distance function of a...
met0 22148 The distance function of a...
xmetge0 22149 The distance function of a...
metge0 22150 The distance function of a...
xmetlecl 22151 Real closure of an extende...
xmetsym 22152 The distance function of a...
xmetpsmet 22153 An extended metric is a ps...
xmettpos 22154 The distance function of a...
metsym 22155 The distance function of a...
xmettri 22156 Triangle inequality for th...
mettri 22157 Triangle inequality for th...
xmettri3 22158 Triangle inequality for th...
mettri3 22159 Triangle inequality for th...
xmetrtri 22160 One half of the reverse tr...
xmetrtri2 22161 The reverse triangle inequ...
metrtri 22162 Reverse triangle inequalit...
xmetgt0 22163 The distance function of a...
metgt0 22164 The distance function of a...
metn0 22165 A metric space is nonempty...
xmetres2 22166 Restriction of an extended...
metreslem 22167 Lemma for ~ metres . (Con...
metres2 22168 Lemma for ~ metres . (Con...
xmetres 22169 A restriction of an extend...
metres 22170 A restriction of a metric ...
0met 22171 The empty metric. (Contri...
prdsdsf 22172 The product metric is a fu...
prdsxmetlem 22173 The product metric is an e...
prdsxmet 22174 The product metric is an e...
prdsmet 22175 The product metric is a me...
ressprdsds 22176 Restriction of a product m...
resspwsds 22177 Restriction of a product m...
imasdsf1olem 22178 Lemma for ~ imasdsf1o . (...
imasdsf1o 22179 The distance function is t...
imasf1oxmet 22180 The image of an extended m...
imasf1omet 22181 The image of a metric is a...
xpsdsfn 22182 Closure of the metric in a...
xpsdsfn2 22183 Closure of the metric in a...
xpsxmetlem 22184 Lemma for ~ xpsxmet . (Co...
xpsxmet 22185 A product metric of extend...
xpsdsval 22186 Value of the metric in a b...
xpsmet 22187 The direct product of two ...
blfvalps 22188 The value of the ball func...
blfval 22189 The value of the ball func...
blvalps 22190 The ball around a point ` ...
blval 22191 The ball around a point ` ...
elblps 22192 Membership in a ball. (Co...
elbl 22193 Membership in a ball. (Co...
elbl2ps 22194 Membership in a ball. (Co...
elbl2 22195 Membership in a ball. (Co...
elbl3ps 22196 Membership in a ball, with...
elbl3 22197 Membership in a ball, with...
blcomps 22198 Commute the arguments to t...
blcom 22199 Commute the arguments to t...
xblpnfps 22200 The infinity ball in an ex...
xblpnf 22201 The infinity ball in an ex...
blpnf 22202 The infinity ball in a sta...
bldisj 22203 Two balls are disjoint if ...
blgt0 22204 A nonempty ball implies th...
bl2in 22205 Two balls are disjoint if ...
xblss2ps 22206 One ball is contained in a...
xblss2 22207 One ball is contained in a...
blss2ps 22208 One ball is contained in a...
blss2 22209 One ball is contained in a...
blhalf 22210 A ball of radius ` R / 2 `...
blfps 22211 Mapping of a ball. (Contr...
blf 22212 Mapping of a ball. (Contr...
blrnps 22213 Membership in the range of...
blrn 22214 Membership in the range of...
xblcntrps 22215 A ball contains its center...
xblcntr 22216 A ball contains its center...
blcntrps 22217 A ball contains its center...
blcntr 22218 A ball contains its center...
xbln0 22219 A ball is nonempty iff the...
bln0 22220 A ball is not empty. (Con...
blelrnps 22221 A ball belongs to the set ...
blelrn 22222 A ball belongs to the set ...
blssm 22223 A ball is a subset of the ...
unirnblps 22224 The union of the set of ba...
unirnbl 22225 The union of the set of ba...
blin 22226 The intersection of two ba...
ssblps 22227 The size of a ball increas...
ssbl 22228 The size of a ball increas...
blssps 22229 Any point ` P ` in a ball ...
blss 22230 Any point ` P ` in a ball ...
blssexps 22231 Two ways to express the ex...
blssex 22232 Two ways to express the ex...
ssblex 22233 A nested ball exists whose...
blin2 22234 Given any two balls and a ...
blbas 22235 The balls of a metric spac...
blres 22236 A ball in a restricted met...
xmeterval 22237 Value of the "finitely sep...
xmeter 22238 The "finitely separated" r...
xmetec 22239 The equivalence classes un...
blssec 22240 A ball centered at ` P ` i...
blpnfctr 22241 The infinity ball in an ex...
xmetresbl 22242 An extended metric restric...
mopnval 22243 An open set is a subset of...
mopntopon 22244 The set of open sets of a ...
mopntop 22245 The set of open sets of a ...
mopnuni 22246 The union of all open sets...
elmopn 22247 The defining property of a...
mopnfss 22248 The family of open sets of...
mopnm 22249 The base set of a metric s...
elmopn2 22250 A defining property of an ...
mopnss 22251 An open set of a metric sp...
isxms 22252 Express the predicate " ` ...
isxms2 22253 Express the predicate " ` ...
isms 22254 Express the predicate " ` ...
isms2 22255 Express the predicate " ` ...
xmstopn 22256 The topology component of ...
mstopn 22257 The topology component of ...
xmstps 22258 A metric space is a topolo...
msxms 22259 A metric space is a topolo...
mstps 22260 A metric space is a topolo...
xmsxmet 22261 The distance function, sui...
msmet 22262 The distance function, sui...
msf 22263 Mapping of the distance fu...
xmsxmet2 22264 The distance function, sui...
msmet2 22265 The distance function, sui...
mscl 22266 Closure of the distance fu...
xmscl 22267 Closure of the distance fu...
xmsge0 22268 The distance function in a...
xmseq0 22269 The distance function in a...
xmssym 22270 The distance function in a...
xmstri2 22271 Triangle inequality for th...
mstri2 22272 Triangle inequality for th...
xmstri 22273 Triangle inequality for th...
mstri 22274 Triangle inequality for th...
xmstri3 22275 Triangle inequality for th...
mstri3 22276 Triangle inequality for th...
msrtri 22277 Reverse triangle inequalit...
xmspropd 22278 Property deduction for an ...
mspropd 22279 Property deduction for a m...
setsmsbas 22280 The base set of a construc...
setsmsds 22281 The distance function of a...
setsmstset 22282 The topology of a construc...
setsmstopn 22283 The topology of a construc...
setsxms 22284 The constructed metric spa...
setsms 22285 The constructed metric spa...
tmsval 22286 For any metric there is an...
tmslem 22287 Lemma for ~ tmsbas , ~ tms...
tmsbas 22288 The base set of a construc...
tmsds 22289 The metric of a constructe...
tmstopn 22290 The topology of a construc...
tmsxms 22291 The constructed metric spa...
tmsms 22292 The constructed metric spa...
imasf1obl 22293 The image of a metric spac...
imasf1oxms 22294 The image of a metric spac...
imasf1oms 22295 The image of a metric spac...
prdsbl 22296 A ball in the product metr...
mopni 22297 An open set of a metric sp...
mopni2 22298 An open set of a metric sp...
mopni3 22299 An open set of a metric sp...
blssopn 22300 The balls of a metric spac...
unimopn 22301 The union of a collection ...
mopnin 22302 The intersection of two op...
mopn0 22303 The empty set is an open s...
rnblopn 22304 A ball of a metric space i...
blopn 22305 A ball of a metric space i...
neibl 22306 The neighborhoods around a...
blnei 22307 A ball around a point is a...
lpbl 22308 Every ball around a limit ...
blsscls2 22309 A smaller closed ball is c...
blcld 22310 A "closed ball" in a metri...
blcls 22311 The closure of an open bal...
blsscls 22312 If two concentric balls ha...
metss 22313 Two ways of saying that me...
metequiv 22314 Two ways of saying that tw...
metequiv2 22315 If there is a sequence of ...
metss2lem 22316 Lemma for ~ metss2 . (Con...
metss2 22317 If the metric ` D ` is "st...
comet 22318 The composition of an exte...
stdbdmetval 22319 Value of the standard boun...
stdbdxmet 22320 The standard bounded metri...
stdbdmet 22321 The standard bounded metri...
stdbdbl 22322 The standard bounded metri...
stdbdmopn 22323 The standard bounded metri...
mopnex 22324 The topology generated by ...
methaus 22325 The topology generated by ...
met1stc 22326 The topology generated by ...
met2ndci 22327 A separable metric space (...
met2ndc 22328 A metric space is second-c...
metrest 22329 Two alternate formulations...
ressxms 22330 The restriction of a metri...
ressms 22331 The restriction of a metri...
prdsmslem1 22332 Lemma for ~ prdsms . The ...
prdsxmslem1 22333 Lemma for ~ prdsms . The ...
prdsxmslem2 22334 Lemma for ~ prdsxms . The...
prdsxms 22335 The indexed product struct...
prdsms 22336 The indexed product struct...
pwsxms 22337 The product of a finite fa...
pwsms 22338 The product of a finite fa...
xpsxms 22339 A binary product of metric...
xpsms 22340 A binary product of metric...
tmsxps 22341 Express the product of two...
tmsxpsmopn 22342 Express the product of two...
tmsxpsval 22343 Value of the product of tw...
tmsxpsval2 22344 Value of the product of tw...
metcnp3 22345 Two ways to express that `...
metcnp 22346 Two ways to say a mapping ...
metcnp2 22347 Two ways to say a mapping ...
metcn 22348 Two ways to say a mapping ...
metcnpi 22349 Epsilon-delta property of ...
metcnpi2 22350 Epsilon-delta property of ...
metcnpi3 22351 Epsilon-delta property of ...
txmetcnp 22352 Continuity of a binary ope...
txmetcn 22353 Continuity of a binary ope...
metuval 22354 Value of the uniform struc...
metustel 22355 Define a filter base ` F `...
metustss 22356 Range of the elements of t...
metustrel 22357 Elements of the filter bas...
metustto 22358 Any two elements of the fi...
metustid 22359 The identity diagonal is i...
metustsym 22360 Elements of the filter bas...
metustexhalf 22361 For any element ` A ` of t...
metustfbas 22362 The filter base generated ...
metust 22363 The uniform structure gene...
cfilucfil 22364 Given a metric ` D ` and a...
metuust 22365 The uniform structure gene...
cfilucfil2 22366 Given a metric ` D ` and a...
blval2 22367 The ball around a point ` ...
elbl4 22368 Membership in a ball, alte...
metuel 22369 Elementhood in the uniform...
metuel2 22370 Elementhood in the uniform...
metustbl 22371 The "section" image of an ...
psmetutop 22372 The topology induced by a ...
xmetutop 22373 The topology induced by a ...
xmsusp 22374 If the uniform set of a me...
restmetu 22375 The uniform structure gene...
metucn 22376 Uniform continuity in metr...
dscmet 22377 The discrete metric on any...
dscopn 22378 The discrete metric genera...
nrmmetd 22379 Show that a group norm gen...
abvmet 22380 An absolute value ` F ` ge...
nmfval 22393 The value of the norm func...
nmval 22394 The value of the norm func...
nmfval2 22395 The value of the norm func...
nmval2 22396 The value of the norm func...
nmf2 22397 The norm is a function fro...
nmpropd 22398 Weak property deduction fo...
nmpropd2 22399 Strong property deduction ...
isngp 22400 The property of being a no...
isngp2 22401 The property of being a no...
isngp3 22402 The property of being a no...
ngpgrp 22403 A normed group is a group....
ngpms 22404 A normed group is a metric...
ngpxms 22405 A normed group is a metric...
ngptps 22406 A normed group is a topolo...
ngpmet 22407 The (induced) metric of a ...
ngpds 22408 Value of the distance func...
ngpdsr 22409 Value of the distance func...
ngpds2 22410 Write the distance between...
ngpds2r 22411 Write the distance between...
ngpds3 22412 Write the distance between...
ngpds3r 22413 Write the distance between...
ngprcan 22414 Cancel right addition insi...
ngplcan 22415 Cancel left addition insid...
isngp4 22416 Express the property of be...
ngpinvds 22417 Two elements are the same ...
ngpsubcan 22418 Cancel right subtraction i...
nmf 22419 The norm on a normed group...
nmcl 22420 The norm of a normed group...
nmge0 22421 The norm of a normed group...
nmeq0 22422 The identity is the only e...
nmne0 22423 The norm of a nonzero elem...
nmrpcl 22424 The norm of a nonzero elem...
nminv 22425 The norm of a negated elem...
nmmtri 22426 The triangle inequality fo...
nmsub 22427 The norm of the difference...
nmrtri 22428 Reverse triangle inequalit...
nm2dif 22429 Inequality for the differe...
nmtri 22430 The triangle inequality fo...
nmtri2 22431 Triangle inequality for th...
ngpi 22432 The properties of a normed...
nm0 22433 Norm of the identity eleme...
nmgt0 22434 The norm of a nonzero elem...
sgrim 22435 The induced metric on a su...
sgrimval 22436 The induced metric on a su...
subgnm 22437 The norm in a subgroup. (...
subgnm2 22438 A substructure assigns the...
subgngp 22439 A normed group restricted ...
ngptgp 22440 A normed abelian group is ...
ngppropd 22441 Property deduction for a n...
reldmtng 22442 The function ` toNrmGrp ` ...
tngval 22443 Value of the function whic...
tnglem 22444 Lemma for ~ tngbas and sim...
tngbas 22445 The base set of a structur...
tngplusg 22446 The group addition of a st...
tng0 22447 The group identity of a st...
tngmulr 22448 The ring multiplication of...
tngsca 22449 The scalar ring of a struc...
tngvsca 22450 The scalar multiplication ...
tngip 22451 The inner product operatio...
tngds 22452 The metric function of a s...
tngtset 22453 The topology generated by ...
tngtopn 22454 The topology generated by ...
tngnm 22455 The topology generated by ...
tngngp2 22456 A norm turns a group into ...
tngngpd 22457 Derive the axioms for a no...
tngngp 22458 Derive the axioms for a no...
tnggrpr 22459 If a structure equipped wi...
tngngp3 22460 Alternate definition of a ...
nrmtngdist 22461 The augmentation of a norm...
nrmtngnrm 22462 The augmentation of a norm...
tngngpim 22463 The induced metric of a no...
isnrg 22464 A normed ring is a ring wi...
nrgabv 22465 The norm of a normed ring ...
nrgngp 22466 A normed ring is a normed ...
nrgring 22467 A normed ring is a ring. ...
nmmul 22468 The norm of a product in a...
nrgdsdi 22469 Distribute a distance calc...
nrgdsdir 22470 Distribute a distance calc...
nm1 22471 The norm of one in a nonze...
unitnmn0 22472 The norm of a unit is nonz...
nminvr 22473 The norm of an inverse in ...
nmdvr 22474 The norm of a division in ...
nrgdomn 22475 A nonzero normed ring is a...
nrgtgp 22476 A normed ring is a topolog...
subrgnrg 22477 A normed ring restricted t...
tngnrg 22478 Given any absolute value o...
isnlm 22479 A normed (left) module is ...
nmvs 22480 Defining property of a nor...
nlmngp 22481 A normed module is a norme...
nlmlmod 22482 A normed module is a left ...
nlmnrg 22483 The scalar component of a ...
nlmngp2 22484 The scalar component of a ...
nlmdsdi 22485 Distribute a distance calc...
nlmdsdir 22486 Distribute a distance calc...
nlmmul0or 22487 If a scalar product is zer...
sranlm 22488 The subring algebra over a...
nlmvscnlem2 22489 Lemma for ~ nlmvscn . Com...
nlmvscnlem1 22490 Lemma for ~ nlmvscn . (Co...
nlmvscn 22491 The scalar multiplication ...
rlmnlm 22492 The ring module over a nor...
rlmnm 22493 The norm function in the r...
nrgtrg 22494 A normed ring is a topolog...
nrginvrcnlem 22495 Lemma for ~ nrginvrcn . C...
nrginvrcn 22496 The ring inverse function ...
nrgtdrg 22497 A normed division ring is ...
nlmtlm 22498 A normed module is a topol...
isnvc 22499 A normed vector space is j...
nvcnlm 22500 A normed vector space is a...
nvclvec 22501 A normed vector space is a...
nvclmod 22502 A normed vector space is a...
isnvc2 22503 A normed vector space is j...
nvctvc 22504 A normed vector space is a...
lssnlm 22505 A subspace of a normed mod...
lssnvc 22506 A subspace of a normed vec...
rlmnvc 22507 The ring module over a nor...
ngpocelbl 22508 Membership of an off-cente...
nmoffn 22515 The function producing ope...
reldmnghm 22516 Lemma for normed group hom...
reldmnmhm 22517 Lemma for module homomorph...
nmofval 22518 Value of the operator norm...
nmoval 22519 Value of the operator norm...
nmogelb 22520 Property of the operator n...
nmolb 22521 Any upper bound on the val...
nmolb2d 22522 Any upper bound on the val...
nmof 22523 The operator norm is a fun...
nmocl 22524 The operator norm of an op...
nmoge0 22525 The operator norm of an op...
nghmfval 22526 A normed group homomorphis...
isnghm 22527 A normed group homomorphis...
isnghm2 22528 A normed group homomorphis...
isnghm3 22529 A normed group homomorphis...
bddnghm 22530 A bounded group homomorphi...
nghmcl 22531 A normed group homomorphis...
nmoi 22532 The operator norm achieves...
nmoix 22533 The operator norm is a bou...
nmoi2 22534 The operator norm is a bou...
nmoleub 22535 The operator norm, defined...
nghmrcl1 22536 Reverse closure for a norm...
nghmrcl2 22537 Reverse closure for a norm...
nghmghm 22538 A normed group homomorphis...
nmo0 22539 The operator norm of the z...
nmoeq0 22540 The operator norm is zero ...
nmoco 22541 An upper bound on the oper...
nghmco 22542 The composition of normed ...
nmotri 22543 Triangle inequality for th...
nghmplusg 22544 The sum of two bounded lin...
0nghm 22545 The zero operator is a nor...
nmoid 22546 The operator norm of the i...
idnghm 22547 The identity operator is a...
nmods 22548 Upper bound for the distan...
nghmcn 22549 A normed group homomorphis...
isnmhm 22550 A normed module homomorphi...
nmhmrcl1 22551 Reverse closure for a norm...
nmhmrcl2 22552 Reverse closure for a norm...
nmhmlmhm 22553 A normed module homomorphi...
nmhmnghm 22554 A normed module homomorphi...
nmhmghm 22555 A normed module homomorphi...
isnmhm2 22556 A normed module homomorphi...
nmhmcl 22557 A normed module homomorphi...
idnmhm 22558 The identity operator is a...
0nmhm 22559 The zero operator is a bou...
nmhmco 22560 The composition of bounded...
nmhmplusg 22561 The sum of two bounded lin...
qtopbaslem 22562 The set of open intervals ...
qtopbas 22563 The set of open intervals ...
retopbas 22564 A basis for the standard t...
retop 22565 The standard topology on t...
uniretop 22566 The underlying set of the ...
retopon 22567 The standard topology on t...
retps 22568 The standard topological s...
iooretop 22569 Open intervals are open se...
icccld 22570 Closed intervals are close...
icopnfcld 22571 Right-unbounded closed int...
iocmnfcld 22572 Left-unbounded closed inte...
qdensere 22573 ` QQ ` is dense in the sta...
cnmetdval 22574 Value of the distance func...
cnmet 22575 The absolute value metric ...
cnxmet 22576 The absolute value metric ...
cnbl0 22577 Two ways to write the open...
cnblcld 22578 Two ways to write the clos...
cnfldms 22579 The complex number field i...
cnfldxms 22580 The complex number field i...
cnfldtps 22581 The complex number field i...
cnfldnm 22582 The norm of the field of c...
cnngp 22583 The complex numbers form a...
cnnrg 22584 The complex numbers form a...
cnfldtopn 22585 The topology of the comple...
cnfldtopon 22586 The topology of the comple...
cnfldtop 22587 The topology of the comple...
cnfldhaus 22588 The topology of the comple...
unicntop 22589 The underlying set of the ...
cnopn 22590 The set of complex numbers...
zringnrg 22591 The ring of integers is a ...
remetdval 22592 Value of the distance func...
remet 22593 The absolute value metric ...
rexmet 22594 The absolute value metric ...
bl2ioo 22595 A ball in terms of an open...
ioo2bl 22596 An open interval of reals ...
ioo2blex 22597 An open interval of reals ...
blssioo 22598 The balls of the standard ...
tgioo 22599 The topology generated by ...
qdensere2 22600 ` QQ ` is dense in ` RR ` ...
blcvx 22601 An open ball in the comple...
rehaus 22602 The standard topology on t...
tgqioo 22603 The topology generated by ...
re2ndc 22604 The standard topology on t...
resubmet 22605 The subspace topology indu...
tgioo2 22606 The standard topology on t...
rerest 22607 The subspace topology indu...
tgioo3 22608 The standard topology on t...
xrtgioo 22609 The topology on the extend...
xrrest 22610 The subspace topology indu...
xrrest2 22611 The subspace topology indu...
xrsxmet 22612 The metric on the extended...
xrsdsre 22613 The metric on the extended...
xrsblre 22614 Any ball of the metric of ...
xrsmopn 22615 The metric on the extended...
zcld 22616 The integers are a closed ...
recld2 22617 The real numbers are a clo...
zcld2 22618 The integers are a closed ...
zdis 22619 The integers are a discret...
sszcld 22620 Every subset of the intege...
reperflem 22621 A subset of the real numbe...
reperf 22622 The real numbers are a per...
cnperf 22623 The complex numbers are a ...
iccntr 22624 The interior of a closed i...
icccmplem1 22625 Lemma for ~ icccmp . (Con...
icccmplem2 22626 Lemma for ~ icccmp . (Con...
icccmplem3 22627 Lemma for ~ icccmp . (Con...
icccmp 22628 A closed interval in ` RR ...
reconnlem1 22629 Lemma for ~ reconn . Conn...
reconnlem2 22630 Lemma for ~ reconn . (Con...
reconn 22631 A subset of the reals is c...
retopconn 22632 Corollary of ~ reconn . T...
iccconn 22633 A closed interval is conne...
opnreen 22634 Every nonempty open set is...
rectbntr0 22635 A countable subset of the ...
xrge0gsumle 22636 A finite sum in the nonneg...
xrge0tsms 22637 Any finite or infinite sum...
xrge0tsms2 22638 Any finite or infinite sum...
metdcnlem 22639 The metric function of a m...
xmetdcn2 22640 The metric function of an ...
xmetdcn 22641 The metric function of an ...
metdcn2 22642 The metric function of a m...
metdcn 22643 The metric function of a m...
msdcn 22644 The metric function of a m...
cnmpt1ds 22645 Continuity of the metric f...
cnmpt2ds 22646 Continuity of the metric f...
nmcn 22647 The norm of a normed group...
ngnmcncn 22648 The norm of a normed group...
abscn 22649 The absolute value functio...
metdsval 22650 Value of the "distance to ...
metdsf 22651 The distance from a point ...
metdsge 22652 The distance from the poin...
metds0 22653 If a point is in a set, it...
metdstri 22654 A generalization of the tr...
metdsle 22655 The distance from a point ...
metdsre 22656 The distance from a point ...
metdseq0 22657 The distance from a point ...
metdscnlem 22658 Lemma for ~ metdscn . (Co...
metdscn 22659 The function ` F ` which g...
metdscn2 22660 The function ` F ` which g...
metnrmlem1a 22661 Lemma for ~ metnrm . (Con...
metnrmlem1 22662 Lemma for ~ metnrm . (Con...
metnrmlem2 22663 Lemma for ~ metnrm . (Con...
metnrmlem3 22664 Lemma for ~ metnrm . (Con...
metnrm 22665 A metric space is normal. ...
metreg 22666 A metric space is regular....
addcnlem 22667 Lemma for ~ addcn , ~ subc...
addcn 22668 Complex number addition is...
subcn 22669 Complex number subtraction...
mulcn 22670 Complex number multiplicat...
divcn 22671 Complex number division is...
cnfldtgp 22672 The complex numbers form a...
fsumcn 22673 A finite sum of functions ...
fsum2cn 22674 Version of ~ fsumcn for tw...
expcn 22675 The power function on comp...
divccn 22676 Division by a nonzero cons...
sqcn 22677 The square function on com...
iitopon 22682 The unit interval is a top...
iitop 22683 The unit interval is a top...
iiuni 22684 The base set of the unit i...
dfii2 22685 Alternate definition of th...
dfii3 22686 Alternate definition of th...
dfii4 22687 Alternate definition of th...
dfii5 22688 The unit interval expresse...
iicmp 22689 The unit interval is compa...
iiconn 22690 The unit interval is conne...
cncfval 22691 The value of the continuou...
elcncf 22692 Membership in the set of c...
elcncf2 22693 Version of ~ elcncf with a...
cncfrss 22694 Reverse closure of the con...
cncfrss2 22695 Reverse closure of the con...
cncff 22696 A continuous complex funct...
cncfi 22697 Defining property of a con...
elcncf1di 22698 Membership in the set of c...
elcncf1ii 22699 Membership in the set of c...
rescncf 22700 A continuous complex funct...
cncffvrn 22701 Change the codomain of a c...
cncfss 22702 The set of continuous func...
climcncf 22703 Image of a limit under a c...
abscncf 22704 Absolute value is continuo...
recncf 22705 Real part is continuous. ...
imcncf 22706 Imaginary part is continuo...
cjcncf 22707 Complex conjugate is conti...
mulc1cncf 22708 Multiplication by a consta...
divccncf 22709 Division by a constant is ...
cncfco 22710 The composition of two con...
cncfmet 22711 Relate complex function co...
cncfcn 22712 Relate complex function co...
cncfcn1 22713 Relate complex function co...
cncfmptc 22714 A constant function is a c...
cncfmptid 22715 The identity function is a...
cncfmpt1f 22716 Composition of continuous ...
cncfmpt2f 22717 Composition of continuous ...
cncfmpt2ss 22718 Composition of continuous ...
addccncf 22719 Adding a constant is a con...
cdivcncf 22720 Division with a constant n...
negcncf 22721 The negative function is c...
negfcncf 22722 The negative of a continuo...
abscncfALT 22723 Absolute value is continuo...
cncfcnvcn 22724 Rewrite ~ cmphaushmeo for ...
expcncf 22725 The power function on comp...
cnmptre 22726 Lemma for ~ iirevcn and re...
cnmpt2pc 22727 Piecewise definition of a ...
iirev 22728 Reverse the unit interval....
iirevcn 22729 The reversion function is ...
iihalf1 22730 Map the first half of ` II...
iihalf1cn 22731 The first half function is...
iihalf2 22732 Map the second half of ` I...
iihalf2cn 22733 The second half function i...
elii1 22734 Divide the unit interval i...
elii2 22735 Divide the unit interval i...
iimulcl 22736 The unit interval is close...
iimulcn 22737 Multiplication is a contin...
icoopnst 22738 A half-open interval start...
iocopnst 22739 A half-open interval endin...
icchmeo 22740 The natural bijection from...
icopnfcnv 22741 Define a bijection from ` ...
icopnfhmeo 22742 The defined bijection from...
iccpnfcnv 22743 Define a bijection from ` ...
iccpnfhmeo 22744 The defined bijection from...
xrhmeo 22745 The bijection from ` [ -u ...
xrhmph 22746 The extended reals are hom...
xrcmp 22747 The topology of the extend...
xrconn 22748 The topology of the extend...
icccvx 22749 A linear combination of tw...
oprpiece1res1 22750 Restriction to the first p...
oprpiece1res2 22751 Restriction to the second ...
cnrehmeo 22752 The canonical bijection fr...
cnheiborlem 22753 Lemma for ~ cnheibor . (C...
cnheibor 22754 Heine-Borel theorem for co...
cnllycmp 22755 The topology on the comple...
rellycmp 22756 The topology on the reals ...
bndth 22757 The Boundedness Theorem. ...
evth 22758 The Extreme Value Theorem....
evth2 22759 The Extreme Value Theorem,...
lebnumlem1 22760 Lemma for ~ lebnum . The ...
lebnumlem2 22761 Lemma for ~ lebnum . As a...
lebnumlem3 22762 Lemma for ~ lebnum . By t...
lebnum 22763 The Lebesgue number lemma,...
xlebnum 22764 Generalize ~ lebnum to ext...
lebnumii 22765 Specialize the Lebesgue nu...
ishtpy 22771 Membership in the class of...
htpycn 22772 A homotopy is a continuous...
htpyi 22773 A homotopy evaluated at it...
ishtpyd 22774 Deduction for membership i...
htpycom 22775 Given a homotopy from ` F ...
htpyid 22776 A homotopy from a function...
htpyco1 22777 Compose a homotopy with a ...
htpyco2 22778 Compose a homotopy with a ...
htpycc 22779 Concatenate two homotopies...
isphtpy 22780 Membership in the class of...
phtpyhtpy 22781 A path homotopy is a homot...
phtpycn 22782 A path homotopy is a conti...
phtpyi 22783 Membership in the class of...
phtpy01 22784 Two path-homotopic paths h...
isphtpyd 22785 Deduction for membership i...
isphtpy2d 22786 Deduction for membership i...
phtpycom 22787 Given a homotopy from ` F ...
phtpyid 22788 A homotopy from a path to ...
phtpyco2 22789 Compose a path homotopy wi...
phtpycc 22790 Concatenate two path homot...
phtpcrel 22792 The path homotopy relation...
isphtpc 22793 The relation "is path homo...
phtpcer 22794 Path homotopy is an equiva...
phtpcerOLD 22795 Obsolete proof of ~ phtpce...
phtpc01 22796 Path homotopic paths have ...
reparphti 22797 Lemma for ~ reparpht . (C...
reparpht 22798 Reparametrization lemma. ...
phtpcco2 22799 Compose a path homotopy wi...
pcofval 22810 The value of the path conc...
pcoval 22811 The concatenation of two p...
pcovalg 22812 Evaluate the concatenation...
pcoval1 22813 Evaluate the concatenation...
pco0 22814 The starting point of a pa...
pco1 22815 The ending point of a path...
pcoval2 22816 Evaluate the concatenation...
pcocn 22817 The concatenation of two p...
copco 22818 The composition of a conca...
pcohtpylem 22819 Lemma for ~ pcohtpy . (Co...
pcohtpy 22820 Homotopy invariance of pat...
pcoptcl 22821 A constant function is a p...
pcopt 22822 Concatenation with a point...
pcopt2 22823 Concatenation with a point...
pcoass 22824 Order of concatenation doe...
pcorevcl 22825 Closure for a reversed pat...
pcorevlem 22826 Lemma for ~ pcorev . Prov...
pcorev 22827 Concatenation with the rev...
pcorev2 22828 Concatenation with the rev...
pcophtb 22829 The path homotopy equivale...
om1val 22830 The definition of the loop...
om1bas 22831 The base set of the loop s...
om1elbas 22832 Elementhood in the base se...
om1addcl 22833 Closure of the group opera...
om1plusg 22834 The group operation (which...
om1tset 22835 The topology of the loop s...
om1opn 22836 The topology of the loop s...
pi1val 22837 The definition of the fund...
pi1bas 22838 The base set of the fundam...
pi1blem 22839 Lemma for ~ pi1buni . (Co...
pi1buni 22840 Another way to write the l...
pi1bas2 22841 The base set of the fundam...
pi1eluni 22842 Elementhood in the base se...
pi1bas3 22843 The base set of the fundam...
pi1cpbl 22844 The group operation, loop ...
elpi1 22845 The elements of the fundam...
elpi1i 22846 The elements of the fundam...
pi1addf 22847 The group operation of ` p...
pi1addval 22848 The concatenation of two p...
pi1grplem 22849 Lemma for ~ pi1grp . (Con...
pi1grp 22850 The fundamental group is a...
pi1id 22851 The identity element of th...
pi1inv 22852 An inverse in the fundamen...
pi1xfrf 22853 Functionality of the loop ...
pi1xfrval 22854 The value of the loop tran...
pi1xfr 22855 Given a path ` F ` and its...
pi1xfrcnvlem 22856 Given a path ` F ` between...
pi1xfrcnv 22857 Given a path ` F ` between...
pi1xfrgim 22858 The mapping ` G ` between ...
pi1cof 22859 Functionality of the loop ...
pi1coval 22860 The value of the loop tran...
pi1coghm 22861 The mapping ` G ` between ...
isclm 22864 A subcomplex module is a l...
clmsca 22865 The ring of scalars ` F ` ...
clmsubrg 22866 The base set of the ring o...
clmlmod 22867 A subcomplex module is a l...
clmgrp 22868 A subcomplex module is an ...
clmabl 22869 A subcomplex module is an ...
clmring 22870 The scalar ring of a subco...
clmfgrp 22871 The scalar ring of a subco...
clm0 22872 The zero of the scalar rin...
clm1 22873 The identity of the scalar...
clmadd 22874 The addition of the scalar...
clmmul 22875 The multiplication of the ...
clmcj 22876 The conjugation of the sca...
isclmi 22877 Reverse direction of ~ isc...
clmzss 22878 The scalar ring of a subco...
clmsscn 22879 The scalar ring of a subco...
clmsub 22880 Subtraction in the scalar ...
clmneg 22881 Negation in the scalar rin...
clmneg1 22882 Minus one is in the scalar...
clmabs 22883 Norm in the scalar ring of...
clmacl 22884 Closure of ring addition f...
clmmcl 22885 Closure of ring multiplica...
clmsubcl 22886 Closure of ring subtractio...
lmhmclm 22887 The domain of a linear ope...
clmvscl 22888 Closure of scalar product ...
clmvsass 22889 Associative law for scalar...
clmvscom 22890 Commutative law for the sc...
clmvsdir 22891 Distributive law for scala...
clmvsdi 22892 Distributive law for scala...
clmvs1 22893 Scalar product with ring u...
clmvs2 22894 A vector plus itself is tw...
clm0vs 22895 Zero times a vector is the...
clmopfne 22896 The (functionalized) opera...
isclmp 22897 The predicate "is a subcom...
isclmi0 22898 Properties that determine ...
clmvneg1 22899 Minus 1 times a vector is ...
clmvsneg 22900 Multiplication of a vector...
clmmulg 22901 The group multiple functio...
clmsubdir 22902 Scalar multiplication dist...
clmpm1dir 22903 Subtractive distributive l...
clmnegneg 22904 Double negative of a vecto...
clmnegsubdi2 22905 Distribution of negative o...
clmsub4 22906 Rearrangement of 4 terms i...
clmvsrinv 22907 A vector minus itself. (C...
clmvslinv 22908 Minus a vector plus itself...
clmvsubval 22909 Value of vector subtractio...
clmvsubval2 22910 Value of vector subtractio...
clmvz 22911 Two ways to express the ne...
zlmclm 22912 The ` ZZ ` -module operati...
clmzlmvsca 22913 The scalar product of a su...
nmoleub2lem 22914 Lemma for ~ nmoleub2a and ...
nmoleub2lem3 22915 Lemma for ~ nmoleub2a and ...
nmoleub2lem2 22916 Lemma for ~ nmoleub2a and ...
nmoleub2a 22917 The operator norm is the s...
nmoleub2b 22918 The operator norm is the s...
nmoleub3 22919 The operator norm is the s...
nmhmcn 22920 A linear operator over a n...
cmodscexp 22921 The powers of ` _i ` belon...
cmodscmulexp 22922 The scalar product of a ve...
cvslvec 22925 A subcomplex vector space ...
cvsclm 22926 A subcomplex vector space ...
iscvs 22927 A subcomplex vector space ...
iscvsp 22928 The predicate "is a subcom...
iscvsi 22929 Properties that determine ...
cvsi 22930 The properties of a subcom...
cvsunit 22931 Unit group of the scalar r...
cvsdiv 22932 Division of the scalar rin...
cvsdivcl 22933 The scalar field of a subc...
cvsmuleqdivd 22934 An equality involving rati...
cvsdiveqd 22935 An equality involving rati...
cnlmodlem1 22936 Lemma 1 for ~ cnlmod . (C...
cnlmodlem2 22937 Lemma 2 for ~ cnlmod . (C...
cnlmodlem3 22938 Lemma 3 for ~ cnlmod . (C...
cnlmod4 22939 Lemma 4 for ~ cnlmod . (C...
cnlmod 22940 The set of complex numbers...
cnstrcvs 22941 The set of complex numbers...
cnrbas 22942 The set of complex numbers...
cnrlmod 22943 The complex left module of...
cnrlvec 22944 The complex left module of...
cncvs 22945 The complex left module of...
recvs 22946 The field of the real numb...
qcvs 22947 The field of rational numb...
zclmncvs 22948 The ring of integers as le...
isncvsngp 22949 A normed subcomplex vector...
isncvsngpd 22950 Properties that determine ...
ncvsi 22951 The properties of a normed...
ncvsprp 22952 Proportionality property o...
ncvsge0 22953 The norm of a scalar produ...
ncvsm1 22954 The norm of the negative o...
ncvsdif 22955 The norm of the difference...
ncvspi 22956 The norm of a vector plus ...
ncvs1 22957 From any nonzero vector, c...
cnrnvc 22958 The set of complex numbers...
cnncvs 22959 The set of complex numbers...
cnnm 22960 The norm operation of the ...
ncvspds 22961 Value of the distance func...
cnindmet 22962 The metric induced on the ...
cnncvsaddassdemo 22963 Derive the associative law...
cnncvsmulassdemo 22964 Derive the associative law...
cnncvsabsnegdemo 22965 Derive the absolute value ...
iscph 22970 A subcomplex pre-Hilbert s...
cphphl 22971 A subcomplex pre-Hilbert s...
cphnlm 22972 A subcomplex pre-Hilbert s...
cphngp 22973 A subcomplex pre-Hilbert s...
cphlmod 22974 A subcomplex pre-Hilbert s...
cphlvec 22975 A subcomplex pre-Hilbert s...
cphnvc 22976 A subcomplex pre-Hilbert s...
cphsubrglem 22977 Lemma for ~ cphsubrg . (C...
cphreccllem 22978 Lemma for ~ cphreccl . (C...
cphsca 22979 A subcomplex pre-Hilbert s...
cphsubrg 22980 The scalar field of a subc...
cphreccl 22981 The scalar field of a subc...
cphdivcl 22982 The scalar field of a subc...
cphcjcl 22983 The scalar field of a subc...
cphsqrtcl 22984 The scalar field of a subc...
cphabscl 22985 The scalar field of a subc...
cphsqrtcl2 22986 The scalar field of a subc...
cphsqrtcl3 22987 If the scalar field contai...
cphqss 22988 The scalar field of a subc...
cphclm 22989 A subcomplex pre-Hilbert s...
cphnmvs 22990 Norm of a scalar product. ...
cphipcl 22991 An inner product is a memb...
cphnmfval 22992 The value of the norm in a...
cphnm 22993 The square of the norm is ...
nmsq 22994 The square of the norm is ...
cphnmf 22995 The norm of a vector is a ...
cphnmcl 22996 The norm of a vector is a ...
reipcl 22997 An inner product of an ele...
ipge0 22998 The inner product in a sub...
cphipcj 22999 Conjugate of an inner prod...
cphipipcj 23000 An inner product times its...
cphorthcom 23001 Orthogonality (meaning inn...
cphip0l 23002 Inner product with a zero ...
cphip0r 23003 Inner product with a zero ...
cphipeq0 23004 The inner product of a vec...
cphdir 23005 Distributive law for inner...
cphdi 23006 Distributive law for inner...
cph2di 23007 Distributive law for inner...
cphsubdir 23008 Distributive law for inner...
cphsubdi 23009 Distributive law for inner...
cph2subdi 23010 Distributive law for inner...
cphass 23011 Associative law for inner ...
cphassr 23012 "Associative" law for seco...
cph2ass 23013 Move scalar multiplication...
cphassi 23014 Associative law for the fi...
cphassir 23015 "Associative" law for the ...
tchex 23016 Lemma for ~ tchbas and sim...
tchval 23017 Define a function to augme...
tchbas 23018 The base set of a subcompl...
tchplusg 23019 The addition operation of ...
tchsub 23020 The subtraction operation ...
tchmulr 23021 The ring operation of a su...
tchsca 23022 The scalar field of a subc...
tchvsca 23023 The scalar multiplication ...
tchip 23024 The inner product of a sub...
tchtopn 23025 The topology of a subcompl...
tchphl 23026 Augmentation of a subcompl...
tchnmfval 23027 The norm of a subcomplex p...
tchnmval 23028 The norm of a subcomplex p...
cphtchnm 23029 The norm of a norm-augment...
tchds 23030 The distance of a pre-Hilb...
tchclm 23031 Lemma for ~ tchcph . (Con...
tchcphlem3 23032 Lemma for ~ tchcph : real ...
ipcau2 23033 The Cauchy-Schwarz inequal...
tchcphlem1 23034 Lemma for ~ tchcph : the t...
tchcphlem2 23035 Lemma for ~ tchcph : homog...
tchcph 23036 The standard definition of...
ipcau 23037 The Cauchy-Schwarz inequal...
nmparlem 23038 Lemma for ~ nmpar . (Cont...
nmpar 23039 A subcomplex pre-Hilbert s...
cphipval2 23040 Value of the inner product...
4cphipval2 23041 Four times the inner produ...
cphipval 23042 Value of the inner product...
ipcnlem2 23043 The inner product operatio...
ipcnlem1 23044 The inner product operatio...
ipcn 23045 The inner product operatio...
cnmpt1ip 23046 Continuity of inner produc...
cnmpt2ip 23047 Continuity of inner produc...
csscld 23048 A "closed subspace" in a s...
clsocv 23049 The orthogonal complement ...
lmmbr 23056 Express the binary relatio...
lmmbr2 23057 Express the binary relatio...
lmmbr3 23058 Express the binary relatio...
lmmcvg 23059 Convergence property of a ...
lmmbrf 23060 Express the binary relatio...
lmnn 23061 A condition that implies c...
cfilfval 23062 The set of Cauchy filters ...
iscfil 23063 The property of being a Ca...
iscfil2 23064 The property of being a Ca...
cfilfil 23065 A Cauchy filter is a filte...
cfili 23066 Property of a Cauchy filte...
cfil3i 23067 A Cauchy filter contains b...
cfilss 23068 A filter finer than a Cauc...
fgcfil 23069 The Cauchy filter conditio...
fmcfil 23070 The Cauchy filter conditio...
iscfil3 23071 A filter is Cauchy iff it ...
cfilfcls 23072 Similar to ultrafilters ( ...
caufval 23073 The set of Cauchy sequence...
iscau 23074 Express the property " ` F...
iscau2 23075 Express the property " ` F...
iscau3 23076 Express the Cauchy sequenc...
iscau4 23077 Express the property " ` F...
iscauf 23078 Express the property " ` F...
caun0 23079 A metric with a Cauchy seq...
caufpm 23080 Inclusion of a Cauchy sequ...
caucfil 23081 A Cauchy sequence predicat...
iscmet 23082 The property " ` D ` is a ...
cmetcvg 23083 The convergence of a Cauch...
cmetmet 23084 A complete metric space is...
cmetmeti 23085 A complete metric space is...
cmetcaulem 23086 Lemma for ~ cmetcau . (Co...
cmetcau 23087 The convergence of a Cauch...
iscmet3lem3 23088 Lemma for ~ iscmet3 . (Co...
iscmet3lem1 23089 Lemma for ~ iscmet3 . (Co...
iscmet3lem2 23090 Lemma for ~ iscmet3 . (Co...
iscmet3 23091 The property " ` D ` is a ...
iscmet2 23092 A metric ` D ` is complete...
cfilresi 23093 A Cauchy filter on a metri...
cfilres 23094 Cauchy filter on a metric ...
caussi 23095 Cauchy sequence on a metri...
causs 23096 Cauchy sequence on a metri...
equivcfil 23097 If the metric ` D ` is "st...
equivcau 23098 If the metric ` D ` is "st...
lmle 23099 If the distance from each ...
nglmle 23100 If the norm of each member...
lmclim 23101 Relate a limit on the metr...
lmclimf 23102 Relate a limit on the metr...
metelcls 23103 A point belongs to the clo...
metcld 23104 A subset of a metric space...
metcld2 23105 A subset of a metric space...
caubl 23106 Sufficient condition to en...
caublcls 23107 The convergent point of a ...
metcnp4 23108 Two ways to say a mapping ...
metcn4 23109 Two ways to say a mapping ...
iscmet3i 23110 Properties that determine ...
lmcau 23111 Every convergent sequence ...
flimcfil 23112 Every convergent filter in...
cmetss 23113 A subspace of a complete m...
equivcmet 23114 If two metrics are strongl...
relcmpcmet 23115 If ` D ` is a metric space...
cmpcmet 23116 A compact metric space is ...
cfilucfil3 23117 Given a metric ` D ` and a...
cfilucfil4 23118 Given a metric ` D ` and a...
cncmet 23119 The set of complex numbers...
recmet 23120 The real numbers are a com...
bcthlem1 23121 Lemma for ~ bcth . Substi...
bcthlem2 23122 Lemma for ~ bcth . The ba...
bcthlem3 23123 Lemma for ~ bcth . The li...
bcthlem4 23124 Lemma for ~ bcth . Given ...
bcthlem5 23125 Lemma for ~ bcth . The pr...
bcth 23126 Baire's Category Theorem. ...
bcth2 23127 Baire's Category Theorem, ...
bcth3 23128 Baire's Category Theorem, ...
isbn 23135 A Banach space is a normed...
bnsca 23136 The scalar field of a Bana...
bnnvc 23137 A Banach space is a normed...
bnnlm 23138 A Banach space is a normed...
bnngp 23139 A Banach space is a normed...
bnlmod 23140 A Banach space is a left m...
bncms 23141 A Banach space is a comple...
iscms 23142 A complete metric space is...
cmscmet 23143 The induced metric on a co...
bncmet 23144 The induced metric on Bana...
cmsms 23145 A complete metric space is...
cmspropd 23146 Property deduction for a c...
cmsss 23147 The restriction of a compl...
lssbn 23148 A subspace of a Banach spa...
cmetcusp1 23149 If the uniform set of a co...
cmetcusp 23150 The uniform space generate...
cncms 23151 The field of complex numbe...
cnflduss 23152 The uniform structure of t...
cnfldcusp 23153 The field of complex numbe...
resscdrg 23154 The real numbers are a sub...
cncdrg 23155 The only complete subfield...
srabn 23156 The subring algebra over a...
rlmbn 23157 The ring module over a com...
ishl 23158 The predicate "is a subcom...
hlbn 23159 Every subcomplex Hilbert s...
hlcph 23160 Every subcomplex Hilbert s...
hlphl 23161 Every subcomplex Hilbert s...
hlcms 23162 Every subcomplex Hilbert s...
hlprlem 23163 Lemma for ~ hlpr . (Contr...
hlress 23164 The scalar field of a subc...
hlpr 23165 The scalar field of a subc...
ishl2 23166 A Hilbert space is a compl...
retopn 23167 The topology of the real n...
recms 23168 The real numbers form a co...
reust 23169 The Uniform structure of t...
recusp 23170 The real numbers form a co...
rrxval 23175 Value of the generalized E...
rrxbase 23176 The base of the generalize...
rrxprds 23177 Expand the definition of t...
rrxip 23178 The inner product of the g...
rrxnm 23179 The norm of the generalize...
rrxcph 23180 Generalized Euclidean real...
rrxds 23181 The distance over generali...
csbren 23182 Cauchy-Schwarz-Bunjakovsky...
trirn 23183 Triangle inequality in R^n...
rrxf 23184 Euclidean vectors as funct...
rrxfsupp 23185 Euclidean vectors are of f...
rrxsuppss 23186 Support of Euclidean vecto...
rrxmvallem 23187 Support of the function us...
rrxmval 23188 The value of the Euclidean...
rrxmfval 23189 The value of the Euclidean...
rrxmetlem 23190 Lemma for ~ rrxmet . (Con...
rrxmet 23191 Euclidean space is a metri...
rrxdstprj1 23192 The distance between two p...
ehlval 23193 Value of the Euclidean spa...
ehlbase 23194 The base of the Euclidean ...
minveclem1 23195 Lemma for ~ minvec . The ...
minveclem4c 23196 Lemma for ~ minvec . The ...
minveclem2 23197 Lemma for ~ minvec . Any ...
minveclem3a 23198 Lemma for ~ minvec . ` D `...
minveclem3b 23199 Lemma for ~ minvec . The ...
minveclem3 23200 Lemma for ~ minvec . The ...
minveclem4a 23201 Lemma for ~ minvec . ` F `...
minveclem4b 23202 Lemma for ~ minvec . The ...
minveclem4 23203 Lemma for ~ minvec . The ...
minveclem5 23204 Lemma for ~ minvec . Disc...
minveclem6 23205 Lemma for ~ minvec . Any ...
minveclem7 23206 Lemma for ~ minvec . Sinc...
minvec 23207 Minimizing vector theorem,...
pjthlem1 23208 Lemma for ~ pjth . (Contr...
pjthlem2 23209 Lemma for ~ pjth . (Contr...
pjth 23210 Projection Theorem: Any H...
pjth2 23211 Projection Theorem with ab...
cldcss 23212 Corollary of the Projectio...
cldcss2 23213 Corollary of the Projectio...
hlhil 23214 Corollary of the Projectio...
mulcncf 23215 The multiplication of two ...
divcncf 23216 The quotient of two contin...
pmltpclem1 23217 Lemma for ~ pmltpc . (Con...
pmltpclem2 23218 Lemma for ~ pmltpc . (Con...
pmltpc 23219 Any function on the reals ...
ivthlem1 23220 Lemma for ~ ivth . The se...
ivthlem2 23221 Lemma for ~ ivth . Show t...
ivthlem3 23222 Lemma for ~ ivth , the int...
ivth 23223 The intermediate value the...
ivth2 23224 The intermediate value the...
ivthle 23225 The intermediate value the...
ivthle2 23226 The intermediate value the...
ivthicc 23227 The interval between any t...
evthicc 23228 Specialization of the Extr...
evthicc2 23229 Combine ~ ivthicc with ~ e...
cniccbdd 23230 A continuous function on a...
ovolfcl 23235 Closure for the interval e...
ovolfioo 23236 Unpack the interval coveri...
ovolficc 23237 Unpack the interval coveri...
ovolficcss 23238 Any (closed) interval cove...
ovolfsval 23239 The value of the interval ...
ovolfsf 23240 Closure for the interval l...
ovolsf 23241 Closure for the partial su...
ovolval 23242 The value of the outer mea...
elovolm 23243 Elementhood in the set ` M...
elovolmr 23244 Sufficient condition for e...
ovolmge0 23245 The set ` M ` is composed ...
ovolcl 23246 The volume of a set is an ...
ovollb 23247 The outer volume is a lowe...
ovolgelb 23248 The outer volume is the gr...
ovolge0 23249 The volume of a set is alw...
ovolf 23250 The domain and range of th...
ovollecl 23251 If an outer volume is boun...
ovolsslem 23252 Lemma for ~ ovolss . (Con...
ovolss 23253 The volume of a set is mon...
ovolsscl 23254 If a set is contained in a...
ovolssnul 23255 A subset of a nullset is n...
ovollb2lem 23256 Lemma for ~ ovollb2 . (Co...
ovollb2 23257 It is often more convenien...
ovolctb 23258 The volume of a denumerabl...
ovolq 23259 The rational numbers have ...
ovolctb2 23260 The volume of a countable ...
ovol0 23261 The empty set has 0 outer ...
ovolfi 23262 A finite set has 0 outer L...
ovolsn 23263 A singleton has 0 outer Le...
ovolunlem1a 23264 Lemma for ~ ovolun . (Con...
ovolunlem1 23265 Lemma for ~ ovolun . (Con...
ovolunlem2 23266 Lemma for ~ ovolun . (Con...
ovolun 23267 The Lebesgue outer measure...
ovolunnul 23268 Adding a nullset does not ...
ovolfiniun 23269 The Lebesgue outer measure...
ovoliunlem1 23270 Lemma for ~ ovoliun . (Co...
ovoliunlem2 23271 Lemma for ~ ovoliun . (Co...
ovoliunlem3 23272 Lemma for ~ ovoliun . (Co...
ovoliun 23273 The Lebesgue outer measure...
ovoliun2 23274 The Lebesgue outer measure...
ovoliunnul 23275 A countable union of nulls...
shft2rab 23276 If ` B ` is a shift of ` A...
ovolshftlem1 23277 Lemma for ~ ovolshft . (C...
ovolshftlem2 23278 Lemma for ~ ovolshft . (C...
ovolshft 23279 The Lebesgue outer measure...
sca2rab 23280 If ` B ` is a scale of ` A...
ovolscalem1 23281 Lemma for ~ ovolsca . (Co...
ovolscalem2 23282 Lemma for ~ ovolshft . (C...
ovolsca 23283 The Lebesgue outer measure...
ovolicc1 23284 The measure of a closed in...
ovolicc2lem1 23285 Lemma for ~ ovolicc2 . (C...
ovolicc2lem2 23286 Lemma for ~ ovolicc2 . (C...
ovolicc2lem3 23287 Lemma for ~ ovolicc2 . (C...
ovolicc2lem4 23288 Lemma for ~ ovolicc2 . (C...
ovolicc2lem5 23289 Lemma for ~ ovolicc2 . (C...
ovolicc2 23290 The measure of a closed in...
ovolicc 23291 The measure of a closed in...
ovolicopnf 23292 The measure of a right-unb...
ovolre 23293 The measure of the real nu...
ismbl 23294 The predicate " ` A ` is L...
ismbl2 23295 From ~ ovolun , it suffice...
volres 23296 A self-referencing abbrevi...
volf 23297 The domain and range of th...
mblvol 23298 The volume of a measurable...
mblss 23299 A measurable set is a subs...
mblsplit 23300 The defining property of m...
volss 23301 The Lebesgue measure is mo...
cmmbl 23302 The complement of a measur...
nulmbl 23303 A nullset is measurable. ...
nulmbl2 23304 A set of outer measure zer...
unmbl 23305 A union of measurable sets...
shftmbl 23306 A shift of a measurable se...
0mbl 23307 The empty set is measurabl...
rembl 23308 The set of all real number...
unidmvol 23309 The union of the Lebesgue ...
inmbl 23310 An intersection of measura...
difmbl 23311 A difference of measurable...
finiunmbl 23312 A finite union of measurab...
volun 23313 The Lebesgue measure funct...
volinun 23314 Addition of non-disjoint s...
volfiniun 23315 The volume of a disjoint f...
iundisj 23316 Rewrite a countable union ...
iundisj2 23317 A disjoint union is disjoi...
voliunlem1 23318 Lemma for ~ voliun . (Con...
voliunlem2 23319 Lemma for ~ voliun . (Con...
voliunlem3 23320 Lemma for ~ voliun . (Con...
iunmbl 23321 The measurable sets are cl...
voliun 23322 The Lebesgue measure funct...
volsuplem 23323 Lemma for ~ volsup . (Con...
volsup 23324 The volume of the limit of...
iunmbl2 23325 The measurable sets are cl...
ioombl1lem1 23326 Lemma for ~ ioombl1 . (Co...
ioombl1lem2 23327 Lemma for ~ ioombl1 . (Co...
ioombl1lem3 23328 Lemma for ~ ioombl1 . (Co...
ioombl1lem4 23329 Lemma for ~ ioombl1 . (Co...
ioombl1 23330 An open right-unbounded in...
icombl1 23331 A closed unbounded-above i...
icombl 23332 A closed-below, open-above...
ioombl 23333 An open real interval is m...
iccmbl 23334 A closed real interval is ...
iccvolcl 23335 A closed real interval has...
ovolioo 23336 The measure of an open int...
volioo 23337 The measure of an open int...
ioovolcl 23338 An open real interval has ...
ovolfs2 23339 Alternative expression for...
ioorcl2 23340 An open interval with fini...
ioorf 23341 Define a function from ope...
ioorval 23342 Define a function from ope...
ioorinv2 23343 The function ` F ` is an "...
ioorinv 23344 The function ` F ` is an "...
ioorcl 23345 The function ` F ` does no...
uniiccdif 23346 A union of closed interval...
uniioovol 23347 A disjoint union of open i...
uniiccvol 23348 An almost-disjoint union o...
uniioombllem1 23349 Lemma for ~ uniioombl . (...
uniioombllem2a 23350 Lemma for ~ uniioombl . (...
uniioombllem2 23351 Lemma for ~ uniioombl . (...
uniioombllem3a 23352 Lemma for ~ uniioombl . (...
uniioombllem3 23353 Lemma for ~ uniioombl . (...
uniioombllem4 23354 Lemma for ~ uniioombl . (...
uniioombllem5 23355 Lemma for ~ uniioombl . (...
uniioombllem6 23356 Lemma for ~ uniioombl . (...
uniioombl 23357 A disjoint union of open i...
uniiccmbl 23358 An almost-disjoint union o...
dyadf 23359 The function ` F ` returns...
dyadval 23360 Value of the dyadic ration...
dyadovol 23361 Volume of a dyadic rationa...
dyadss 23362 Two closed dyadic rational...
dyaddisjlem 23363 Lemma for ~ dyaddisj . (C...
dyaddisj 23364 Two closed dyadic rational...
dyadmaxlem 23365 Lemma for ~ dyadmax . (Co...
dyadmax 23366 Any nonempty set of dyadic...
dyadmbllem 23367 Lemma for ~ dyadmbl . (Co...
dyadmbl 23368 Any union of dyadic ration...
opnmbllem 23369 Lemma for ~ opnmbl . (Con...
opnmbl 23370 All open sets are measurab...
opnmblALT 23371 All open sets are measurab...
subopnmbl 23372 Sets which are open in a m...
volsup2 23373 The volume of ` A ` is the...
volcn 23374 The function formed by res...
volivth 23375 The Intermediate Value The...
vitalilem1 23376 Lemma for ~ vitali . (Con...
vitalilem1OLD 23377 Obsolete proof of ~ vitali...
vitalilem2 23378 Lemma for ~ vitali . (Con...
vitalilem3 23379 Lemma for ~ vitali . (Con...
vitalilem4 23380 Lemma for ~ vitali . (Con...
vitalilem5 23381 Lemma for ~ vitali . (Con...
vitali 23382 If the reals can be well-o...
ismbf1 23393 The predicate " ` F ` is a...
mbff 23394 A measurable function is a...
mbfdm 23395 The domain of a measurable...
mbfconstlem 23396 Lemma for ~ mbfconst . (C...
ismbf 23397 The predicate " ` F ` is a...
ismbfcn 23398 A complex function is meas...
mbfima 23399 Definitional property of a...
mbfimaicc 23400 The preimage of any closed...
mbfimasn 23401 The preimage of a point un...
mbfconst 23402 A constant function is mea...
mbfid 23403 The identity function is m...
mbfmptcl 23404 Lemma for the ` MblFn ` pr...
mbfdm2 23405 The domain of a measurable...
ismbfcn2 23406 A complex function is meas...
ismbfd 23407 Deduction to prove measura...
ismbf2d 23408 Deduction to prove measura...
mbfeqalem 23409 Lemma for ~ mbfeqa . (Con...
mbfeqa 23410 If two functions are equal...
mbfres 23411 The restriction of a measu...
mbfres2 23412 Measurability of a piecewi...
mbfss 23413 Change the domain of a mea...
mbfmulc2lem 23414 Multiplication by a consta...
mbfmulc2re 23415 Multiplication by a consta...
mbfmax 23416 The maximum of two functio...
mbfneg 23417 The negative of a measurab...
mbfpos 23418 The positive part of a mea...
mbfposr 23419 Converse to ~ mbfpos . (C...
mbfposb 23420 A function is measurable i...
ismbf3d 23421 Simplified form of ~ ismbf...
mbfimaopnlem 23422 Lemma for ~ mbfimaopn . (...
mbfimaopn 23423 The preimage of any open s...
mbfimaopn2 23424 The preimage of any set op...
cncombf 23425 The composition of a conti...
cnmbf 23426 A continuous function is m...
mbfaddlem 23427 The sum of two measurable ...
mbfadd 23428 The sum of two measurable ...
mbfsub 23429 The difference of two meas...
mbfmulc2 23430 A complex constant times a...
mbfsup 23431 The supremum of a sequence...
mbfinf 23432 The infimum of a sequence ...
mbflimsup 23433 The limit supremum of a se...
mbflimlem 23434 The pointwise limit of a s...
mbflim 23435 The pointwise limit of a s...
0pval 23438 The zero function evaluate...
0plef 23439 Two ways to say that the f...
0pledm 23440 Adjust the domain of the l...
isi1f 23441 The predicate " ` F ` is a...
i1fmbf 23442 Simple functions are measu...
i1ff 23443 A simple function is a fun...
i1frn 23444 A simple function has fini...
i1fima 23445 Any preimage of a simple f...
i1fima2 23446 Any preimage of a simple f...
i1fima2sn 23447 Preimage of a singleton. ...
i1fd 23448 A simplified set of assump...
i1f0rn 23449 Any simple function takes ...
itg1val 23450 The value of the integral ...
itg1val2 23451 The value of the integral ...
itg1cl 23452 Closure of the integral on...
itg1ge0 23453 Closure of the integral on...
i1f0 23454 The zero function is simpl...
itg10 23455 The zero function has zero...
i1f1lem 23456 Lemma for ~ i1f1 and ~ itg...
i1f1 23457 Base case simple functions...
itg11 23458 The integral of an indicat...
itg1addlem1 23459 Decompose a preimage, whic...
i1faddlem 23460 Decompose the preimage of ...
i1fmullem 23461 Decompose the preimage of ...
i1fadd 23462 The sum of two simple func...
i1fmul 23463 The pointwise product of t...
itg1addlem2 23464 Lemma for ~ itg1add . The...
itg1addlem3 23465 Lemma for ~ itg1add . (Co...
itg1addlem4 23466 Lemma for itg1add . (Cont...
itg1addlem5 23467 Lemma for itg1add . (Cont...
itg1add 23468 The integral of a sum of s...
i1fmulclem 23469 Decompose the preimage of ...
i1fmulc 23470 A nonnegative constant tim...
itg1mulc 23471 The integral of a constant...
i1fres 23472 The "restriction" of a sim...
i1fpos 23473 The positive part of a sim...
i1fposd 23474 Deduction form of ~ i1fpos...
i1fsub 23475 The difference of two simp...
itg1sub 23476 The integral of a differen...
itg10a 23477 The integral of a simple f...
itg1ge0a 23478 The integral of an almost ...
itg1lea 23479 Approximate version of ~ i...
itg1le 23480 If one simple function dom...
itg1climres 23481 Restricting the simple fun...
mbfi1fseqlem1 23482 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem2 23483 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem3 23484 Lemma for ~ mbfi1fseq . (...
mbfi1fseqlem4 23485 Lemma for ~ mbfi1fseq . T...
mbfi1fseqlem5 23486 Lemma for ~ mbfi1fseq . V...
mbfi1fseqlem6 23487 Lemma for ~ mbfi1fseq . V...
mbfi1fseq 23488 A characterization of meas...
mbfi1flimlem 23489 Lemma for ~ mbfi1flim . (...
mbfi1flim 23490 Any real measurable functi...
mbfmullem2 23491 Lemma for ~ mbfmul . (Con...
mbfmullem 23492 Lemma for ~ mbfmul . (Con...
mbfmul 23493 The product of two measura...
itg2lcl 23494 The set of lower sums is a...
itg2val 23495 Value of the integral on n...
itg2l 23496 Elementhood in the set ` L...
itg2lr 23497 Sufficient condition for e...
xrge0f 23498 A real function is a nonne...
itg2cl 23499 The integral of a nonnegat...
itg2ub 23500 The integral of a nonnegat...
itg2leub 23501 Any upper bound on the int...
itg2ge0 23502 The integral of a nonnegat...
itg2itg1 23503 The integral of a nonnegat...
itg20 23504 The integral of the zero f...
itg2lecl 23505 If an ` S.2 ` integral is ...
itg2le 23506 If one function dominates ...
itg2const 23507 Integral of a constant fun...
itg2const2 23508 When the base set of a con...
itg2seq 23509 Definitional property of t...
itg2uba 23510 Approximate version of ~ i...
itg2lea 23511 Approximate version of ~ i...
itg2eqa 23512 Approximate equality of in...
itg2mulclem 23513 Lemma for ~ itg2mulc . (C...
itg2mulc 23514 The integral of a nonnegat...
itg2splitlem 23515 Lemma for ~ itg2split . (...
itg2split 23516 The ` S.2 ` integral split...
itg2monolem1 23517 Lemma for ~ itg2mono . We...
itg2monolem2 23518 Lemma for ~ itg2mono . (C...
itg2monolem3 23519 Lemma for ~ itg2mono . (C...
itg2mono 23520 The Monotone Convergence T...
itg2i1fseqle 23521 Subject to the conditions ...
itg2i1fseq 23522 Subject to the conditions ...
itg2i1fseq2 23523 In an extension to the res...
itg2i1fseq3 23524 Special case of ~ itg2i1fs...
itg2addlem 23525 Lemma for ~ itg2add . (Co...
itg2add 23526 The ` S.2 ` integral is li...
itg2gt0 23527 If the function ` F ` is s...
itg2cnlem1 23528 Lemma for ~ itgcn . (Cont...
itg2cnlem2 23529 Lemma for ~ itgcn . (Cont...
itg2cn 23530 A sort of absolute continu...
ibllem 23531 Conditioned equality theor...
isibl 23532 The predicate " ` F ` is i...
isibl2 23533 The predicate " ` F ` is i...
iblmbf 23534 An integrable function is ...
iblitg 23535 If a function is integrabl...
dfitg 23536 Evaluate the class substit...
itgex 23537 An integral is a set. (Co...
itgeq1f 23538 Equality theorem for an in...
itgeq1 23539 Equality theorem for an in...
nfitg1 23540 Bound-variable hypothesis ...
nfitg 23541 Bound-variable hypothesis ...
cbvitg 23542 Change bound variable in a...
cbvitgv 23543 Change bound variable in a...
itgeq2 23544 Equality theorem for an in...
itgresr 23545 The domain of an integral ...
itg0 23546 The integral of anything o...
itgz 23547 The integral of zero on an...
itgeq2dv 23548 Equality theorem for an in...
itgmpt 23549 Change bound variable in a...
itgcl 23550 The integral of an integra...
itgvallem 23551 Substitution lemma. (Cont...
itgvallem3 23552 Lemma for ~ itgposval and ...
ibl0 23553 The zero function is integ...
iblcnlem1 23554 Lemma for ~ iblcnlem . (C...
iblcnlem 23555 Expand out the forall in ~...
itgcnlem 23556 Expand out the sum in ~ df...
iblrelem 23557 Integrability of a real fu...
iblposlem 23558 Lemma for ~ iblpos . (Con...
iblpos 23559 Integrability of a nonnega...
iblre 23560 Integrability of a real fu...
itgrevallem1 23561 Lemma for ~ itgposval and ...
itgposval 23562 The integral of a nonnegat...
itgreval 23563 Decompose the integral of ...
itgrecl 23564 Real closure of an integra...
iblcn 23565 Integrability of a complex...
itgcnval 23566 Decompose the integral of ...
itgre 23567 Real part of an integral. ...
itgim 23568 Imaginary part of an integ...
iblneg 23569 The negative of an integra...
itgneg 23570 Negation of an integral. ...
iblss 23571 A subset of an integrable ...
iblss2 23572 Change the domain of an in...
itgitg2 23573 Transfer an integral using...
i1fibl 23574 A simple function is integ...
itgitg1 23575 Transfer an integral using...
itgle 23576 Monotonicity of an integra...
itgge0 23577 The integral of a positive...
itgss 23578 Expand the set of an integ...
itgss2 23579 Expand the set of an integ...
itgeqa 23580 Approximate equality of in...
itgss3 23581 Expand the set of an integ...
itgioo 23582 Equality of integrals on o...
itgless 23583 Expand the integral of a n...
iblconst 23584 A constant function is int...
itgconst 23585 Integral of a constant fun...
ibladdlem 23586 Lemma for ~ ibladd . (Con...
ibladd 23587 Add two integrals over the...
iblsub 23588 Subtract two integrals ove...
itgaddlem1 23589 Lemma for ~ itgadd . (Con...
itgaddlem2 23590 Lemma for ~ itgadd . (Con...
itgadd 23591 Add two integrals over the...
itgsub 23592 Subtract two integrals ove...
itgfsum 23593 Take a finite sum of integ...
iblabslem 23594 Lemma for ~ iblabs . (Con...
iblabs 23595 The absolute value of an i...
iblabsr 23596 A measurable function is i...
iblmulc2 23597 Multiply an integral by a ...
itgmulc2lem1 23598 Lemma for ~ itgmulc2 : pos...
itgmulc2lem2 23599 Lemma for ~ itgmulc2 : rea...
itgmulc2 23600 Multiply an integral by a ...
itgabs 23601 The triangle inequality fo...
itgsplit 23602 The ` S. ` integral splits...
itgspliticc 23603 The ` S. ` integral splits...
itgsplitioo 23604 The ` S. ` integral splits...
bddmulibl 23605 A bounded function times a...
bddibl 23606 A bounded function is inte...
cniccibl 23607 A continuous function on a...
itggt0 23608 The integral of a strictly...
itgcn 23609 Transfer ~ itg2cn to the f...
ditgeq1 23612 Equality theorem for the d...
ditgeq2 23613 Equality theorem for the d...
ditgeq3 23614 Equality theorem for the d...
ditgeq3dv 23615 Equality theorem for the d...
ditgex 23616 A directed integral is a s...
ditg0 23617 Value of the directed inte...
cbvditg 23618 Change bound variable in a...
cbvditgv 23619 Change bound variable in a...
ditgpos 23620 Value of the directed inte...
ditgneg 23621 Value of the directed inte...
ditgcl 23622 Closure of a directed inte...
ditgswap 23623 Reverse a directed integra...
ditgsplitlem 23624 Lemma for ~ ditgsplit . (...
ditgsplit 23625 This theorem is the raison...
reldv 23634 The derivative function is...
limcvallem 23635 Lemma for ~ ellimc . (Con...
limcfval 23636 Value and set bounds on th...
ellimc 23637 Value of the limit predica...
limcrcl 23638 Reverse closure for the li...
limccl 23639 Closure of the limit opera...
limcdif 23640 It suffices to consider fu...
ellimc2 23641 Write the definition of a ...
limcnlp 23642 If ` B ` is not a limit po...
ellimc3 23643 Write the epsilon-delta de...
limcflflem 23644 Lemma for ~ limcflf . (Co...
limcflf 23645 The limit operator can be ...
limcmo 23646 If ` B ` is a limit point ...
limcmpt 23647 Express the limit operator...
limcmpt2 23648 Express the limit operator...
limcresi 23649 Any limit of ` F ` is also...
limcres 23650 If ` B ` is an interior po...
cnplimc 23651 A function is continuous a...
cnlimc 23652 ` F ` is a continuous func...
cnlimci 23653 If ` F ` is a continuous f...
cnmptlimc 23654 If ` F ` is a continuous f...
limccnp 23655 If the limit of ` F ` at `...
limccnp2 23656 The image of a convergent ...
limcco 23657 Composition of two limits....
limciun 23658 A point is a limit of ` F ...
limcun 23659 A point is a limit of ` F ...
dvlem 23660 Closure for a difference q...
dvfval 23661 Value and set bounds on th...
eldv 23662 The differentiable predica...
dvcl 23663 The derivative function ta...
dvbssntr 23664 The set of differentiable ...
dvbss 23665 The set of differentiable ...
dvbsss 23666 The set of differentiable ...
perfdvf 23667 The derivative is a functi...
recnprss 23668 Both ` RR ` and ` CC ` are...
recnperf 23669 Both ` RR ` and ` CC ` are...
dvfg 23670 Explicitly write out the f...
dvf 23671 The derivative is a functi...
dvfcn 23672 The derivative is a functi...
dvreslem 23673 Lemma for ~ dvres . (Cont...
dvres2lem 23674 Lemma for ~ dvres2 . (Con...
dvres 23675 Restriction of a derivativ...
dvres2 23676 Restriction of the base se...
dvres3 23677 Restriction of a complex d...
dvres3a 23678 Restriction of a complex d...
dvidlem 23679 Lemma for ~ dvid and ~ dvc...
dvconst 23680 Derivative of a constant f...
dvid 23681 Derivative of the identity...
dvcnp 23682 The difference quotient is...
dvcnp2 23683 A function is continuous a...
dvcn 23684 A differentiable function ...
dvnfval 23685 Value of the iterated deri...
dvnff 23686 The iterated derivative is...
dvn0 23687 Zero times iterated deriva...
dvnp1 23688 Successor iterated derivat...
dvn1 23689 One times iterated derivat...
dvnf 23690 The N-times derivative is ...
dvnbss 23691 The set of N-times differe...
dvnadd 23692 The ` N ` -th derivative o...
dvn2bss 23693 An N-times differentiable ...
dvnres 23694 Multiple derivative versio...
cpnfval 23695 Condition for n-times cont...
fncpn 23696 The ` C^n ` object is a fu...
elcpn 23697 Condition for n-times cont...
cpnord 23698 ` C^n ` conditions are ord...
cpncn 23699 A ` C^n ` function is cont...
cpnres 23700 The restriction of a ` C^n...
dvaddbr 23701 The sum rule for derivativ...
dvmulbr 23702 The product rule for deriv...
dvadd 23703 The sum rule for derivativ...
dvmul 23704 The product rule for deriv...
dvaddf 23705 The sum rule for everywher...
dvmulf 23706 The product rule for every...
dvcmul 23707 The product rule when one ...
dvcmulf 23708 The product rule when one ...
dvcobr 23709 The chain rule for derivat...
dvco 23710 The chain rule for derivat...
dvcof 23711 The chain rule for everywh...
dvcjbr 23712 The derivative of the conj...
dvcj 23713 The derivative of the conj...
dvfre 23714 The derivative of a real f...
dvnfre 23715 The ` N ` -th derivative o...
dvexp 23716 Derivative of a power func...
dvexp2 23717 Derivative of an exponenti...
dvrec 23718 Derivative of the reciproc...
dvmptres3 23719 Function-builder for deriv...
dvmptid 23720 Function-builder for deriv...
dvmptc 23721 Function-builder for deriv...
dvmptcl 23722 Closure lemma for ~ dvmptc...
dvmptadd 23723 Function-builder for deriv...
dvmptmul 23724 Function-builder for deriv...
dvmptres2 23725 Function-builder for deriv...
dvmptres 23726 Function-builder for deriv...
dvmptcmul 23727 Function-builder for deriv...
dvmptdivc 23728 Function-builder for deriv...
dvmptneg 23729 Function-builder for deriv...
dvmptsub 23730 Function-builder for deriv...
dvmptcj 23731 Function-builder for deriv...
dvmptre 23732 Function-builder for deriv...
dvmptim 23733 Function-builder for deriv...
dvmptntr 23734 Function-builder for deriv...
dvmptco 23735 Function-builder for deriv...
dvrecg 23736 Derivative of the reciproc...
dvmptdiv 23737 Function-builder for deriv...
dvmptfsum 23738 Function-builder for deriv...
dvcnvlem 23739 Lemma for ~ dvcnvre . (Co...
dvcnv 23740 A weak version of ~ dvcnvr...
dvexp3 23741 Derivative of an exponenti...
dveflem 23742 Derivative of the exponent...
dvef 23743 Derivative of the exponent...
dvsincos 23744 Derivative of the sine and...
dvsin 23745 Derivative of the sine fun...
dvcos 23746 Derivative of the cosine f...
dvferm1lem 23747 Lemma for ~ dvferm . (Con...
dvferm1 23748 One-sided version of ~ dvf...
dvferm2lem 23749 Lemma for ~ dvferm . (Con...
dvferm2 23750 One-sided version of ~ dvf...
dvferm 23751 Fermat's theorem on statio...
rollelem 23752 Lemma for ~ rolle . (Cont...
rolle 23753 Rolle's theorem. If ` F `...
cmvth 23754 Cauchy's Mean Value Theore...
mvth 23755 The Mean Value Theorem. I...
dvlip 23756 A function with derivative...
dvlipcn 23757 A complex function with de...
dvlip2 23758 Combine the results of ~ d...
c1liplem1 23759 Lemma for ~ c1lip1 . (Con...
c1lip1 23760 C1 functions are Lipschitz...
c1lip2 23761 C1 functions are Lipschitz...
c1lip3 23762 C1 functions are Lipschitz...
dveq0 23763 If a continuous function h...
dv11cn 23764 Two functions defined on a...
dvgt0lem1 23765 Lemma for ~ dvgt0 and ~ dv...
dvgt0lem2 23766 Lemma for ~ dvgt0 and ~ dv...
dvgt0 23767 A function on a closed int...
dvlt0 23768 A function on a closed int...
dvge0 23769 A function on a closed int...
dvle 23770 If ` A ( x ) , C ( x ) ` a...
dvivthlem1 23771 Lemma for ~ dvivth . (Con...
dvivthlem2 23772 Lemma for ~ dvivth . (Con...
dvivth 23773 Darboux' theorem, or the i...
dvne0 23774 A function on a closed int...
dvne0f1 23775 A function on a closed int...
lhop1lem 23776 Lemma for ~ lhop1 . (Cont...
lhop1 23777 L'Hôpital's Rule for...
lhop2 23778 L'Hôpital's Rule for...
lhop 23779 L'Hôpital's Rule. I...
dvcnvrelem1 23780 Lemma for ~ dvcnvre . (Co...
dvcnvrelem2 23781 Lemma for ~ dvcnvre . (Co...
dvcnvre 23782 The derivative rule for in...
dvcvx 23783 A real function with stric...
dvfsumle 23784 Compare a finite sum to an...
dvfsumge 23785 Compare a finite sum to an...
dvfsumabs 23786 Compare a finite sum to an...
dvmptrecl 23787 Real closure of a derivati...
dvfsumrlimf 23788 Lemma for ~ dvfsumrlim . ...
dvfsumlem1 23789 Lemma for ~ dvfsumrlim . ...
dvfsumlem2 23790 Lemma for ~ dvfsumrlim . ...
dvfsumlem3 23791 Lemma for ~ dvfsumrlim . ...
dvfsumlem4 23792 Lemma for ~ dvfsumrlim . ...
dvfsumrlimge0 23793 Lemma for ~ dvfsumrlim . ...
dvfsumrlim 23794 Compare a finite sum to an...
dvfsumrlim2 23795 Compare a finite sum to an...
dvfsumrlim3 23796 Conjoin the statements of ...
dvfsum2 23797 The reverse of ~ dvfsumrli...
ftc1lem1 23798 Lemma for ~ ftc1a and ~ ft...
ftc1lem2 23799 Lemma for ~ ftc1 . (Contr...
ftc1a 23800 The Fundamental Theorem of...
ftc1lem3 23801 Lemma for ~ ftc1 . (Contr...
ftc1lem4 23802 Lemma for ~ ftc1 . (Contr...
ftc1lem5 23803 Lemma for ~ ftc1 . (Contr...
ftc1lem6 23804 Lemma for ~ ftc1 . (Contr...
ftc1 23805 The Fundamental Theorem of...
ftc1cn 23806 Strengthen the assumptions...
ftc2 23807 The Fundamental Theorem of...
ftc2ditglem 23808 Lemma for ~ ftc2ditg . (C...
ftc2ditg 23809 Directed integral analogue...
itgparts 23810 Integration by parts. If ...
itgsubstlem 23811 Lemma for ~ itgsubst . (C...
itgsubst 23812 Integration by ` u ` -subs...
reldmmdeg 23817 Multivariate degree is a b...
tdeglem1 23818 Functionality of the total...
tdeglem3 23819 Additivity of the total de...
tdeglem4 23820 There is only one multi-in...
tdeglem2 23821 Simplification of total de...
mdegfval 23822 Value of the multivariate ...
mdegval 23823 Value of the multivariate ...
mdegleb 23824 Property of being of limit...
mdeglt 23825 If there is an upper limit...
mdegldg 23826 A nonzero polynomial has s...
mdegxrcl 23827 Closure of polynomial degr...
mdegxrf 23828 Functionality of polynomia...
mdegcl 23829 Sharp closure for multivar...
mdeg0 23830 Degree of the zero polynom...
mdegnn0cl 23831 Degree of a nonzero polyno...
degltlem1 23832 Theorem on arithmetic of e...
degltp1le 23833 Theorem on arithmetic of e...
mdegaddle 23834 The degree of a sum is at ...
mdegvscale 23835 The degree of a scalar mul...
mdegvsca 23836 The degree of a scalar mul...
mdegle0 23837 A polynomial has nonpositi...
mdegmullem 23838 Lemma for ~ mdegmulle2 . ...
mdegmulle2 23839 The multivariate degree of...
deg1fval 23840 Relate univariate polynomi...
deg1xrf 23841 Functionality of univariat...
deg1xrcl 23842 Closure of univariate poly...
deg1cl 23843 Sharp closure of univariat...
mdegpropd 23844 Property deduction for pol...
deg1fvi 23845 Univariate polynomial degr...
deg1propd 23846 Property deduction for pol...
deg1z 23847 Degree of the zero univari...
deg1nn0cl 23848 Degree of a nonzero univar...
deg1n0ima 23849 Degree image of a set of p...
deg1nn0clb 23850 A polynomial is nonzero if...
deg1lt0 23851 A polynomial is zero iff i...
deg1ldg 23852 A nonzero univariate polyn...
deg1ldgn 23853 An index at which a polyno...
deg1ldgdomn 23854 A nonzero univariate polyn...
deg1leb 23855 Property of being of limit...
deg1val 23856 Value of the univariate de...
deg1lt 23857 If the degree of a univari...
deg1ge 23858 Conversely, a nonzero coef...
coe1mul3 23859 The coefficient vector of ...
coe1mul4 23860 Value of the "leading" coe...
deg1addle 23861 The degree of a sum is at ...
deg1addle2 23862 If both factors have degre...
deg1add 23863 Exact degree of a sum of t...
deg1vscale 23864 The degree of a scalar tim...
deg1vsca 23865 The degree of a scalar tim...
deg1invg 23866 The degree of the negated ...
deg1suble 23867 The degree of a difference...
deg1sub 23868 Exact degree of a differen...
deg1mulle2 23869 Produce a bound on the pro...
deg1sublt 23870 Subtraction of two polynom...
deg1le0 23871 A polynomial has nonpositi...
deg1sclle 23872 A scalar polynomial has no...
deg1scl 23873 A nonzero scalar polynomia...
deg1mul2 23874 Degree of multiplication o...
deg1mul3 23875 Degree of multiplication o...
deg1mul3le 23876 Degree of multiplication o...
deg1tmle 23877 Limiting degree of a polyn...
deg1tm 23878 Exact degree of a polynomi...
deg1pwle 23879 Limiting degree of a varia...
deg1pw 23880 Exact degree of a variable...
ply1nz 23881 Univariate polynomials ove...
ply1nzb 23882 Univariate polynomials are...
ply1domn 23883 Corollary of ~ deg1mul2 : ...
ply1idom 23884 The ring of univariate pol...
ply1divmo 23895 Uniqueness of a quotient i...
ply1divex 23896 Lemma for ~ ply1divalg : e...
ply1divalg 23897 The division algorithm for...
ply1divalg2 23898 Reverse the order of multi...
uc1pval 23899 Value of the set of unitic...
isuc1p 23900 Being a unitic polynomial....
mon1pval 23901 Value of the set of monic ...
ismon1p 23902 Being a monic polynomial. ...
uc1pcl 23903 Unitic polynomials are pol...
mon1pcl 23904 Monic polynomials are poly...
uc1pn0 23905 Unitic polynomials are not...
mon1pn0 23906 Monic polynomials are not ...
uc1pdeg 23907 Unitic polynomials have no...
uc1pldg 23908 Unitic polynomials have un...
mon1pldg 23909 Unitic polynomials have on...
mon1puc1p 23910 Monic polynomials are unit...
uc1pmon1p 23911 Make a unitic polynomial m...
deg1submon1p 23912 The difference of two moni...
q1pval 23913 Value of the univariate po...
q1peqb 23914 Characterizing property of...
q1pcl 23915 Closure of the quotient by...
r1pval 23916 Value of the polynomial re...
r1pcl 23917 Closure of remainder follo...
r1pdeglt 23918 The remainder has a degree...
r1pid 23919 Express the original polyn...
dvdsq1p 23920 Divisibility in a polynomi...
dvdsr1p 23921 Divisibility in a polynomi...
ply1remlem 23922 A term of the form ` x - N...
ply1rem 23923 The polynomial remainder t...
facth1 23924 The factor theorem and its...
fta1glem1 23925 Lemma for ~ fta1g . (Cont...
fta1glem2 23926 Lemma for ~ fta1g . (Cont...
fta1g 23927 The one-sided fundamental ...
fta1blem 23928 Lemma for ~ fta1b . (Cont...
fta1b 23929 The assumption that ` R ` ...
drnguc1p 23930 Over a division ring, all ...
ig1peu 23931 There is a unique monic po...
ig1pval 23932 Substitutions for the poly...
ig1pval2 23933 Generator of the zero idea...
ig1pval3 23934 Characterizing properties ...
ig1pcl 23935 The monic generator of an ...
ig1pdvds 23936 The monic generator of an ...
ig1prsp 23937 Any ideal of polynomials o...
ply1lpir 23938 The ring of polynomials ov...
ply1pid 23939 The polynomials over a fie...
plyco0 23948 Two ways to say that a fun...
plyval 23949 Value of the polynomial se...
plybss 23950 Reverse closure of the par...
elply 23951 Definition of a polynomial...
elply2 23952 The coefficient function c...
plyun0 23953 The set of polynomials is ...
plyf 23954 The polynomial is a functi...
plyss 23955 The polynomial set functio...
plyssc 23956 Every polynomial ring is c...
elplyr 23957 Sufficient condition for e...
elplyd 23958 Sufficient condition for e...
ply1termlem 23959 Lemma for ~ ply1term . (C...
ply1term 23960 A one-term polynomial. (C...
plypow 23961 A power is a polynomial. ...
plyconst 23962 A constant function is a p...
ne0p 23963 A test to show that a poly...
ply0 23964 The zero function is a pol...
plyid 23965 The identity function is a...
plyeq0lem 23966 Lemma for ~ plyeq0 . If `...
plyeq0 23967 If a polynomial is zero at...
plypf1 23968 Write the set of complex p...
plyaddlem1 23969 Derive the coefficient fun...
plymullem1 23970 Derive the coefficient fun...
plyaddlem 23971 Lemma for ~ plyadd . (Con...
plymullem 23972 Lemma for ~ plymul . (Con...
plyadd 23973 The sum of two polynomials...
plymul 23974 The product of two polynom...
plysub 23975 The difference of two poly...
plyaddcl 23976 The sum of two polynomials...
plymulcl 23977 The product of two polynom...
plysubcl 23978 The difference of two poly...
coeval 23979 Value of the coefficient f...
coeeulem 23980 Lemma for ~ coeeu . (Cont...
coeeu 23981 Uniqueness of the coeffici...
coelem 23982 Lemma for properties of th...
coeeq 23983 If ` A ` satisfies the pro...
dgrval 23984 Value of the degree functi...
dgrlem 23985 Lemma for ~ dgrcl and simi...
coef 23986 The domain and range of th...
coef2 23987 The domain and range of th...
coef3 23988 The domain and range of th...
dgrcl 23989 The degree of any polynomi...
dgrub 23990 If the ` M ` -th coefficie...
dgrub2 23991 All the coefficients above...
dgrlb 23992 If all the coefficients ab...
coeidlem 23993 Lemma for ~ coeid . (Cont...
coeid 23994 Reconstruct a polynomial a...
coeid2 23995 Reconstruct a polynomial a...
coeid3 23996 Reconstruct a polynomial a...
plyco 23997 The composition of two pol...
coeeq2 23998 Compute the coefficient fu...
dgrle 23999 Given an explicit expressi...
dgreq 24000 If the highest term in a p...
0dgr 24001 A constant function has de...
0dgrb 24002 A function has degree zero...
dgrnznn 24003 A nonzero polynomial with ...
coefv0 24004 The result of evaluating a...
coeaddlem 24005 Lemma for ~ coeadd and ~ d...
coemullem 24006 Lemma for ~ coemul and ~ d...
coeadd 24007 The coefficient function o...
coemul 24008 A coefficient of a product...
coe11 24009 The coefficient function i...
coemulhi 24010 The leading coefficient of...
coemulc 24011 The coefficient function i...
coe0 24012 The coefficients of the ze...
coesub 24013 The coefficient function o...
coe1termlem 24014 The coefficient function o...
coe1term 24015 The coefficient function o...
dgr1term 24016 The degree of a monomial. ...
plycn 24017 A polynomial is a continuo...
dgr0 24018 The degree of the zero pol...
coeidp 24019 The coefficients of the id...
dgrid 24020 The degree of the identity...
dgreq0 24021 The leading coefficient of...
dgrlt 24022 Two ways to say that the d...
dgradd 24023 The degree of a sum of pol...
dgradd2 24024 The degree of a sum of pol...
dgrmul2 24025 The degree of a product of...
dgrmul 24026 The degree of a product of...
dgrmulc 24027 Scalar multiplication by a...
dgrsub 24028 The degree of a difference...
dgrcolem1 24029 The degree of a compositio...
dgrcolem2 24030 Lemma for ~ dgrco . (Cont...
dgrco 24031 The degree of a compositio...
plycjlem 24032 Lemma for ~ plycj and ~ co...
plycj 24033 The double conjugation of ...
coecj 24034 Double conjugation of a po...
plyrecj 24035 A polynomial with real coe...
plymul0or 24036 Polynomial multiplication ...
ofmulrt 24037 The set of roots of a prod...
plyreres 24038 Real-coefficient polynomia...
dvply1 24039 Derivative of a polynomial...
dvply2g 24040 The derivative of a polyno...
dvply2 24041 The derivative of a polyno...
dvnply2 24042 Polynomials have polynomia...
dvnply 24043 Polynomials have polynomia...
plycpn 24044 Polynomials are smooth. (...
quotval 24047 Value of the quotient func...
plydivlem1 24048 Lemma for ~ plydivalg . (...
plydivlem2 24049 Lemma for ~ plydivalg . (...
plydivlem3 24050 Lemma for ~ plydivex . Ba...
plydivlem4 24051 Lemma for ~ plydivex . In...
plydivex 24052 Lemma for ~ plydivalg . (...
plydiveu 24053 Lemma for ~ plydivalg . (...
plydivalg 24054 The division algorithm on ...
quotlem 24055 Lemma for properties of th...
quotcl 24056 The quotient of two polyno...
quotcl2 24057 Closure of the quotient fu...
quotdgr 24058 Remainder property of the ...
plyremlem 24059 Closure of a linear factor...
plyrem 24060 The polynomial remainder t...
facth 24061 The factor theorem. If a ...
fta1lem 24062 Lemma for ~ fta1 . (Contr...
fta1 24063 The easy direction of the ...
quotcan 24064 Exact division with a mult...
vieta1lem1 24065 Lemma for ~ vieta1 . (Con...
vieta1lem2 24066 Lemma for ~ vieta1 : induc...
vieta1 24067 The first-order Vieta's fo...
plyexmo 24068 An infinite set of values ...
elaa 24071 Elementhood in the set of ...
aacn 24072 An algebraic number is a c...
aasscn 24073 The algebraic numbers are ...
elqaalem1 24074 Lemma for ~ elqaa . The f...
elqaalem2 24075 Lemma for ~ elqaa . (Cont...
elqaalem3 24076 Lemma for ~ elqaa . (Cont...
elqaa 24077 The set of numbers generat...
qaa 24078 Every rational number is a...
qssaa 24079 The rational numbers are c...
iaa 24080 The imaginary unit is alge...
aareccl 24081 The reciprocal of an algeb...
aacjcl 24082 The conjugate of an algebr...
aannenlem1 24083 Lemma for ~ aannen . (Con...
aannenlem2 24084 Lemma for ~ aannen . (Con...
aannenlem3 24085 The algebraic numbers are ...
aannen 24086 The algebraic numbers are ...
aalioulem1 24087 Lemma for ~ aaliou . An i...
aalioulem2 24088 Lemma for ~ aaliou . (Con...
aalioulem3 24089 Lemma for ~ aaliou . (Con...
aalioulem4 24090 Lemma for ~ aaliou . (Con...
aalioulem5 24091 Lemma for ~ aaliou . (Con...
aalioulem6 24092 Lemma for ~ aaliou . (Con...
aaliou 24093 Liouville's theorem on dio...
geolim3 24094 Geometric series convergen...
aaliou2 24095 Liouville's approximation ...
aaliou2b 24096 Liouville's approximation ...
aaliou3lem1 24097 Lemma for ~ aaliou3 . (Co...
aaliou3lem2 24098 Lemma for ~ aaliou3 . (Co...
aaliou3lem3 24099 Lemma for ~ aaliou3 . (Co...
aaliou3lem8 24100 Lemma for ~ aaliou3 . (Co...
aaliou3lem4 24101 Lemma for ~ aaliou3 . (Co...
aaliou3lem5 24102 Lemma for ~ aaliou3 . (Co...
aaliou3lem6 24103 Lemma for ~ aaliou3 . (Co...
aaliou3lem7 24104 Lemma for ~ aaliou3 . (Co...
aaliou3lem9 24105 Example of a "Liouville nu...
aaliou3 24106 Example of a "Liouville nu...
taylfvallem1 24111 Lemma for ~ taylfval . (C...
taylfvallem 24112 Lemma for ~ taylfval . (C...
taylfval 24113 Define the Taylor polynomi...
eltayl 24114 Value of the Taylor series...
taylf 24115 The Taylor series defines ...
tayl0 24116 The Taylor series is alway...
taylplem1 24117 Lemma for ~ taylpfval and ...
taylplem2 24118 Lemma for ~ taylpfval and ...
taylpfval 24119 Define the Taylor polynomi...
taylpf 24120 The Taylor polynomial is a...
taylpval 24121 Value of the Taylor polyno...
taylply2 24122 The Taylor polynomial is a...
taylply 24123 The Taylor polynomial is a...
dvtaylp 24124 The derivative of the Tayl...
dvntaylp 24125 The ` M ` -th derivative o...
dvntaylp0 24126 The first ` N ` derivative...
taylthlem1 24127 Lemma for ~ taylth . This...
taylthlem2 24128 Lemma for ~ taylth . (Con...
taylth 24129 Taylor's theorem. The Tay...
ulmrel 24132 The uniform limit relation...
ulmscl 24133 Closure of the base set in...
ulmval 24134 Express the predicate: Th...
ulmcl 24135 Closure of a uniform limit...
ulmf 24136 Closure of a uniform limit...
ulmpm 24137 Closure of a uniform limit...
ulmf2 24138 Closure of a uniform limit...
ulm2 24139 Simplify ~ ulmval when ` F...
ulmi 24140 The uniform limit property...
ulmclm 24141 A uniform limit of functio...
ulmres 24142 A sequence of functions co...
ulmshftlem 24143 Lemma for ~ ulmshft . (Co...
ulmshft 24144 A sequence of functions co...
ulm0 24145 Every function converges u...
ulmuni 24146 An sequence of functions u...
ulmdm 24147 Two ways to express that a...
ulmcaulem 24148 Lemma for ~ ulmcau and ~ u...
ulmcau 24149 A sequence of functions co...
ulmcau2 24150 A sequence of functions co...
ulmss 24151 A uniform limit of functio...
ulmbdd 24152 A uniform limit of bounded...
ulmcn 24153 A uniform limit of continu...
ulmdvlem1 24154 Lemma for ~ ulmdv . (Cont...
ulmdvlem2 24155 Lemma for ~ ulmdv . (Cont...
ulmdvlem3 24156 Lemma for ~ ulmdv . (Cont...
ulmdv 24157 If ` F ` is a sequence of ...
mtest 24158 The Weierstrass M-test. I...
mtestbdd 24159 Given the hypotheses of th...
mbfulm 24160 A uniform limit of measura...
iblulm 24161 A uniform limit of integra...
itgulm 24162 A uniform limit of integra...
itgulm2 24163 A uniform limit of integra...
pserval 24164 Value of the function ` G ...
pserval2 24165 Value of the function ` G ...
psergf 24166 The sequence of terms in t...
radcnvlem1 24167 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem2 24168 Lemma for ~ radcnvlt1 , ~ ...
radcnvlem3 24169 Lemma for ~ radcnvlt1 , ~ ...
radcnv0 24170 Zero is always a convergen...
radcnvcl 24171 The radius of convergence ...
radcnvlt1 24172 If ` X ` is within the ope...
radcnvlt2 24173 If ` X ` is within the ope...
radcnvle 24174 If ` X ` is a convergent p...
dvradcnv 24175 The radius of convergence ...
pserulm 24176 If ` S ` is a region conta...
psercn2 24177 Since by ~ pserulm the ser...
psercnlem2 24178 Lemma for ~ psercn . (Con...
psercnlem1 24179 Lemma for ~ psercn . (Con...
psercn 24180 An infinite series converg...
pserdvlem1 24181 Lemma for ~ pserdv . (Con...
pserdvlem2 24182 Lemma for ~ pserdv . (Con...
pserdv 24183 The derivative of a power ...
pserdv2 24184 The derivative of a power ...
abelthlem1 24185 Lemma for ~ abelth . (Con...
abelthlem2 24186 Lemma for ~ abelth . The ...
abelthlem3 24187 Lemma for ~ abelth . (Con...
abelthlem4 24188 Lemma for ~ abelth . (Con...
abelthlem5 24189 Lemma for ~ abelth . (Con...
abelthlem6 24190 Lemma for ~ abelth . (Con...
abelthlem7a 24191 Lemma for ~ abelth . (Con...
abelthlem7 24192 Lemma for ~ abelth . (Con...
abelthlem8 24193 Lemma for ~ abelth . (Con...
abelthlem9 24194 Lemma for ~ abelth . By a...
abelth 24195 Abel's theorem. If the po...
abelth2 24196 Abel's theorem, restricted...
efcn 24197 The exponential function i...
sincn 24198 Sine is continuous. (Cont...
coscn 24199 Cosine is continuous. (Co...
reeff1olem 24200 Lemma for ~ reeff1o . (Co...
reeff1o 24201 The real exponential funct...
reefiso 24202 The exponential function o...
efcvx 24203 The exponential function o...
reefgim 24204 The exponential function i...
pilem1 24205 Lemma for ~ pire , ~ pigt2...
pilem2 24206 Lemma for ~ pire , ~ pigt2...
pilem3 24207 Lemma for ~ pire , ~ pigt2...
pigt2lt4 24208 ` _pi ` is between 2 and 4...
sinpi 24209 The sine of ` _pi ` is 0. ...
pire 24210 ` _pi ` is a real number. ...
picn 24211 ` _pi ` is a complex numbe...
pipos 24212 ` _pi ` is positive. (Con...
pirp 24213 ` _pi ` is a positive real...
negpicn 24214 ` -u _pi ` is a real numbe...
sinhalfpilem 24215 Lemma for ~ sinhalfpi and ...
halfpire 24216 ` _pi / 2 ` is real. (Con...
neghalfpire 24217 ` -u _pi / 2 ` is real. (...
neghalfpirx 24218 ` -u _pi / 2 ` is an exten...
pidiv2halves 24219 Adding ` _pi / 2 ` to itse...
sinhalfpi 24220 The sine of ` _pi / 2 ` is...
coshalfpi 24221 The cosine of ` _pi / 2 ` ...
cosneghalfpi 24222 The cosine of ` -u _pi / 2...
efhalfpi 24223 The exponential of ` _i _p...
cospi 24224 The cosine of ` _pi ` is `...
efipi 24225 The exponential of ` _i x....
eulerid 24226 Euler's identity. (Contri...
sin2pi 24227 The sine of ` 2 _pi ` is 0...
cos2pi 24228 The cosine of ` 2 _pi ` is...
ef2pi 24229 The exponential of ` 2 _pi...
ef2kpi 24230 The exponential of ` 2 K _...
efper 24231 The exponential function i...
sinperlem 24232 Lemma for ~ sinper and ~ c...
sinper 24233 The sine function is perio...
cosper 24234 The cosine function is per...
sin2kpi 24235 If ` K ` is an integer, th...
cos2kpi 24236 If ` K ` is an integer, th...
sin2pim 24237 Sine of a number subtracte...
cos2pim 24238 Cosine of a number subtrac...
sinmpi 24239 Sine of a number less ` _p...
cosmpi 24240 Cosine of a number less ` ...
sinppi 24241 Sine of a number plus ` _p...
cosppi 24242 Cosine of a complex number...
efimpi 24243 The exponential function o...
sinhalfpip 24244 The sine of ` _pi / 2 ` pl...
sinhalfpim 24245 The sine of ` _pi / 2 ` mi...
coshalfpip 24246 The cosine of ` _pi / 2 ` ...
coshalfpim 24247 The cosine of ` _pi / 2 ` ...
ptolemy 24248 Ptolemy's Theorem. This t...
sincosq1lem 24249 Lemma for ~ sincosq1sgn . ...
sincosq1sgn 24250 The signs of the sine and ...
sincosq2sgn 24251 The signs of the sine and ...
sincosq3sgn 24252 The signs of the sine and ...
sincosq4sgn 24253 The signs of the sine and ...
coseq00topi 24254 Location of the zeroes of ...
coseq0negpitopi 24255 Location of the zeroes of ...
tanrpcl 24256 Positive real closure of t...
tangtx 24257 The tangent function is gr...
tanabsge 24258 The tangent function is gr...
sinq12gt0 24259 The sine of a number stric...
sinq12ge0 24260 The sine of a number betwe...
sinq34lt0t 24261 The sine of a number stric...
cosq14gt0 24262 The cosine of a number str...
cosq14ge0 24263 The cosine of a number bet...
sincosq1eq 24264 Complementarity of the sin...
sincos4thpi 24265 The sine and cosine of ` _...
tan4thpi 24266 The tangent of ` _pi / 4 `...
sincos6thpi 24267 The sine and cosine of ` _...
sincos3rdpi 24268 The sine and cosine of ` _...
pige3 24269 ` _pi ` is greater or equa...
abssinper 24270 The absolute value of sine...
sinkpi 24271 The sine of an integer mul...
coskpi 24272 The absolute value of the ...
sineq0 24273 A complex number whose sin...
coseq1 24274 A complex number whose cos...
efeq1 24275 A complex number whose exp...
cosne0 24276 The cosine function has no...
cosordlem 24277 Lemma for ~ cosord . (Con...
cosord 24278 Cosine is decreasing over ...
cos11 24279 Cosine is one-to-one over ...
sinord 24280 Sine is increasing over th...
recosf1o 24281 The cosine function is a b...
resinf1o 24282 The sine function is a bij...
tanord1 24283 The tangent function is st...
tanord 24284 The tangent function is st...
tanregt0 24285 The positivity of ` tan ( ...
negpitopissre 24286 ` ( -u _pi (,] _pi ) ` is ...
efgh 24287 The exponential function o...
efif1olem1 24288 Lemma for ~ efif1o . (Con...
efif1olem2 24289 Lemma for ~ efif1o . (Con...
efif1olem3 24290 Lemma for ~ efif1o . (Con...
efif1olem4 24291 The exponential function o...
efif1o 24292 The exponential function o...
efifo 24293 The exponential function o...
eff1olem 24294 The exponential function m...
eff1o 24295 The exponential function m...
efabl 24296 The image of a subgroup of...
efsubm 24297 The image of a subgroup of...
circgrp 24298 The circle group ` T ` is ...
circsubm 24299 The circle group ` T ` is ...
rzgrp 24300 The quotient group R/Z is ...
logrn 24305 The range of the natural l...
ellogrn 24306 Write out the property ` A...
dflog2 24307 The natural logarithm func...
relogrn 24308 The range of the natural l...
logrncn 24309 The range of the natural l...
eff1o2 24310 The exponential function r...
logf1o 24311 The natural logarithm func...
dfrelog 24312 The natural logarithm func...
relogf1o 24313 The natural logarithm func...
logrncl 24314 Closure of the natural log...
logcl 24315 Closure of the natural log...
logimcl 24316 Closure of the imaginary p...
logcld 24317 The logarithm of a nonzero...
logimcld 24318 The imaginary part of the ...
logimclad 24319 The imaginary part of the ...
abslogimle 24320 The imaginary part of the ...
logrnaddcl 24321 The range of the natural l...
relogcl 24322 Closure of the natural log...
eflog 24323 Relationship between the n...
logeq0im1 24324 If the logarithm of a numb...
logccne0 24325 The logarithm isn't 0 if i...
logne0 24326 Logarithm of a non-1 posit...
reeflog 24327 Relationship between the n...
logef 24328 Relationship between the n...
relogef 24329 Relationship between the n...
logeftb 24330 Relationship between the n...
relogeftb 24331 Relationship between the n...
log1 24332 The natural logarithm of `...
loge 24333 The natural logarithm of `...
logneg 24334 The natural logarithm of a...
logm1 24335 The natural logarithm of n...
lognegb 24336 If a number has imaginary ...
relogoprlem 24337 Lemma for ~ relogmul and ~...
relogmul 24338 The natural logarithm of t...
relogdiv 24339 The natural logarithm of t...
explog 24340 Exponentiation of a nonzer...
reexplog 24341 Exponentiation of a positi...
relogexp 24342 The natural logarithm of p...
relog 24343 Real part of a logarithm. ...
relogiso 24344 The natural logarithm func...
reloggim 24345 The natural logarithm is a...
logltb 24346 The natural logarithm func...
logfac 24347 The logarithm of a factori...
eflogeq 24348 Solve an equation involvin...
logleb 24349 Natural logarithm preserve...
rplogcl 24350 Closure of the logarithm f...
logge0 24351 The logarithm of a number ...
logcj 24352 The natural logarithm dist...
efiarg 24353 The exponential of the "ar...
cosargd 24354 The cosine of the argument...
cosarg0d 24355 The cosine of the argument...
argregt0 24356 Closure of the argument of...
argrege0 24357 Closure of the argument of...
argimgt0 24358 Closure of the argument of...
argimlt0 24359 Closure of the argument of...
logimul 24360 Multiplying a number by ` ...
logneg2 24361 The logarithm of the negat...
logmul2 24362 Generalization of ~ relogm...
logdiv2 24363 Generalization of ~ relogd...
abslogle 24364 Bound on the magnitude of ...
tanarg 24365 The basic relation between...
logdivlti 24366 The ` log x / x ` function...
logdivlt 24367 The ` log x / x ` function...
logdivle 24368 The ` log x / x ` function...
relogcld 24369 Closure of the natural log...
reeflogd 24370 Relationship between the n...
relogmuld 24371 The natural logarithm of t...
relogdivd 24372 The natural logarithm of t...
logled 24373 Natural logarithm preserve...
relogefd 24374 Relationship between the n...
rplogcld 24375 Closure of the logarithm f...
logge0d 24376 The logarithm of a number ...
logge0b 24377 The logarithm of a number ...
loggt0b 24378 The logarithm of a number ...
logle1b 24379 The logarithm of a number ...
loglt1b 24380 The logarithm of a number ...
divlogrlim 24381 The inverse logarithm func...
logno1 24382 The logarithm function is ...
dvrelog 24383 The derivative of the real...
relogcn 24384 The real logarithm functio...
ellogdm 24385 Elementhood in the "contin...
logdmn0 24386 A number in the continuous...
logdmnrp 24387 A number in the continuous...
logdmss 24388 The continuity domain of `...
logcnlem2 24389 Lemma for ~ logcn . (Cont...
logcnlem3 24390 Lemma for ~ logcn . (Cont...
logcnlem4 24391 Lemma for ~ logcn . (Cont...
logcnlem5 24392 Lemma for ~ logcn . (Cont...
logcn 24393 The logarithm function is ...
dvloglem 24394 Lemma for ~ dvlog . (Cont...
logdmopn 24395 The "continuous domain" of...
logf1o2 24396 The logarithm maps its con...
dvlog 24397 The derivative of the comp...
dvlog2lem 24398 Lemma for ~ dvlog2 . (Con...
dvlog2 24399 The derivative of the comp...
advlog 24400 The antiderivative of the ...
advlogexp 24401 The antiderivative of a po...
efopnlem1 24402 Lemma for ~ efopn . (Cont...
efopnlem2 24403 Lemma for ~ efopn . (Cont...
efopn 24404 The exponential map is an ...
logtayllem 24405 Lemma for ~ logtayl . (Co...
logtayl 24406 The Taylor series for ` -u...
logtaylsum 24407 The Taylor series for ` -u...
logtayl2 24408 Power series expression fo...
logccv 24409 The natural logarithm func...
cxpval 24410 Value of the complex power...
cxpef 24411 Value of the complex power...
0cxp 24412 Value of the complex power...
cxpexpz 24413 Relate the complex power f...
cxpexp 24414 Relate the complex power f...
logcxp 24415 Logarithm of a complex pow...
cxp0 24416 Value of the complex power...
cxp1 24417 Value of the complex power...
1cxp 24418 Value of the complex power...
ecxp 24419 Write the exponential func...
cxpcl 24420 Closure of the complex pow...
recxpcl 24421 Real closure of the comple...
rpcxpcl 24422 Positive real closure of t...
cxpne0 24423 Complex exponentiation is ...
cxpeq0 24424 Complex exponentiation is ...
cxpadd 24425 Sum of exponents law for c...
cxpp1 24426 Value of a nonzero complex...
cxpneg 24427 Value of a complex number ...
cxpsub 24428 Exponent subtraction law f...
cxpge0 24429 Nonnegative exponentiation...
mulcxplem 24430 Lemma for ~ mulcxp . (Con...
mulcxp 24431 Complex exponentiation of ...
cxprec 24432 Complex exponentiation of ...
divcxp 24433 Complex exponentiation of ...
cxpmul 24434 Product of exponents law f...
cxpmul2 24435 Product of exponents law f...
cxproot 24436 The complex power function...
cxpmul2z 24437 Generalize ~ cxpmul2 to ne...
abscxp 24438 Absolute value of a power,...
abscxp2 24439 Absolute value of a power,...
cxplt 24440 Ordering property for comp...
cxple 24441 Ordering property for comp...
cxplea 24442 Ordering property for comp...
cxple2 24443 Ordering property for comp...
cxplt2 24444 Ordering property for comp...
cxple2a 24445 Ordering property for comp...
cxplt3 24446 Ordering property for comp...
cxple3 24447 Ordering property for comp...
cxpsqrtlem 24448 Lemma for ~ cxpsqrt . (Co...
cxpsqrt 24449 The complex exponential fu...
logsqrt 24450 Logarithm of a square root...
cxp0d 24451 Value of the complex power...
cxp1d 24452 Value of the complex power...
1cxpd 24453 Value of the complex power...
cxpcld 24454 Closure of the complex pow...
cxpmul2d 24455 Product of exponents law f...
0cxpd 24456 Value of the complex power...
cxpexpzd 24457 Relate the complex power f...
cxpefd 24458 Value of the complex power...
cxpne0d 24459 Complex exponentiation is ...
cxpp1d 24460 Value of a nonzero complex...
cxpnegd 24461 Value of a complex number ...
cxpmul2zd 24462 Generalize ~ cxpmul2 to ne...
cxpaddd 24463 Sum of exponents law for c...
cxpsubd 24464 Exponent subtraction law f...
cxpltd 24465 Ordering property for comp...
cxpled 24466 Ordering property for comp...
cxplead 24467 Ordering property for comp...
divcxpd 24468 Complex exponentiation of ...
recxpcld 24469 Positive real closure of t...
cxpge0d 24470 Nonnegative exponentiation...
cxple2ad 24471 Ordering property for comp...
cxplt2d 24472 Ordering property for comp...
cxple2d 24473 Ordering property for comp...
mulcxpd 24474 Complex exponentiation of ...
cxprecd 24475 Complex exponentiation of ...
rpcxpcld 24476 Positive real closure of t...
logcxpd 24477 Logarithm of a complex pow...
cxplt3d 24478 Ordering property for comp...
cxple3d 24479 Ordering property for comp...
cxpmuld 24480 Product of exponents law f...
dvcxp1 24481 The derivative of a comple...
dvcxp2 24482 The derivative of a comple...
dvsqrt 24483 The derivative of the real...
dvcncxp1 24484 Derivative of complex powe...
dvcnsqrt 24485 Derivative of square root ...
cxpcn 24486 Domain of continuity of th...
cxpcn2 24487 Continuity of the complex ...
cxpcn3lem 24488 Lemma for ~ cxpcn3 . (Con...
cxpcn3 24489 Extend continuity of the c...
resqrtcn 24490 Continuity of the real squ...
sqrtcn 24491 Continuity of the square r...
cxpaddlelem 24492 Lemma for ~ cxpaddle . (C...
cxpaddle 24493 Ordering property for comp...
abscxpbnd 24494 Bound on the absolute valu...
root1id 24495 Property of an ` N ` -th r...
root1eq1 24496 The only powers of an ` N ...
root1cj 24497 Within the ` N ` -th roots...
cxpeq 24498 Solve an equation involvin...
loglesqrt 24499 An upper bound on the loga...
logreclem 24500 Symmetry of the natural lo...
logrec 24501 Logarithm of a reciprocal ...
logbval 24504 Define the value of the ` ...
logbcl 24505 General logarithm closure....
logbid1 24506 General logarithm is 1 whe...
logb1 24507 The logarithm of ` 1 ` to ...
elogb 24508 The general logarithm of a...
logbchbase 24509 Change of base for logarit...
relogbval 24510 Value of the general logar...
relogbcl 24511 Closure of the general log...
relogbzcl 24512 Closure of the general log...
relogbreexp 24513 Power law for the general ...
relogbzexp 24514 Power law for the general ...
relogbmul 24515 The logarithm of the produ...
relogbmulexp 24516 The logarithm of the produ...
relogbdiv 24517 The logarithm of the quoti...
relogbexp 24518 Identity law for general l...
nnlogbexp 24519 Identity law for general l...
logbrec 24520 Logarithm of a reciprocal ...
logbleb 24521 The general logarithm func...
logblt 24522 The general logarithm func...
relogbcxp 24523 Identity law for the gener...
cxplogb 24524 Identity law for the gener...
relogbcxpb 24525 The logarithm is the inver...
logbmpt 24526 The general logarithm to a...
logbf 24527 The general logarithm to a...
logbfval 24528 The general logarithm of a...
relogbf 24529 The general logarithm to a...
logblog 24530 The general logarithm to t...
angval 24531 Define the angle function,...
angcan 24532 Cancel a constant multipli...
angneg 24533 Cancel a negative sign in ...
angvald 24534 The (signed) angle between...
angcld 24535 The (signed) angle between...
angrteqvd 24536 Two vectors are at a right...
cosangneg2d 24537 The cosine of the angle be...
angrtmuld 24538 Perpendicularity of two ve...
ang180lem1 24539 Lemma for ~ ang180 . Show...
ang180lem2 24540 Lemma for ~ ang180 . Show...
ang180lem3 24541 Lemma for ~ ang180 . Sinc...
ang180lem4 24542 Lemma for ~ ang180 . Redu...
ang180lem5 24543 Lemma for ~ ang180 : Redu...
ang180 24544 The sum of angles ` m A B ...
lawcoslem1 24545 Lemma for ~ lawcos . Here...
lawcos 24546 Law of cosines (also known...
pythag 24547 Pythagorean theorem. Give...
isosctrlem1 24548 Lemma for ~ isosctr . (Co...
isosctrlem2 24549 Lemma for ~ isosctr . Cor...
isosctrlem3 24550 Lemma for ~ isosctr . Cor...
isosctr 24551 Isosceles triangle theorem...
ssscongptld 24552 If two triangles have equa...
affineequiv 24553 Equivalence between two wa...
affineequiv2 24554 Equivalence between two wa...
angpieqvdlem 24555 Equivalence used in the pr...
angpieqvdlem2 24556 Equivalence used in ~ angp...
angpined 24557 If the angle at ABC is ` _...
angpieqvd 24558 The angle ABC is ` _pi ` i...
chordthmlem 24559 If M is the midpoint of AB...
chordthmlem2 24560 If M is the midpoint of AB...
chordthmlem3 24561 If M is the midpoint of AB...
chordthmlem4 24562 If P is on the segment AB ...
chordthmlem5 24563 If P is on the segment AB ...
chordthm 24564 The intersecting chords th...
heron 24565 Heron's formula gives the ...
quad2 24566 The quadratic equation, wi...
quad 24567 The quadratic equation. (...
1cubrlem 24568 The cube roots of unity. ...
1cubr 24569 The cube roots of unity. ...
dcubic1lem 24570 Lemma for ~ dcubic1 and ~ ...
dcubic2 24571 Reverse direction of ~ dcu...
dcubic1 24572 Forward direction of ~ dcu...
dcubic 24573 Solutions to the depressed...
mcubic 24574 Solutions to a monic cubic...
cubic2 24575 The solution to the genera...
cubic 24576 The cubic equation, which ...
binom4 24577 Work out a quartic binomia...
dquartlem1 24578 Lemma for ~ dquart . (Con...
dquartlem2 24579 Lemma for ~ dquart . (Con...
dquart 24580 Solve a depressed quartic ...
quart1cl 24581 Closure lemmas for ~ quart...
quart1lem 24582 Lemma for ~ quart1 . (Con...
quart1 24583 Depress a quartic equation...
quartlem1 24584 Lemma for ~ quart . (Cont...
quartlem2 24585 Closure lemmas for ~ quart...
quartlem3 24586 Closure lemmas for ~ quart...
quartlem4 24587 Closure lemmas for ~ quart...
quart 24588 The quartic equation, writ...
asinlem 24595 The argument to the logari...
asinlem2 24596 The argument to the logari...
asinlem3a 24597 Lemma for ~ asinlem3 . (C...
asinlem3 24598 The argument to the logari...
asinf 24599 Domain and range of the ar...
asincl 24600 Closure for the arcsin fun...
acosf 24601 Domain and range of the ar...
acoscl 24602 Closure for the arccos fun...
atandm 24603 Since the property is a li...
atandm2 24604 This form of ~ atandm is a...
atandm3 24605 A compact form of ~ atandm...
atandm4 24606 A compact form of ~ atandm...
atanf 24607 Domain and range of the ar...
atancl 24608 Closure for the arctan fun...
asinval 24609 Value of the arcsin functi...
acosval 24610 Value of the arccos functi...
atanval 24611 Value of the arctan functi...
atanre 24612 A real number is in the do...
asinneg 24613 The arcsine function is od...
acosneg 24614 The negative symmetry rela...
efiasin 24615 The exponential of the arc...
sinasin 24616 The arcsine function is an...
cosacos 24617 The arccosine function is ...
asinsinlem 24618 Lemma for ~ asinsin . (Co...
asinsin 24619 The arcsine function compo...
acoscos 24620 The arccosine function is ...
asin1 24621 The arcsine of ` 1 ` is ` ...
acos1 24622 The arcsine of ` 1 ` is ` ...
reasinsin 24623 The arcsine function compo...
asinsinb 24624 Relationship between sine ...
acoscosb 24625 Relationship between sine ...
asinbnd 24626 The arcsine function has r...
acosbnd 24627 The arccosine function has...
asinrebnd 24628 Bounds on the arcsine func...
asinrecl 24629 The arcsine function is re...
acosrecl 24630 The arccosine function is ...
cosasin 24631 The cosine of the arcsine ...
sinacos 24632 The sine of the arccosine ...
atandmneg 24633 The domain of the arctange...
atanneg 24634 The arctangent function is...
atan0 24635 The arctangent of zero is ...
atandmcj 24636 The arctangent function di...
atancj 24637 The arctangent function di...
atanrecl 24638 The arctangent function is...
efiatan 24639 Value of the exponential o...
atanlogaddlem 24640 Lemma for ~ atanlogadd . ...
atanlogadd 24641 The rule ` sqrt ( z w ) = ...
atanlogsublem 24642 Lemma for ~ atanlogsub . ...
atanlogsub 24643 A variation on ~ atanlogad...
efiatan2 24644 Value of the exponential o...
2efiatan 24645 Value of the exponential o...
tanatan 24646 The arctangent function is...
atandmtan 24647 The tangent function has r...
cosatan 24648 The cosine of an arctangen...
cosatanne0 24649 The arctangent function ha...
atantan 24650 The arctangent function is...
atantanb 24651 Relationship between tange...
atanbndlem 24652 Lemma for ~ atanbnd . (Co...
atanbnd 24653 The arctangent function is...
atanord 24654 The arctangent function is...
atan1 24655 The arctangent of ` 1 ` is...
bndatandm 24656 A point in the open unit d...
atans 24657 The "domain of continuity"...
atans2 24658 It suffices to show that `...
atansopn 24659 The domain of continuity o...
atansssdm 24660 The domain of continuity o...
ressatans 24661 The real number line is a ...
dvatan 24662 The derivative of the arct...
atancn 24663 The arctangent is a contin...
atantayl 24664 The Taylor series for ` ar...
atantayl2 24665 The Taylor series for ` ar...
atantayl3 24666 The Taylor series for ` ar...
leibpilem1 24667 Lemma for ~ leibpi . (Con...
leibpilem2 24668 The Leibniz formula for ` ...
leibpi 24669 The Leibniz formula for ` ...
leibpisum 24670 The Leibniz formula for ` ...
log2cnv 24671 Using the Taylor series fo...
log2tlbnd 24672 Bound the error term in th...
log2ublem1 24673 Lemma for ~ log2ub . The ...
log2ublem2 24674 Lemma for ~ log2ub . (Con...
log2ublem3 24675 Lemma for ~ log2ub . In d...
log2ub 24676 ` log 2 ` is less than ` 2...
log2le1 24677 ` log 2 ` is less than ` 1...
birthdaylem1 24678 Lemma for ~ birthday . (C...
birthdaylem2 24679 For general ` N ` and ` K ...
birthdaylem3 24680 For general ` N ` and ` K ...
birthday 24681 The Birthday Problem. The...
dmarea 24684 The domain of the area fun...
areambl 24685 The fibers of a measurable...
areass 24686 A measurable region is a s...
dfarea 24687 Rewrite ~ df-area self-ref...
areaf 24688 Area measurement is a func...
areacl 24689 The area of a measurable r...
areage0 24690 The area of a measurable r...
areaval 24691 The area of a measurable r...
rlimcnp 24692 Relate a limit of a real-v...
rlimcnp2 24693 Relate a limit of a real-v...
rlimcnp3 24694 Relate a limit of a real-v...
xrlimcnp 24695 Relate a limit of a real-v...
efrlim 24696 The limit of the sequence ...
dfef2 24697 The limit of the sequence ...
cxplim 24698 A power to a negative expo...
sqrtlim 24699 The inverse square root fu...
rlimcxp 24700 Any power to a positive ex...
o1cxp 24701 An eventually bounded func...
cxp2limlem 24702 A linear factor grows slow...
cxp2lim 24703 Any power grows slower tha...
cxploglim 24704 The logarithm grows slower...
cxploglim2 24705 Every power of the logarit...
divsqrtsumlem 24706 Lemma for ~ divsqrsum and ...
divsqrsumf 24707 The function ` F ` used in...
divsqrsum 24708 The sum ` sum_ n <_ x ( 1 ...
divsqrtsum2 24709 A bound on the distance of...
divsqrtsumo1 24710 The sum ` sum_ n <_ x ( 1 ...
cvxcl 24711 Closure of a 0-1 linear co...
scvxcvx 24712 A strictly convex function...
jensenlem1 24713 Lemma for ~ jensen . (Con...
jensenlem2 24714 Lemma for ~ jensen . (Con...
jensen 24715 Jensen's inequality, a fin...
amgmlem 24716 Lemma for ~ amgm . (Contr...
amgm 24717 Inequality of arithmetic a...
logdifbnd 24720 Bound on the difference of...
logdiflbnd 24721 Lower bound on the differe...
emcllem1 24722 Lemma for ~ emcl . The se...
emcllem2 24723 Lemma for ~ emcl . ` F ` i...
emcllem3 24724 Lemma for ~ emcl . The fu...
emcllem4 24725 Lemma for ~ emcl . The di...
emcllem5 24726 Lemma for ~ emcl . The pa...
emcllem6 24727 Lemma for ~ emcl . By the...
emcllem7 24728 Lemma for ~ emcl and ~ har...
emcl 24729 Closure and bounds for the...
harmonicbnd 24730 A bound on the harmonic se...
harmonicbnd2 24731 A bound on the harmonic se...
emre 24732 The Euler-Mascheroni const...
emgt0 24733 The Euler-Mascheroni const...
harmonicbnd3 24734 A bound on the harmonic se...
harmoniclbnd 24735 A bound on the harmonic se...
harmonicubnd 24736 A bound on the harmonic se...
harmonicbnd4 24737 The asymptotic behavior of...
fsumharmonic 24738 Bound a finite sum based o...
zetacvg 24741 The zeta series is converg...
eldmgm 24748 Elementhood in the set of ...
dmgmaddn0 24749 If ` A ` is not a nonposit...
dmlogdmgm 24750 If ` A ` is in the continu...
rpdmgm 24751 A positive real number is ...
dmgmn0 24752 If ` A ` is not a nonposit...
dmgmaddnn0 24753 If ` A ` is not a nonposit...
dmgmdivn0 24754 Lemma for ~ lgamf . (Cont...
lgamgulmlem1 24755 Lemma for ~ lgamgulm . (C...
lgamgulmlem2 24756 Lemma for ~ lgamgulm . (C...
lgamgulmlem3 24757 Lemma for ~ lgamgulm . (C...
lgamgulmlem4 24758 Lemma for ~ lgamgulm . (C...
lgamgulmlem5 24759 Lemma for ~ lgamgulm . (C...
lgamgulmlem6 24760 The series ` G ` is unifor...
lgamgulm 24761 The series ` G ` is unifor...
lgamgulm2 24762 Rewrite the limit of the s...
lgambdd 24763 The log-Gamma function is ...
lgamucov 24764 The ` U ` regions used in ...
lgamucov2 24765 The ` U ` regions used in ...
lgamcvglem 24766 Lemma for ~ lgamf and ~ lg...
lgamcl 24767 The log-Gamma function is ...
lgamf 24768 The log-Gamma function is ...
gamf 24769 The Gamma function is a co...
gamcl 24770 The exponential of the log...
eflgam 24771 The exponential of the log...
gamne0 24772 The Gamma function is neve...
igamval 24773 Value of the inverse Gamma...
igamz 24774 Value of the inverse Gamma...
igamgam 24775 Value of the inverse Gamma...
igamlgam 24776 Value of the inverse Gamma...
igamf 24777 Closure of the inverse Gam...
igamcl 24778 Closure of the inverse Gam...
gamigam 24779 The Gamma function is the ...
lgamcvg 24780 The series ` G ` converges...
lgamcvg2 24781 The series ` G ` converges...
gamcvg 24782 The pointwise exponential ...
lgamp1 24783 The functional equation of...
gamp1 24784 The functional equation of...
gamcvg2lem 24785 Lemma for ~ gamcvg2 . (Co...
gamcvg2 24786 An infinite product expres...
regamcl 24787 The Gamma function is real...
relgamcl 24788 The log-Gamma function is ...
rpgamcl 24789 The log-Gamma function is ...
lgam1 24790 The log-Gamma function at ...
gam1 24791 The log-Gamma function at ...
facgam 24792 The Gamma function general...
gamfac 24793 The Gamma function general...
wilthlem1 24794 The only elements that are...
wilthlem2 24795 Lemma for ~ wilth : induct...
wilthlem3 24796 Lemma for ~ wilth . Here ...
wilth 24797 Wilson's theorem. A numbe...
wilthimp 24798 The forward implication of...
ftalem1 24799 Lemma for ~ fta : "growth...
ftalem2 24800 Lemma for ~ fta . There e...
ftalem3 24801 Lemma for ~ fta . There e...
ftalem4 24802 Lemma for ~ fta : Closure...
ftalem5 24803 Lemma for ~ fta : Main pr...
ftalem6 24804 Lemma for ~ fta : Dischar...
ftalem7 24805 Lemma for ~ fta . Shift t...
fta 24806 The Fundamental Theorem of...
basellem1 24807 Lemma for ~ basel . Closu...
basellem2 24808 Lemma for ~ basel . Show ...
basellem3 24809 Lemma for ~ basel . Using...
basellem4 24810 Lemma for ~ basel . By ~ ...
basellem5 24811 Lemma for ~ basel . Using...
basellem6 24812 Lemma for ~ basel . The f...
basellem7 24813 Lemma for ~ basel . The f...
basellem8 24814 Lemma for ~ basel . The f...
basellem9 24815 Lemma for ~ basel . Since...
basel 24816 The sum of the inverse squ...
efnnfsumcl 24829 Finite sum closure in the ...
ppisval 24830 The set of primes less tha...
ppisval2 24831 The set of primes less tha...
ppifi 24832 The set of primes less tha...
prmdvdsfi 24833 The set of prime divisors ...
chtf 24834 Domain and range of the Ch...
chtcl 24835 Real closure of the Chebys...
chtval 24836 Value of the Chebyshev fun...
efchtcl 24837 The Chebyshev function is ...
chtge0 24838 The Chebyshev function is ...
vmaval 24839 Value of the von Mangoldt ...
isppw 24840 Two ways to say that ` A `...
isppw2 24841 Two ways to say that ` A `...
vmappw 24842 Value of the von Mangoldt ...
vmaprm 24843 Value of the von Mangoldt ...
vmacl 24844 Closure for the von Mangol...
vmaf 24845 Functionality of the von M...
efvmacl 24846 The von Mangoldt is closed...
vmage0 24847 The von Mangoldt function ...
chpval 24848 Value of the second Chebys...
chpf 24849 Functionality of the secon...
chpcl 24850 Closure for the second Che...
efchpcl 24851 The second Chebyshev funct...
chpge0 24852 The second Chebyshev funct...
ppival 24853 Value of the prime-countin...
ppival2 24854 Value of the prime-countin...
ppival2g 24855 Value of the prime-countin...
ppif 24856 Domain and range of the pr...
ppicl 24857 Real closure of the prime-...
muval 24858 The value of the Möbi...
muval1 24859 The value of the Möbi...
muval2 24860 The value of the Möbi...
isnsqf 24861 Two ways to say that a num...
issqf 24862 Two ways to say that a num...
sqfpc 24863 The prime count of a squar...
dvdssqf 24864 A divisor of a squarefree ...
sqf11 24865 A squarefree number is com...
muf 24866 The Möbius function i...
mucl 24867 Closure of the Möbius...
sgmval 24868 The value of the divisor f...
sgmval2 24869 The value of the divisor f...
0sgm 24870 The value of the sum-of-di...
sgmf 24871 The divisor function is a ...
sgmcl 24872 Closure of the divisor fun...
sgmnncl 24873 Closure of the divisor fun...
mule1 24874 The Möbius function t...
chtfl 24875 The Chebyshev function doe...
chpfl 24876 The second Chebyshev funct...
ppiprm 24877 The prime-counting functio...
ppinprm 24878 The prime-counting functio...
chtprm 24879 The Chebyshev function at ...
chtnprm 24880 The Chebyshev function at ...
chpp1 24881 The second Chebyshev funct...
chtwordi 24882 The Chebyshev function is ...
chpwordi 24883 The second Chebyshev funct...
chtdif 24884 The difference of the Cheb...
efchtdvds 24885 The exponentiated Chebyshe...
ppifl 24886 The prime-counting functio...
ppip1le 24887 The prime-counting functio...
ppiwordi 24888 The prime-counting functio...
ppidif 24889 The difference of the prim...
ppi1 24890 The prime-counting functio...
cht1 24891 The Chebyshev function at ...
vma1 24892 The von Mangoldt function ...
chp1 24893 The second Chebyshev funct...
ppi1i 24894 Inference form of ~ ppiprm...
ppi2i 24895 Inference form of ~ ppinpr...
ppi2 24896 The prime-counting functio...
ppi3 24897 The prime-counting functio...
cht2 24898 The Chebyshev function at ...
cht3 24899 The Chebyshev function at ...
ppinncl 24900 Closure of the prime-count...
chtrpcl 24901 Closure of the Chebyshev f...
ppieq0 24902 The prime-counting functio...
ppiltx 24903 The prime-counting functio...
prmorcht 24904 Relate the primorial (prod...
mumullem1 24905 Lemma for ~ mumul . A mul...
mumullem2 24906 Lemma for ~ mumul . The p...
mumul 24907 The Möbius function i...
sqff1o 24908 There is a bijection from ...
fsumdvdsdiaglem 24909 A "diagonal commutation" o...
fsumdvdsdiag 24910 A "diagonal commutation" o...
fsumdvdscom 24911 A double commutation of di...
dvdsppwf1o 24912 A bijection from the divis...
dvdsflf1o 24913 A bijection from the numbe...
dvdsflsumcom 24914 A sum commutation from ` s...
fsumfldivdiaglem 24915 Lemma for ~ fsumfldivdiag ...
fsumfldivdiag 24916 The right-hand side of ~ d...
musum 24917 The sum of the Möbius...
musumsum 24918 Evaluate a collapsing sum ...
muinv 24919 The Möbius inversion ...
dvdsmulf1o 24920 If ` M ` and ` N ` are two...
fsumdvdsmul 24921 Product of two divisor sum...
sgmppw 24922 The value of the divisor f...
0sgmppw 24923 A prime power ` P ^ K ` ha...
1sgmprm 24924 The sum of divisors for a ...
1sgm2ppw 24925 The sum of the divisors of...
sgmmul 24926 The divisor function for f...
ppiublem1 24927 Lemma for ~ ppiub . (Cont...
ppiublem2 24928 A prime greater than ` 3 `...
ppiub 24929 An upper bound on the prim...
vmalelog 24930 The von Mangoldt function ...
chtlepsi 24931 The first Chebyshev functi...
chprpcl 24932 Closure of the second Cheb...
chpeq0 24933 The second Chebyshev funct...
chteq0 24934 The first Chebyshev functi...
chtleppi 24935 Upper bound on the ` theta...
chtublem 24936 Lemma for ~ chtub . (Cont...
chtub 24937 An upper bound on the Cheb...
fsumvma 24938 Rewrite a sum over the von...
fsumvma2 24939 Apply ~ fsumvma for the co...
pclogsum 24940 The logarithmic analogue o...
vmasum 24941 The sum of the von Mangold...
logfac2 24942 Another expression for the...
chpval2 24943 Express the second Chebysh...
chpchtsum 24944 The second Chebyshev funct...
chpub 24945 An upper bound on the seco...
logfacubnd 24946 A simple upper bound on th...
logfaclbnd 24947 A lower bound on the logar...
logfacbnd3 24948 Show the stronger statemen...
logfacrlim 24949 Combine the estimates ~ lo...
logexprlim 24950 The sum ` sum_ n <_ x , lo...
logfacrlim2 24951 Write out ~ logfacrlim as ...
mersenne 24952 A Mersenne prime is a prim...
perfect1 24953 Euclid's contribution to t...
perfectlem1 24954 Lemma for ~ perfect . (Co...
perfectlem2 24955 Lemma for ~ perfect . (Co...
perfect 24956 The Euclid-Euler theorem, ...
dchrval 24959 Value of the group of Diri...
dchrbas 24960 Base set of the group of D...
dchrelbas 24961 A Dirichlet character is a...
dchrelbas2 24962 A Dirichlet character is a...
dchrelbas3 24963 A Dirichlet character is a...
dchrelbasd 24964 A Dirichlet character is a...
dchrrcl 24965 Reverse closure for a Diri...
dchrmhm 24966 A Dirichlet character is a...
dchrf 24967 A Dirichlet character is a...
dchrelbas4 24968 A Dirichlet character is a...
dchrzrh1 24969 Value of a Dirichlet chara...
dchrzrhcl 24970 A Dirichlet character take...
dchrzrhmul 24971 A Dirichlet character is c...
dchrplusg 24972 Group operation on the gro...
dchrmul 24973 Group operation on the gro...
dchrmulcl 24974 Closure of the group opera...
dchrn0 24975 A Dirichlet character is n...
dchr1cl 24976 Closure of the principal D...
dchrmulid2 24977 Left identity for the prin...
dchrinvcl 24978 Closure of the group inver...
dchrabl 24979 The set of Dirichlet chara...
dchrfi 24980 The group of Dirichlet cha...
dchrghm 24981 A Dirichlet character rest...
dchr1 24982 Value of the principal Dir...
dchreq 24983 A Dirichlet character is d...
dchrresb 24984 A Dirichlet character is d...
dchrabs 24985 A Dirichlet character take...
dchrinv 24986 The inverse of a Dirichlet...
dchrabs2 24987 A Dirichlet character take...
dchr1re 24988 The principal Dirichlet ch...
dchrptlem1 24989 Lemma for ~ dchrpt . (Con...
dchrptlem2 24990 Lemma for ~ dchrpt . (Con...
dchrptlem3 24991 Lemma for ~ dchrpt . (Con...
dchrpt 24992 For any element other than...
dchrsum2 24993 An orthogonality relation ...
dchrsum 24994 An orthogonality relation ...
sumdchr2 24995 Lemma for ~ sumdchr . (Co...
dchrhash 24996 There are exactly ` phi ( ...
sumdchr 24997 An orthogonality relation ...
dchr2sum 24998 An orthogonality relation ...
sum2dchr 24999 An orthogonality relation ...
bcctr 25000 Value of the central binom...
pcbcctr 25001 Prime count of a central b...
bcmono 25002 The binomial coefficient i...
bcmax 25003 The binomial coefficient t...
bcp1ctr 25004 Ratio of two central binom...
bclbnd 25005 A bound on the binomial co...
efexple 25006 Convert a bound on a power...
bpos1lem 25007 Lemma for ~ bpos1 . (Cont...
bpos1 25008 Bertrand's postulate, chec...
bposlem1 25009 An upper bound on the prim...
bposlem2 25010 There are no odd primes in...
bposlem3 25011 Lemma for ~ bpos . Since ...
bposlem4 25012 Lemma for ~ bpos . (Contr...
bposlem5 25013 Lemma for ~ bpos . Bound ...
bposlem6 25014 Lemma for ~ bpos . By usi...
bposlem7 25015 Lemma for ~ bpos . The fu...
bposlem8 25016 Lemma for ~ bpos . Evalua...
bposlem9 25017 Lemma for ~ bpos . Derive...
bpos 25018 Bertrand's postulate: ther...
zabsle1 25021 ` { -u 1 , 0 , 1 } ` is th...
lgslem1 25022 When ` a ` is coprime to t...
lgslem2 25023 The set ` Z ` of all integ...
lgslem3 25024 The set ` Z ` of all integ...
lgslem4 25025 The function ` F ` is clos...
lgsval 25026 Value of the Legendre symb...
lgsfval 25027 Value of the function ` F ...
lgsfcl2 25028 The function ` F ` is clos...
lgscllem 25029 The Legendre symbol is an ...
lgsfcl 25030 Closure of the function ` ...
lgsfle1 25031 The function ` F ` has mag...
lgsval2lem 25032 Lemma for ~ lgsval2 . (Co...
lgsval4lem 25033 Lemma for ~ lgsval4 . (Co...
lgscl2 25034 The Legendre symbol is an ...
lgs0 25035 The Legendre symbol when t...
lgscl 25036 The Legendre symbol is an ...
lgsle1 25037 The Legendre symbol has ab...
lgsval2 25038 The Legendre symbol at a p...
lgs2 25039 The Legendre symbol at ` 2...
lgsval3 25040 The Legendre symbol at an ...
lgsvalmod 25041 The Legendre symbol is equ...
lgsval4 25042 Restate ~ lgsval for nonze...
lgsfcl3 25043 Closure of the function ` ...
lgsval4a 25044 Same as ~ lgsval4 for posi...
lgscl1 25045 The value of the Legendre ...
lgsneg 25046 The Legendre symbol is eit...
lgsneg1 25047 The Legendre symbol for no...
lgsmod 25048 The Legendre (Jacobi) symb...
lgsdilem 25049 Lemma for ~ lgsdi and ~ lg...
lgsdir2lem1 25050 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem2 25051 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem3 25052 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem4 25053 Lemma for ~ lgsdir2 . (Co...
lgsdir2lem5 25054 Lemma for ~ lgsdir2 . (Co...
lgsdir2 25055 The Legendre symbol is com...
lgsdirprm 25056 The Legendre symbol is com...
lgsdir 25057 The Legendre symbol is com...
lgsdilem2 25058 Lemma for ~ lgsdi . (Cont...
lgsdi 25059 The Legendre symbol is com...
lgsne0 25060 The Legendre symbol is non...
lgsabs1 25061 The Legendre symbol is non...
lgssq 25062 The Legendre symbol at a s...
lgssq2 25063 The Legendre symbol at a s...
lgsprme0 25064 The Legendre symbol at any...
1lgs 25065 The Legendre symbol at ` 1...
lgs1 25066 The Legendre symbol at ` 1...
lgsmodeq 25067 The Legendre (Jacobi) symb...
lgsmulsqcoprm 25068 The Legendre (Jacobi) symb...
lgsdirnn0 25069 Variation on ~ lgsdir vali...
lgsdinn0 25070 Variation on ~ lgsdi valid...
lgsqrlem1 25071 Lemma for ~ lgsqr . (Cont...
lgsqrlem2 25072 Lemma for ~ lgsqr . (Cont...
lgsqrlem3 25073 Lemma for ~ lgsqr . (Cont...
lgsqrlem4 25074 Lemma for ~ lgsqr . (Cont...
lgsqrlem5 25075 Lemma for ~ lgsqr . (Cont...
lgsqr 25076 The Legendre symbol for od...
lgsqrmod 25077 If the Legendre symbol of ...
lgsqrmodndvds 25078 If the Legendre symbol of ...
lgsdchrval 25079 The Legendre symbol functi...
lgsdchr 25080 The Legendre symbol functi...
gausslemma2dlem0a 25081 Auxiliary lemma 1 for ~ ga...
gausslemma2dlem0b 25082 Auxiliary lemma 2 for ~ ga...
gausslemma2dlem0c 25083 Auxiliary lemma 3 for ~ ga...
gausslemma2dlem0d 25084 Auxiliary lemma 4 for ~ ga...
gausslemma2dlem0e 25085 Auxiliary lemma 5 for ~ ga...
gausslemma2dlem0f 25086 Auxiliary lemma 6 for ~ ga...
gausslemma2dlem0g 25087 Auxiliary lemma 7 for ~ ga...
gausslemma2dlem0h 25088 Auxiliary lemma 8 for ~ ga...
gausslemma2dlem0i 25089 Auxiliary lemma 9 for ~ ga...
gausslemma2dlem1a 25090 Lemma for ~ gausslemma2dle...
gausslemma2dlem1 25091 Lemma 1 for ~ gausslemma2d...
gausslemma2dlem2 25092 Lemma 2 for ~ gausslemma2d...
gausslemma2dlem3 25093 Lemma 3 for ~ gausslemma2d...
gausslemma2dlem4 25094 Lemma 4 for ~ gausslemma2d...
gausslemma2dlem5a 25095 Lemma for ~ gausslemma2dle...
gausslemma2dlem5 25096 Lemma 5 for ~ gausslemma2d...
gausslemma2dlem6 25097 Lemma 6 for ~ gausslemma2d...
gausslemma2dlem7 25098 Lemma 7 for ~ gausslemma2d...
gausslemma2d 25099 Gauss' Lemma (see also the...
lgseisenlem1 25100 Lemma for ~ lgseisen . If...
lgseisenlem2 25101 Lemma for ~ lgseisen . Th...
lgseisenlem3 25102 Lemma for ~ lgseisen . (C...
lgseisenlem4 25103 Lemma for ~ lgseisen . Th...
lgseisen 25104 Eisenstein's lemma, an exp...
lgsquadlem1 25105 Lemma for ~ lgsquad . Cou...
lgsquadlem2 25106 Lemma for ~ lgsquad . Cou...
lgsquadlem3 25107 Lemma for ~ lgsquad . (Co...
lgsquad 25108 The Law of Quadratic Recip...
lgsquad2lem1 25109 Lemma for ~ lgsquad2 . (C...
lgsquad2lem2 25110 Lemma for ~ lgsquad2 . (C...
lgsquad2 25111 Extend ~ lgsquad to coprim...
lgsquad3 25112 Extend ~ lgsquad2 to integ...
m1lgs 25113 The first supplement to th...
2lgslem1a1 25114 Lemma 1 for ~ 2lgslem1a . ...
2lgslem1a2 25115 Lemma 2 for ~ 2lgslem1a . ...
2lgslem1a 25116 Lemma 1 for ~ 2lgslem1 . ...
2lgslem1b 25117 Lemma 2 for ~ 2lgslem1 . ...
2lgslem1c 25118 Lemma 3 for ~ 2lgslem1 . ...
2lgslem1 25119 Lemma 1 for ~ 2lgs . (Con...
2lgslem2 25120 Lemma 2 for ~ 2lgs . (Con...
2lgslem3a 25121 Lemma for ~ 2lgslem3a1 . ...
2lgslem3b 25122 Lemma for ~ 2lgslem3b1 . ...
2lgslem3c 25123 Lemma for ~ 2lgslem3c1 . ...
2lgslem3d 25124 Lemma for ~ 2lgslem3d1 . ...
2lgslem3a1 25125 Lemma 1 for ~ 2lgslem3 . ...
2lgslem3b1 25126 Lemma 2 for ~ 2lgslem3 . ...
2lgslem3c1 25127 Lemma 3 for ~ 2lgslem3 . ...
2lgslem3d1 25128 Lemma 4 for ~ 2lgslem3 . ...
2lgslem3 25129 Lemma 3 for ~ 2lgs . (Con...
2lgs2 25130 The Legendre symbol for ` ...
2lgslem4 25131 Lemma 4 for ~ 2lgs : speci...
2lgs 25132 The second supplement to t...
2lgsoddprmlem1 25133 Lemma 1 for ~ 2lgsoddprm ....
2lgsoddprmlem2 25134 Lemma 2 for ~ 2lgsoddprm ....
2lgsoddprmlem3a 25135 Lemma 1 for ~ 2lgsoddprmle...
2lgsoddprmlem3b 25136 Lemma 2 for ~ 2lgsoddprmle...
2lgsoddprmlem3c 25137 Lemma 3 for ~ 2lgsoddprmle...
2lgsoddprmlem3d 25138 Lemma 4 for ~ 2lgsoddprmle...
2lgsoddprmlem3 25139 Lemma 3 for ~ 2lgsoddprm ....
2lgsoddprmlem4 25140 Lemma 4 for ~ 2lgsoddprm ....
2lgsoddprm 25141 The second supplement to t...
2sqlem1 25142 Lemma for ~ 2sq . (Contri...
2sqlem2 25143 Lemma for ~ 2sq . (Contri...
mul2sq 25144 Fibonacci's identity (actu...
2sqlem3 25145 Lemma for ~ 2sqlem5 . (Co...
2sqlem4 25146 Lemma for ~ 2sqlem5 . (Co...
2sqlem5 25147 Lemma for ~ 2sq . If a nu...
2sqlem6 25148 Lemma for ~ 2sq . If a nu...
2sqlem7 25149 Lemma for ~ 2sq . (Contri...
2sqlem8a 25150 Lemma for ~ 2sqlem8 . (Co...
2sqlem8 25151 Lemma for ~ 2sq . (Contri...
2sqlem9 25152 Lemma for ~ 2sq . (Contri...
2sqlem10 25153 Lemma for ~ 2sq . Every f...
2sqlem11 25154 Lemma for ~ 2sq . (Contri...
2sq 25155 All primes of the form ` 4...
2sqblem 25156 The converse to ~ 2sq . (...
2sqb 25157 The converse to ~ 2sq . (...
chebbnd1lem1 25158 Lemma for ~ chebbnd1 : sho...
chebbnd1lem2 25159 Lemma for ~ chebbnd1 : Sh...
chebbnd1lem3 25160 Lemma for ~ chebbnd1 : get...
chebbnd1 25161 The Chebyshev bound: The ...
chtppilimlem1 25162 Lemma for ~ chtppilim . (...
chtppilimlem2 25163 Lemma for ~ chtppilim . (...
chtppilim 25164 The ` theta ` function is ...
chto1ub 25165 The ` theta ` function is ...
chebbnd2 25166 The Chebyshev bound, part ...
chto1lb 25167 The ` theta ` function is ...
chpchtlim 25168 The ` psi ` and ` theta ` ...
chpo1ub 25169 The ` psi ` function is up...
chpo1ubb 25170 The ` psi ` function is up...
vmadivsum 25171 The sum of the von Mangold...
vmadivsumb 25172 Give a total bound on the ...
rplogsumlem1 25173 Lemma for ~ rplogsum . (C...
rplogsumlem2 25174 Lemma for ~ rplogsum . Eq...
dchrisum0lem1a 25175 Lemma for ~ dchrisum0lem1 ...
rpvmasumlem 25176 Lemma for ~ rpvmasum . Ca...
dchrisumlema 25177 Lemma for ~ dchrisum . Le...
dchrisumlem1 25178 Lemma for ~ dchrisum . Le...
dchrisumlem2 25179 Lemma for ~ dchrisum . Le...
dchrisumlem3 25180 Lemma for ~ dchrisum . Le...
dchrisum 25181 If ` n e. [ M , +oo ) |-> ...
dchrmusumlema 25182 Lemma for ~ dchrmusum and ...
dchrmusum2 25183 The sum of the Möbius...
dchrvmasumlem1 25184 An alternative expression ...
dchrvmasum2lem 25185 Give an expression for ` l...
dchrvmasum2if 25186 Combine the results of ~ d...
dchrvmasumlem2 25187 Lemma for ~ dchrvmasum . ...
dchrvmasumlem3 25188 Lemma for ~ dchrvmasum . ...
dchrvmasumlema 25189 Lemma for ~ dchrvmasum and...
dchrvmasumiflem1 25190 Lemma for ~ dchrvmasumif ....
dchrvmasumiflem2 25191 Lemma for ~ dchrvmasum . ...
dchrvmasumif 25192 An asymptotic approximatio...
dchrvmaeq0 25193 The set ` W ` is the colle...
dchrisum0fval 25194 Value of the function ` F ...
dchrisum0fmul 25195 The function ` F ` , the d...
dchrisum0ff 25196 The function ` F ` is a re...
dchrisum0flblem1 25197 Lemma for ~ dchrisum0flb ....
dchrisum0flblem2 25198 Lemma for ~ dchrisum0flb ....
dchrisum0flb 25199 The divisor sum of a real ...
dchrisum0fno1 25200 The sum ` sum_ k <_ x , F ...
rpvmasum2 25201 A partial result along the...
dchrisum0re 25202 Suppose ` X ` is a non-pri...
dchrisum0lema 25203 Lemma for ~ dchrisum0 . A...
dchrisum0lem1b 25204 Lemma for ~ dchrisum0lem1 ...
dchrisum0lem1 25205 Lemma for ~ dchrisum0 . (...
dchrisum0lem2a 25206 Lemma for ~ dchrisum0 . (...
dchrisum0lem2 25207 Lemma for ~ dchrisum0 . (...
dchrisum0lem3 25208 Lemma for ~ dchrisum0 . (...
dchrisum0 25209 The sum ` sum_ n e. NN , X...
dchrisumn0 25210 The sum ` sum_ n e. NN , X...
dchrmusumlem 25211 The sum of the Möbius...
dchrvmasumlem 25212 The sum of the Möbius...
dchrmusum 25213 The sum of the Möbius...
dchrvmasum 25214 The sum of the von Mangold...
rpvmasum 25215 The sum of the von Mangold...
rplogsum 25216 The sum of ` log p / p ` o...
dirith2 25217 Dirichlet's theorem: there...
dirith 25218 Dirichlet's theorem: there...
mudivsum 25219 Asymptotic formula for ` s...
mulogsumlem 25220 Lemma for ~ mulogsum . (C...
mulogsum 25221 Asymptotic formula for ...
logdivsum 25222 Asymptotic analysis of ...
mulog2sumlem1 25223 Asymptotic formula for ...
mulog2sumlem2 25224 Lemma for ~ mulog2sum . (...
mulog2sumlem3 25225 Lemma for ~ mulog2sum . (...
mulog2sum 25226 Asymptotic formula for ...
vmalogdivsum2 25227 The sum ` sum_ n <_ x , La...
vmalogdivsum 25228 The sum ` sum_ n <_ x , La...
2vmadivsumlem 25229 Lemma for ~ 2vmadivsum . ...
2vmadivsum 25230 The sum ` sum_ m n <_ x , ...
logsqvma 25231 A formula for ` log ^ 2 ( ...
logsqvma2 25232 The Möbius inverse of...
log2sumbnd 25233 Bound on the difference be...
selberglem1 25234 Lemma for ~ selberg . Est...
selberglem2 25235 Lemma for ~ selberg . (Co...
selberglem3 25236 Lemma for ~ selberg . Est...
selberg 25237 Selberg's symmetry formula...
selbergb 25238 Convert eventual boundedne...
selberg2lem 25239 Lemma for ~ selberg2 . Eq...
selberg2 25240 Selberg's symmetry formula...
selberg2b 25241 Convert eventual boundedne...
chpdifbndlem1 25242 Lemma for ~ chpdifbnd . (...
chpdifbndlem2 25243 Lemma for ~ chpdifbnd . (...
chpdifbnd 25244 A bound on the difference ...
logdivbnd 25245 A bound on a sum of logs, ...
selberg3lem1 25246 Introduce a log weighting ...
selberg3lem2 25247 Lemma for ~ selberg3 . Eq...
selberg3 25248 Introduce a log weighting ...
selberg4lem1 25249 Lemma for ~ selberg4 . Eq...
selberg4 25250 The Selberg symmetry formu...
pntrval 25251 Define the residual of the...
pntrf 25252 Functionality of the resid...
pntrmax 25253 There is a bound on the re...
pntrsumo1 25254 A bound on a sum over ` R ...
pntrsumbnd 25255 A bound on a sum over ` R ...
pntrsumbnd2 25256 A bound on a sum over ` R ...
selbergr 25257 Selberg's symmetry formula...
selberg3r 25258 Selberg's symmetry formula...
selberg4r 25259 Selberg's symmetry formula...
selberg34r 25260 The sum of ~ selberg3r and...
pntsval 25261 Define the "Selberg functi...
pntsf 25262 Functionality of the Selbe...
selbergs 25263 Selberg's symmetry formula...
selbergsb 25264 Selberg's symmetry formula...
pntsval2 25265 The Selberg function can b...
pntrlog2bndlem1 25266 The sum of ~ selberg3r and...
pntrlog2bndlem2 25267 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem3 25268 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem4 25269 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem5 25270 Lemma for ~ pntrlog2bnd . ...
pntrlog2bndlem6a 25271 Lemma for ~ pntrlog2bndlem...
pntrlog2bndlem6 25272 Lemma for ~ pntrlog2bnd . ...
pntrlog2bnd 25273 A bound on ` R ( x ) log ^...
pntpbnd1a 25274 Lemma for ~ pntpbnd . (Co...
pntpbnd1 25275 Lemma for ~ pntpbnd . (Co...
pntpbnd2 25276 Lemma for ~ pntpbnd . (Co...
pntpbnd 25277 Lemma for ~ pnt . Establi...
pntibndlem1 25278 Lemma for ~ pntibnd . (Co...
pntibndlem2a 25279 Lemma for ~ pntibndlem2 . ...
pntibndlem2 25280 Lemma for ~ pntibnd . The...
pntibndlem3 25281 Lemma for ~ pntibnd . Pac...
pntibnd 25282 Lemma for ~ pnt . Establi...
pntlemd 25283 Lemma for ~ pnt . Closure...
pntlemc 25284 Lemma for ~ pnt . Closure...
pntlema 25285 Lemma for ~ pnt . Closure...
pntlemb 25286 Lemma for ~ pnt . Unpack ...
pntlemg 25287 Lemma for ~ pnt . Closure...
pntlemh 25288 Lemma for ~ pnt . Bounds ...
pntlemn 25289 Lemma for ~ pnt . The "na...
pntlemq 25290 Lemma for ~ pntlemj . (Co...
pntlemr 25291 Lemma for ~ pntlemj . (Co...
pntlemj 25292 Lemma for ~ pnt . The ind...
pntlemi 25293 Lemma for ~ pnt . Elimina...
pntlemf 25294 Lemma for ~ pnt . Add up ...
pntlemk 25295 Lemma for ~ pnt . Evaluat...
pntlemo 25296 Lemma for ~ pnt . Combine...
pntleme 25297 Lemma for ~ pnt . Package...
pntlem3 25298 Lemma for ~ pnt . Equatio...
pntlemp 25299 Lemma for ~ pnt . Wrappin...
pntleml 25300 Lemma for ~ pnt . Equatio...
pnt3 25301 The Prime Number Theorem, ...
pnt2 25302 The Prime Number Theorem, ...
pnt 25303 The Prime Number Theorem: ...
abvcxp 25304 Raising an absolute value ...
padicfval 25305 Value of the p-adic absolu...
padicval 25306 Value of the p-adic absolu...
ostth2lem1 25307 Lemma for ~ ostth2 , altho...
qrngbas 25308 The base set of the field ...
qdrng 25309 The rationals form a divis...
qrng0 25310 The zero element of the fi...
qrng1 25311 The unit element of the fi...
qrngneg 25312 The additive inverse in th...
qrngdiv 25313 The division operation in ...
qabvle 25314 By using induction on ` N ...
qabvexp 25315 Induct the product rule ~ ...
ostthlem1 25316 Lemma for ~ ostth . If tw...
ostthlem2 25317 Lemma for ~ ostth . Refin...
qabsabv 25318 The regular absolute value...
padicabv 25319 The p-adic absolute value ...
padicabvf 25320 The p-adic absolute value ...
padicabvcxp 25321 All positive powers of the...
ostth1 25322 - Lemma for ~ ostth : triv...
ostth2lem2 25323 Lemma for ~ ostth2 . (Con...
ostth2lem3 25324 Lemma for ~ ostth2 . (Con...
ostth2lem4 25325 Lemma for ~ ostth2 . (Con...
ostth2 25326 - Lemma for ~ ostth : regu...
ostth3 25327 - Lemma for ~ ostth : p-ad...
ostth 25328 Ostrowski's theorem, which...
itvndx 25339 Index value of the Interva...
lngndx 25340 Index value of the "line" ...
itvid 25341 Utility theorem: index-ind...
lngid 25342 Utility theorem: index-ind...
trkgstr 25343 Functionality of a Tarski ...
trkgbas 25344 The base set of a Tarski g...
trkgdist 25345 The measure of a distance ...
trkgitv 25346 The congruence relation in...
istrkgc 25353 Property of being a Tarski...
istrkgb 25354 Property of being a Tarski...
istrkgcb 25355 Property of being a Tarski...
istrkge 25356 Property of fulfilling Euc...
istrkgl 25357 Building lines from the se...
istrkgld 25358 Property of fulfilling the...
istrkg2ld 25359 Property of fulfilling the...
istrkg3ld 25360 Property of fulfilling the...
axtgcgrrflx 25361 Axiom of reflexivity of co...
axtgcgrid 25362 Axiom of identity of congr...
axtgsegcon 25363 Axiom of segment construct...
axtg5seg 25364 Five segments axiom, Axiom...
axtgbtwnid 25365 Identity of Betweenness. ...
axtgpasch 25366 Axiom of (Inner) Pasch, Ax...
axtgcont1 25367 Axiom of Continuity. Axio...
axtgcont 25368 Axiom of Continuity. Axio...
axtglowdim2 25369 Lower dimension axiom for ...
axtgupdim2 25370 Upper dimension axiom for ...
axtgeucl 25371 Euclid's Axiom. Axiom A10...
tgcgrcomimp 25372 Congruence commutes on the...
tgcgrcomr 25373 Congruence commutes on the...
tgcgrcoml 25374 Congruence commutes on the...
tgcgrcomlr 25375 Congruence commutes on bot...
tgcgreqb 25376 Congruence and equality. ...
tgcgreq 25377 Congruence and equality. ...
tgcgrneq 25378 Congruence and equality. ...
tgcgrtriv 25379 Degenerate segments are co...
tgcgrextend 25380 Link congruence over a pai...
tgsegconeq 25381 Two points that satisfy th...
tgbtwntriv2 25382 Betweenness always holds f...
tgbtwncom 25383 Betweenness commutes. The...
tgbtwncomb 25384 Betweenness commutes, bico...
tgbtwnne 25385 Betweenness and inequality...
tgbtwntriv1 25386 Betweenness always holds f...
tgbtwnswapid 25387 If you can swap the first ...
tgbtwnintr 25388 Inner transitivity law for...
tgbtwnexch3 25389 Exchange the first endpoin...
tgbtwnouttr2 25390 Outer transitivity law for...
tgbtwnexch2 25391 Exchange the outer point o...
tgbtwnouttr 25392 Outer transitivity law for...
tgbtwnexch 25393 Outer transitivity law for...
tgtrisegint 25394 A line segment between two...
tglowdim1 25395 Lower dimension axiom for ...
tglowdim1i 25396 Lower dimension axiom for ...
tgldimor 25397 Excluded-middle like state...
tgldim0eq 25398 In dimension zero, any two...
tgldim0itv 25399 In dimension zero, any two...
tgldim0cgr 25400 In dimension zero, any two...
tgbtwndiff 25401 There is always a ` c ` di...
tgdim01 25402 In geometries of dimension...
tgifscgr 25403 Inner five segment congrue...
tgcgrsub 25404 Removing identical parts f...
iscgrg 25407 The congruence property fo...
iscgrgd 25408 The property for two seque...
iscgrglt 25409 The property for two seque...
trgcgrg 25410 The property for two trian...
trgcgr 25411 Triangle congruence. (Con...
ercgrg 25412 The shape congruence relat...
tgcgrxfr 25413 A line segment can be divi...
cgr3id 25414 Reflexivity law for three-...
cgr3simp1 25415 Deduce segment congruence ...
cgr3simp2 25416 Deduce segment congruence ...
cgr3simp3 25417 Deduce segment congruence ...
cgr3swap12 25418 Permutation law for three-...
cgr3swap23 25419 Permutation law for three-...
cgr3swap13 25420 Permutation law for three-...
cgr3rotr 25421 Permutation law for three-...
cgr3rotl 25422 Permutation law for three-...
trgcgrcom 25423 Commutative law for three-...
cgr3tr 25424 Transitivity law for three...
tgbtwnxfr 25425 A condition for extending ...
tgcgr4 25426 Two quadrilaterals to be c...
isismt 25429 Property of being an isome...
ismot 25430 Property of being an isome...
motcgr 25431 Property of a motion: dist...
idmot 25432 The identity is a motion. ...
motf1o 25433 Motions are bijections. (...
motcl 25434 Closure of motions. (Cont...
motco 25435 The composition of two mot...
cnvmot 25436 The converse of a motion i...
motplusg 25437 The operation for motions ...
motgrp 25438 The motions of a geometry ...
motcgrg 25439 Property of a motion: dist...
motcgr3 25440 Property of a motion: dist...
tglng 25441 Lines of a Tarski Geometry...
tglnfn 25442 Lines as functions. (Cont...
tglnunirn 25443 Lines are sets of points. ...
tglnpt 25444 Lines are sets of points. ...
tglngne 25445 It takes two different poi...
tglngval 25446 The line going through poi...
tglnssp 25447 Lines are subset of the ge...
tgellng 25448 Property of lying on the l...
tgcolg 25449 We choose the notation ` (...
btwncolg1 25450 Betweenness implies coline...
btwncolg2 25451 Betweenness implies coline...
btwncolg3 25452 Betweenness implies coline...
colcom 25453 Swapping the points defini...
colrot1 25454 Rotating the points defini...
colrot2 25455 Rotating the points defini...
ncolcom 25456 Swapping non-colinear poin...
ncolrot1 25457 Rotating non-colinear poin...
ncolrot2 25458 Rotating non-colinear poin...
tgdim01ln 25459 In geometries of dimension...
ncoltgdim2 25460 If there are 3 non-colinea...
lnxfr 25461 Transfer law for colineari...
lnext 25462 Extend a line with a missi...
tgfscgr 25463 Congruence law for the gen...
lncgr 25464 Congruence rule for lines....
lnid 25465 Identity law for points on...
tgidinside 25466 Law for finding a point in...
tgbtwnconn1lem1 25467 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem2 25468 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1lem3 25469 Lemma for ~ tgbtwnconn1 . ...
tgbtwnconn1 25470 Connectivity law for betwe...
tgbtwnconn2 25471 Another connectivity law f...
tgbtwnconn3 25472 Inner connectivity law for...
tgbtwnconnln3 25473 Derive colinearity from be...
tgbtwnconn22 25474 Double connectivity law fo...
tgbtwnconnln1 25475 Derive colinearity from be...
tgbtwnconnln2 25476 Derive colinearity from be...
legval 25479 Value of the less-than rel...
legov 25480 Value of the less-than rel...
legov2 25481 An equivalent definition o...
legid 25482 Reflexivity of the less-th...
btwnleg 25483 Betweenness implies less-t...
legtrd 25484 Transitivity of the less-t...
legtri3 25485 Equality from the less-tha...
legtrid 25486 Trichotomy law for the les...
leg0 25487 Degenerated (zero-length) ...
legeq 25488 Deduce equality from "less...
legbtwn 25489 Deduce betweenness from "l...
tgcgrsub2 25490 Removing identical parts f...
ltgseg 25491 The set ` E ` denotes the ...
ltgov 25492 Strict "shorter than" geom...
legov3 25493 An equivalent definition o...
legso 25494 The shorter-than relations...
ishlg 25497 Rays : Definition 6.1 of ...
hlcomb 25498 The half-line relation com...
hlcomd 25499 The half-line relation com...
hlne1 25500 The half-line relation imp...
hlne2 25501 The half-line relation imp...
hlln 25502 The half-line relation imp...
hleqnid 25503 The endpoint does not belo...
hlid 25504 The half-line relation is ...
hltr 25505 The half-line relation is ...
hlbtwn 25506 Betweenness is a sufficien...
btwnhl1 25507 Deduce half-line from betw...
btwnhl2 25508 Deduce half-line from betw...
btwnhl 25509 Swap betweenness for a hal...
lnhl 25510 Either a point ` C ` on th...
hlcgrex 25511 Construct a point on a hal...
hlcgreulem 25512 Lemma for ~ hlcgreu . (Co...
hlcgreu 25513 The point constructed in ~...
btwnlng1 25514 Betweenness implies coline...
btwnlng2 25515 Betweenness implies coline...
btwnlng3 25516 Betweenness implies coline...
lncom 25517 Swapping the points defini...
lnrot1 25518 Rotating the points defini...
lnrot2 25519 Rotating the points defini...
ncolne1 25520 Non-colinear points are di...
ncolne2 25521 Non-colinear points are di...
tgisline 25522 The property of being a pr...
tglnne 25523 It takes two different poi...
tglndim0 25524 There are no lines in dime...
tgelrnln 25525 The property of being a pr...
tglineeltr 25526 Transitivity law for lines...
tglineelsb2 25527 If ` S ` lies on PQ , then...
tglinerflx1 25528 Reflexivity law for line m...
tglinerflx2 25529 Reflexivity law for line m...
tglinecom 25530 Commutativity law for line...
tglinethru 25531 If ` A ` is a line contain...
tghilberti1 25532 There is a line through an...
tghilberti2 25533 There is at most one line ...
tglinethrueu 25534 There is a unique line goi...
tglnne0 25535 A line ` A ` has at least ...
tglnpt2 25536 Find a second point on a l...
tglineintmo 25537 Two distinct lines interse...
tglineineq 25538 Two distinct lines interse...
tglineneq 25539 Given three non-colinear p...
tglineinteq 25540 Two distinct lines interse...
ncolncol 25541 Deduce non-colinearity fro...
coltr 25542 A transitivity law for col...
coltr3 25543 A transitivity law for col...
colline 25544 Three points are colinear ...
tglowdim2l 25545 Reformulation of the lower...
tglowdim2ln 25546 There is always one point ...
mirreu3 25549 Existential uniqueness of ...
mirval 25550 Value of the point inversi...
mirfv 25551 Value of the point inversi...
mircgr 25552 Property of the image by t...
mirbtwn 25553 Property of the image by t...
ismir 25554 Property of the image by t...
mirf 25555 Point inversion as functio...
mircl 25556 Closure of the point inver...
mirmir 25557 The point inversion functi...
mircom 25558 Variation on ~ mirmir . (...
mirreu 25559 Any point has a unique ant...
mireq 25560 Equality deduction for poi...
mirinv 25561 The only invariant point o...
mirne 25562 Mirror of non-center point...
mircinv 25563 The center point is invari...
mirf1o 25564 The point inversion functi...
miriso 25565 The point inversion functi...
mirbtwni 25566 Point inversion preserves ...
mirbtwnb 25567 Point inversion preserves ...
mircgrs 25568 Point inversion preserves ...
mirmir2 25569 Point inversion of a point...
mirmot 25570 Point investion is a motio...
mirln 25571 If two points are on the s...
mirln2 25572 If a point and its mirror ...
mirconn 25573 Point inversion of connect...
mirhl 25574 If two points ` X ` and ` ...
mirbtwnhl 25575 If the center of the point...
mirhl2 25576 Deduce half-line relation ...
mircgrextend 25577 Link congruence over a pai...
mirtrcgr 25578 Point inversion of one poi...
mirauto 25579 Point inversion preserves ...
miduniq 25580 Unicity of the middle poin...
miduniq1 25581 Unicity of the middle poin...
miduniq2 25582 If two point inversions co...
colmid 25583 Colinearity and equidistan...
symquadlem 25584 Lemma of the symetrial qua...
krippenlem 25585 Lemma for ~ krippen . We ...
krippen 25586 Krippenlemma (German for c...
midexlem 25587 Lemma for the existence of...
israg 25592 Property for 3 points A, B...
ragcom 25593 Commutative rule for right...
ragcol 25594 The right angle property i...
ragmir 25595 Right angle property is pr...
mirrag 25596 Right angle is conserved b...
ragtrivb 25597 Trivial right angle. Theo...
ragflat2 25598 Deduce equality from two r...
ragflat 25599 Deduce equality from two r...
ragtriva 25600 Trivial right angle. Theo...
ragflat3 25601 Right angle and colinearit...
ragcgr 25602 Right angle and colinearit...
motrag 25603 Right angles are preserved...
ragncol 25604 Right angle implies non-co...
perpln1 25605 Derive a line from perpend...
perpln2 25606 Derive a line from perpend...
isperp 25607 Property for 2 lines A, B ...
perpcom 25608 The "perpendicular" relati...
perpneq 25609 Two perpendicular lines ar...
isperp2 25610 Property for 2 lines A, B,...
isperp2d 25611 One direction of ~ isperp2...
ragperp 25612 Deduce that two lines are ...
footex 25613 Lemma for ~ foot : existen...
foot 25614 From a point ` C ` outside...
footne 25615 Uniqueness of the foot poi...
footeq 25616 Uniqueness of the foot poi...
hlperpnel 25617 A point on a half-line whi...
perprag 25618 Deduce a right angle from ...
perpdragALT 25619 Deduce a right angle from ...
perpdrag 25620 Deduce a right angle from ...
colperp 25621 Deduce a perpendicularity ...
colperpexlem1 25622 Lemma for ~ colperp . Fir...
colperpexlem2 25623 Lemma for ~ colperpex . S...
colperpexlem3 25624 Lemma for ~ colperpex . C...
colperpex 25625 In dimension 2 and above, ...
mideulem2 25626 Lemma for ~ opphllem , whi...
opphllem 25627 Lemma 8.24 of [Schwabhause...
mideulem 25628 Lemma for ~ mideu . We ca...
midex 25629 Existence of the midpoint,...
mideu 25630 Existence and uniqueness o...
islnopp 25631 The property for two point...
islnoppd 25632 Deduce that ` A ` and ` B ...
oppne1 25633 Points lying on opposite s...
oppne2 25634 Points lying on opposite s...
oppne3 25635 Points lying on opposite s...
oppcom 25636 Commutativity rule for "op...
opptgdim2 25637 If two points opposite to ...
oppnid 25638 The "opposite to a line" r...
opphllem1 25639 Lemma for ~ opphl . (Cont...
opphllem2 25640 Lemma for ~ opphl . Lemma...
opphllem3 25641 Lemma for ~ opphl : We as...
opphllem4 25642 Lemma for ~ opphl . (Cont...
opphllem5 25643 Second part of Lemma 9.4 o...
opphllem6 25644 First part of Lemma 9.4 of...
oppperpex 25645 Restating ~ colperpex usin...
opphl 25646 If two points ` A ` and ` ...
outpasch 25647 Axiom of Pasch, outer form...
hlpasch 25648 An application of the axio...
ishpg 25651 Value of the half-plane re...
hpgbr 25652 Half-planes : property for...
hpgne1 25653 Points on the open half pl...
hpgne2 25654 Points on the open half pl...
lnopp2hpgb 25655 Theorem 9.8 of [Schwabhaus...
lnoppnhpg 25656 If two points lie on the o...
hpgerlem 25657 Lemma for the proof that t...
hpgid 25658 The half-plane relation is...
hpgcom 25659 The half-plane relation co...
hpgtr 25660 The half-plane relation is...
colopp 25661 Opposite sides of a line f...
colhp 25662 Half-plane relation for co...
hphl 25663 If two points are on the s...
midf 25668 Midpoint as a function. (...
midcl 25669 Closure of the midpoint. ...
ismidb 25670 Property of the midpoint. ...
midbtwn 25671 Betweenness of midpoint. ...
midcgr 25672 Congruence of midpoint. (...
midid 25673 Midpoint of a null segment...
midcom 25674 Commutativity rule for the...
mirmid 25675 Point inversion preserves ...
lmieu 25676 Uniqueness of the line mir...
lmif 25677 Line mirror as a function....
lmicl 25678 Closure of the line mirror...
islmib 25679 Property of the line mirro...
lmicom 25680 The line mirroring functio...
lmilmi 25681 Line mirroring is an invol...
lmireu 25682 Any point has a unique ant...
lmieq 25683 Equality deduction for lin...
lmiinv 25684 The invariants of the line...
lmicinv 25685 The mirroring line is an i...
lmimid 25686 If we have a right angle, ...
lmif1o 25687 The line mirroring functio...
lmiisolem 25688 Lemma for ~ lmiiso . (Con...
lmiiso 25689 The line mirroring functio...
lmimot 25690 Line mirroring is a motion...
hypcgrlem1 25691 Lemma for ~ hypcgr , case ...
hypcgrlem2 25692 Lemma for ~ hypcgr , case ...
hypcgr 25693 If the catheti of two righ...
lmiopp 25694 Line mirroring produces po...
lnperpex 25695 Existence of a perpendicul...
trgcopy 25696 Triangle construction: a c...
trgcopyeulem 25697 Lemma for ~ trgcopyeu . (...
trgcopyeu 25698 Triangle construction: a c...
iscgra 25701 Property for two angles AB...
iscgra1 25702 A special version of ~ isc...
iscgrad 25703 Sufficient conditions for ...
cgrane1 25704 Angles imply inequality. ...
cgrane2 25705 Angles imply inequality. ...
cgrane3 25706 Angles imply inequality. ...
cgrane4 25707 Angles imply inequality. ...
cgrahl1 25708 Angle congruence is indepe...
cgrahl2 25709 Angle congruence is indepe...
cgracgr 25710 First direction of proposi...
cgraid 25711 Angle congruence is reflex...
cgraswap 25712 Swap rays in a congruence ...
cgrcgra 25713 Triangle congruence implie...
cgracom 25714 Angle congruence commutes....
cgratr 25715 Angle congruence is transi...
cgraswaplr 25716 Swap both side of angle co...
cgrabtwn 25717 Angle congruence preserves...
cgrahl 25718 Angle congruence preserves...
cgracol 25719 Angle congruence preserves...
cgrancol 25720 Angle congruence preserves...
dfcgra2 25721 This is the full statement...
sacgr 25722 Supplementary angles of co...
oacgr 25723 Vertical angle theorem. V...
acopy 25724 Angle construction. Theor...
acopyeu 25725 Angle construction. Theor...
isinag 25729 Property for point ` X ` t...
inagswap 25730 Swap the order of the half...
inaghl 25731 The "point lie in angle" r...
isleag 25733 Geometrical "less than" pr...
cgrg3col4 25734 Lemma 11.28 of [Schwabhaus...
tgsas1 25735 First congruence theorem: ...
tgsas 25736 First congruence theorem: ...
tgsas2 25737 First congruence theorem: ...
tgsas3 25738 First congruence theorem: ...
tgasa1 25739 Second congruence theorem:...
tgasa 25740 Second congruence theorem:...
tgsss1 25741 Third congruence theorem: ...
tgsss2 25742 Third congruence theorem: ...
tgsss3 25743 Third congruence theorem: ...
isoas 25744 Congruence theorem for iso...
iseqlg 25747 Property of a triangle bei...
iseqlgd 25748 Condition for a triangle t...
f1otrgds 25749 Convenient lemma for ~ f1o...
f1otrgitv 25750 Convenient lemma for ~ f1o...
f1otrg 25751 A bijection between bases ...
f1otrge 25752 A bijection between bases ...
ttgval 25755 Define a function to augme...
ttglem 25756 Lemma for ~ ttgbas and ~ t...
ttgbas 25757 The base set of a subcompl...
ttgplusg 25758 The addition operation of ...
ttgsub 25759 The subtraction operation ...
ttgvsca 25760 The scalar product of a su...
ttgds 25761 The metric of a subcomplex...
ttgitvval 25762 Betweenness for a subcompl...
ttgelitv 25763 Betweenness for a subcompl...
ttgbtwnid 25764 Any subcomplex module equi...
ttgcontlem1 25765 Lemma for % ttgcont . (Co...
xmstrkgc 25766 Any metric space fulfills ...
cchhllem 25767 Lemma for chlbas and chlvs...
elee 25774 Membership in a Euclidean ...
mptelee 25775 A condition for a mapping ...
eleenn 25776 If ` A ` is in ` ( EE `` N...
eleei 25777 The forward direction of ~...
eedimeq 25778 A point belongs to at most...
brbtwn 25779 The binary relation form o...
brcgr 25780 The binary relation form o...
fveere 25781 The function value of a po...
fveecn 25782 The function value of a po...
eqeefv 25783 Two points are equal iff t...
eqeelen 25784 Two points are equal iff t...
brbtwn2 25785 Alternate characterization...
colinearalglem1 25786 Lemma for ~ colinearalg . ...
colinearalglem2 25787 Lemma for ~ colinearalg . ...
colinearalglem3 25788 Lemma for ~ colinearalg . ...
colinearalglem4 25789 Lemma for ~ colinearalg . ...
colinearalg 25790 An algebraic characterizat...
eleesub 25791 Membership of a subtractio...
eleesubd 25792 Membership of a subtractio...
axdimuniq 25793 The unique dimension axiom...
axcgrrflx 25794 ` A ` is as far from ` B `...
axcgrtr 25795 Congruence is transitive. ...
axcgrid 25796 If there is no distance be...
axsegconlem1 25797 Lemma for ~ axsegcon . Ha...
axsegconlem2 25798 Lemma for ~ axsegcon . Sh...
axsegconlem3 25799 Lemma for ~ axsegcon . Sh...
axsegconlem4 25800 Lemma for ~ axsegcon . Sh...
axsegconlem5 25801 Lemma for ~ axsegcon . Sh...
axsegconlem6 25802 Lemma for ~ axsegcon . Sh...
axsegconlem7 25803 Lemma for ~ axsegcon . Sh...
axsegconlem8 25804 Lemma for ~ axsegcon . Sh...
axsegconlem9 25805 Lemma for ~ axsegcon . Sh...
axsegconlem10 25806 Lemma for ~ axsegcon . Sh...
axsegcon 25807 Any segment ` A B ` can be...
ax5seglem1 25808 Lemma for ~ ax5seg . Rexp...
ax5seglem2 25809 Lemma for ~ ax5seg . Rexp...
ax5seglem3a 25810 Lemma for ~ ax5seg . (Con...
ax5seglem3 25811 Lemma for ~ ax5seg . Comb...
ax5seglem4 25812 Lemma for ~ ax5seg . Give...
ax5seglem5 25813 Lemma for ~ ax5seg . If `...
ax5seglem6 25814 Lemma for ~ ax5seg . Give...
ax5seglem7 25815 Lemma for ~ ax5seg . An a...
ax5seglem8 25816 Lemma for ~ ax5seg . Use ...
ax5seglem9 25817 Lemma for ~ ax5seg . Take...
ax5seg 25818 The five segment axiom. T...
axbtwnid 25819 Points are indivisible. T...
axpaschlem 25820 Lemma for ~ axpasch . Set...
axpasch 25821 The inner Pasch axiom. Ta...
axlowdimlem1 25822 Lemma for ~ axlowdim . Es...
axlowdimlem2 25823 Lemma for ~ axlowdim . Sh...
axlowdimlem3 25824 Lemma for ~ axlowdim . Se...
axlowdimlem4 25825 Lemma for ~ axlowdim . Se...
axlowdimlem5 25826 Lemma for ~ axlowdim . Sh...
axlowdimlem6 25827 Lemma for ~ axlowdim . Sh...
axlowdimlem7 25828 Lemma for ~ axlowdim . Se...
axlowdimlem8 25829 Lemma for ~ axlowdim . Ca...
axlowdimlem9 25830 Lemma for ~ axlowdim . Ca...
axlowdimlem10 25831 Lemma for ~ axlowdim . Se...
axlowdimlem11 25832 Lemma for ~ axlowdim . Ca...
axlowdimlem12 25833 Lemma for ~ axlowdim . Ca...
axlowdimlem13 25834 Lemma for ~ axlowdim . Es...
axlowdimlem14 25835 Lemma for ~ axlowdim . Ta...
axlowdimlem15 25836 Lemma for ~ axlowdim . Se...
axlowdimlem16 25837 Lemma for ~ axlowdim . Se...
axlowdimlem17 25838 Lemma for ~ axlowdim . Es...
axlowdim1 25839 The lower dimension axiom ...
axlowdim2 25840 The lower two-dimensional ...
axlowdim 25841 The general lower dimensio...
axeuclidlem 25842 Lemma for ~ axeuclid . Ha...
axeuclid 25843 Euclid's axiom. Take an a...
axcontlem1 25844 Lemma for ~ axcont . Chan...
axcontlem2 25845 Lemma for ~ axcont . The ...
axcontlem3 25846 Lemma for ~ axcont . Give...
axcontlem4 25847 Lemma for ~ axcont . Give...
axcontlem5 25848 Lemma for ~ axcont . Comp...
axcontlem6 25849 Lemma for ~ axcont . Stat...
axcontlem7 25850 Lemma for ~ axcont . Give...
axcontlem8 25851 Lemma for ~ axcont . A po...
axcontlem9 25852 Lemma for ~ axcont . Give...
axcontlem10 25853 Lemma for ~ axcont . Give...
axcontlem11 25854 Lemma for ~ axcont . Elim...
axcontlem12 25855 Lemma for ~ axcont . Elim...
axcont 25856 The axiom of continuity. ...
eengv 25859 The value of the Euclidean...
eengstr 25860 The Euclidean geometry as ...
eengbas 25861 The Base of the Euclidean ...
ebtwntg 25862 The betweenness relation u...
ecgrtg 25863 The congruence relation us...
elntg 25864 The line definition in the...
eengtrkg 25865 The geometry structure for...
eengtrkge 25866 The geometry structure for...
edgfid 25869 Utility theorem: index-ind...
edgfndxnn 25870 The index value of the edg...
edgfndxid 25871 The value of the edge func...
baseltedgf 25872 The index value of the ` B...
slotsbaseefdif 25873 The slots ` Base ` and ` ....
vtxval 25878 The set of vertices of a g...
iedgval 25879 The set of indexed edges o...
vtxvalOLD 25880 Obsolete version of ~ vtxv...
iedgvalOLD 25881 Obsolete version of ~ iedg...
1vgrex 25882 A graph with at least one ...
opvtxval 25883 The set of vertices of a g...
opvtxfv 25884 The set of vertices of a g...
opvtxov 25885 The set of vertices of a g...
opiedgval 25886 The set of indexed edges o...
opiedgfv 25887 The set of indexed edges o...
opiedgov 25888 The set of indexed edges o...
opvtxfvi 25889 The set of vertices of a g...
opiedgfvi 25890 The set of indexed edges o...
funvtxdmge2val 25891 The set of vertices of an ...
funiedgdmge2val 25892 The set of indexed edges o...
funvtxdm2val 25893 The set of vertices of an ...
funiedgdm2val 25894 The set of indexed edges o...
funvtxdm2valOLD 25895 Obsolete version of ~ funv...
funiedgdm2valOLD 25896 Obsolete version of ~ funi...
funvtxval0 25897 The set of vertices of an ...
funvtxval0OLD 25898 Obsolete version of ~ funv...
funvtxdmge2valOLD 25899 Obsolete version of ~ funv...
funiedgdmge2valOLD 25900 Obsolete version of ~ funi...
basvtxval 25901 The set of vertices of a g...
edgfiedgval 25902 The set of indexed edges o...
basvtxvalOLD 25903 Obsolete version of ~ basv...
edgfiedgvalOLD 25904 Obsolete version of ~ edgf...
funvtxval 25905 The set of vertices of a g...
funiedgval 25906 The set of indexed edges o...
funvtxvalOLD 25907 Obsolete version of ~ funv...
funiedgvalOLD 25908 Obsolete version of ~ funi...
structvtxvallem 25909 Lemma for ~ structvtxval a...
structvtxval 25910 The set of vertices of an ...
structiedg0val 25911 The set of indexed edges o...
structgrssvtxlem 25912 Lemma for ~ structgrssvtx ...
structgrssvtx 25913 The set of vertices of a g...
structgrssiedg 25914 The set of indexed edges o...
structgrssvtxlemOLD 25915 Obsolete version of ~ stru...
structgrssvtxOLD 25916 Obsolete version of ~ stru...
structgrssiedgOLD 25917 Obsolete version of ~ stru...
struct2grstr 25918 A graph represented as an ...
struct2grvtx 25919 The set of vertices of a g...
struct2griedg 25920 The set of indexed edges o...
graop 25921 Any representation of a gr...
grastruct 25922 Any representation of a gr...
gropd 25923 If any representation of a...
grstructd 25924 If any representation of a...
gropeld 25925 If any representation of a...
grstructeld 25926 If any representation of a...
setsvtx 25927 The vertices of a structur...
setsiedg 25928 The (indexed) edges of a s...
snstrvtxval 25929 The set of vertices of a g...
snstriedgval 25930 The set of indexed edges o...
vtxval0 25931 Degenerated case 1 for ver...
iedgval0 25932 Degenerated case 1 for edg...
vtxvalsnop 25933 Degenerated case 2 for ver...
iedgvalsnop 25934 Degenerated case 2 for edg...
vtxval3sn 25935 Degenerated case 3 for ver...
iedgval3sn 25936 Degenerated case 3 for edg...
vtxvalprc 25937 Degenerated case 4 for ver...
iedgvalprc 25938 Degenerated case 4 for edg...
edgval 25941 The edges of a graph. (Co...
edgvalOLD 25942 Obsolete version of ~ edgv...
iedgedg 25943 An indexed edge is an edge...
edgopval 25944 The edges of a graph repre...
edgov 25945 The edges of a graph repre...
edgstruct 25946 The edges of a graph repre...
edgiedgb 25947 A set is an edge iff it is...
edgiedgbOLD 25948 Obsolete version of ~ edgi...
edg0iedg0 25949 There is no edge in a grap...
edg0iedg0OLD 25950 Obsolete version of ~ edg0...
isuhgr 25955 The predicate "is an undir...
isushgr 25956 The predicate "is an undir...
uhgrf 25957 The edge function of an un...
ushgrf 25958 The edge function of an un...
uhgrss 25959 An edge is a subset of ver...
uhgreq12g 25960 If two sets have the same ...
uhgrfun 25961 The edge function of an un...
uhgrn0 25962 An edge is a nonempty subs...
lpvtx 25963 The endpoints of a loop (w...
ushgruhgr 25964 An undirected simple hyper...
isuhgrop 25965 The property of being an u...
uhgr0e 25966 The empty graph, with vert...
uhgr0vb 25967 The null graph, with no ve...
uhgr0 25968 The null graph represented...
uhgrun 25969 The union ` U ` of two (un...
uhgrunop 25970 The union of two (undirect...
ushgrun 25971 The union ` U ` of two (un...
ushgrunop 25972 The union of two (undirect...
uhgrstrrepe 25973 Replacing (or adding) the ...
incistruhgr 25974 An _incidence structure_ `...
isupgr 25979 The property of being an u...
wrdupgr 25980 The property of being an u...
upgrf 25981 The edge function of an un...
upgrfn 25982 The edge function of an un...
upgrss 25983 An edge is a subset of ver...
upgrn0 25984 An edge is a nonempty subs...
upgrle 25985 An edge of an undirected p...
upgrfi 25986 An edge is a finite subset...
upgrex 25987 An edge is an unordered pa...
upgrbi 25988 Show that an unordered pai...
upgrop 25989 A pseudograph represented ...
isumgr 25990 The property of being an u...
isumgrs 25991 The simplified property of...
wrdumgr 25992 The property of being an u...
umgrf 25993 The edge function of an un...
umgrfn 25994 The edge function of an un...
umgredg2 25995 An edge of a multigraph ha...
umgrbi 25996 Show that an unordered pai...
upgruhgr 25997 An undirected pseudograph ...
umgrupgr 25998 An undirected multigraph i...
umgruhgr 25999 An undirected multigraph i...
upgrle2 26000 An edge of an undirected p...
umgrnloopv 26001 In a multigraph, there is ...
umgredgprv 26002 In a multigraph, an edge i...
umgrnloop 26003 In a multigraph, there is ...
umgrnloop0 26004 A multigraph has no loops....
umgr0e 26005 The empty graph, with vert...
upgr0e 26006 The empty graph, with vert...
upgr1elem 26007 Lemma for ~ upgr1e and ~ u...
upgr1e 26008 A pseudograph with one edg...
upgr0eop 26009 The empty graph, with vert...
upgr1eop 26010 A pseudograph with one edg...
upgr0eopALT 26011 Alternate proof of ~ upgr0...
upgr1eopALT 26012 Alternate proof of ~ upgr1...
upgrun 26013 The union ` U ` of two pse...
upgrunop 26014 The union of two pseudogra...
umgrun 26015 The union ` U ` of two mul...
umgrunop 26016 The union of two multigrap...
umgrislfupgrlem 26017 Lemma for ~ umgrislfupgr a...
umgrislfupgr 26018 A multigraph is a loop-fre...
lfgredgge2 26019 An edge of a loop-free gra...
lfgrnloop 26020 A loop-free graph has no l...
uhgredgiedgb 26021 In a hypergraph, a set is ...
uhgriedg0edg0 26022 A hypergraph has no edges ...
uhgredgn0 26023 An edge of a hypergraph is...
edguhgr 26024 An edge of a hypergraph is...
uhgredgrnv 26025 An edge of a hypergraph co...
uhgredgss 26026 The set of edges of a hype...
upgredgss 26027 The set of edges of a pseu...
umgredgss 26028 The set of edges of a mult...
edgupgr 26029 Properties of an edge of a...
edgumgr 26030 Properties of an edge of a...
uhgrvtxedgiedgb 26031 In a hypergraph, a vertex ...
upgredg 26032 For each edge in a pseudog...
umgredg 26033 For each edge in a multigr...
upgrpredgv 26034 An edge of a pseudograph a...
umgrpredgv 26035 An edge of a multigraph al...
upgredg2vtx 26036 For a vertex incident to a...
upgredgpr 26037 If a proper pair (of verti...
edglnl 26038 The edges incident with a ...
numedglnl 26039 The number of edges incide...
umgredgne 26040 An edge of a multigraph al...
umgrnloop2 26041 A multigraph has no loops....
umgredgnlp 26042 An edge of a multigraph is...
isuspgr 26047 The property of being a si...
isusgr 26048 The property of being a si...
uspgrf 26049 The edge function of a sim...
usgrf 26050 The edge function of a sim...
isusgrs 26051 The property of being a si...
usgrfs 26052 The edge function of a sim...
usgrfun 26053 The edge function of a sim...
usgredgss 26054 The set of edges of a simp...
edgusgr 26055 An edge of a simple graph ...
isuspgrop 26056 The property of being an u...
isusgrop 26057 The property of being an u...
usgrop 26058 A simple graph represented...
isausgr 26059 The property of an unorder...
ausgrusgrb 26060 The equivalence of the def...
usgrausgri 26061 A simple graph represented...
ausgrumgri 26062 If an alternatively define...
ausgrusgri 26063 The equivalence of the def...
usgrausgrb 26064 The equivalence of the def...
usgredgop 26065 An edge of a simple graph ...
usgrf1o 26066 The edge function of a sim...
usgrf1 26067 The edge function of a sim...
uspgrf1oedg 26068 The edge function of a sim...
usgrss 26069 An edge is a subset of ver...
uspgrushgr 26070 A simple pseudograph is an...
uspgrupgr 26071 A simple pseudograph is an...
uspgrupgrushgr 26072 A graph is a simple pseudo...
usgruspgr 26073 A simple graph is a simple...
usgrumgr 26074 A simple graph is an undir...
usgrumgruspgr 26075 A graph is a simple graph ...
usgruspgrb 26076 A class is a simple graph ...
usgrupgr 26077 A simple graph is an undir...
usgruhgr 26078 A simple graph is an undir...
usgrislfuspgr 26079 A simple graph is a loop-f...
uspgrun 26080 The union ` U ` of two sim...
uspgrunop 26081 The union of two simple ps...
usgrun 26082 The union ` U ` of two sim...
usgrunop 26083 The union of two simple gr...
usgredg2 26084 The value of the "edge fun...
usgredg2ALT 26085 Alternate proof of ~ usgre...
usgredgprv 26086 In a simple graph, an edge...
usgredgprvALT 26087 Alternate proof of ~ usgre...
usgredgppr 26088 An edge of a simple graph ...
usgrpredgv 26089 An edge of a simple graph ...
edgssv2 26090 An edge of a simple graph ...
usgredg 26091 For each edge in a simple ...
usgrnloopv 26092 In a simple graph, there i...
usgrnloopvALT 26093 Alternate proof of ~ usgrn...
usgrnloop 26094 In a simple graph, there i...
usgrnloopALT 26095 Alternate proof of ~ usgrn...
usgrnloop0 26096 A simple graph has no loop...
usgrnloop0ALT 26097 Alternate proof of ~ usgrn...
usgredgne 26098 An edge of a simple graph ...
usgrf1oedg 26099 The edge function of a sim...
uhgr2edg 26100 If a vertex is adjacent to...
umgr2edg 26101 If a vertex is adjacent to...
usgr2edg 26102 If a vertex is adjacent to...
umgr2edg1 26103 If a vertex is adjacent to...
usgr2edg1 26104 If a vertex is adjacent to...
umgrvad2edg 26105 If a vertex is adjacent to...
umgr2edgneu 26106 If a vertex is adjacent to...
usgrsizedg 26107 In a simple graph, the siz...
usgredg3 26108 The value of the "edge fun...
usgredg4 26109 For a vertex incident to a...
usgredgreu 26110 For a vertex incident to a...
usgredg2vtx 26111 For a vertex incident to a...
uspgredg2vtxeu 26112 For a vertex incident to a...
usgredg2vtxeu 26113 For a vertex incident to a...
usgredg2vtxeuALT 26114 Alternate proof of ~ usgre...
uspgredg2vlem 26115 Lemma for ~ uspgredg2v . ...
uspgredg2v 26116 In a simple pseudograph, t...
usgredg2vlem1 26117 Lemma 1 for ~ usgredg2v . ...
usgredg2vlem2 26118 Lemma 2 for ~ usgredg2v . ...
usgredg2v 26119 In a simple graph, the map...
usgriedgleord 26120 Alternate version of ~ usg...
ushgredgedg 26121 In a simple hypergraph the...
usgredgedg 26122 In a simple graph there is...
ushgredgedgloop 26123 In a simple hypergraph the...
uspgredgleord 26124 In a simple pseudograph th...
usgredgleord 26125 In a simple graph the numb...
usgredgleordALT 26126 Alternate proof for ~ usgr...
usgrstrrepe 26127 Replacing (or adding) the ...
usgr0e 26128 The empty graph, with vert...
usgr0vb 26129 The null graph, with no ve...
uhgr0v0e 26130 The null graph, with no ve...
uhgr0vsize0 26131 The size of a hypergraph w...
uhgr0edgfi 26132 A graph of order 0 (i.e. w...
usgr0v 26133 The null graph, with no ve...
uhgr0vusgr 26134 The null graph, with no ve...
usgr0 26135 The null graph represented...
uspgr1e 26136 A simple pseudograph with ...
usgr1e 26137 A simple graph with one ed...
usgr0eop 26138 The empty graph, with vert...
uspgr1eop 26139 A simple pseudograph with ...
uspgr1ewop 26140 A simple pseudograph with ...
uspgr1v1eop 26141 A simple pseudograph with ...
usgr1eop 26142 A simple graph with (at le...
uspgr2v1e2w 26143 A simple pseudograph with ...
usgr2v1e2w 26144 A simple graph with two ve...
edg0usgr 26145 A class without edges is a...
lfuhgr1v0e 26146 A loop-free hypergraph wit...
usgr1vr 26147 A simple graph with one ve...
usgr1v 26148 A class with one (or no) v...
usgr1v0edg 26149 A class with one (or no) v...
usgrexmpldifpr 26150 Lemma for ~ usgrexmpledg :...
usgrexmplef 26151 Lemma for ~ usgrexmpl . (...
usgrexmpllem 26152 Lemma for ~ usgrexmpl . (...
usgrexmplvtx 26153 The vertices ` 0 , 1 , 2 ,...
usgrexmpledg 26154 The edges ` { 0 , 1 } , { ...
usgrexmpl 26155 ` G ` is a simple graph of...
griedg0prc 26156 The class of empty graphs ...
griedg0ssusgr 26157 The class of all simple gr...
usgrprc 26158 The class of simple graphs...
relsubgr 26161 The class of the subgraph ...
subgrv 26162 If a class is a subgraph o...
issubgr 26163 The property of a set to b...
issubgr2 26164 The property of a set to b...
subgrprop 26165 The properties of a subgra...
subgrprop2 26166 The properties of a subgra...
uhgrissubgr 26167 The property of a hypergra...
subgrprop3 26168 The properties of a subgra...
egrsubgr 26169 An empty graph consisting ...
0grsubgr 26170 The null graph (represente...
0uhgrsubgr 26171 The null graph (as hypergr...
uhgrsubgrself 26172 A hypergraph is a subgraph...
subgrfun 26173 The edge function of a sub...
subgruhgrfun 26174 The edge function of a sub...
subgreldmiedg 26175 An element of the domain o...
subgruhgredgd 26176 An edge of a subgraph of a...
subumgredg2 26177 An edge of a subgraph of a...
subuhgr 26178 A subgraph of a hypergraph...
subupgr 26179 A subgraph of a pseudograp...
subumgr 26180 A subgraph of a multigraph...
subusgr 26181 A subgraph of a simple gra...
uhgrspansubgrlem 26182 Lemma for ~ uhgrspansubgr ...
uhgrspansubgr 26183 A spanning subgraph ` S ` ...
uhgrspan 26184 A spanning subgraph ` S ` ...
upgrspan 26185 A spanning subgraph ` S ` ...
umgrspan 26186 A spanning subgraph ` S ` ...
usgrspan 26187 A spanning subgraph ` S ` ...
uhgrspanop 26188 A spanning subgraph of a h...
upgrspanop 26189 A spanning subgraph of a p...
umgrspanop 26190 A spanning subgraph of a m...
usgrspanop 26191 A spanning subgraph of a s...
uhgrspan1lem1 26192 Lemma 1 for ~ uhgrspan1 . ...
uhgrspan1lem2 26193 Lemma 2 for ~ uhgrspan1 . ...
uhgrspan1lem3 26194 Lemma 3 for ~ uhgrspan1 . ...
uhgrspan1 26195 The induced subgraph ` S `...
upgrreslem 26196 Lemma for ~ upgrres . (Co...
umgrreslem 26197 Lemma for ~ umgrres and ~ ...
upgrres 26198 A subgraph obtained by rem...
umgrres 26199 A subgraph obtained by rem...
usgrres 26200 A subgraph obtained by rem...
upgrres1lem1 26201 Lemma 1 for ~ upgrres1 . ...
umgrres1lem 26202 Lemma for ~ umgrres1 . (C...
upgrres1lem2 26203 Lemma 2 for ~ upgrres1 . ...
upgrres1lem3 26204 Lemma 3 for ~ upgrres1 . ...
upgrres1 26205 A pseudograph obtained by ...
umgrres1 26206 A multigraph obtained by r...
usgrres1 26207 Restricting a simple graph...
isfusgr 26210 The property of being a fi...
fusgrvtxfi 26211 A finite simple graph has ...
isfusgrf1 26212 The property of being a fi...
isfusgrcl 26213 The property of being a fi...
fusgrusgr 26214 A finite simple graph is a...
opfusgr 26215 A finite simple graph repr...
usgredgffibi 26216 The number of edges in a s...
fusgredgfi 26217 In a finite simple graph t...
usgr1v0e 26218 The size of a (finite) sim...
usgrfilem 26219 In a finite simple graph, ...
fusgrfisbase 26220 Induction base for ~ fusgr...
fusgrfisstep 26221 Induction step in ~ fusgrf...
fusgrfis 26222 A finite simple graph is o...
fusgrfupgrfs 26223 A finite simple graph is a...
nbgrprc0 26229 The set of neighbors is em...
nbgrcl 26233 If a class has at least on...
nbgrval 26234 The set of neighbors of a ...
dfnbgr2 26235 Alternate definition of th...
dfnbgr3 26236 Alternate definition of th...
nbgrnvtx0 26237 There are no neighbors of ...
nbgrel 26238 Characterization of a neig...
nbuhgr 26239 The set of neighbors of a ...
nbupgr 26240 The set of neighbors of a ...
nbupgrel 26241 A neighbor of a vertex in ...
nbumgrvtx 26242 The set of neighbors of a ...
nbumgr 26243 The set of neighbors of an...
nbusgrvtx 26244 The set of neighbors of a ...
nbusgr 26245 The set of neighbors of an...
nbgr2vtx1edg 26246 If a graph has two vertice...
nbuhgr2vtx1edgblem 26247 Lemma for ~ nbuhgr2vtx1edg...
nbuhgr2vtx1edgb 26248 If a hypergraph has two ve...
nbusgreledg 26249 A class/vertex is a neighb...
uhgrnbgr0nb 26250 A vertex which is not endp...
nbgr0vtxlem 26251 Lemma for ~ nbgr0vtx and ~...
nbgr0vtx 26252 In a null graph (with no v...
nbgr0edg 26253 In an empty graph (with no...
nbgr1vtx 26254 In a graph with one vertex...
nbgrisvtx 26255 Every neighbor of a class/...
nbgrssvtx 26256 The neighbors of a vertex ...
nbgrnself 26257 A vertex in a graph is not...
usgrnbnself 26258 A vertex in a simple graph...
nbgrnself2 26259 A class is not a neighbor ...
nbgrssovtx 26260 The neighbors of a vertex ...
nbgrssvwo2 26261 The neighbors of a vertex ...
usgrnbnself2 26262 In a simple graph, a class...
usgrnbssovtx 26263 The neighbors of a vertex ...
usgrnbssvwo2 26264 The neighbors of a vertex ...
nbgrsym 26265 A vertex in a graph is a n...
nbupgrres 26266 The neighborhood of a vert...
usgrnbcnvfv 26267 Applying the edge function...
nbusgredgeu 26268 For each neighbor of a ver...
edgnbusgreu 26269 For each edge incident to ...
nbusgredgeu0 26270 For each neighbor of a ver...
nbusgrf1o0 26271 The mapping of neighbors o...
nbusgrf1o1 26272 The set of neighbors of a ...
nbusgrf1o 26273 The set of neighbors of a ...
nbedgusgr 26274 The number of neighbors of...
edgusgrnbfin 26275 The number of neighbors of...
nbusgrfi 26276 The class of neighbors of ...
nbfiusgrfi 26277 The class of neighbors of ...
hashnbusgrnn0 26278 The number of neighbors of...
nbfusgrlevtxm1 26279 The number of neighbors of...
nbfusgrlevtxm2 26280 If there is a vertex which...
nbusgrvtxm1 26281 If the number of neighbors...
nb3grprlem1 26282 Lemma 1 for ~ nb3grpr . (...
nb3grprlem2 26283 Lemma 2 for ~ nb3grpr . (...
nb3grpr 26284 The neighbors of a vertex ...
nb3grpr2 26285 The neighbors of a vertex ...
nb3gr2nb 26286 If the neighbors of two ve...
uvtxaval 26287 The set of all universal v...
uvtxael 26288 A universal vertex, i.e. a...
uvtxaisvtx 26289 A universal vertex is a ve...
uvtxassvtx 26290 The set of the universal v...
vtxnbuvtx 26291 A universal vertex has all...
uvtxanbgr 26292 A universal vertex has all...
uvtxanbgrvtx 26293 A universal vertex is neig...
uvtxa0 26294 There is no universal vert...
isuvtxa 26295 The set of all universal v...
uvtxael1 26296 A universal vertex, i.e. a...
uvtxa01vtx0 26297 If a graph/class has no ed...
uvtxa01vtx 26298 If a graph/class has no ed...
uvtx2vtx1edg 26299 If a graph has two vertice...
uvtx2vtx1edgb 26300 If a hypergraph has two ve...
uvtxnbgr 26301 A universal vertex has all...
uvtxnbgrb 26302 A vertex is universal iff ...
uvtxusgr 26303 The set of all universal v...
uvtxusgrel 26304 A universal vertex, i.e. a...
uvtxanm1nbgr 26305 A universal vertex has ` n...
nbusgrvtxm1uvtx 26306 If the number of neighbors...
uvtxnbvtxm1 26307 A universal vertex has ` n...
nbupgruvtxres 26308 The neighborhood of a univ...
uvtxupgrres 26309 A universal vertex is univ...
iscplgr 26310 The property of being a co...
cplgruvtxb 26311 An graph is complete iff e...
iscplgrnb 26312 A graph is complete iff al...
iscplgredg 26313 A graph is complete iff al...
iscusgr 26314 The property of being a co...
cusgrusgr 26315 A complete simple graph is...
cusgrcplgr 26316 A complete simple graph is...
iscusgrvtx 26317 A simple graph is complete...
cusgruvtxb 26318 A simple graph is complete...
iscusgredg 26319 A simple graph is complete...
cusgredg 26320 In a complete simple graph...
cplgr0 26321 The null graph (with no ve...
cusgr0 26322 The null graph (with no ve...
cplgr0v 26323 A null graph (with no vert...
cusgr0v 26324 A graph with no vertices a...
cplgr1vlem 26325 Lemma for ~ cplgr1v and ~ ...
cplgr1v 26326 A graph with one vertex is...
cusgr1v 26327 A graph with one vertex an...
cplgr2v 26328 An undirected hypergraph w...
cplgr2vpr 26329 An undirected hypergraph w...
nbcplgr 26330 In a complete graph, each ...
cplgr3v 26331 A pseudograph with three (...
cusgr3vnbpr 26332 The neighbors of a vertex ...
cplgrop 26333 A complete graph represent...
cusgrop 26334 A complete simple graph re...
cusgrexilem1 26335 Lemma 1 for ~ cusgrexi . ...
usgrexilem 26336 Lemma for ~ usgrexi . (Co...
usgrexi 26337 An arbitrary set regarded ...
cusgrexilem2 26338 Lemma 2 for ~ cusgrexi . ...
cusgrexi 26339 An arbitrary set regarded ...
cusgrexg 26340 For each set there is a se...
structtousgr 26341 Any (extensible) structure...
structtocusgr 26342 Any (extensible) structure...
cffldtocusgr 26343 The field of complex numbe...
cusgrres 26344 Restricting a complete sim...
cusgrsizeindb0 26345 Base case of the induction...
cusgrsizeindb1 26346 Base case of the induction...
cusgrsizeindslem 26347 Lemma for ~ cusgrsizeinds ...
cusgrsizeinds 26348 Part 1 of induction step i...
cusgrsize2inds 26349 Induction step in ~ cusgrs...
cusgrsize 26350 The size of a finite compl...
cusgrfilem1 26351 Lemma 1 for ~ cusgrfi . (...
cusgrfilem2 26352 Lemma 2 for ~ cusgrfi . (...
cusgrfilem3 26353 Lemma 3 for ~ cusgrfi . (...
cusgrfi 26354 If the size of a complete ...
usgredgsscusgredg 26355 A simple graph is a subgra...
usgrsscusgr 26356 A simple graph is a subgra...
sizusglecusglem1 26357 Lemma 1 for ~ sizusglecusg...
sizusglecusglem2 26358 Lemma 2 for ~ sizusglecusg...
sizusglecusg 26359 The size of a simple graph...
fusgrmaxsize 26360 The maximum size of a fini...
vtxdgfval 26363 The value of the vertex de...
vtxdgval 26364 The degree of a vertex. (...
vtxdgfival 26365 The degree of a vertex for...
vtxdgop 26366 The vertex degree expresse...
vtxdgf 26367 The vertex degree function...
vtxdgelxnn0 26368 The degree of a vertex is ...
vtxdg0v 26369 The degree of a vertex in ...
vtxdg0e 26370 The degree of a vertex in ...
vtxdgfisnn0 26371 The degree of a vertex in ...
vtxdgfisf 26372 The vertex degree function...
vtxdeqd 26373 Equality theorem for the v...
vtxduhgr0e 26374 The degree of a vertex in ...
vtxdlfuhgr1v 26375 The degree of the vertex i...
vdumgr0 26376 A vertex in a multigraph h...
vtxdun 26377 The degree of a vertex in ...
vtxdfiun 26378 The degree of a vertex in ...
vtxduhgrun 26379 The degree of a vertex in ...
vtxduhgrfiun 26380 The degree of a vertex in ...
vtxdlfgrval 26381 The value of the vertex de...
vtxdumgrval 26382 The value of the vertex de...
vtxdusgrval 26383 The value of the vertex de...
vtxd0nedgb 26384 A vertex has degree 0 iff ...
vtxdushgrfvedglem 26385 Lemma for ~ vtxdushgrfvedg...
vtxdushgrfvedg 26386 The value of the vertex de...
vtxdusgrfvedg 26387 The value of the vertex de...
vtxduhgr0nedg 26388 If a vertex in a hypergrap...
vtxdumgr0nedg 26389 If a vertex in a multigrap...
vtxduhgr0edgnel 26390 A vertex in a hypergraph h...
vtxdusgr0edgnel 26391 A vertex in a simple graph...
vtxdusgr0edgnelALT 26392 Alternate proof of ~ vtxdu...
vtxdgfusgrf 26393 The vertex degree function...
vtxdgfusgr 26394 In a finite simple graph, ...
fusgrn0degnn0 26395 In a nonempty, finite grap...
1loopgruspgr 26396 A graph with one edge whic...
1loopgredg 26397 The set of edges in a grap...
1loopgrnb0 26398 In a graph (simple pseudog...
1loopgrvd2 26399 The vertex degree of a one...
1loopgrvd0 26400 The vertex degree of a one...
1hevtxdg0 26401 The vertex degree of verte...
1hevtxdg1 26402 The vertex degree of verte...
1hegrvtxdg1 26403 The vertex degree of a gra...
1hegrvtxdg1r 26404 The vertex degree of a gra...
1egrvtxdg1 26405 The vertex degree of a one...
1egrvtxdg1r 26406 The vertex degree of a one...
1egrvtxdg0 26407 The vertex degree of a one...
p1evtxdeqlem 26408 Lemma for ~ p1evtxdeq and ...
p1evtxdeq 26409 If an edge ` E ` which doe...
p1evtxdp1 26410 If an edge ` E ` (not bein...
uspgrloopvtx 26411 The set of vertices in a g...
uspgrloopvtxel 26412 A vertex in a graph (simpl...
uspgrloopiedg 26413 The set of edges in a grap...
uspgrloopedg 26414 The set of edges in a grap...
uspgrloopnb0 26415 In a graph (simple pseudog...
uspgrloopvd2 26416 The vertex degree of a one...
umgr2v2evtx 26417 The set of vertices in a m...
umgr2v2evtxel 26418 A vertex in a multigraph w...
umgr2v2eiedg 26419 The edge function in a mul...
umgr2v2eedg 26420 The set of edges in a mult...
umgr2v2e 26421 A multigraph with two edge...
umgr2v2enb1 26422 In a multigraph with two e...
umgr2v2evd2 26423 In a multigraph with two e...
hashnbusgrvd 26424 In a simple graph, the num...
usgruvtxvdb 26425 In a finite simple graph w...
vdiscusgrb 26426 A finite simple graph with...
vdiscusgr 26427 In a finite complete simpl...
vtxdusgradjvtx 26428 The degree of a vertex in ...
usgrvd0nedg 26429 If a vertex in a simple gr...
uhgrvd00 26430 If every vertex in a hyper...
usgrvd00 26431 If every vertex in a simpl...
vdegp1ai 26432 The induction step for a v...
vdegp1bi 26433 The induction step for a v...
vdegp1ci 26434 The induction step for a v...
vtxdginducedm1lem1 26435 Lemma 1 for ~ vtxdginduced...
vtxdginducedm1lem2 26436 Lemma 2 for ~ vtxdginduced...
vtxdginducedm1lem3 26437 Lemma 3 for ~ vtxdginduced...
vtxdginducedm1lem4 26438 Lemma 4 for ~ vtxdginduced...
vtxdginducedm1 26439 The degree of a vertex ` v...
vtxdginducedm1fi 26440 The degree of a vertex ` v...
finsumvtxdg2ssteplem1 26441 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem2 26442 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem3 26443 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2ssteplem4 26444 Lemma for ~ finsumvtxdg2ss...
finsumvtxdg2sstep 26445 Induction step of ~ finsum...
finsumvtxdg2size 26446 The sum of the degrees of ...
fusgr1th 26447 The sum of the degrees of ...
finsumvtxdgeven 26448 The sum of the degrees of ...
vtxdgoddnumeven 26449 The number of vertices of ...
fusgrvtxdgonume 26450 The number of vertices of ...
isrgr 26455 The property of a class be...
rgrprop 26456 The properties of a k-regu...
isrusgr 26457 The property of being a k-...
rusgrprop 26458 The properties of a k-regu...
rusgrrgr 26459 A k-regular simple graph i...
rusgrusgr 26460 A k-regular simple graph i...
finrusgrfusgr 26461 A finite regular simple gr...
isrusgr0 26462 The property of being a k-...
rusgrprop0 26463 The properties of a k-regu...
usgreqdrusgr 26464 If all vertices in a simpl...
fusgrregdegfi 26465 In a nonempty finite simpl...
fusgrn0eqdrusgr 26466 If all vertices in a nonem...
frusgrnn0 26467 In a nonempty finite k-reg...
0edg0rgr 26468 A graph is 0-regular if it...
uhgr0edg0rgr 26469 A hypergraph is 0-regular ...
uhgr0edg0rgrb 26470 A hypergraph is 0-regular ...
usgr0edg0rusgr 26471 A simple graph is 0-regula...
0vtxrgr 26472 A null graph (with no vert...
0vtxrusgr 26473 A graph with no vertices a...
0uhgrrusgr 26474 The null graph as hypergra...
0grrusgr 26475 The null graph represented...
0grrgr 26476 The null graph represented...
cusgrrusgr 26477 A complete simple graph wi...
cusgrm1rusgr 26478 A finite simple graph with...
rusgrpropnb 26479 The properties of a k-regu...
rusgrpropedg 26480 The properties of a k-regu...
rusgrpropadjvtx 26481 The properties of a k-regu...
rusgrnumwrdl2 26482 In a k-regular simple grap...
rusgr1vtxlem 26483 Lemma for ~ rusgr1vtx . (...
rusgr1vtx 26484 If a k-regular simple grap...
rgrusgrprc 26485 The class of 0-regular sim...
rusgrprc 26486 The class of 0-regular sim...
rgrprc 26487 The class of 0-regular gra...
rgrprcx 26488 The class of 0-regular gra...
rgrx0ndm 26489 0 is not in the domain of ...
rgrx0nd 26490 The potentially alternativ...
ewlksfval 26497 The set of s-walks of edge...
isewlk 26498 Conditions for a function ...
ewlkprop 26499 Properties of an s-walk of...
ewlkinedg 26500 The intersection (common v...
ewlkle 26501 An s-walk of edges is also...
upgrewlkle2 26502 In a pseudograph, there is...
wkslem1 26503 Lemma 1 for walks to subst...
wkslem2 26504 Lemma 2 for walks to subst...
wksfval 26505 The set of walks (in an un...
iswlk 26506 Properties of a pair of fu...
wlkprop 26507 Properties of a walk. (Co...
wlkv 26508 The classes involved in a ...
iswlkg 26509 Generalisation of ~ iswlk ...
wlkf 26510 The mapping enumerating th...
wlkcl 26511 A walk has length ` # ( F ...
wlkp 26512 The mapping enumerating th...
wlkpwrd 26513 The sequence of vertices o...
wlklenvp1 26514 The number of vertices of ...
wksv 26515 The class of walks is a se...
wlkn0 26516 The sequence of vertices o...
wlklenvm1 26517 The number of edges of a w...
ifpsnprss 26518 Lemma for ~ wlkvtxeledg : ...
wlkvtxeledg 26519 Each pair of adjacent vert...
wlkvtxiedg 26520 The vertices of a walk are...
relwlk 26521 The set ` ( Walks `` G ) `...
wlkvv 26522 If there is at least one w...
wlkop 26523 A walk is an ordered pair....
wlkcpr 26524 A walk as class with two c...
wlk2f 26525 If there is a walk ` W ` t...
wlkcomp 26526 A walk expressed by proper...
wlkcompim 26527 Implications for the prope...
wlkelwrd 26528 The components of a walk a...
wlkeq 26529 Conditions for two walks (...
edginwlk 26530 The value of the edge func...
edginwlkOLD 26531 Obsolete version of ~ edgi...
upgredginwlk 26532 The value of the edge func...
iedginwlk 26533 The value of the edge func...
wlkl1loop 26534 A walk of length 1 from a ...
wlk1walk 26535 A walk is a 1-walk "on the...
wlk1ewlk 26536 A walk is an s-walk "on th...
upgriswlk 26537 Properties of a pair of fu...
upgrwlkedg 26538 The edges of a walk in a p...
upgrwlkcompim 26539 Implications for the prope...
wlkvtxedg 26540 The vertices of a walk are...
upgrwlkvtxedg 26541 The pairs of connected ver...
uspgr2wlkeq 26542 Conditions for two walks w...
uspgr2wlkeq2 26543 Conditions for two walks w...
uspgr2wlkeqi 26544 Conditions for two walks w...
umgrwlknloop 26545 In a multigraph, each walk...
wlkRes 26546 Restrictions of walks (i.e...
wlkv0 26547 If there is a walk in the ...
g0wlk0 26548 There is no walk in a null...
0wlk0 26549 There is no walk for the e...
wlk0prc 26550 There is no walk in a null...
wlklenvclwlk 26551 The number of vertices in ...
wlkson 26552 The set of walks between t...
iswlkon 26553 Properties of a pair of fu...
wlkonprop 26554 Properties of a walk betwe...
wlkpvtx 26555 A walk connects vertices. ...
wlkepvtx 26556 The endpoints of a walk ar...
wlkoniswlk 26557 A walk between two vertice...
wlkonwlk 26558 A walk is a walk between i...
wlkonwlk1l 26559 A walk is a walk from its ...
wlksoneq1eq2 26560 Two walks with identical s...
wlkonl1iedg 26561 If there is a walk between...
wlkon2n0 26562 The length of a walk betwe...
2wlklem 26563 Lemma for theorems for wal...
upgr2wlk 26564 Properties of a pair of fu...
wlkreslem0 26565 Lemma for ~ wlkres . TODO...
wlkreslem 26566 Lemma for ~ wlkres . (Con...
wlkres 26567 The restriction ` <. H , Q...
redwlklem 26568 Lemma for ~ redwlk . (Con...
redwlk 26569 A walk ending at the last ...
wlkp1lem1 26570 Lemma for ~ wlkp1 . (Cont...
wlkp1lem2 26571 Lemma for ~ wlkp1 . (Cont...
wlkp1lem3 26572 Lemma for ~ wlkp1 . (Cont...
wlkp1lem4 26573 Lemma for ~ wlkp1 . (Cont...
wlkp1lem5 26574 Lemma for ~ wlkp1 . (Cont...
wlkp1lem6 26575 Lemma for ~ wlkp1 . (Cont...
wlkp1lem7 26576 Lemma for ~ wlkp1 . (Cont...
wlkp1lem8 26577 Lemma for ~ wlkp1 . (Cont...
wlkp1 26578 Append one path segment (e...
wlkdlem1 26579 Lemma 1 for ~ wlkd . (Con...
wlkdlem2 26580 Lemma 2 for ~ wlkd . (Con...
wlkdlem3 26581 Lemma 3 for ~ wlkd . (Con...
wlkdlem4 26582 Lemma 4 for ~ wlkd . (Con...
wlkd 26583 Two words representing a w...
lfgrwlkprop 26584 Two adjacent vertices in a...
lfgriswlk 26585 Conditions for a pair of f...
lfgrwlknloop 26586 In a loop-free graph, each...
reltrls 26591 The set ` ( Trails `` G ) ...
trlsfval 26592 The set of trails (in an u...
istrl 26593 Conditions for a pair of c...
trliswlk 26594 A trail is a walk. (Contr...
trlf1 26595 The enumeration ` F ` of a...
trlreslem 26596 Lemma for ~ trlres . Form...
trlres 26597 The restriction ` <. H , Q...
upgrtrls 26598 The set of trails in a pse...
upgristrl 26599 Properties of a pair of fu...
upgrf1istrl 26600 Properties of a pair of a ...
wksonproplem 26601 Lemma for theorems for pro...
trlsonfval 26602 The set of trails between ...
istrlson 26603 Properties of a pair of fu...
trlsonprop 26604 Properties of a trail betw...
trlsonistrl 26605 A trail between two vertic...
trlsonwlkon 26606 A trail between two vertic...
trlontrl 26607 A trail is a trail between...
relpths 26616 The set ` ( Paths `` G ) `...
pthsfval 26617 The set of paths (in an un...
spthsfval 26618 The set of simple paths (i...
ispth 26619 Conditions for a pair of c...
isspth 26620 Conditions for a pair of c...
pthistrl 26621 A path is a trail (in an u...
spthispth 26622 A simple path is a path (i...
pthiswlk 26623 A path is a walk (in an un...
spthiswlk 26624 A simple path is a walk (i...
pthdivtx 26625 The inner vertices of a pa...
pthdadjvtx 26626 The adjacent vertices of a...
2pthnloop 26627 A path of length at least ...
upgr2pthnlp 26628 A path of length at least ...
spthdifv 26629 The vertices of a simple p...
spthdep 26630 A simple path (at least of...
pthdepisspth 26631 A path with different star...
upgrwlkdvdelem 26632 Lemma for ~ upgrwlkdvde . ...
upgrwlkdvde 26633 In a pseudograph, all edge...
upgrspthswlk 26634 The set of simple paths in...
upgrwlkdvspth 26635 A walk consisting of diffe...
pthsonfval 26636 The set of paths between t...
spthson 26637 The set of simple paths be...
ispthson 26638 Properties of a pair of fu...
isspthson 26639 Properties of a pair of fu...
pthsonprop 26640 Properties of a path betwe...
spthonprop 26641 Properties of a simple pat...
pthonispth 26642 A path between two vertice...
pthontrlon 26643 A path between two vertice...
pthonpth 26644 A path is a path between i...
isspthonpth 26645 A pair of functions is a s...
spthonisspth 26646 A simple path between to v...
spthonpthon 26647 A simple path between two ...
spthonepeq 26648 The endpoints of a simple ...
uhgrwkspthlem1 26649 Lemma 1 for ~ uhgrwkspth ....
uhgrwkspthlem2 26650 Lemma 2 for ~ uhgrwkspth ....
uhgrwkspth 26651 Any walk of length 1 betwe...
usgr2wlkneq 26652 The vertices and edges are...
usgr2wlkspthlem1 26653 Lemma 1 for ~ usgr2wlkspth...
usgr2wlkspthlem2 26654 Lemma 2 for ~ usgr2wlkspth...
usgr2wlkspth 26655 In a simple graph, any wal...
usgr2trlncl 26656 In a simple graph, any tra...
usgr2trlspth 26657 In a simple graph, any tra...
usgr2pthspth 26658 In a simple graph, any pat...
usgr2pthlem 26659 Lemma for ~ usgr2pth . (C...
usgr2pth 26660 In a simple graph, there i...
usgr2pth0 26661 In a simply graph, there i...
pthdlem1 26662 Lemma 1 for ~ pthd . (Con...
pthdlem2lem 26663 Lemma for ~ pthdlem2 . (C...
pthdlem2 26664 Lemma 2 for ~ pthd . (Con...
pthd 26665 Two words representing a t...
clwlks 26668 The set of closed walks (i...
isclwlk 26669 A pair of functions repres...
clwlkiswlk 26670 A closed walk is a walk (i...
clwlkwlk 26671 Closed walks are walks (in...
clwlkswks 26672 Closed walks are walks (in...
isclwlke 26673 Properties of a pair of fu...
isclwlkupgr 26674 Properties of a pair of fu...
clwlkcomp 26675 A closed walk expressed by...
clwlkcompim 26676 Implications for the prope...
upgrclwlkcompim 26677 Implications for the prope...
clwlkl1loop 26678 A closed walk of length 1 ...
crcts 26683 The set of circuits (in an...
cycls 26684 The set of cycles (in an u...
iscrct 26685 Sufficient and necessary c...
iscycl 26686 Sufficient and necessary c...
crctprop 26687 The properties of a circui...
cyclprop 26688 The properties of a cycle:...
crctisclwlk 26689 A circuit is a closed walk...
crctistrl 26690 A circuit is a trail. (Co...
crctiswlk 26691 A circuit is a walk. (Con...
cyclispth 26692 A cycle is a path. (Contr...
cycliswlk 26693 A cycle is a walk. (Contr...
cycliscrct 26694 A cycle is a circuit. (Co...
cyclnspth 26695 A (non trivial) cycle is n...
cyclispthon 26696 A cycle is a path starting...
lfgrn1cycl 26697 In a loop-free graph there...
usgr2trlncrct 26698 In a simple graph, any tra...
umgrn1cycl 26699 In a multigraph graph (wit...
uspgrn2crct 26700 In a simple pseudograph th...
usgrn2cycl 26701 In a simple graph there ar...
crctcshwlkn0lem1 26702 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem2 26703 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem3 26704 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem4 26705 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem5 26706 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem6 26707 Lemma for ~ crctcshwlkn0 ....
crctcshwlkn0lem7 26708 Lemma for ~ crctcshwlkn0 ....
crctcshlem1 26709 Lemma for ~ crctcsh . (Co...
crctcshlem2 26710 Lemma for ~ crctcsh . (Co...
crctcshlem3 26711 Lemma for ~ crctcsh . (Co...
crctcshlem4 26712 Lemma for ~ crctcsh . (Co...
crctcshwlkn0 26713 Cyclically shifting the in...
crctcshwlk 26714 Cyclically shifting the in...
crctcshtrl 26715 Cyclically shifting the in...
crctcsh 26716 Cyclically shifting the in...
wwlks 26727 The set of walks (in an un...
iswwlks 26728 A word over the set of ver...
wwlksn 26729 The set of walks (in an un...
iswwlksn 26730 A word over the set of ver...
iswwlksnx 26731 Properties of a word to re...
wwlkbp 26732 Basic properties of a walk...
wwlknbp 26733 Basic properties of a walk...
wwlknp 26734 Properties of a set being ...
wspthsn 26735 The set of simple paths of...
iswspthn 26736 An element of the set of s...
wspthnp 26737 Properties of a set being ...
wwlksnon 26738 The set of walks of a fixe...
wspthsnon 26739 The set of simple paths of...
iswwlksnon 26740 The set of walks of a fixe...
iswspthsnon 26741 The set of simple paths of...
wwlknon 26742 An element of the set of w...
wspthnon 26743 An element of the set of s...
wspthnonp 26744 Properties of a set being ...
wspthneq1eq2 26745 Two simple paths with iden...
wwlksn0s 26746 The set of all walks as wo...
wwlkssswrd 26747 Walks (represented by word...
wwlksn0 26748 A walk of length 0 is repr...
0enwwlksnge1 26749 In graphs without edges, t...
wwlkswwlksn 26750 A walk of a fixed length a...
wwlkssswwlksn 26751 The walks of a fixed lengt...
wwlknbp2 26752 Other basic properties of ...
wlkiswwlks1 26753 The sequence of vertices i...
wlklnwwlkln1 26754 The sequence of vertices i...
wlkiswwlks2lem1 26755 Lemma 1 for ~ wlkiswwlks2 ...
wlkiswwlks2lem2 26756 Lemma 2 for ~ wlkiswwlks2 ...
wlkiswwlks2lem3 26757 Lemma 3 for ~ wlkiswwlks2 ...
wlkiswwlks2lem4 26758 Lemma 4 for ~ wlkiswwlks2 ...
wlkiswwlks2lem5 26759 Lemma 5 for ~ wlkiswwlks2 ...
wlkiswwlks2lem6 26760 Lemma 6 for ~ wlkiswwlks2 ...
wlkiswwlks2 26761 A walk as word corresponds...
wlkiswwlks 26762 A walk as word corresponds...
wlkiswwlksupgr2 26763 A walk as word corresponds...
wlkiswwlkupgr 26764 A walk as word corresponds...
wlkpwwlkf1ouspgr 26765 The mapping of (ordinary) ...
wlkisowwlkupgr 26766 The set of walks as words ...
wwlksm1edg 26767 Removing the trailing edge...
wlklnwwlkln2lem 26768 Lemma for ~ wlklnwwlkln2 a...
wlklnwwlkln2 26769 A walk of length ` N ` as ...
wlklnwwlkn 26770 A walk of length ` N ` as ...
wlklnwwlklnupgr2 26771 A walk of length ` N ` as ...
wlklnwwlknupgr 26772 A walk of length ` N ` as ...
wlknewwlksn 26773 If a walk in a pseudograph...
wlknwwlksnfun 26774 Lemma 1 for ~ wlknwwlksnbi...
wlknwwlksninj 26775 Lemma 2 for ~ wlknwwlksnbi...
wlknwwlksnsur 26776 Lemma 3 for ~ wlknwwlksnbi...
wlknwwlksnbij 26777 Lemma 4 for ~ wlknwwlksnbi...
wlknwwlksnbij2 26778 There is a bijection betwe...
wlknwwlksnen 26779 In a simple pseudograph, t...
wlknwwlksneqs 26780 The set of walks of a fixe...
wlkwwlkfun 26781 Lemma 1 for ~ wlkwwlkbij2 ...
wlkwwlkinj 26782 Lemma 2 for ~ wlkwwlkbij2 ...
wlkwwlksur 26783 Lemma 3 for ~ wlkwwlkbij2 ...
wlkwwlkbij 26784 Lemma 4 for ~ wlkwwlkbij2 ...
wlkwwlkbij2 26785 There is a bijection betwe...
wwlkseq 26786 Equality of two walks (as ...
wwlksnred 26787 Reduction of a walk (as wo...
wwlksnext 26788 Extension of a walk (as wo...
wwlksnextbi 26789 Extension of a walk (as wo...
wwlksnredwwlkn 26790 For each walk (as word) of...
wwlksnredwwlkn0 26791 For each walk (as word) of...
wwlksnextwrd 26792 Lemma for ~ wwlksnextbij ....
wwlksnextfun 26793 Lemma for ~ wwlksnextbij ....
wwlksnextinj 26794 Lemma for ~ wwlksnextbij ....
wwlksnextsur 26795 Lemma for ~ wwlksnextbij ....
wwlksnextbij0 26796 Lemma for ~ wwlksnextbij ....
wwlksnextbij 26797 There is a bijection betwe...
wwlksnexthasheq 26798 The number of the extensio...
disjxwwlksn 26799 Sets of walks (as words) e...
wwlksnndef 26800 Conditions for ` WWalksN `...
wwlksnfi 26801 The number of walks repres...
wlksnfi 26802 The number of walks of fix...
wlksnwwlknvbij 26803 There is a bijection betwe...
wwlksnextproplem1 26804 Lemma 1 for ~ wwlksnextpro...
wwlksnextproplem2 26805 Lemma 2 for ~ wwlksnextpro...
wwlksnextproplem3 26806 Lemma 3 for ~ wwlksnextpro...
wwlksnextprop 26807 Adding additional properti...
disjxwwlkn 26808 Sets of walks (as words) e...
hashwwlksnext 26809 Number of walks (as words)...
wwlksnwwlksnon 26810 A walk of fixed length is ...
wspthsnwspthsnon 26811 A simple path of fixed len...
wwlksnon0 26812 Conditions for a set of wa...
wspthsnonn0vne 26813 If the set of simple paths...
wspthsswwlkn 26814 The set of simple paths of...
wspthnfi 26815 In a finite graph, the set...
wwlksnonfi 26816 In a finite graph, the set...
wspthsswwlknon 26817 The set of simple paths of...
wspthnonfi 26818 In a finite graph, the set...
wspniunwspnon 26819 The set of nonempty simple...
wspn0 26820 If there are no vertices, ...
2wlkdlem1 26821 Lemma 1 for ~ 2wlkd . (Co...
2wlkdlem2 26822 Lemma 2 for ~ 2wlkd . (Co...
2wlkdlem3 26823 Lemma 3 for ~ 2wlkd . (Co...
2wlkdlem4 26824 Lemma 4 for ~ 2wlkd . (Co...
2wlkdlem5 26825 Lemma 5 for ~ 2wlkd . (Co...
2pthdlem1 26826 Lemma 1 for ~ 2pthd . (Co...
2wlkdlem6 26827 Lemma 6 for ~ 2wlkd . (Co...
2wlkdlem7 26828 Lemma 7 for ~ 2wlkd . (Co...
2wlkdlem8 26829 Lemma 8 for ~ 2wlkd . (Co...
2wlkdlem9 26830 Lemma 9 for ~ 2wlkd . (Co...
2wlkdlem10 26831 Lemma 10 for ~ 3wlkd . (C...
2wlkd 26832 Construction of a walk fro...
2wlkond 26833 A walk of length 2 from on...
2trld 26834 Construction of a trail fr...
2trlond 26835 A trail of length 2 from o...
2pthd 26836 A path of length 2 from on...
2spthd 26837 A simple path of length 2 ...
2pthond 26838 A simple path of length 2 ...
2pthon3v 26839 For a vertex adjacent to t...
umgr2adedgwlklem 26840 Lemma for ~ umgr2adedgwlk ...
umgr2adedgwlk 26841 In a multigraph, two adjac...
umgr2adedgwlkon 26842 In a multigraph, two adjac...
umgr2adedgwlkonALT 26843 Alternate proof for ~ umgr...
umgr2adedgspth 26844 In a multigraph, two adjac...
umgr2wlk 26845 In a multigraph, there is ...
umgr2wlkon 26846 For each pair of adjacent ...
wwlks2onv 26847 If a length 3 string repre...
elwwlks2ons3 26848 For each walk of length 2 ...
s3wwlks2on 26849 A length 3 string which re...
umgrwwlks2on 26850 A walk of length 2 between...
wwlks2onsym 26851 There is a walk of length ...
elwwlks2on 26852 A walk of length 2 between...
elwspths2on 26853 A simple path of length 2 ...
wpthswwlks2on 26854 For two different vertices...
2wspdisj 26855 All simple paths of length...
2wspiundisj 26856 All simple paths of length...
usgr2wspthons3 26857 A simple path of length 2 ...
usgr2wspthon 26858 A simple path of length 2 ...
elwwlks2s3 26859 A walk of length 2 between...
midwwlks2s3 26860 There is a vertex between ...
elwwlks2 26861 A walk of length 2 between...
elwspths2spth 26862 A simple path of length 2 ...
rusgrnumwwlkl1 26863 In a k-regular graph, ther...
rusgrnumwwlkslem 26864 Lemma for ~ rusgrnumwwlks ...
rusgrnumwwlklem 26865 Lemma for ~ rusgrnumwwlk e...
rusgrnumwwlkb0 26866 Induction base 0 for ~ rus...
rusgrnumwwlkb1 26867 Induction base 1 for ~ rus...
rusgr0edg 26868 Special case for graphs wi...
rusgrnumwwlks 26869 Induction step for ~ rusgr...
rusgrnumwwlk 26870 In a ` K `-regular graph, ...
rusgrnumwwlkg 26871 In a ` K `-regular graph, ...
rusgrnumwlkg 26872 In a k-regular graph, the ...
clwwlknclwwlkdifs 26873 The set of walks of length...
clwwlknclwwlkdifnum 26874 In a k-regular graph, the ...
clwwlks 26879 The set of closed walks (i...
isclwwlks 26880 Properties of a word to re...
clwwlksn 26881 The set of closed walks (i...
isclwwlksn 26882 A word over the set of ver...
clwwlkbp 26883 Basic properties of a clos...
clwwlknbp0 26884 Basic properties of a clos...
clwwlknbp 26885 Basic properties of a clos...
clwwlksnwrd 26886 A closed walk of a fixed l...
clwwlknp 26887 Properties of a set being ...
isclwwlksng 26888 Properties of a word to re...
isclwwlksnx 26889 Properties of a word to re...
clwwlksnndef 26890 Conditions for ` ClWWalksN...
clwwlkclwwlkn 26891 A closed walk of a fixed l...
clwwlkssclwwlksn 26892 The closed walks of a fixe...
clwlkclwwlklem2a1 26893 Lemma 1 for ~ clwlkclwwlkl...
clwlkclwwlklem2a2 26894 Lemma 2 for ~ clwlkclwwlkl...
clwlkclwwlklem2a3 26895 Lemma 3 for ~ clwlkclwwlkl...
clwlkclwwlklem2fv1 26896 Lemma 4a for ~ clwlkclwwlk...
clwlkclwwlklem2fv2 26897 Lemma 4b for ~ clwlkclwwlk...
clwlkclwwlklem2a4 26898 Lemma 4 for ~ clwlkclwwlkl...
clwlkclwwlklem2a 26899 Lemma for ~ clwlkclwwlklem...
clwlkclwwlklem1 26900 Lemma 1 for ~ clwlkclwwlk ...
clwlkclwwlklem2 26901 Lemma 2 for ~ clwlkclwwlk ...
clwlkclwwlklem3 26902 Lemma 3 for ~ clwlkclwwlk ...
clwlkclwwlk 26903 A closed walk as word of l...
clwlkclwwlk2 26904 A closed walk corresponds ...
clwwlkinwwlk 26905 If the initial vertex of a...
clwwlksgt0 26906 There is no empty closed w...
clwwlksn0 26907 There is no closed walk of...
clwwlks1loop 26908 A closed walk of length 1 ...
clwwlksn1loop 26909 A closed walk of length 1 ...
clwwlksn2 26910 A closed walk of length 2 ...
clwwlkssswrd 26911 Closed walks (represented ...
umgrclwwlksge2 26912 A closed walk in a multigr...
clwwlksnfi 26913 If there is only a finite ...
clwwlksel 26914 Obtaining a closed walk (a...
clwwlksf 26915 Lemma 1 for ~ clwwlksbij :...
clwwlksfv 26916 Lemma 2 for ~ clwwlksbij :...
clwwlksf1 26917 Lemma 3 for ~ clwwlksbij :...
clwwlksfo 26918 Lemma 4 for ~ clwwlksbij :...
clwwlksf1o 26919 Lemma 5 for ~ clwwlksbij :...
clwwlksbij 26920 There is a bijection betwe...
clwwlksnwwlkncl 26921 Obtaining a closed walk (a...
clwwlksvbij 26922 There is a bijection betwe...
clwwlksext2edg 26923 If a word concatenated wit...
wwlksext2clwwlk 26924 If a word represents a wal...
wwlksubclwwlks 26925 Any prefix of a word repre...
clwwisshclwwslemlem 26926 Lemma for ~ clwwisshclwwsl...
clwwisshclwwslem 26927 Lemma for ~ clwwisshclwws ...
clwwisshclwws 26928 Cyclically shifting a clos...
clwwisshclwwsn 26929 Cyclically shifting a clos...
clwwnisshclwwsn 26930 Cyclically shifting a clos...
erclwwlksrel 26931 ` .~ ` is a relation. (Co...
erclwwlkseq 26932 Two classes are equivalent...
erclwwlkseqlen 26933 If two classes are equival...
erclwwlksref 26934 ` .~ ` is a reflexive rela...
erclwwlkssym 26935 ` .~ ` is a symmetric rela...
erclwwlkstr 26936 ` .~ ` is a transitive rel...
erclwwlks 26937 ` .~ ` is an equivalence r...
eleclclwwlksnlem1 26938 Lemma 1 for ~ eleclclwwlks...
eleclclwwlksnlem2 26939 Lemma 2 for ~ eleclclwwlks...
clwwlksnscsh 26940 The set of cyclical shifts...
umgr2cwwk2dif 26941 If a word represents a clo...
umgr2cwwkdifex 26942 If a word represents a clo...
erclwwlksnrel 26943 ` .~ ` is a relation. (Co...
erclwwlksneq 26944 Two classes are equivalent...
erclwwlksneqlen 26945 If two classes are equival...
erclwwlksnref 26946 ` .~ ` is a reflexive rela...
erclwwlksnsym 26947 ` .~ ` is a symmetric rela...
erclwwlksntr 26948 ` .~ ` is a transitive rel...
erclwwlksn 26949 ` .~ ` is an equivalence r...
qerclwwlksnfi 26950 The quotient set of the se...
hashclwwlksn0 26951 The number of closed walks...
eclclwwlksn1 26952 An equivalence class accor...
eleclclwwlksn 26953 A member of an equivalence...
hashecclwwlksn1 26954 The size of every equivale...
umgrhashecclwwlk 26955 The size of every equivale...
fusgrhashclwwlkn 26956 The size of the set of clo...
clwwlksndivn 26957 The size of the set of clo...
clwlksfclwwlk2wrd 26958 The second component of a ...
clwlksfclwwlk1hashn 26959 The size of the first comp...
clwlksfclwwlk1hash 26960 The size of the first comp...
clwlksfclwwlk2sswd 26961 The size of a subword of t...
clwlksfclwwlk 26962 There is a function betwee...
clwlksfoclwwlk 26963 There is an onto function ...
clwlksf1clwwlklem0 26964 Lemma 1 for ~ clwlksf1clww...
clwlksf1clwwlklem1 26965 Lemma 1 for ~ clwlksf1clww...
clwlksf1clwwlklem2 26966 Lemma 2 for ~ clwlksf1clww...
clwlksf1clwwlklem3 26967 Lemma 3 for ~ clwlksf1clww...
clwlksf1clwwlklem 26968 Lemma for ~ clwlksf1clwwlk...
clwlksf1clwwlk 26969 There is a one-to-one func...
clwlksf1oclwwlk 26970 There is a one-to-one onto...
clwlkssizeeq 26971 The size of the set of clo...
clwlksndivn 26972 The size of the set of clo...
clwwlksndisj 26973 The sets of closed walks s...
clwwlksnun 26974 The set of closed walks of...
0ewlk 26975 The empty set (empty seque...
1ewlk 26976 A sequence of 1 edge is an...
0wlk 26977 A pair of an empty set (of...
is0wlk 26978 A pair of an empty set (of...
0wlkonlem1 26979 Lemma 1 for ~ 0wlkon and ~...
0wlkonlem2 26980 Lemma 2 for ~ 0wlkon and ~...
0wlkon 26981 A walk of length 0 from a ...
0wlkons1 26982 A walk of length 0 from a ...
0trl 26983 A pair of an empty set (of...
is0trl 26984 A pair of an empty set (of...
0trlon 26985 A trail of length 0 from a...
0pth 26986 A pair of an empty set (of...
0spth 26987 A pair of an empty set (of...
0pthon 26988 A path of length 0 from a ...
0pthon1 26989 A path of length 0 from a ...
0pthonv 26990 For each vertex there is a...
0clwlk 26991 A pair of an empty set (of...
0clwlk0 26992 There is no closed walk in...
0crct 26993 A pair of an empty set (of...
0cycl 26994 A pair of an empty set (of...
1pthdlem1 26995 Lemma 1 for ~ 1pthd . (Co...
1pthdlem2 26996 Lemma 2 for ~ 1pthd . (Co...
1wlkdlem1 26997 Lemma 1 for ~ 1wlkd . (Co...
1wlkdlem2 26998 Lemma 2 for ~ 1wlkd . (Co...
1wlkdlem3 26999 Lemma 3 for ~ 1wlkd . (Co...
1wlkdlem4 27000 Lemma 4 for ~ 1wlkd . (Co...
1wlkd 27001 In a graph with two vertic...
1trld 27002 In a graph with two vertic...
1pthd 27003 In a graph with two vertic...
1pthond 27004 In a graph with two vertic...
upgr1wlkdlem1 27005 Lemma 1 for ~ upgr1wlkd . ...
upgr1wlkdlem2 27006 Lemma 2 for ~ upgr1wlkd . ...
upgr1wlkd 27007 In a pseudograph with two ...
upgr1trld 27008 In a pseudograph with two ...
upgr1pthd 27009 In a pseudograph with two ...
upgr1pthond 27010 In a pseudograph with two ...
lppthon 27011 A loop (which is an edge a...
lp1cycl 27012 A loop (which is an edge a...
1pthon2v 27013 For each pair of adjacent ...
1pthon2ve 27014 For each pair of adjacent ...
wlk2v2elem1 27015 Lemma 1 for ~ wlk2v2e : ` ...
wlk2v2elem2 27016 Lemma 2 for ~ wlk2v2e : T...
wlk2v2e 27017 In a graph with two vertic...
ntrl2v2e 27018 A walk which is not a trai...
3wlkdlem1 27019 Lemma 1 for ~ 3wlkd . (Co...
3wlkdlem2 27020 Lemma 2 for ~ 3wlkd . (Co...
3wlkdlem3 27021 Lemma 3 for ~ 3wlkd . (Co...
3wlkdlem4 27022 Lemma 4 for ~ 3wlkd . (Co...
3wlkdlem5 27023 Lemma 5 for ~ 3wlkd . (Co...
3pthdlem1 27024 Lemma 1 for ~ 3pthd . (Co...
3wlkdlem6 27025 Lemma 6 for ~ 3wlkd . (Co...
3wlkdlem7 27026 Lemma 7 for ~ 3wlkd . (Co...
3wlkdlem8 27027 Lemma 8 for ~ 3wlkd . (Co...
3wlkdlem9 27028 Lemma 9 for ~ 3wlkd . (Co...
3wlkdlem10 27029 Lemma 10 for ~ 3wlkd . (C...
3wlkd 27030 Construction of a walk fro...
3wlkond 27031 A walk of length 3 from on...
3trld 27032 Construction of a trail fr...
3trlond 27033 A trail of length 3 from o...
3pthd 27034 A path of length 3 from on...
3pthond 27035 A path of length 3 from on...
3spthd 27036 A simple path of length 3 ...
3spthond 27037 A simple path of length 3 ...
3cycld 27038 Construction of a 3-cycle ...
3cyclpd 27039 Construction of a 3-cycle ...
upgr3v3e3cycl 27040 If there is a cycle of len...
uhgr3cyclexlem 27041 Lemma for ~ uhgr3cyclex . ...
uhgr3cyclex 27042 If there are three differe...
umgr3cyclex 27043 If there are three (differ...
umgr3v3e3cycl 27044 If and only if there is a ...
upgr4cycl4dv4e 27045 If there is a cycle of len...
dfconngr1 27048 Alternative definition of ...
isconngr 27049 The property of being a co...
isconngr1 27050 The property of being a co...
cusconngr 27051 A complete hypergraph is c...
0conngr 27052 A graph without vertices i...
0vconngr 27053 A graph without vertices i...
1conngr 27054 A graph with (at most) one...
conngrv2edg 27055 A vertex in a connected gr...
vdn0conngrumgrv2 27056 A vertex in a connected mu...
releupth 27059 The set ` ( EulerPaths `` ...
eupths 27060 The Eulerian paths on the ...
iseupth 27061 The property " ` <. F , P ...
iseupthf1o 27062 The property " ` <. F , P ...
eupthi 27063 Properties of an Eulerian ...
eupthf1o 27064 The ` F ` function in an E...
eupthfi 27065 Any graph with an Eulerian...
eupthseg 27066 The ` N ` -th edge in an e...
upgriseupth 27067 The property " ` <. F , P ...
upgreupthi 27068 Properties of an Eulerian ...
upgreupthseg 27069 The ` N ` -th edge in an e...
eupthcl 27070 An Eulerian path has lengt...
eupthistrl 27071 An Eulerian path is a trai...
eupthiswlk 27072 An Eulerian path is a walk...
eupthpf 27073 The ` P ` function in an E...
eupth0 27074 There is an Eulerian path ...
eupthres 27075 The restriction ` <. H , Q...
eupthp1 27076 Append one path segment to...
eupth2eucrct 27077 Append one path segment to...
eupth2lem1 27078 Lemma for ~ eupth2 . (Con...
eupth2lem2 27079 Lemma for ~ eupth2 . (Con...
trlsegvdeglem1 27080 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem2 27081 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem3 27082 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem4 27083 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem5 27084 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem6 27085 Lemma for ~ trlsegvdeg . ...
trlsegvdeglem7 27086 Lemma for ~ trlsegvdeg . ...
trlsegvdeg 27087 Formerly part of proof of ...
eupth2lem3lem1 27088 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem2 27089 Lemma for ~ eupth2lem3 . ...
eupth2lem3lem3 27090 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem4 27091 Lemma for ~ eupth2lem3 , f...
eupth2lem3lem5 27092 Lemma for ~ eupth2 . (Con...
eupth2lem3lem6 27093 Formerly part of proof of ...
eupth2lem3lem7 27094 Lemma for ~ eupth2lem3 : ...
eupthvdres 27095 Formerly part of proof of ...
eupth2lem3 27096 Lemma for ~ eupth2 . (Con...
eupth2lemb 27097 Lemma for ~ eupth2 (induct...
eupth2lems 27098 Lemma for ~ eupth2 (induct...
eupth2 27099 The only vertices of odd d...
eulerpathpr 27100 A graph with an Eulerian p...
eulerpath 27101 A pseudograph with an Eule...
eulercrct 27102 A pseudograph with an Eule...
eucrctshift 27103 Cyclically shifting the in...
eucrct2eupth1 27104 Removing one edge ` ( I ``...
eucrct2eupth 27105 Removing one edge ` ( I ``...
konigsbergvtx 27106 The set of vertices of the...
konigsbergiedg 27107 The indexed edges of the K...
konigsbergiedgw 27108 The indexed edges of the K...
konigsbergiedgwOLD 27109 The indexed edges of the K...
konigsbergssiedgwpr 27110 Each subset of the indexed...
konigsbergssiedgw 27111 Each subset of the indexed...
konigsbergumgr 27112 The Königsberg graph ...
konigsbergupgrOLD 27113 The Königsberg graph ...
konigsberglem1 27114 Lemma 1 for ~ konigsberg :...
konigsberglem2 27115 Lemma 2 for ~ konigsberg :...
konigsberglem3 27116 Lemma 3 for ~ konigsberg :...
konigsberglem4 27117 Lemma 4 for ~ konigsberg :...
konigsberglem5 27118 Lemma 5 for ~ konigsberg :...
konigsberg 27119 The Königsberg Bridge...
isfrgr 27122 The property of being a fr...
frgrusgrfrcond 27123 A friendship graph is a si...
frgrusgr 27124 A friendship graph is a si...
frgr0v 27125 Any null graph (set with n...
frgr0vb 27126 Any null graph (without ve...
frgruhgr0v 27127 Any null graph (without ve...
frgr0 27128 The null graph (graph with...
rspc2vd 27129 Deduction version of 2-var...
frcond1 27130 The friendship condition: ...
frcond2 27131 The friendship condition: ...
frgreu 27132 Variant of ~ frcond2 : An...
frcond3 27133 The friendship condition, ...
frcond4 27134 The friendship condition, ...
frgr1v 27135 Any graph with (at most) o...
nfrgr2v 27136 Any graph with two (differ...
frgr3vlem1 27137 Lemma 1 for ~ frgr3v . (C...
frgr3vlem2 27138 Lemma 2 for ~ frgr3v . (C...
frgr3v 27139 Any graph with three verti...
1vwmgr 27140 Every graph with one verte...
3vfriswmgrlem 27141 Lemma for ~ 3vfriswmgr . ...
3vfriswmgr 27142 Every friendship graph wit...
1to2vfriswmgr 27143 Every friendship graph wit...
1to3vfriswmgr 27144 Every friendship graph wit...
1to3vfriendship 27145 The friendship theorem for...
2pthfrgrrn 27146 Between any two (different...
2pthfrgrrn2 27147 Between any two (different...
2pthfrgr 27148 Between any two (different...
3cyclfrgrrn1 27149 Every vertex in a friendsh...
3cyclfrgrrn 27150 Every vertex in a friendsh...
3cyclfrgrrn2 27151 Every vertex in a friendsh...
3cyclfrgr 27152 Every vertex in a friendsh...
4cycl2v2nb 27153 In a (maybe degenerated) 4...
4cycl2vnunb 27154 In a 4-cycle, two distinct...
n4cyclfrgr 27155 There is no 4-cycle in a f...
4cyclusnfrgr 27156 A graph with a 4-cycle is ...
frgrnbnb 27157 If two neighbors ` U ` and...
frgrconngr 27158 A friendship graph is conn...
vdgn0frgrv2 27159 A vertex in a friendship g...
vdgn1frgrv2 27160 Any vertex in a friendship...
vdgn1frgrv3 27161 Any vertex in a friendship...
vdgfrgrgt2 27162 Any vertex in a friendship...
frgrncvvdeqlem1 27163 Lemma 1 for ~ frgrncvvdeq ...
frgrncvvdeqlem2 27164 Lemma 2 for ~ frgrncvvdeq ...
frgrncvvdeqlem3 27165 Lemma 3 for ~ frgrncvvdeq ...
frgrncvvdeqlem4 27166 Lemma 4 for ~ frgrncvvdeq ...
frgrncvvdeqlem5 27167 Lemma 5 for ~ frgrncvvdeq ...
frgrncvvdeqlem6 27168 Lemma 6 for ~ frgrncvvdeq ...
frgrncvvdeqlem7 27169 Lemma 7 for ~ frgrncvvdeq ...
frgrncvvdeqlem8 27170 Lemma 8 for ~ frgrncvvdeq ...
frgrncvvdeqlem9 27171 Lemma 9 for ~ frgrncvvdeq ...
frgrncvvdeqlem10 27172 Lemma 10 for ~ frgrncvvdeq...
frgrncvvdeq 27173 In a friendship graph, two...
frgrwopreglem4a 27174 In a friendship graph any ...
frgrwopreglem5a 27175 If a friendship graph has ...
frgrwopreglem1 27176 Lemma 1 for ~ frgrwopreg :...
frgrwopreglem2 27177 Lemma 2 for ~ frgrwopreg ....
frgrwopreglem3 27178 Lemma 3 for ~ frgrwopreg ....
frgrwopreglem4 27179 Lemma 4 for ~ frgrwopreg ....
frgrwopregasn 27180 According to statement 5 i...
frgrwopregbsn 27181 According to statement 5 i...
frgrwopreg1 27182 According to statement 5 i...
frgrwopreg2 27183 According to statement 5 i...
frgrwopreglem5lem 27184 Lemma for ~ frgrwopreglem5...
frgrwopreglem5 27185 Lemma 5 for ~ frgrwopreg ....
frgrwopreglem5ALT 27186 Alternate direct proof of ...
frgrwopreg 27187 In a friendship graph ther...
frgrregorufr0 27188 In a friendship graph ther...
frgrregorufr 27189 If there is a vertex havin...
frgrregorufrg 27190 If there is a vertex havin...
frgr2wwlkeu 27191 For two different vertices...
frgr2wwlkn0 27192 In a friendship graph, the...
frgr2wwlk1 27193 In a friendship graph, the...
frgr2wsp1 27194 In a friendship graph, the...
frgr2wwlkeqm 27195 If there is a (simple) pat...
frgrhash2wsp 27196 The number of simple paths...
fusgreg2wsplem 27197 Lemma for ~ fusgreg2wsp an...
fusgr2wsp2nb 27198 The set of paths of length...
fusgreghash2wspv 27199 According to statement 7 i...
fusgreg2wsp 27200 In a finite simple graph, ...
2wspmdisj 27201 The sets of paths of lengt...
fusgreghash2wsp 27202 In a finite k-regular grap...
frrusgrord0lem 27203 Lemma for ~ frrusgrord0 . ...
frrusgrord0 27204 If a nonempty finite frien...
frrusgrord 27205 If a nonempty finite frien...
numclwlk3lem3 27206 Lemma 3 for ~ numclwwlk3 ....
extwwlkfablem1 27207 Lemma 1 for ~ extwwlkfab ....
clwwlkextfrlem1 27208 Lemma for ~ numclwwlk2lem1...
clwwlksnwwlksn 27209 A word representing a clos...
extwwlkfablem2 27210 Lemma 2 for ~ extwwlkfab ....
numclwwlkovf2exlem1 27211 Lemma 1 for ~ numclwwlkovf...
numclwwlkovf2exlem2 27212 Lemma 2 for ~ numclwwlkovf...
numclwwlkovf 27213 Value of operation ` F ` ,...
numclwwlkffin 27214 In a finite graph, the val...
numclwwlkffin0 27215 In a finite graph, the val...
numclwwlkovfel2 27216 Properties of an element o...
numclwwlkovf2 27217 Value of operation ` F ` f...
numclwwlkovf2num 27218 In a ` K `-regular graph, ...
numclwwlkovf2ex 27219 Extending a closed walk st...
numclwwlkovg 27220 Value of operation ` C ` ,...
numclwwlkovgel 27221 Properties of an element o...
numclwlk1lem2foalem 27222 Lemma for ~ numclwlk1lem2f...
extwwlkfab 27223 The set ` ( X C N ) ` of c...
numclwlk1lem2foa 27224 Going forth and back form ...
numclwlk1lem2f 27225 ` T ` is a function, mappi...
numclwlk1lem2fv 27226 Value of the function ` T ...
numclwlk1lem2f1 27227 ` T ` is a 1-1 function. ...
numclwlk1lem2fo 27228 ` T ` is an onto function....
numclwlk1lem2f1o 27229 ` T ` is a 1-1 onto functi...
numclwlk1lem2 27230 There is a bijection betwe...
numclwwlk1 27231 Statement 9 in [Huneke] p....
numclwwlkovq 27232 Value of operation ` Q ` ,...
numclwwlkqhash 27233 In a ` K `-regular graph, ...
numclwwlkovh 27234 Value of operation ` H ` ,...
numclwwlk2lem1 27235 In a friendship graph, for...
numclwlk2lem2f 27236 ` R ` is a function mappin...
numclwlk2lem2fv 27237 Value of the function R. (...
numclwlk2lem2f1o 27238 R is a 1-1 onto function. ...
numclwwlk2lem3 27239 In a friendship graph, the...
numclwwlk2 27240 Statement 10 in [Huneke] p...
numclwwlk3lem 27241 Lemma for ~ numclwwlk3 . ...
numclwwlk3OLD 27242 Obsolete version of ~ numc...
numclwwlk3 27243 Statement 12 in [Huneke] p...
numclwwlk4 27244 The total number of closed...
numclwwlk5lem 27245 Lemma for ~ numclwwlk5 . ...
numclwwlk5 27246 Statement 13 in [Huneke] p...
numclwwlk7lem 27247 Lemma for ~ numclwwlk7 , ~...
numclwwlk6 27248 For a prime divisor ` P ` ...
numclwwlk7 27249 Statement 14 in [Huneke] p...
numclwwlk8 27250 The size of the set of clo...
frgrreggt1 27251 If a finite nonempty frien...
frgrreg 27252 If a finite nonempty frien...
frgrregord013 27253 If a finite friendship gra...
frgrregord13 27254 If a nonempty finite frien...
frgrogt3nreg 27255 If a finite friendship gra...
friendshipgt3 27256 The friendship theorem for...
friendship 27257 The friendship theorem: I...
conventions 27258

...

conventions-label 27259

...

natded 27260 Here are typical n...
ex-natded5.2 27261 Theorem 5.2 of [Clemente] ...
ex-natded5.2-2 27262 A more efficient proof of ...
ex-natded5.2i 27263 The same as ~ ex-natded5.2...
ex-natded5.3 27264 Theorem 5.3 of [Clemente] ...
ex-natded5.3-2 27265 A more efficient proof of ...
ex-natded5.3i 27266 The same as ~ ex-natded5.3...
ex-natded5.5 27267 Theorem 5.5 of [Clemente] ...
ex-natded5.7 27268 Theorem 5.7 of [Clemente] ...
ex-natded5.7-2 27269 A more efficient proof of ...
ex-natded5.8 27270 Theorem 5.8 of [Clemente] ...
ex-natded5.8-2 27271 A more efficient proof of ...
ex-natded5.13 27272 Theorem 5.13 of [Clemente]...
ex-natded5.13-2 27273 A more efficient proof of ...
ex-natded9.20 27274 Theorem 9.20 of [Clemente]...
ex-natded9.20-2 27275 A more efficient proof of ...
ex-natded9.26 27276 Theorem 9.26 of [Clemente]...
ex-natded9.26-2 27277 A more efficient proof of ...
ex-or 27278 Example for ~ df-or . Exa...
ex-an 27279 Example for ~ df-an . Exa...
ex-dif 27280 Example for ~ df-dif . Ex...
ex-un 27281 Example for ~ df-un . Exa...
ex-in 27282 Example for ~ df-in . Exa...
ex-uni 27283 Example for ~ df-uni . Ex...
ex-ss 27284 Example for ~ df-ss . Exa...
ex-pss 27285 Example for ~ df-pss . Ex...
ex-pw 27286 Example for ~ df-pw . Exa...
ex-pr 27287 Example for ~ df-pr . (Co...
ex-br 27288 Example for ~ df-br . Exa...
ex-opab 27289 Example for ~ df-opab . E...
ex-eprel 27290 Example for ~ df-eprel . ...
ex-id 27291 Example for ~ df-id . Exa...
ex-po 27292 Example for ~ df-po . Exa...
ex-xp 27293 Example for ~ df-xp . Exa...
ex-cnv 27294 Example for ~ df-cnv . Ex...
ex-co 27295 Example for ~ df-co . Exa...
ex-dm 27296 Example for ~ df-dm . Exa...
ex-rn 27297 Example for ~ df-rn . Exa...
ex-res 27298 Example for ~ df-res . Ex...
ex-ima 27299 Example for ~ df-ima . Ex...
ex-fv 27300 Example for ~ df-fv . Exa...
ex-1st 27301 Example for ~ df-1st . Ex...
ex-2nd 27302 Example for ~ df-2nd . Ex...
1kp2ke3k 27303 Example for ~ df-dec , 100...
ex-fl 27304 Example for ~ df-fl . Exa...
ex-ceil 27305 Example for ~ df-ceil . (...
ex-mod 27306 Example for ~ df-mod . (C...
ex-exp 27307 Example for ~ df-exp . (C...
ex-fac 27308 Example for ~ df-fac . (C...
ex-bc 27309 Example for ~ df-bc . (Co...
ex-hash 27310 Example for ~ df-hash . (...
ex-sqrt 27311 Example for ~ df-sqrt . (...
ex-abs 27312 Example for ~ df-abs . (C...
ex-dvds 27313 Example for ~ df-dvds : 3 ...
ex-gcd 27314 Example for ~ df-gcd . (C...
ex-lcm 27315 Example for ~ df-lcm . (C...
ex-prmo 27316 Example for ~ df-prmo : ` ...
aevdemo 27317 Proof illustrating the com...
ex-ind-dvds 27318 Example of a proof by indu...
avril1 27319 Poisson d'Avril's Theorem....
2bornot2b 27320 The law of excluded middle...
helloworld 27321 The classic "Hello world" ...
1p1e2apr1 27322 One plus one equals two. ...
eqid1 27323 Law of identity (reflexivi...
1div0apr 27324 Division by zero is forbid...
topnfbey 27325 Nothing seems to be imposs...
isplig 27328 The predicate "is a planar...
ispligb 27329 The predicate "is a planar...
tncp 27330 In any planar incidence ge...
l2p 27331 For any line in a planar i...
lpni 27332 For any line in a planar i...
nsnlplig 27333 There is no "one-point lin...
nsnlpligALT 27334 Alternate version of ~ nsn...
n0lplig 27335 There is no "empty line" i...
n0lpligALT 27336 Alternate version of ~ n0l...
eulplig 27337 Through two distinct point...
pliguhgr 27338 Any planar incidence geome...
dummylink 27341 Alias for ~ a1ii that may ...
id1 27342 Alias for ~ idALT that may...
isgrpo 27351 The predicate "is a group ...
isgrpoi 27352 Properties that determine ...
grpofo 27353 A group operation maps ont...
grpocl 27354 Closure law for a group op...
grpolidinv 27355 A group has a left identit...
grpon0 27356 The base set of a group is...
grpoass 27357 A group operation is assoc...
grpoidinvlem1 27358 Lemma for ~ grpoidinv . (...
grpoidinvlem2 27359 Lemma for ~ grpoidinv . (...
grpoidinvlem3 27360 Lemma for ~ grpoidinv . (...
grpoidinvlem4 27361 Lemma for ~ grpoidinv . (...
grpoidinv 27362 A group has a left and rig...
grpoideu 27363 The left identity element ...
grporndm 27364 A group's range in terms o...
0ngrp 27365 The empty set is not a gro...
gidval 27366 The value of the identity ...
grpoidval 27367 Lemma for ~ grpoidcl and o...
grpoidcl 27368 The identity element of a ...
grpoidinv2 27369 A group's properties using...
grpolid 27370 The identity element of a ...
grporid 27371 The identity element of a ...
grporcan 27372 Right cancellation law for...
grpoinveu 27373 The left inverse element o...
grpoid 27374 Two ways of saying that an...
grporn 27375 The range of a group opera...
grpoinvfval 27376 The inverse function of a ...
grpoinvval 27377 The inverse of a group ele...
grpoinvcl 27378 A group element's inverse ...
grpoinv 27379 The properties of a group ...
grpolinv 27380 The left inverse of a grou...
grporinv 27381 The right inverse of a gro...
grpoinvid1 27382 The inverse of a group ele...
grpoinvid2 27383 The inverse of a group ele...
grpolcan 27384 Left cancellation law for ...
grpo2inv 27385 Double inverse law for gro...
grpoinvf 27386 Mapping of the inverse fun...
grpoinvop 27387 The inverse of the group o...
grpodivfval 27388 Group division (or subtrac...
grpodivval 27389 Group division (or subtrac...
grpodivinv 27390 Group division by an inver...
grpoinvdiv 27391 Inverse of a group divisio...
grpodivf 27392 Mapping for group division...
grpodivcl 27393 Closure of group division ...
grpodivdiv 27394 Double group division. (C...
grpomuldivass 27395 Associative-type law for m...
grpodivid 27396 Division of a group member...
grponpcan 27397 Cancellation law for group...
isablo 27400 The predicate "is an Abeli...
ablogrpo 27401 An Abelian group operation...
ablocom 27402 An Abelian group operation...
ablo32 27403 Commutative/associative la...
ablo4 27404 Commutative/associative la...
isabloi 27405 Properties that determine ...
ablomuldiv 27406 Law for group multiplicati...
ablodivdiv 27407 Law for double group divis...
ablodivdiv4 27408 Law for double group divis...
ablodiv32 27409 Swap the second and third ...
ablonnncan 27410 Cancellation law for group...
ablonncan 27411 Cancellation law for group...
ablonnncan1 27412 Cancellation law for group...
vcrel 27415 The class of all complex v...
vciOLD 27416 Obsolete version of ~ cvsi...
vcsm 27417 Functionality of th scalar...
vccl 27418 Closure of the scalar prod...
vcidOLD 27419 Identity element for the s...
vcdi 27420 Distributive law for the s...
vcdir 27421 Distributive law for the s...
vcass 27422 Associative law for the sc...
vc2OLD 27423 A vector plus itself is tw...
vcablo 27424 Vector addition is an Abel...
vcgrp 27425 Vector addition is a group...
vclcan 27426 Left cancellation law for ...
vczcl 27427 The zero vector is a vecto...
vc0rid 27428 The zero vector is a right...
vc0 27429 Zero times a vector is the...
vcz 27430 Anything times the zero ve...
vcm 27431 Minus 1 times a vector is ...
isvclem 27432 Lemma for ~ isvcOLD . (Co...
vcex 27433 The components of a comple...
isvcOLD 27434 The predicate "is a comple...
isvciOLD 27435 Properties that determine ...
cnaddabloOLD 27436 Obsolete as of 23-Jan-2020...
cnidOLD 27437 Obsolete as of 23-Jan-2020...
cncvcOLD 27438 Obsolete version of ~ cncv...
nvss 27448 Structure of the class of ...
nvvcop 27449 A normed complex vector sp...
nvrel 27457 The class of all normed co...
vafval 27458 Value of the function for ...
bafval 27459 Value of the function for ...
smfval 27460 Value of the function for ...
0vfval 27461 Value of the function for ...
nmcvfval 27462 Value of the norm function...
nvop2 27463 A normed complex vector sp...
nvvop 27464 The vector space component...
isnvlem 27465 Lemma for ~ isnv . (Contr...
nvex 27466 The components of a normed...
isnv 27467 The predicate "is a normed...
isnvi 27468 Properties that determine ...
nvi 27469 The properties of a normed...
nvvc 27470 The vector space component...
nvablo 27471 The vector addition operat...
nvgrp 27472 The vector addition operat...
nvgf 27473 Mapping for the vector add...
nvsf 27474 Mapping for the scalar mul...
nvgcl 27475 Closure law for the vector...
nvcom 27476 The vector addition (group...
nvass 27477 The vector addition (group...
nvadd32 27478 Commutative/associative la...
nvrcan 27479 Right cancellation law for...
nvadd4 27480 Rearrangement of 4 terms i...
nvscl 27481 Closure law for the scalar...
nvsid 27482 Identity element for the s...
nvsass 27483 Associative law for the sc...
nvscom 27484 Commutative law for the sc...
nvdi 27485 Distributive law for the s...
nvdir 27486 Distributive law for the s...
nv2 27487 A vector plus itself is tw...
vsfval 27488 Value of the function for ...
nvzcl 27489 Closure law for the zero v...
nv0rid 27490 The zero vector is a right...
nv0lid 27491 The zero vector is a left ...
nv0 27492 Zero times a vector is the...
nvsz 27493 Anything times the zero ve...
nvinv 27494 Minus 1 times a vector is ...
nvinvfval 27495 Function for the negative ...
nvm 27496 Vector subtraction in term...
nvmval 27497 Value of vector subtractio...
nvmval2 27498 Value of vector subtractio...
nvmfval 27499 Value of the function for ...
nvmf 27500 Mapping for the vector sub...
nvmcl 27501 Closure law for the vector...
nvnnncan1 27502 Cancellation law for vecto...
nvmdi 27503 Distributive law for scala...
nvnegneg 27504 Double negative of a vecto...
nvmul0or 27505 If a scalar product is zer...
nvrinv 27506 A vector minus itself. (C...
nvlinv 27507 Minus a vector plus itself...
nvpncan2 27508 Cancellation law for vecto...
nvpncan 27509 Cancellation law for vecto...
nvaddsub 27510 Commutative/associative la...
nvnpcan 27511 Cancellation law for a nor...
nvaddsub4 27512 Rearrangement of 4 terms i...
nvmeq0 27513 The difference between two...
nvmid 27514 A vector minus itself is t...
nvf 27515 Mapping for the norm funct...
nvcl 27516 The norm of a normed compl...
nvcli 27517 The norm of a normed compl...
nvs 27518 Proportionality property o...
nvsge0 27519 The norm of a scalar produ...
nvm1 27520 The norm of the negative o...
nvdif 27521 The norm of the difference...
nvpi 27522 The norm of a vector plus ...
nvz0 27523 The norm of a zero vector ...
nvz 27524 The norm of a vector is ze...
nvtri 27525 Triangle inequality for th...
nvmtri 27526 Triangle inequality for th...
nvabs 27527 Norm difference property o...
nvge0 27528 The norm of a normed compl...
nvgt0 27529 A nonzero norm is positive...
nv1 27530 From any nonzero vector, c...
nvop 27531 A complex inner product sp...
cnnv 27532 The set of complex numbers...
cnnvg 27533 The vector addition (group...
cnnvba 27534 The base set of the normed...
cnnvs 27535 The scalar product operati...
cnnvnm 27536 The norm operation of the ...
cnnvm 27537 The vector subtraction ope...
elimnv 27538 Hypothesis elimination lem...
elimnvu 27539 Hypothesis elimination lem...
imsval 27540 Value of the induced metri...
imsdval 27541 Value of the induced metri...
imsdval2 27542 Value of the distance func...
nvnd 27543 The norm of a normed compl...
imsdf 27544 Mapping for the induced me...
imsmetlem 27545 Lemma for ~ imsmet . (Con...
imsmet 27546 The induced metric of a no...
imsxmet 27547 The induced metric of a no...
cnims 27548 The metric induced on the ...
vacn 27549 Vector addition is jointly...
nmcvcn 27550 The norm of a normed compl...
nmcnc 27551 The norm of a normed compl...
smcnlem 27552 Lemma for ~ smcn . (Contr...
smcn 27553 Scalar multiplication is j...
vmcn 27554 Vector subtraction is join...
dipfval 27557 The inner product function...
ipval 27558 Value of the inner product...
ipval2lem2 27559 Lemma for ~ ipval3 . (Con...
ipval2lem3 27560 Lemma for ~ ipval3 . (Con...
ipval2lem4 27561 Lemma for ~ ipval3 . (Con...
ipval2 27562 Expansion of the inner pro...
4ipval2 27563 Four times the inner produ...
ipval3 27564 Expansion of the inner pro...
ipidsq 27565 The inner product of a vec...
ipnm 27566 Norm expressed in terms of...
dipcl 27567 An inner product is a comp...
ipf 27568 Mapping for the inner prod...
dipcj 27569 The complex conjugate of a...
ipipcj 27570 An inner product times its...
diporthcom 27571 Orthogonality (meaning inn...
dip0r 27572 Inner product with a zero ...
dip0l 27573 Inner product with a zero ...
ipz 27574 The inner product of a vec...
dipcn 27575 Inner product is jointly c...
sspval 27578 The set of all subspaces o...
isssp 27579 The predicate "is a subspa...
sspid 27580 A normed complex vector sp...
sspnv 27581 A subspace is a normed com...
sspba 27582 The base set of a subspace...
sspg 27583 Vector addition on a subsp...
sspgval 27584 Vector addition on a subsp...
ssps 27585 Scalar multiplication on a...
sspsval 27586 Scalar multiplication on a...
sspmlem 27587 Lemma for ~ sspm and other...
sspmval 27588 Vector addition on a subsp...
sspm 27589 Vector subtraction on a su...
sspz 27590 The zero vector of a subsp...
sspn 27591 The norm on a subspace is ...
sspnval 27592 The norm on a subspace in ...
sspimsval 27593 The induced metric on a su...
sspims 27594 The induced metric on a su...
lnoval 27607 The set of linear operator...
islno 27608 The predicate "is a linear...
lnolin 27609 Basic linearity property o...
lnof 27610 A linear operator is a map...
lno0 27611 The value of a linear oper...
lnocoi 27612 The composition of two lin...
lnoadd 27613 Addition property of a lin...
lnosub 27614 Subtraction property of a ...
lnomul 27615 Scalar multiplication prop...
nvo00 27616 Two ways to express a zero...
nmoofval 27617 The operator norm function...
nmooval 27618 The operator norm function...
nmosetre 27619 The set in the supremum of...
nmosetn0 27620 The set in the supremum of...
nmoxr 27621 The norm of an operator is...
nmooge0 27622 The norm of an operator is...
nmorepnf 27623 The norm of an operator is...
nmoreltpnf 27624 The norm of any operator i...
nmogtmnf 27625 The norm of an operator is...
nmoolb 27626 A lower bound for an opera...
nmoubi 27627 An upper bound for an oper...
nmoub3i 27628 An upper bound for an oper...
nmoub2i 27629 An upper bound for an oper...
nmobndi 27630 Two ways to express that a...
nmounbi 27631 Two ways two express that ...
nmounbseqi 27632 An unbounded operator dete...
nmounbseqiALT 27633 Alternate shorter proof of...
nmobndseqi 27634 A bounded sequence determi...
nmobndseqiALT 27635 Alternate shorter proof of...
bloval 27636 The class of bounded linea...
isblo 27637 The predicate "is a bounde...
isblo2 27638 The predicate "is a bounde...
bloln 27639 A bounded operator is a li...
blof 27640 A bounded operator is an o...
nmblore 27641 The norm of a bounded oper...
0ofval 27642 The zero operator between ...
0oval 27643 Value of the zero operator...
0oo 27644 The zero operator is an op...
0lno 27645 The zero operator is linea...
nmoo0 27646 The operator norm of the z...
0blo 27647 The zero operator is a bou...
nmlno0lem 27648 Lemma for ~ nmlno0i . (Co...
nmlno0i 27649 The norm of a linear opera...
nmlno0 27650 The norm of a linear opera...
nmlnoubi 27651 An upper bound for the ope...
nmlnogt0 27652 The norm of a nonzero line...
lnon0 27653 The domain of a nonzero li...
nmblolbii 27654 A lower bound for the norm...
nmblolbi 27655 A lower bound for the norm...
isblo3i 27656 The predicate "is a bounde...
blo3i 27657 Properties that determine ...
blometi 27658 Upper bound for the distan...
blocnilem 27659 Lemma for ~ blocni and ~ l...
blocni 27660 A linear operator is conti...
lnocni 27661 If a linear operator is co...
blocn 27662 A linear operator is conti...
blocn2 27663 A bounded linear operator ...
ajfval 27664 The adjoint function. (Co...
hmoval 27665 The set of Hermitian (self...
ishmo 27666 The predicate "is a hermit...
phnv 27669 Every complex inner produc...
phrel 27670 The class of all complex i...
phnvi 27671 Every complex inner produc...
isphg 27672 The predicate "is a comple...
phop 27673 A complex inner product sp...
cncph 27674 The set of complex numbers...
elimph 27675 Hypothesis elimination lem...
elimphu 27676 Hypothesis elimination lem...
isph 27677 The predicate "is an inner...
phpar2 27678 The parallelogram law for ...
phpar 27679 The parallelogram law for ...
ip0i 27680 A slight variant of Equati...
ip1ilem 27681 Lemma for ~ ip1i . (Contr...
ip1i 27682 Equation 6.47 of [Ponnusam...
ip2i 27683 Equation 6.48 of [Ponnusam...
ipdirilem 27684 Lemma for ~ ipdiri . (Con...
ipdiri 27685 Distributive law for inner...
ipasslem1 27686 Lemma for ~ ipassi . Show...
ipasslem2 27687 Lemma for ~ ipassi . Show...
ipasslem3 27688 Lemma for ~ ipassi . Show...
ipasslem4 27689 Lemma for ~ ipassi . Show...
ipasslem5 27690 Lemma for ~ ipassi . Show...
ipasslem7 27691 Lemma for ~ ipassi . Show...
ipasslem8 27692 Lemma for ~ ipassi . By ~...
ipasslem9 27693 Lemma for ~ ipassi . Conc...
ipasslem10 27694 Lemma for ~ ipassi . Show...
ipasslem11 27695 Lemma for ~ ipassi . Show...
ipassi 27696 Associative law for inner ...
dipdir 27697 Distributive law for inner...
dipdi 27698 Distributive law for inner...
ip2dii 27699 Inner product of two sums....
dipass 27700 Associative law for inner ...
dipassr 27701 "Associative" law for seco...
dipassr2 27702 "Associative" law for inne...
dipsubdir 27703 Distributive law for inner...
dipsubdi 27704 Distributive law for inner...
pythi 27705 The Pythagorean theorem fo...
siilem1 27706 Lemma for ~ sii . (Contri...
siilem2 27707 Lemma for ~ sii . (Contri...
siii 27708 Inference from ~ sii . (C...
sii 27709 Schwarz inequality. Part ...
sspph 27710 A subspace of an inner pro...
ipblnfi 27711 A function ` F ` generated...
ip2eqi 27712 Two vectors are equal iff ...
phoeqi 27713 A condition implying that ...
ajmoi 27714 Every operator has at most...
ajfuni 27715 The adjoint function is a ...
ajfun 27716 The adjoint function is a ...
ajval 27717 Value of the adjoint funct...
iscbn 27720 A complex Banach space is ...
cbncms 27721 The induced metric on comp...
bnnv 27722 Every complex Banach space...
bnrel 27723 The class of all complex B...
bnsscmcl 27724 A subspace of a Banach spa...
cnbn 27725 The set of complex numbers...
ubthlem1 27726 Lemma for ~ ubth . The fu...
ubthlem2 27727 Lemma for ~ ubth . Given ...
ubthlem3 27728 Lemma for ~ ubth . Prove ...
ubth 27729 Uniform Boundedness Theore...
minvecolem1 27730 Lemma for ~ minveco . The...
minvecolem2 27731 Lemma for ~ minveco . Any...
minvecolem3 27732 Lemma for ~ minveco . The...
minvecolem4a 27733 Lemma for ~ minveco . ` F ...
minvecolem4b 27734 Lemma for ~ minveco . The...
minvecolem4c 27735 Lemma for ~ minveco . The...
minvecolem4 27736 Lemma for ~ minveco . The...
minvecolem5 27737 Lemma for ~ minveco . Dis...
minvecolem6 27738 Lemma for ~ minveco . Any...
minvecolem7 27739 Lemma for ~ minveco . Sin...
minveco 27740 Minimizing vector theorem,...
ishlo 27743 The predicate "is a comple...
hlobn 27744 Every complex Hilbert spac...
hlph 27745 Every complex Hilbert spac...
hlrel 27746 The class of all complex H...
hlnv 27747 Every complex Hilbert spac...
hlnvi 27748 Every complex Hilbert spac...
hlvc 27749 Every complex Hilbert spac...
hlcmet 27750 The induced metric on a co...
hlmet 27751 The induced metric on a co...
hlpar2 27752 The parallelogram law sati...
hlpar 27753 The parallelogram law sati...
hlex 27754 The base set of a Hilbert ...
hladdf 27755 Mapping for Hilbert space ...
hlcom 27756 Hilbert space vector addit...
hlass 27757 Hilbert space vector addit...
hl0cl 27758 The Hilbert space zero vec...
hladdid 27759 Hilbert space addition wit...
hlmulf 27760 Mapping for Hilbert space ...
hlmulid 27761 Hilbert space scalar multi...
hlmulass 27762 Hilbert space scalar multi...
hldi 27763 Hilbert space scalar multi...
hldir 27764 Hilbert space scalar multi...
hlmul0 27765 Hilbert space scalar multi...
hlipf 27766 Mapping for Hilbert space ...
hlipcj 27767 Conjugate law for Hilbert ...
hlipdir 27768 Distributive law for Hilbe...
hlipass 27769 Associative law for Hilber...
hlipgt0 27770 The inner product of a Hil...
hlcompl 27771 Completeness of a Hilbert ...
cnchl 27772 The set of complex numbers...
ssphl 27773 A Banach subspace of an in...
htthlem 27774 Lemma for ~ htth . The co...
htth 27775 Hellinger-Toeplitz Theorem...
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
h2hva 27831 The group (addition) opera...
h2hsm 27832 The scalar product operati...
h2hnm 27833 The norm function of Hilbe...
h2hvs 27834 The vector subtraction ope...
h2hmetdval 27835 Value of the distance func...
h2hcau 27836 The Cauchy sequences of Hi...
h2hlm 27837 The limit sequences of Hil...
axhilex-zf 27838 Derive axiom ~ ax-hilex fr...
axhfvadd-zf 27839 Derive axiom ~ ax-hfvadd f...
axhvcom-zf 27840 Derive axiom ~ ax-hvcom fr...
axhvass-zf 27841 Derive axiom ~ ax-hvass fr...
axhv0cl-zf 27842 Derive axiom ~ ax-hv0cl fr...
axhvaddid-zf 27843 Derive axiom ~ ax-hvaddid ...
axhfvmul-zf 27844 Derive axiom ~ ax-hfvmul f...
axhvmulid-zf 27845 Derive axiom ~ ax-hvmulid ...
axhvmulass-zf 27846 Derive axiom ~ ax-hvmulass...
axhvdistr1-zf 27847 Derive axiom ~ ax-hvdistr1...
axhvdistr2-zf 27848 Derive axiom ~ ax-hvdistr2...
axhvmul0-zf 27849 Derive axiom ~ ax-hvmul0 f...
axhfi-zf 27850 Derive axiom ~ ax-hfi from...
axhis1-zf 27851 Derive axiom ~ ax-his1 fro...
axhis2-zf 27852 Derive axiom ~ ax-his2 fro...
axhis3-zf 27853 Derive axiom ~ ax-his3 fro...
axhis4-zf 27854 Derive axiom ~ ax-his4 fro...
axhcompl-zf 27855 Derive axiom ~ ax-hcompl f...
hvmulex 27868 The Hilbert space scalar p...
hvaddcl 27869 Closure of vector addition...
hvmulcl 27870 Closure of scalar multipli...
hvmulcli 27871 Closure inference for scal...
hvsubf 27872 Mapping domain and codomai...
hvsubval 27873 Value of vector subtractio...
hvsubcl 27874 Closure of vector subtract...
hvaddcli 27875 Closure of vector addition...
hvcomi 27876 Commutation of vector addi...
hvsubvali 27877 Value of vector subtractio...
hvsubcli 27878 Closure of vector subtract...
ifhvhv0 27879 Prove ` if ( A e. ~H , A ,...
hvaddid2 27880 Addition with the zero vec...
hvmul0 27881 Scalar multiplication with...
hvmul0or 27882 If a scalar product is zer...
hvsubid 27883 Subtraction of a vector fr...
hvnegid 27884 Addition of negative of a ...
hv2neg 27885 Two ways to express the ne...
hvaddid2i 27886 Addition with the zero vec...
hvnegidi 27887 Addition of negative of a ...
hv2negi 27888 Two ways to express the ne...
hvm1neg 27889 Convert minus one times a ...
hvaddsubval 27890 Value of vector addition i...
hvadd32 27891 Commutative/associative la...
hvadd12 27892 Commutative/associative la...
hvadd4 27893 Hilbert vector space addit...
hvsub4 27894 Hilbert vector space addit...
hvaddsub12 27895 Commutative/associative la...
hvpncan 27896 Addition/subtraction cance...
hvpncan2 27897 Addition/subtraction cance...
hvaddsubass 27898 Associativity of sum and d...
hvpncan3 27899 Subtraction and addition o...
hvmulcom 27900 Scalar multiplication comm...
hvsubass 27901 Hilbert vector space assoc...
hvsub32 27902 Hilbert vector space commu...
hvmulassi 27903 Scalar multiplication asso...
hvmulcomi 27904 Scalar multiplication comm...
hvmul2negi 27905 Double negative in scalar ...
hvsubdistr1 27906 Scalar multiplication dist...
hvsubdistr2 27907 Scalar multiplication dist...
hvdistr1i 27908 Scalar multiplication dist...
hvsubdistr1i 27909 Scalar multiplication dist...
hvassi 27910 Hilbert vector space assoc...
hvadd32i 27911 Hilbert vector space commu...
hvsubassi 27912 Hilbert vector space assoc...
hvsub32i 27913 Hilbert vector space commu...
hvadd12i 27914 Hilbert vector space commu...
hvadd4i 27915 Hilbert vector space addit...
hvsubsub4i 27916 Hilbert vector space addit...
hvsubsub4 27917 Hilbert vector space addit...
hv2times 27918 Two times a vector. (Cont...
hvnegdii 27919 Distribution of negative o...
hvsubeq0i 27920 If the difference between ...
hvsubcan2i 27921 Vector cancellation law. ...
hvaddcani 27922 Cancellation law for vecto...
hvsubaddi 27923 Relationship between vecto...
hvnegdi 27924 Distribution of negative o...
hvsubeq0 27925 If the difference between ...
hvaddeq0 27926 If the sum of two vectors ...
hvaddcan 27927 Cancellation law for vecto...
hvaddcan2 27928 Cancellation law for vecto...
hvmulcan 27929 Cancellation law for scala...
hvmulcan2 27930 Cancellation law for scala...
hvsubcan 27931 Cancellation law for vecto...
hvsubcan2 27932 Cancellation law for vecto...
hvsub0 27933 Subtraction of a zero vect...
hvsubadd 27934 Relationship between vecto...
hvaddsub4 27935 Hilbert vector space addit...
hicl 27937 Closure of inner product. ...
hicli 27938 Closure inference for inne...
his5 27943 Associative law for inner ...
his52 27944 Associative law for inner ...
his35 27945 Move scalar multiplication...
his35i 27946 Move scalar multiplication...
his7 27947 Distributive law for inner...
hiassdi 27948 Distributive/associative l...
his2sub 27949 Distributive law for inner...
his2sub2 27950 Distributive law for inner...
hire 27951 A necessary and sufficient...
hiidrcl 27952 Real closure of inner prod...
hi01 27953 Inner product with the 0 v...
hi02 27954 Inner product with the 0 v...
hiidge0 27955 Inner product with self is...
his6 27956 Zero inner product with se...
his1i 27957 Conjugate law for inner pr...
abshicom 27958 Commuted inner products ha...
hial0 27959 A vector whose inner produ...
hial02 27960 A vector whose inner produ...
hisubcomi 27961 Two vector subtractions si...
hi2eq 27962 Lemma used to prove equali...
hial2eq 27963 Two vectors whose inner pr...
hial2eq2 27964 Two vectors whose inner pr...
orthcom 27965 Orthogonality commutes. (...
normlem0 27966 Lemma used to derive prope...
normlem1 27967 Lemma used to derive prope...
normlem2 27968 Lemma used to derive prope...
normlem3 27969 Lemma used to derive prope...
normlem4 27970 Lemma used to derive prope...
normlem5 27971 Lemma used to derive prope...
normlem6 27972 Lemma used to derive prope...
normlem7 27973 Lemma used to derive prope...
normlem8 27974 Lemma used to derive prope...
normlem9 27975 Lemma used to derive prope...
normlem7tALT 27976 Lemma used to derive prope...
bcseqi 27977 Equality case of Bunjakova...
normlem9at 27978 Lemma used to derive prope...
dfhnorm2 27979 Alternate definition of th...
normf 27980 The norm function maps fro...
normval 27981 The value of the norm of a...
normcl 27982 Real closure of the norm o...
normge0 27983 The norm of a vector is no...
normgt0 27984 The norm of nonzero vector...
norm0 27985 The norm of a zero vector....
norm-i 27986 Theorem 3.3(i) of [Beran] ...
normne0 27987 A norm is nonzero iff its ...
normcli 27988 Real closure of the norm o...
normsqi 27989 The square of a norm. (Co...
norm-i-i 27990 Theorem 3.3(i) of [Beran] ...
normsq 27991 The square of a norm. (Co...
normsub0i 27992 Two vectors are equal iff ...
normsub0 27993 Two vectors are equal iff ...
norm-ii-i 27994 Triangle inequality for no...
norm-ii 27995 Triangle inequality for no...
norm-iii-i 27996 Theorem 3.3(iii) of [Beran...
norm-iii 27997 Theorem 3.3(iii) of [Beran...
normsubi 27998 Negative doesn't change th...
normpythi 27999 Analogy to Pythagorean the...
normsub 28000 Swapping order of subtract...
normneg 28001 The norm of a vector equal...
normpyth 28002 Analogy to Pythagorean the...
normpyc 28003 Corollary to Pythagorean t...
norm3difi 28004 Norm of differences around...
norm3adifii 28005 Norm of differences around...
norm3lem 28006 Lemma involving norm of di...
norm3dif 28007 Norm of differences around...
norm3dif2 28008 Norm of differences around...
norm3lemt 28009 Lemma involving norm of di...
norm3adifi 28010 Norm of differences around...
normpari 28011 Parallelogram law for norm...
normpar 28012 Parallelogram law for norm...
normpar2i 28013 Corollary of parallelogram...
polid2i 28014 Generalized polarization i...
polidi 28015 Polarization identity. Re...
polid 28016 Polarization identity. Re...
hilablo 28017 Hilbert space vector addit...
hilid 28018 The group identity element...
hilvc 28019 Hilbert space is a complex...
hilnormi 28020 Hilbert space norm in term...
hilhhi 28021 Deduce the structure of Hi...
hhnv 28022 Hilbert space is a normed ...
hhva 28023 The group (addition) opera...
hhba 28024 The base set of Hilbert sp...
hh0v 28025 The zero vector of Hilbert...
hhsm 28026 The scalar product operati...
hhvs 28027 The vector subtraction ope...
hhnm 28028 The norm function of Hilbe...
hhims 28029 The induced metric of Hilb...
hhims2 28030 Hilbert space distance met...
hhmet 28031 The induced metric of Hilb...
hhxmet 28032 The induced metric of Hilb...
hhmetdval 28033 Value of the distance func...
hhip 28034 The inner product operatio...
hhph 28035 The Hilbert space of the H...
bcsiALT 28036 Bunjakovaskij-Cauchy-Schwa...
bcsiHIL 28037 Bunjakovaskij-Cauchy-Schwa...
bcs 28038 Bunjakovaskij-Cauchy-Schwa...
bcs2 28039 Corollary of the Bunjakova...
bcs3 28040 Corollary of the Bunjakova...
hcau 28041 Member of the set of Cauch...
hcauseq 28042 A Cauchy sequences on a Hi...
hcaucvg 28043 A Cauchy sequence on a Hil...
seq1hcau 28044 A sequence on a Hilbert sp...
hlimi 28045 Express the predicate: Th...
hlimseqi 28046 A sequence with a limit on...
hlimveci 28047 Closure of the limit of a ...
hlimconvi 28048 Convergence of a sequence ...
hlim2 28049 The limit of a sequence on...
hlimadd 28050 Limit of the sum of two se...
hilmet 28051 The Hilbert space norm det...
hilxmet 28052 The Hilbert space norm det...
hilmetdval 28053 Value of the distance func...
hilims 28054 Hilbert space distance met...
hhcau 28055 The Cauchy sequences of Hi...
hhlm 28056 The limit sequences of Hil...
hhcmpl 28057 Lemma used for derivation ...
hilcompl 28058 Lemma used for derivation ...
hhcms 28060 The Hilbert space induced ...
hhhl 28061 The Hilbert space structur...
hilcms 28062 The Hilbert space norm det...
hilhl 28063 The Hilbert space of the H...
issh 28065 Subspace ` H ` of a Hilber...
issh2 28066 Subspace ` H ` of a Hilber...
shss 28067 A subspace is a subset of ...
shel 28068 A member of a subspace of ...
shex 28069 The set of subspaces of a ...
shssii 28070 A closed subspace of a Hil...
sheli 28071 A member of a subspace of ...
shelii 28072 A member of a subspace of ...
sh0 28073 The zero vector belongs to...
shaddcl 28074 Closure of vector addition...
shmulcl 28075 Closure of vector scalar m...
issh3 28076 Subspace ` H ` of a Hilber...
shsubcl 28077 Closure of vector subtract...
isch 28079 Closed subspace ` H ` of a...
isch2 28080 Closed subspace ` H ` of a...
chsh 28081 A closed subspace is a sub...
chsssh 28082 Closed subspaces are subsp...
chex 28083 The set of closed subspace...
chshii 28084 A closed subspace is a sub...
ch0 28085 The zero vector belongs to...
chss 28086 A closed subspace of a Hil...
chel 28087 A member of a closed subsp...
chssii 28088 A closed subspace of a Hil...
cheli 28089 A member of a closed subsp...
chelii 28090 A member of a closed subsp...
chlimi 28091 The limit property of a cl...
hlim0 28092 The zero sequence in Hilbe...
hlimcaui 28093 If a sequence in Hilbert s...
hlimf 28094 Function-like behavior of ...
hlimuni 28095 A Hilbert space sequence c...
hlimreui 28096 The limit of a Hilbert spa...
hlimeui 28097 The limit of a Hilbert spa...
isch3 28098 A Hilbert subspace is clos...
chcompl 28099 Completeness of a closed s...
helch 28100 The unit Hilbert lattice e...
ifchhv 28101 Prove ` if ( A e. CH , A ,...
helsh 28102 Hilbert space is a subspac...
shsspwh 28103 Subspaces are subsets of H...
chsspwh 28104 Closed subspaces are subse...
hsn0elch 28105 The zero subspace belongs ...
norm1 28106 From any nonzero Hilbert s...
norm1exi 28107 A normalized vector exists...
norm1hex 28108 A normalized vector can ex...
elch0 28111 Membership in zero for clo...
h0elch 28112 The zero subspace is a clo...
h0elsh 28113 The zero subspace is a sub...
hhssva 28114 The vector addition operat...
hhsssm 28115 The scalar multiplication ...
hhssnm 28116 The norm operation on a su...
issubgoilem 28117 Lemma for ~ hhssabloilem ....
hhssabloilem 28118 Lemma for ~ hhssabloi . F...
hhssabloi 28119 Abelian group property of ...
hhssablo 28120 Abelian group property of ...
hhssnv 28121 Normed complex vector spac...
hhssnvt 28122 Normed complex vector spac...
hhsst 28123 A member of ` SH ` is a su...
hhshsslem1 28124 Lemma for ~ hhsssh . (Con...
hhshsslem2 28125 Lemma for ~ hhsssh . (Con...
hhsssh 28126 The predicate " ` H ` is a...
hhsssh2 28127 The predicate " ` H ` is a...
hhssba 28128 The base set of a subspace...
hhssvs 28129 The vector subtraction ope...
hhssvsf 28130 Mapping of the vector subt...
hhssph 28131 Inner product space proper...
hhssims 28132 Induced metric of a subspa...
hhssims2 28133 Induced metric of a subspa...
hhssmet 28134 Induced metric of a subspa...
hhssmetdval 28135 Value of the distance func...
hhsscms 28136 The induced metric of a cl...
hhssbn 28137 Banach space property of a...
hhsshl 28138 Hilbert space property of ...
ocval 28139 Value of orthogonal comple...
ocel 28140 Membership in orthogonal c...
shocel 28141 Membership in orthogonal c...
ocsh 28142 The orthogonal complement ...
shocsh 28143 The orthogonal complement ...
ocss 28144 An orthogonal complement i...
shocss 28145 An orthogonal complement i...
occon 28146 Contraposition law for ort...
occon2 28147 Double contraposition for ...
occon2i 28148 Double contraposition for ...
oc0 28149 The zero vector belongs to...
ocorth 28150 Members of a subset and it...
shocorth 28151 Members of a subspace and ...
ococss 28152 Inclusion in complement of...
shococss 28153 Inclusion in complement of...
shorth 28154 Members of orthogonal subs...
ocin 28155 Intersection of a Hilbert ...
occon3 28156 Hilbert lattice contraposi...
ocnel 28157 A nonzero vector in the co...
chocvali 28158 Value of the orthogonal co...
shuni 28159 Two subspaces with trivial...
chocunii 28160 Lemma for uniqueness part ...
pjhthmo 28161 Projection Theorem, unique...
occllem 28162 Lemma for ~ occl . (Contr...
occl 28163 Closure of complement of H...
shoccl 28164 Closure of complement of H...
choccl 28165 Closure of complement of H...
choccli 28166 Closure of ` CH ` orthocom...
shsval 28171 Value of subspace sum of t...
shsss 28172 The subspace sum is a subs...
shsel 28173 Membership in the subspace...
shsel3 28174 Membership in the subspace...
shseli 28175 Membership in subspace sum...
shscli 28176 Closure of subspace sum. ...
shscl 28177 Closure of subspace sum. ...
shscom 28178 Commutative law for subspa...
shsva 28179 Vector sum belongs to subs...
shsel1 28180 A subspace sum contains a ...
shsel2 28181 A subspace sum contains a ...
shsvs 28182 Vector subtraction belongs...
shsub1 28183 Subspace sum is an upper b...
shsub2 28184 Subspace sum is an upper b...
choc0 28185 The orthocomplement of the...
choc1 28186 The orthocomplement of the...
chocnul 28187 Orthogonal complement of t...
shintcli 28188 Closure of intersection of...
shintcl 28189 The intersection of a none...
chintcli 28190 The intersection of a none...
chintcl 28191 The intersection (infimum)...
spanval 28192 Value of the linear span o...
hsupval 28193 Value of supremum of set o...
chsupval 28194 The value of the supremum ...
spancl 28195 The span of a subset of Hi...
elspancl 28196 A member of a span is a ve...
shsupcl 28197 Closure of the subspace su...
hsupcl 28198 Closure of supremum of set...
chsupcl 28199 Closure of supremum of sub...
hsupss 28200 Subset relation for suprem...
chsupss 28201 Subset relation for suprem...
hsupunss 28202 The union of a set of Hilb...
chsupunss 28203 The union of a set of clos...
spanss2 28204 A subset of Hilbert space ...
shsupunss 28205 The union of a set of subs...
spanid 28206 A subspace of Hilbert spac...
spanss 28207 Ordering relationship for ...
spanssoc 28208 The span of a subset of Hi...
sshjval 28209 Value of join for subsets ...
shjval 28210 Value of join in ` SH ` . ...
chjval 28211 Value of join in ` CH ` . ...
chjvali 28212 Value of join in ` CH ` . ...
sshjval3 28213 Value of join for subsets ...
sshjcl 28214 Closure of join for subset...
shjcl 28215 Closure of join in ` SH ` ...
chjcl 28216 Closure of join in ` CH ` ...
shjcom 28217 Commutative law for Hilber...
shless 28218 Subset implies subset of s...
shlej1 28219 Add disjunct to both sides...
shlej2 28220 Add disjunct to both sides...
shincli 28221 Closure of intersection of...
shscomi 28222 Commutative law for subspa...
shsvai 28223 Vector sum belongs to subs...
shsel1i 28224 A subspace sum contains a ...
shsel2i 28225 A subspace sum contains a ...
shsvsi 28226 Vector subtraction belongs...
shunssi 28227 Union is smaller than subs...
shunssji 28228 Union is smaller than Hilb...
shsleji 28229 Subspace sum is smaller th...
shjcomi 28230 Commutative law for join i...
shsub1i 28231 Subspace sum is an upper b...
shsub2i 28232 Subspace sum is an upper b...
shub1i 28233 Hilbert lattice join is an...
shjcli 28234 Closure of ` CH ` join. (...
shjshcli 28235 ` SH ` closure of join. (...
shlessi 28236 Subset implies subset of s...
shlej1i 28237 Add disjunct to both sides...
shlej2i 28238 Add disjunct to both sides...
shslej 28239 Subspace sum is smaller th...
shincl 28240 Closure of intersection of...
shub1 28241 Hilbert lattice join is an...
shub2 28242 A subspace is a subset of ...
shsidmi 28243 Idempotent law for Hilbert...
shslubi 28244 The least upper bound law ...
shlesb1i 28245 Hilbert lattice ordering i...
shsval2i 28246 An alternate way to expres...
shsval3i 28247 An alternate way to expres...
shmodsi 28248 The modular law holds for ...
shmodi 28249 The modular law is implied...
pjhthlem1 28250 Lemma for ~ pjhth . (Cont...
pjhthlem2 28251 Lemma for ~ pjhth . (Cont...
pjhth 28252 Projection Theorem: Any H...
pjhtheu 28253 Projection Theorem: Any H...
pjhfval 28255 The value of the projectio...
pjhval 28256 Value of a projection. (C...
pjpreeq 28257 Equality with a projection...
pjeq 28258 Equality with a projection...
axpjcl 28259 Closure of a projection in...
pjhcl 28260 Closure of a projection in...
omlsilem 28261 Lemma for orthomodular law...
omlsii 28262 Subspace inference form of...
omlsi 28263 Subspace form of orthomodu...
ococi 28264 Complement of complement o...
ococ 28265 Complement of complement o...
dfch2 28266 Alternate definition of th...
ococin 28267 The double complement is t...
hsupval2 28268 Alternate definition of su...
chsupval2 28269 The value of the supremum ...
sshjval2 28270 Value of join in the set o...
chsupid 28271 A subspace is the supremum...
chsupsn 28272 Value of supremum of subse...
shlub 28273 Hilbert lattice join is th...
shlubi 28274 Hilbert lattice join is th...
pjhtheu2 28275 Uniqueness of ` y ` for th...
pjcli 28276 Closure of a projection in...
pjhcli 28277 Closure of a projection in...
pjpjpre 28278 Decomposition of a vector ...
axpjpj 28279 Decomposition of a vector ...
pjclii 28280 Closure of a projection in...
pjhclii 28281 Closure of a projection in...
pjpj0i 28282 Decomposition of a vector ...
pjpji 28283 Decomposition of a vector ...
pjpjhth 28284 Projection Theorem: Any H...
pjpjhthi 28285 Projection Theorem: Any H...
pjop 28286 Orthocomplement projection...
pjpo 28287 Projection in terms of ort...
pjopi 28288 Orthocomplement projection...
pjpoi 28289 Projection in terms of ort...
pjoc1i 28290 Projection of a vector in ...
pjchi 28291 Projection of a vector in ...
pjoccl 28292 The part of a vector that ...
pjoc1 28293 Projection of a vector in ...
pjomli 28294 Subspace form of orthomodu...
pjoml 28295 Subspace form of orthomodu...
pjococi 28296 Proof of orthocomplement t...
pjoc2i 28297 Projection of a vector in ...
pjoc2 28298 Projection of a vector in ...
sh0le 28299 The zero subspace is the s...
ch0le 28300 The zero subspace is the s...
shle0 28301 No subspace is smaller tha...
chle0 28302 No Hilbert lattice element...
chnlen0 28303 A Hilbert lattice element ...
ch0pss 28304 The zero subspace is a pro...
orthin 28305 The intersection of orthog...
ssjo 28306 The lattice join of a subs...
shne0i 28307 A nonzero subspace has a n...
shs0i 28308 Hilbert subspace sum with ...
shs00i 28309 Two subspaces are zero iff...
ch0lei 28310 The closed subspace zero i...
chle0i 28311 No Hilbert closed subspace...
chne0i 28312 A nonzero closed subspace ...
chocini 28313 Intersection of a closed s...
chj0i 28314 Join with lattice zero in ...
chm1i 28315 Meet with lattice one in `...
chjcli 28316 Closure of ` CH ` join. (...
chsleji 28317 Subspace sum is smaller th...
chseli 28318 Membership in subspace sum...
chincli 28319 Closure of Hilbert lattice...
chsscon3i 28320 Hilbert lattice contraposi...
chsscon1i 28321 Hilbert lattice contraposi...
chsscon2i 28322 Hilbert lattice contraposi...
chcon2i 28323 Hilbert lattice contraposi...
chcon1i 28324 Hilbert lattice contraposi...
chcon3i 28325 Hilbert lattice contraposi...
chunssji 28326 Union is smaller than ` CH...
chjcomi 28327 Commutative law for join i...
chub1i 28328 ` CH ` join is an upper bo...
chub2i 28329 ` CH ` join is an upper bo...
chlubi 28330 Hilbert lattice join is th...
chlubii 28331 Hilbert lattice join is th...
chlej1i 28332 Add join to both sides of ...
chlej2i 28333 Add join to both sides of ...
chlej12i 28334 Add join to both sides of ...
chlejb1i 28335 Hilbert lattice ordering i...
chdmm1i 28336 De Morgan's law for meet i...
chdmm2i 28337 De Morgan's law for meet i...
chdmm3i 28338 De Morgan's law for meet i...
chdmm4i 28339 De Morgan's law for meet i...
chdmj1i 28340 De Morgan's law for join i...
chdmj2i 28341 De Morgan's law for join i...
chdmj3i 28342 De Morgan's law for join i...
chdmj4i 28343 De Morgan's law for join i...
chnlei 28344 Equivalent expressions for...
chjassi 28345 Associative law for Hilber...
chj00i 28346 Two Hilbert lattice elemen...
chjoi 28347 The join of a closed subsp...
chj1i 28348 Join with Hilbert lattice ...
chm0i 28349 Meet with Hilbert lattice ...
chm0 28350 Meet with Hilbert lattice ...
shjshsi 28351 Hilbert lattice join equal...
shjshseli 28352 A closed subspace sum equa...
chne0 28353 A nonzero closed subspace ...
chocin 28354 Intersection of a closed s...
chssoc 28355 A closed subspace less tha...
chj0 28356 Join with Hilbert lattice ...
chslej 28357 Subspace sum is smaller th...
chincl 28358 Closure of Hilbert lattice...
chsscon3 28359 Hilbert lattice contraposi...
chsscon1 28360 Hilbert lattice contraposi...
chsscon2 28361 Hilbert lattice contraposi...
chpsscon3 28362 Hilbert lattice contraposi...
chpsscon1 28363 Hilbert lattice contraposi...
chpsscon2 28364 Hilbert lattice contraposi...
chjcom 28365 Commutative law for Hilber...
chub1 28366 Hilbert lattice join is gr...
chub2 28367 Hilbert lattice join is gr...
chlub 28368 Hilbert lattice join is th...
chlej1 28369 Add join to both sides of ...
chlej2 28370 Add join to both sides of ...
chlejb1 28371 Hilbert lattice ordering i...
chlejb2 28372 Hilbert lattice ordering i...
chnle 28373 Equivalent expressions for...
chjo 28374 The join of a closed subsp...
chabs1 28375 Hilbert lattice absorption...
chabs2 28376 Hilbert lattice absorption...
chabs1i 28377 Hilbert lattice absorption...
chabs2i 28378 Hilbert lattice absorption...
chjidm 28379 Idempotent law for Hilbert...
chjidmi 28380 Idempotent law for Hilbert...
chj12i 28381 A rearrangement of Hilbert...
chj4i 28382 Rearrangement of the join ...
chjjdiri 28383 Hilbert lattice join distr...
chdmm1 28384 De Morgan's law for meet i...
chdmm2 28385 De Morgan's law for meet i...
chdmm3 28386 De Morgan's law for meet i...
chdmm4 28387 De Morgan's law for meet i...
chdmj1 28388 De Morgan's law for join i...
chdmj2 28389 De Morgan's law for join i...
chdmj3 28390 De Morgan's law for join i...
chdmj4 28391 De Morgan's law for join i...
chjass 28392 Associative law for Hilber...
chj12 28393 A rearrangement of Hilbert...
chj4 28394 Rearrangement of the join ...
ledii 28395 An ortholattice is distrib...
lediri 28396 An ortholattice is distrib...
lejdii 28397 An ortholattice is distrib...
lejdiri 28398 An ortholattice is distrib...
ledi 28399 An ortholattice is distrib...
spansn0 28400 The span of the singleton ...
span0 28401 The span of the empty set ...
elspani 28402 Membership in the span of ...
spanuni 28403 The span of a union is the...
spanun 28404 The span of a union is the...
sshhococi 28405 The join of two Hilbert sp...
hne0 28406 Hilbert space has a nonzer...
chsup0 28407 The supremum of the empty ...
h1deoi 28408 Membership in orthocomplem...
h1dei 28409 Membership in 1-dimensiona...
h1did 28410 A generating vector belong...
h1dn0 28411 A nonzero vector generates...
h1de2i 28412 Membership in 1-dimensiona...
h1de2bi 28413 Membership in 1-dimensiona...
h1de2ctlem 28414 Lemma for ~ h1de2ci . (Co...
h1de2ci 28415 Membership in 1-dimensiona...
spansni 28416 The span of a singleton in...
elspansni 28417 Membership in the span of ...
spansn 28418 The span of a singleton in...
spansnch 28419 The span of a Hilbert spac...
spansnsh 28420 The span of a Hilbert spac...
spansnchi 28421 The span of a singleton in...
spansnid 28422 A vector belongs to the sp...
spansnmul 28423 A scalar product with a ve...
elspansncl 28424 A member of a span of a si...
elspansn 28425 Membership in the span of ...
elspansn2 28426 Membership in the span of ...
spansncol 28427 The singletons of collinea...
spansneleqi 28428 Membership relation implie...
spansneleq 28429 Membership relation that i...
spansnss 28430 The span of the singleton ...
elspansn3 28431 A member of the span of th...
elspansn4 28432 A span membership conditio...
elspansn5 28433 A vector belonging to both...
spansnss2 28434 The span of the singleton ...
normcan 28435 Cancellation-type law that...
pjspansn 28436 A projection on the span o...
spansnpji 28437 A subset of Hilbert space ...
spanunsni 28438 The span of the union of a...
spanpr 28439 The span of a pair of vect...
h1datomi 28440 A 1-dimensional subspace i...
h1datom 28441 A 1-dimensional subspace i...
cmbr 28443 Binary relation expressing...
pjoml2i 28444 Variation of orthomodular ...
pjoml3i 28445 Variation of orthomodular ...
pjoml4i 28446 Variation of orthomodular ...
pjoml5i 28447 The orthomodular law. Rem...
pjoml6i 28448 An equivalent of the ortho...
cmbri 28449 Binary relation expressing...
cmcmlem 28450 Commutation is symmetric. ...
cmcmi 28451 Commutation is symmetric. ...
cmcm2i 28452 Commutation with orthocomp...
cmcm3i 28453 Commutation with orthocomp...
cmcm4i 28454 Commutation with orthocomp...
cmbr2i 28455 Alternate definition of th...
cmcmii 28456 Commutation is symmetric. ...
cmcm2ii 28457 Commutation with orthocomp...
cmcm3ii 28458 Commutation with orthocomp...
cmbr3i 28459 Alternate definition for t...
cmbr4i 28460 Alternate definition for t...
lecmi 28461 Comparable Hilbert lattice...
lecmii 28462 Comparable Hilbert lattice...
cmj1i 28463 A Hilbert lattice element ...
cmj2i 28464 A Hilbert lattice element ...
cmm1i 28465 A Hilbert lattice element ...
cmm2i 28466 A Hilbert lattice element ...
cmbr3 28467 Alternate definition for t...
cm0 28468 The zero Hilbert lattice e...
cmidi 28469 The commutes relation is r...
pjoml2 28470 Variation of orthomodular ...
pjoml3 28471 Variation of orthomodular ...
pjoml5 28472 The orthomodular law. Rem...
cmcm 28473 Commutation is symmetric. ...
cmcm3 28474 Commutation with orthocomp...
cmcm2 28475 Commutation with orthocomp...
lecm 28476 Comparable Hilbert lattice...
fh1 28477 Foulis-Holland Theorem. I...
fh2 28478 Foulis-Holland Theorem. I...
cm2j 28479 A lattice element that com...
fh1i 28480 Foulis-Holland Theorem. I...
fh2i 28481 Foulis-Holland Theorem. I...
fh3i 28482 Variation of the Foulis-Ho...
fh4i 28483 Variation of the Foulis-Ho...
cm2ji 28484 A lattice element that com...
cm2mi 28485 A lattice element that com...
qlax1i 28486 One of the equations showi...
qlax2i 28487 One of the equations showi...
qlax3i 28488 One of the equations showi...
qlax4i 28489 One of the equations showi...
qlax5i 28490 One of the equations showi...
qlaxr1i 28491 One of the conditions show...
qlaxr2i 28492 One of the conditions show...
qlaxr4i 28493 One of the conditions show...
qlaxr5i 28494 One of the conditions show...
qlaxr3i 28495 A variation of the orthomo...
chscllem1 28496 Lemma for ~ chscl . (Cont...
chscllem2 28497 Lemma for ~ chscl . (Cont...
chscllem3 28498 Lemma for ~ chscl . (Cont...
chscllem4 28499 Lemma for ~ chscl . (Cont...
chscl 28500 The subspace sum of two cl...
osumi 28501 If two closed subspaces of...
osumcori 28502 Corollary of ~ osumi . (C...
osumcor2i 28503 Corollary of ~ osumi , sho...
osum 28504 If two closed subspaces of...
spansnji 28505 The subspace sum of a clos...
spansnj 28506 The subspace sum of a clos...
spansnscl 28507 The subspace sum of a clos...
sumspansn 28508 The sum of two vectors bel...
spansnm0i 28509 The meet of different one-...
nonbooli 28510 A Hilbert lattice with two...
spansncvi 28511 Hilbert space has the cove...
spansncv 28512 Hilbert space has the cove...
5oalem1 28513 Lemma for orthoarguesian l...
5oalem2 28514 Lemma for orthoarguesian l...
5oalem3 28515 Lemma for orthoarguesian l...
5oalem4 28516 Lemma for orthoarguesian l...
5oalem5 28517 Lemma for orthoarguesian l...
5oalem6 28518 Lemma for orthoarguesian l...
5oalem7 28519 Lemma for orthoarguesian l...
5oai 28520 Orthoarguesian law 5OA. Th...
3oalem1 28521 Lemma for 3OA (weak) ortho...
3oalem2 28522 Lemma for 3OA (weak) ortho...
3oalem3 28523 Lemma for 3OA (weak) ortho...
3oalem4 28524 Lemma for 3OA (weak) ortho...
3oalem5 28525 Lemma for 3OA (weak) ortho...
3oalem6 28526 Lemma for 3OA (weak) ortho...
3oai 28527 3OA (weak) orthoarguesian ...
pjorthi 28528 Projection components on o...
pjch1 28529 Property of identity proje...
pjo 28530 The orthogonal projection....
pjcompi 28531 Component of a projection....
pjidmi 28532 A projection is idempotent...
pjadjii 28533 A projection is self-adjoi...
pjaddii 28534 Projection of vector sum i...
pjinormii 28535 The inner product of a pro...
pjmulii 28536 Projection of (scalar) pro...
pjsubii 28537 Projection of vector diffe...
pjsslem 28538 Lemma for subset relations...
pjss2i 28539 Subset relationship for pr...
pjssmii 28540 Projection meet property. ...
pjssge0ii 28541 Theorem 4.5(iv)->(v) of [B...
pjdifnormii 28542 Theorem 4.5(v)<->(vi) of [...
pjcji 28543 The projection on a subspa...
pjadji 28544 A projection is self-adjoi...
pjaddi 28545 Projection of vector sum i...
pjinormi 28546 The inner product of a pro...
pjsubi 28547 Projection of vector diffe...
pjmuli 28548 Projection of scalar produ...
pjige0i 28549 The inner product of a pro...
pjige0 28550 The inner product of a pro...
pjcjt2 28551 The projection on a subspa...
pj0i 28552 The projection of the zero...
pjch 28553 Projection of a vector in ...
pjid 28554 The projection of a vector...
pjvec 28555 The set of vectors belongi...
pjocvec 28556 The set of vectors belongi...
pjocini 28557 Membership of projection i...
pjini 28558 Membership of projection i...
pjjsi 28559 A sufficient condition for...
pjfni 28560 Functionality of a project...
pjrni 28561 The range of a projection....
pjfoi 28562 A projection maps onto its...
pjfi 28563 The mapping of a projectio...
pjvi 28564 The value of a projection ...
pjhfo 28565 A projection maps onto its...
pjrn 28566 The range of a projection....
pjhf 28567 The mapping of a projectio...
pjfn 28568 Functionality of a project...
pjsumi 28569 The projection on a subspa...
pj11i 28570 One-to-one correspondence ...
pjdsi 28571 Vector decomposition into ...
pjds3i 28572 Vector decomposition into ...
pj11 28573 One-to-one correspondence ...
pjmfn 28574 Functionality of the proje...
pjmf1 28575 The projector function map...
pjoi0 28576 The inner product of proje...
pjoi0i 28577 The inner product of proje...
pjopythi 28578 Pythagorean theorem for pr...
pjopyth 28579 Pythagorean theorem for pr...
pjnormi 28580 The norm of the projection...
pjpythi 28581 Pythagorean theorem for pr...
pjneli 28582 If a vector does not belon...
pjnorm 28583 The norm of the projection...
pjpyth 28584 Pythagorean theorem for pr...
pjnel 28585 If a vector does not belon...
pjnorm2 28586 A vector belongs to the su...
mayete3i 28587 Mayet's equation E_3. Par...
mayetes3i 28588 Mayet's equation E^*_3, de...
hosmval 28594 Value of the sum of two Hi...
hommval 28595 Value of the scalar produc...
hodmval 28596 Value of the difference of...
hfsmval 28597 Value of the sum of two Hi...
hfmmval 28598 Value of the scalar produc...
hosval 28599 Value of the sum of two Hi...
homval 28600 Value of the scalar produc...
hodval 28601 Value of the difference of...
hfsval 28602 Value of the sum of two Hi...
hfmval 28603 Value of the scalar produc...
hoscl 28604 Closure of the sum of two ...
homcl 28605 Closure of the scalar prod...
hodcl 28606 Closure of the difference ...
ho0val 28609 Value of the zero Hilbert ...
ho0f 28610 Functionality of the zero ...
df0op2 28611 Alternate definition of Hi...
dfiop2 28612 Alternate definition of Hi...
hoif 28613 Functionality of the Hilbe...
hoival 28614 The value of the Hilbert s...
hoico1 28615 Composition with the Hilbe...
hoico2 28616 Composition with the Hilbe...
hoaddcl 28617 The sum of Hilbert space o...
homulcl 28618 The scalar product of a Hi...
hoeq 28619 Equality of Hilbert space ...
hoeqi 28620 Equality of Hilbert space ...
hoscli 28621 Closure of Hilbert space o...
hodcli 28622 Closure of Hilbert space o...
hocoi 28623 Composition of Hilbert spa...
hococli 28624 Closure of composition of ...
hocofi 28625 Mapping of composition of ...
hocofni 28626 Functionality of compositi...
hoaddcli 28627 Mapping of sum of Hilbert ...
hosubcli 28628 Mapping of difference of H...
hoaddfni 28629 Functionality of sum of Hi...
hosubfni 28630 Functionality of differenc...
hoaddcomi 28631 Commutativity of sum of Hi...
hosubcl 28632 Mapping of difference of H...
hoaddcom 28633 Commutativity of sum of Hi...
hodsi 28634 Relationship between Hilbe...
hoaddassi 28635 Associativity of sum of Hi...
hoadd12i 28636 Commutative/associative la...
hoadd32i 28637 Commutative/associative la...
hocadddiri 28638 Distributive law for Hilbe...
hocsubdiri 28639 Distributive law for Hilbe...
ho2coi 28640 Double composition of Hilb...
hoaddass 28641 Associativity of sum of Hi...
hoadd32 28642 Commutative/associative la...
hoadd4 28643 Rearrangement of 4 terms i...
hocsubdir 28644 Distributive law for Hilbe...
hoaddid1i 28645 Sum of a Hilbert space ope...
hodidi 28646 Difference of a Hilbert sp...
ho0coi 28647 Composition of the zero op...
hoid1i 28648 Composition of Hilbert spa...
hoid1ri 28649 Composition of Hilbert spa...
hoaddid1 28650 Sum of a Hilbert space ope...
hodid 28651 Difference of a Hilbert sp...
hon0 28652 A Hilbert space operator i...
hodseqi 28653 Subtraction and addition o...
ho0subi 28654 Subtraction of Hilbert spa...
honegsubi 28655 Relationship between Hilbe...
ho0sub 28656 Subtraction of Hilbert spa...
hosubid1 28657 The zero operator subtract...
honegsub 28658 Relationship between Hilbe...
homulid2 28659 An operator equals its sca...
homco1 28660 Associative law for scalar...
homulass 28661 Scalar product associative...
hoadddi 28662 Scalar product distributiv...
hoadddir 28663 Scalar product reverse dis...
homul12 28664 Swap first and second fact...
honegneg 28665 Double negative of a Hilbe...
hosubneg 28666 Relationship between opera...
hosubdi 28667 Scalar product distributiv...
honegdi 28668 Distribution of negative o...
honegsubdi 28669 Distribution of negative o...
honegsubdi2 28670 Distribution of negative o...
hosubsub2 28671 Law for double subtraction...
hosub4 28672 Rearrangement of 4 terms i...
hosubadd4 28673 Rearrangement of 4 terms i...
hoaddsubass 28674 Associative-type law for a...
hoaddsub 28675 Law for operator addition ...
hosubsub 28676 Law for double subtraction...
hosubsub4 28677 Law for double subtraction...
ho2times 28678 Two times a Hilbert space ...
hoaddsubassi 28679 Associativity of sum and d...
hoaddsubi 28680 Law for sum and difference...
hosd1i 28681 Hilbert space operator sum...
hosd2i 28682 Hilbert space operator sum...
hopncani 28683 Hilbert space operator can...
honpcani 28684 Hilbert space operator can...
hosubeq0i 28685 If the difference between ...
honpncani 28686 Hilbert space operator can...
ho01i 28687 A condition implying that ...
ho02i 28688 A condition implying that ...
hoeq1 28689 A condition implying that ...
hoeq2 28690 A condition implying that ...
adjmo 28691 Every Hilbert space operat...
adjsym 28692 Symmetry property of an ad...
eigrei 28693 A necessary and sufficient...
eigre 28694 A necessary and sufficient...
eigposi 28695 A sufficient condition (fi...
eigorthi 28696 A necessary and sufficient...
eigorth 28697 A necessary and sufficient...
nmopval 28715 Value of the norm of a Hil...
elcnop 28716 Property defining a contin...
ellnop 28717 Property defining a linear...
lnopf 28718 A linear Hilbert space ope...
elbdop 28719 Property defining a bounde...
bdopln 28720 A bounded linear Hilbert s...
bdopf 28721 A bounded linear Hilbert s...
nmopsetretALT 28722 The set in the supremum of...
nmopsetretHIL 28723 The set in the supremum of...
nmopsetn0 28724 The set in the supremum of...
nmopxr 28725 The norm of a Hilbert spac...
nmoprepnf 28726 The norm of a Hilbert spac...
nmopgtmnf 28727 The norm of a Hilbert spac...
nmopreltpnf 28728 The norm of a Hilbert spac...
nmopre 28729 The norm of a bounded oper...
elbdop2 28730 Property defining a bounde...
elunop 28731 Property defining a unitar...
elhmop 28732 Property defining a Hermit...
hmopf 28733 A Hermitian operator is a ...
hmopex 28734 The class of Hermitian ope...
nmfnval 28735 Value of the norm of a Hil...
nmfnsetre 28736 The set in the supremum of...
nmfnsetn0 28737 The set in the supremum of...
nmfnxr 28738 The norm of any Hilbert sp...
nmfnrepnf 28739 The norm of a Hilbert spac...
nlfnval 28740 Value of the null space of...
elcnfn 28741 Property defining a contin...
ellnfn 28742 Property defining a linear...
lnfnf 28743 A linear Hilbert space fun...
dfadj2 28744 Alternate definition of th...
funadj 28745 Functionality of the adjoi...
dmadjss 28746 The domain of the adjoint ...
dmadjop 28747 A member of the domain of ...
adjeu 28748 Elementhood in the domain ...
adjval 28749 Value of the adjoint funct...
adjval2 28750 Value of the adjoint funct...
cnvadj 28751 The adjoint function equal...
funcnvadj 28752 The converse of the adjoin...
adj1o 28753 The adjoint function maps ...
dmadjrn 28754 The adjoint of an operator...
eigvecval 28755 The set of eigenvectors of...
eigvalfval 28756 The eigenvalues of eigenve...
specval 28757 The value of the spectrum ...
speccl 28758 The spectrum of an operato...
hhlnoi 28759 The linear operators of Hi...
hhnmoi 28760 The norm of an operator in...
hhbloi 28761 A bounded linear operator ...
hh0oi 28762 The zero operator in Hilbe...
hhcno 28763 The continuous operators o...
hhcnf 28764 The continuous functionals...
dmadjrnb 28765 The adjoint of an operator...
nmoplb 28766 A lower bound for an opera...
nmopub 28767 An upper bound for an oper...
nmopub2tALT 28768 An upper bound for an oper...
nmopub2tHIL 28769 An upper bound for an oper...
nmopge0 28770 The norm of any Hilbert sp...
nmopgt0 28771 A linear Hilbert space ope...
cnopc 28772 Basic continuity property ...
lnopl 28773 Basic linearity property o...
unop 28774 Basic inner product proper...
unopf1o 28775 A unitary operator in Hilb...
unopnorm 28776 A unitary operator is idem...
cnvunop 28777 The inverse (converse) of ...
unopadj 28778 The inverse (converse) of ...
unoplin 28779 A unitary operator is line...
counop 28780 The composition of two uni...
hmop 28781 Basic inner product proper...
hmopre 28782 The inner product of the v...
nmfnlb 28783 A lower bound for a functi...
nmfnleub 28784 An upper bound for the nor...
nmfnleub2 28785 An upper bound for the nor...
nmfnge0 28786 The norm of any Hilbert sp...
elnlfn 28787 Membership in the null spa...
elnlfn2 28788 Membership in the null spa...
cnfnc 28789 Basic continuity property ...
lnfnl 28790 Basic linearity property o...
adjcl 28791 Closure of the adjoint of ...
adj1 28792 Property of an adjoint Hil...
adj2 28793 Property of an adjoint Hil...
adjeq 28794 A property that determines...
adjadj 28795 Double adjoint. Theorem 3...
adjvalval 28796 Value of the value of the ...
unopadj2 28797 The adjoint of a unitary o...
hmopadj 28798 A Hermitian operator is se...
hmdmadj 28799 Every Hermitian operator h...
hmopadj2 28800 An operator is Hermitian i...
hmoplin 28801 A Hermitian operator is li...
brafval 28802 The bra of a vector, expre...
braval 28803 A bra-ket juxtaposition, e...
braadd 28804 Linearity property of bra ...
bramul 28805 Linearity property of bra ...
brafn 28806 The bra function is a func...
bralnfn 28807 The Dirac bra function is ...
bracl 28808 Closure of the bra functio...
bra0 28809 The Dirac bra of the zero ...
brafnmul 28810 Anti-linearity property of...
kbfval 28811 The outer product of two v...
kbop 28812 The outer product of two v...
kbval 28813 The value of the operator ...
kbmul 28814 Multiplication property of...
kbpj 28815 If a vector ` A ` has norm...
eleigvec 28816 Membership in the set of e...
eleigvec2 28817 Membership in the set of e...
eleigveccl 28818 Closure of an eigenvector ...
eigvalval 28819 The eigenvalue of an eigen...
eigvalcl 28820 An eigenvalue is a complex...
eigvec1 28821 Property of an eigenvector...
eighmre 28822 The eigenvalues of a Hermi...
eighmorth 28823 Eigenvectors of a Hermitia...
nmopnegi 28824 Value of the norm of the n...
lnop0 28825 The value of a linear Hilb...
lnopmul 28826 Multiplicative property of...
lnopli 28827 Basic scalar product prope...
lnopfi 28828 A linear Hilbert space ope...
lnop0i 28829 The value of a linear Hilb...
lnopaddi 28830 Additive property of a lin...
lnopmuli 28831 Multiplicative property of...
lnopaddmuli 28832 Sum/product property of a ...
lnopsubi 28833 Subtraction property for a...
lnopsubmuli 28834 Subtraction/product proper...
lnopmulsubi 28835 Product/subtraction proper...
homco2 28836 Move a scalar product out ...
idunop 28837 The identity function (res...
0cnop 28838 The identically zero funct...
0cnfn 28839 The identically zero funct...
idcnop 28840 The identity function (res...
idhmop 28841 The Hilbert space identity...
0hmop 28842 The identically zero funct...
0lnop 28843 The identically zero funct...
0lnfn 28844 The identically zero funct...
nmop0 28845 The norm of the zero opera...
nmfn0 28846 The norm of the identicall...
hmopbdoptHIL 28847 A Hermitian operator is a ...
hoddii 28848 Distributive law for Hilbe...
hoddi 28849 Distributive law for Hilbe...
nmop0h 28850 The norm of any operator o...
idlnop 28851 The identity function (res...
0bdop 28852 The identically zero opera...
adj0 28853 Adjoint of the zero operat...
nmlnop0iALT 28854 A linear operator with a z...
nmlnop0iHIL 28855 A linear operator with a z...
nmlnopgt0i 28856 A linear Hilbert space ope...
nmlnop0 28857 A linear operator with a z...
nmlnopne0 28858 A linear operator with a n...
lnopmi 28859 The scalar product of a li...
lnophsi 28860 The sum of two linear oper...
lnophdi 28861 The difference of two line...
lnopcoi 28862 The composition of two lin...
lnopco0i 28863 The composition of a linea...
lnopeq0lem1 28864 Lemma for ~ lnopeq0i . Ap...
lnopeq0lem2 28865 Lemma for ~ lnopeq0i . (C...
lnopeq0i 28866 A condition implying that ...
lnopeqi 28867 Two linear Hilbert space o...
lnopeq 28868 Two linear Hilbert space o...
lnopunilem1 28869 Lemma for ~ lnopunii . (C...
lnopunilem2 28870 Lemma for ~ lnopunii . (C...
lnopunii 28871 If a linear operator (whos...
elunop2 28872 An operator is unitary iff...
nmopun 28873 Norm of a unitary Hilbert ...
unopbd 28874 A unitary operator is a bo...
lnophmlem1 28875 Lemma for ~ lnophmi . (Co...
lnophmlem2 28876 Lemma for ~ lnophmi . (Co...
lnophmi 28877 A linear operator is Hermi...
lnophm 28878 A linear operator is Hermi...
hmops 28879 The sum of two Hermitian o...
hmopm 28880 The scalar product of a He...
hmopd 28881 The difference of two Herm...
hmopco 28882 The composition of two com...
nmbdoplbi 28883 A lower bound for the norm...
nmbdoplb 28884 A lower bound for the norm...
nmcexi 28885 Lemma for ~ nmcopexi and ~...
nmcopexi 28886 The norm of a continuous l...
nmcoplbi 28887 A lower bound for the norm...
nmcopex 28888 The norm of a continuous l...
nmcoplb 28889 A lower bound for the norm...
nmophmi 28890 The norm of the scalar pro...
bdophmi 28891 The scalar product of a bo...
lnconi 28892 Lemma for ~ lnopconi and ~...
lnopconi 28893 A condition equivalent to ...
lnopcon 28894 A condition equivalent to ...
lnopcnbd 28895 A linear operator is conti...
lncnopbd 28896 A continuous linear operat...
lncnbd 28897 A continuous linear operat...
lnopcnre 28898 A linear operator is conti...
lnfnli 28899 Basic property of a linear...
lnfnfi 28900 A linear Hilbert space fun...
lnfn0i 28901 The value of a linear Hilb...
lnfnaddi 28902 Additive property of a lin...
lnfnmuli 28903 Multiplicative property of...
lnfnaddmuli 28904 Sum/product property of a ...
lnfnsubi 28905 Subtraction property for a...
lnfn0 28906 The value of a linear Hilb...
lnfnmul 28907 Multiplicative property of...
nmbdfnlbi 28908 A lower bound for the norm...
nmbdfnlb 28909 A lower bound for the norm...
nmcfnexi 28910 The norm of a continuous l...
nmcfnlbi 28911 A lower bound for the norm...
nmcfnex 28912 The norm of a continuous l...
nmcfnlb 28913 A lower bound of the norm ...
lnfnconi 28914 A condition equivalent to ...
lnfncon 28915 A condition equivalent to ...
lnfncnbd 28916 A linear functional is con...
imaelshi 28917 The image of a subspace un...
rnelshi 28918 The range of a linear oper...
nlelshi 28919 The null space of a linear...
nlelchi 28920 The null space of a contin...
riesz3i 28921 A continuous linear functi...
riesz4i 28922 A continuous linear functi...
riesz4 28923 A continuous linear functi...
riesz1 28924 Part 1 of the Riesz repres...
riesz2 28925 Part 2 of the Riesz repres...
cnlnadjlem1 28926 Lemma for ~ cnlnadji (Theo...
cnlnadjlem2 28927 Lemma for ~ cnlnadji . ` G...
cnlnadjlem3 28928 Lemma for ~ cnlnadji . By...
cnlnadjlem4 28929 Lemma for ~ cnlnadji . Th...
cnlnadjlem5 28930 Lemma for ~ cnlnadji . ` F...
cnlnadjlem6 28931 Lemma for ~ cnlnadji . ` F...
cnlnadjlem7 28932 Lemma for ~ cnlnadji . He...
cnlnadjlem8 28933 Lemma for ~ cnlnadji . ` F...
cnlnadjlem9 28934 Lemma for ~ cnlnadji . ` F...
cnlnadji 28935 Every continuous linear op...
cnlnadjeui 28936 Every continuous linear op...
cnlnadjeu 28937 Every continuous linear op...
cnlnadj 28938 Every continuous linear op...
cnlnssadj 28939 Every continuous linear Hi...
bdopssadj 28940 Every bounded linear Hilbe...
bdopadj 28941 Every bounded linear Hilbe...
adjbdln 28942 The adjoint of a bounded l...
adjbdlnb 28943 An operator is bounded and...
adjbd1o 28944 The mapping of adjoints of...
adjlnop 28945 The adjoint of an operator...
adjsslnop 28946 Every operator with an adj...
nmopadjlei 28947 Property of the norm of an...
nmopadjlem 28948 Lemma for ~ nmopadji . (C...
nmopadji 28949 Property of the norm of an...
adjeq0 28950 An operator is zero iff it...
adjmul 28951 The adjoint of the scalar ...
adjadd 28952 The adjoint of the sum of ...
nmoptrii 28953 Triangle inequality for th...
nmopcoi 28954 Upper bound for the norm o...
bdophsi 28955 The sum of two bounded lin...
bdophdi 28956 The difference between two...
bdopcoi 28957 The composition of two bou...
nmoptri2i 28958 Triangle-type inequality f...
adjcoi 28959 The adjoint of a compositi...
nmopcoadji 28960 The norm of an operator co...
nmopcoadj2i 28961 The norm of an operator co...
nmopcoadj0i 28962 An operator composed with ...
unierri 28963 If we approximate a chain ...
branmfn 28964 The norm of the bra functi...
brabn 28965 The bra of a vector is a b...
rnbra 28966 The set of bras equals the...
bra11 28967 The bra function maps vect...
bracnln 28968 A bra is a continuous line...
cnvbraval 28969 Value of the converse of t...
cnvbracl 28970 Closure of the converse of...
cnvbrabra 28971 The converse bra of the br...
bracnvbra 28972 The bra of the converse br...
bracnlnval 28973 The vector that a continuo...
cnvbramul 28974 Multiplication property of...
kbass1 28975 Dirac bra-ket associative ...
kbass2 28976 Dirac bra-ket associative ...
kbass3 28977 Dirac bra-ket associative ...
kbass4 28978 Dirac bra-ket associative ...
kbass5 28979 Dirac bra-ket associative ...
kbass6 28980 Dirac bra-ket associative ...
leopg 28981 Ordering relation for posi...
leop 28982 Ordering relation for oper...
leop2 28983 Ordering relation for oper...
leop3 28984 Operator ordering in terms...
leoppos 28985 Binary relation defining a...
leoprf2 28986 The ordering relation for ...
leoprf 28987 The ordering relation for ...
leopsq 28988 The square of a Hermitian ...
0leop 28989 The zero operator is a pos...
idleop 28990 The identity operator is a...
leopadd 28991 The sum of two positive op...
leopmuli 28992 The scalar product of a no...
leopmul 28993 The scalar product of a po...
leopmul2i 28994 Scalar product applied to ...
leoptri 28995 The positive operator orde...
leoptr 28996 The positive operator orde...
leopnmid 28997 A bounded Hermitian operat...
nmopleid 28998 A nonzero, bounded Hermiti...
opsqrlem1 28999 Lemma for opsqri . (Contr...
opsqrlem2 29000 Lemma for opsqri . ` F `` ...
opsqrlem3 29001 Lemma for opsqri . (Contr...
opsqrlem4 29002 Lemma for opsqri . (Contr...
opsqrlem5 29003 Lemma for opsqri . (Contr...
opsqrlem6 29004 Lemma for opsqri . (Contr...
pjhmopi 29005 A projector is a Hermitian...
pjlnopi 29006 A projector is a linear op...
pjnmopi 29007 The operator norm of a pro...
pjbdlni 29008 A projector is a bounded l...
pjhmop 29009 A projection is a Hermitia...
hmopidmchi 29010 An idempotent Hermitian op...
hmopidmpji 29011 An idempotent Hermitian op...
hmopidmch 29012 An idempotent Hermitian op...
hmopidmpj 29013 An idempotent Hermitian op...
pjsdii 29014 Distributive law for Hilbe...
pjddii 29015 Distributive law for Hilbe...
pjsdi2i 29016 Chained distributive law f...
pjcoi 29017 Composition of projections...
pjcocli 29018 Closure of composition of ...
pjcohcli 29019 Closure of composition of ...
pjadjcoi 29020 Adjoint of composition of ...
pjcofni 29021 Functionality of compositi...
pjss1coi 29022 Subset relationship for pr...
pjss2coi 29023 Subset relationship for pr...
pjssmi 29024 Projection meet property. ...
pjssge0i 29025 Theorem 4.5(iv)->(v) of [B...
pjdifnormi 29026 Theorem 4.5(v)<->(vi) of [...
pjnormssi 29027 Theorem 4.5(i)<->(vi) of [...
pjorthcoi 29028 Composition of projections...
pjscji 29029 The projection of orthogon...
pjssumi 29030 The projection on a subspa...
pjssposi 29031 Projector ordering can be ...
pjordi 29032 The definition of projecto...
pjssdif2i 29033 The projection subspace of...
pjssdif1i 29034 A necessary and sufficient...
pjimai 29035 The image of a projection....
pjidmcoi 29036 A projection is idempotent...
pjoccoi 29037 Composition of projections...
pjtoi 29038 Subspace sum of projection...
pjoci 29039 Projection of orthocomplem...
pjidmco 29040 A projection operator is i...
dfpjop 29041 Definition of projection o...
pjhmopidm 29042 Two ways to express the se...
elpjidm 29043 A projection operator is i...
elpjhmop 29044 A projection operator is H...
0leopj 29045 A projector is a positive ...
pjadj2 29046 A projector is self-adjoin...
pjadj3 29047 A projector is self-adjoin...
elpjch 29048 Reconstruction of the subs...
elpjrn 29049 Reconstruction of the subs...
pjinvari 29050 A closed subspace ` H ` wi...
pjin1i 29051 Lemma for Theorem 1.22 of ...
pjin2i 29052 Lemma for Theorem 1.22 of ...
pjin3i 29053 Lemma for Theorem 1.22 of ...
pjclem1 29054 Lemma for projection commu...
pjclem2 29055 Lemma for projection commu...
pjclem3 29056 Lemma for projection commu...
pjclem4a 29057 Lemma for projection commu...
pjclem4 29058 Lemma for projection commu...
pjci 29059 Two subspaces commute iff ...
pjcmul1i 29060 A necessary and sufficient...
pjcmul2i 29061 The projection subspace of...
pjcohocli 29062 Closure of composition of ...
pjadj2coi 29063 Adjoint of double composit...
pj2cocli 29064 Closure of double composit...
pj3lem1 29065 Lemma for projection tripl...
pj3si 29066 Stronger projection triple...
pj3i 29067 Projection triplet theorem...
pj3cor1i 29068 Projection triplet corolla...
pjs14i 29069 Theorem S-14 of Watanabe, ...
isst 29072 Property of a state. (Con...
ishst 29073 Property of a complex Hilb...
sticl 29074 ` [ 0 , 1 ] ` closure of t...
stcl 29075 Real closure of the value ...
hstcl 29076 Closure of the value of a ...
hst1a 29077 Unit value of a Hilbert-sp...
hstel2 29078 Properties of a Hilbert-sp...
hstorth 29079 Orthogonality property of ...
hstosum 29080 Orthogonal sum property of...
hstoc 29081 Sum of a Hilbert-space-val...
hstnmoc 29082 Sum of norms of a Hilbert-...
stge0 29083 The value of a state is no...
stle1 29084 The value of a state is le...
hstle1 29085 The norm of the value of a...
hst1h 29086 The norm of a Hilbert-spac...
hst0h 29087 The norm of a Hilbert-spac...
hstpyth 29088 Pythagorean property of a ...
hstle 29089 Ordering property of a Hil...
hstles 29090 Ordering property of a Hil...
hstoh 29091 A Hilbert-space-valued sta...
hst0 29092 A Hilbert-space-valued sta...
sthil 29093 The value of a state at th...
stj 29094 The value of a state on a ...
sto1i 29095 The state of a subspace pl...
sto2i 29096 The state of the orthocomp...
stge1i 29097 If a state is greater than...
stle0i 29098 If a state is less than or...
stlei 29099 Ordering law for states. ...
stlesi 29100 Ordering law for states. ...
stji1i 29101 Join of components of Sasa...
stm1i 29102 State of component of unit...
stm1ri 29103 State of component of unit...
stm1addi 29104 Sum of states whose meet i...
staddi 29105 If the sum of 2 states is ...
stm1add3i 29106 Sum of states whose meet i...
stadd3i 29107 If the sum of 3 states is ...
st0 29108 The state of the zero subs...
strlem1 29109 Lemma for strong state the...
strlem2 29110 Lemma for strong state the...
strlem3a 29111 Lemma for strong state the...
strlem3 29112 Lemma for strong state the...
strlem4 29113 Lemma for strong state the...
strlem5 29114 Lemma for strong state the...
strlem6 29115 Lemma for strong state the...
stri 29116 Strong state theorem. The...
strb 29117 Strong state theorem (bidi...
hstrlem2 29118 Lemma for strong set of CH...
hstrlem3a 29119 Lemma for strong set of CH...
hstrlem3 29120 Lemma for strong set of CH...
hstrlem4 29121 Lemma for strong set of CH...
hstrlem5 29122 Lemma for strong set of CH...
hstrlem6 29123 Lemma for strong set of CH...
hstri 29124 Hilbert space admits a str...
hstrbi 29125 Strong CH-state theorem (b...
largei 29126 A Hilbert lattice admits a...
jplem1 29127 Lemma for Jauch-Piron theo...
jplem2 29128 Lemma for Jauch-Piron theo...
jpi 29129 The function ` S ` , that ...
golem1 29130 Lemma for Godowski's equat...
golem2 29131 Lemma for Godowski's equat...
goeqi 29132 Godowski's equation, shown...
stcltr1i 29133 Property of a strong class...
stcltr2i 29134 Property of a strong class...
stcltrlem1 29135 Lemma for strong classical...
stcltrlem2 29136 Lemma for strong classical...
stcltrthi 29137 Theorem for classically st...
cvbr 29141 Binary relation expressing...
cvbr2 29142 Binary relation expressing...
cvcon3 29143 Contraposition law for the...
cvpss 29144 The covers relation implie...
cvnbtwn 29145 The covers relation implie...
cvnbtwn2 29146 The covers relation implie...
cvnbtwn3 29147 The covers relation implie...
cvnbtwn4 29148 The covers relation implie...
cvnsym 29149 The covers relation is not...
cvnref 29150 The covers relation is not...
cvntr 29151 The covers relation is not...
spansncv2 29152 Hilbert space has the cove...
mdbr 29153 Binary relation expressing...
mdi 29154 Consequence of the modular...
mdbr2 29155 Binary relation expressing...
mdbr3 29156 Binary relation expressing...
mdbr4 29157 Binary relation expressing...
dmdbr 29158 Binary relation expressing...
dmdmd 29159 The dual modular pair prop...
mddmd 29160 The modular pair property ...
dmdi 29161 Consequence of the dual mo...
dmdbr2 29162 Binary relation expressing...
dmdi2 29163 Consequence of the dual mo...
dmdbr3 29164 Binary relation expressing...
dmdbr4 29165 Binary relation expressing...
dmdi4 29166 Consequence of the dual mo...
dmdbr5 29167 Binary relation expressing...
mddmd2 29168 Relationship between modul...
mdsl0 29169 A sublattice condition tha...
ssmd1 29170 Ordering implies the modul...
ssmd2 29171 Ordering implies the modul...
ssdmd1 29172 Ordering implies the dual ...
ssdmd2 29173 Ordering implies the dual ...
dmdsl3 29174 Sublattice mapping for a d...
mdsl3 29175 Sublattice mapping for a m...
mdslle1i 29176 Order preservation of the ...
mdslle2i 29177 Order preservation of the ...
mdslj1i 29178 Join preservation of the o...
mdslj2i 29179 Meet preservation of the r...
mdsl1i 29180 If the modular pair proper...
mdsl2i 29181 If the modular pair proper...
mdsl2bi 29182 If the modular pair proper...
cvmdi 29183 The covering property impl...
mdslmd1lem1 29184 Lemma for ~ mdslmd1i . (C...
mdslmd1lem2 29185 Lemma for ~ mdslmd1i . (C...
mdslmd1lem3 29186 Lemma for ~ mdslmd1i . (C...
mdslmd1lem4 29187 Lemma for ~ mdslmd1i . (C...
mdslmd1i 29188 Preservation of the modula...
mdslmd2i 29189 Preservation of the modula...
mdsldmd1i 29190 Preservation of the dual m...
mdslmd3i 29191 Modular pair conditions th...
mdslmd4i 29192 Modular pair condition tha...
csmdsymi 29193 Cross-symmetry implies M-s...
mdexchi 29194 An exchange lemma for modu...
cvmd 29195 The covering property impl...
cvdmd 29196 The covering property impl...
ela 29198 Atoms in a Hilbert lattice...
elat2 29199 Expanded membership relati...
elatcv0 29200 A Hilbert lattice element ...
atcv0 29201 An atom covers the zero su...
atssch 29202 Atoms are a subset of the ...
atelch 29203 An atom is a Hilbert latti...
atne0 29204 An atom is not the Hilbert...
atss 29205 A lattice element smaller ...
atsseq 29206 Two atoms in a subset rela...
atcveq0 29207 A Hilbert lattice element ...
h1da 29208 A 1-dimensional subspace i...
spansna 29209 The span of the singleton ...
sh1dle 29210 A 1-dimensional subspace i...
ch1dle 29211 A 1-dimensional subspace i...
atom1d 29212 The 1-dimensional subspace...
superpos 29213 Superposition Principle. ...
chcv1 29214 The Hilbert lattice has th...
chcv2 29215 The Hilbert lattice has th...
chjatom 29216 The join of a closed subsp...
shatomici 29217 The lattice of Hilbert sub...
hatomici 29218 The Hilbert lattice is ato...
hatomic 29219 A Hilbert lattice is atomi...
shatomistici 29220 The lattice of Hilbert sub...
hatomistici 29221 ` CH ` is atomistic, i.e. ...
chpssati 29222 Two Hilbert lattice elemen...
chrelati 29223 The Hilbert lattice is rel...
chrelat2i 29224 A consequence of relative ...
cvati 29225 If a Hilbert lattice eleme...
cvbr4i 29226 An alternate way to expres...
cvexchlem 29227 Lemma for ~ cvexchi . (Co...
cvexchi 29228 The Hilbert lattice satisf...
chrelat2 29229 A consequence of relative ...
chrelat3 29230 A consequence of relative ...
chrelat3i 29231 A consequence of the relat...
chrelat4i 29232 A consequence of relative ...
cvexch 29233 The Hilbert lattice satisf...
cvp 29234 The Hilbert lattice satisf...
atnssm0 29235 The meet of a Hilbert latt...
atnemeq0 29236 The meet of distinct atoms...
atssma 29237 The meet with an atom's su...
atcv0eq 29238 Two atoms covering the zer...
atcv1 29239 Two atoms covering the zer...
atexch 29240 The Hilbert lattice satisf...
atomli 29241 An assertion holding in at...
atoml2i 29242 An assertion holding in at...
atordi 29243 An ordering law for a Hilb...
atcvatlem 29244 Lemma for ~ atcvati . (Co...
atcvati 29245 A nonzero Hilbert lattice ...
atcvat2i 29246 A Hilbert lattice element ...
atord 29247 An ordering law for a Hilb...
atcvat2 29248 A Hilbert lattice element ...
chirredlem1 29249 Lemma for ~ chirredi . (C...
chirredlem2 29250 Lemma for ~ chirredi . (C...
chirredlem3 29251 Lemma for ~ chirredi . (C...
chirredlem4 29252 Lemma for ~ chirredi . (C...
chirredi 29253 The Hilbert lattice is irr...
chirred 29254 The Hilbert lattice is irr...
atcvat3i 29255 A condition implying that ...
atcvat4i 29256 A condition implying exist...
atdmd 29257 Two Hilbert lattice elemen...
atmd 29258 Two Hilbert lattice elemen...
atmd2 29259 Two Hilbert lattice elemen...
atabsi 29260 Absorption of an incompara...
atabs2i 29261 Absorption of an incompara...
mdsymlem1 29262 Lemma for ~ mdsymi . (Con...
mdsymlem2 29263 Lemma for ~ mdsymi . (Con...
mdsymlem3 29264 Lemma for ~ mdsymi . (Con...
mdsymlem4 29265 Lemma for ~ mdsymi . This...
mdsymlem5 29266 Lemma for ~ mdsymi . (Con...
mdsymlem6 29267 Lemma for ~ mdsymi . This...
mdsymlem7 29268 Lemma for ~ mdsymi . Lemm...
mdsymlem8 29269 Lemma for ~ mdsymi . Lemm...
mdsymi 29270 M-symmetry of the Hilbert ...
mdsym 29271 M-symmetry of the Hilbert ...
dmdsym 29272 Dual M-symmetry of the Hil...
atdmd2 29273 Two Hilbert lattice elemen...
sumdmdii 29274 If the subspace sum of two...
cmmdi 29275 Commuting subspaces form a...
cmdmdi 29276 Commuting subspaces form a...
sumdmdlem 29277 Lemma for ~ sumdmdi . The...
sumdmdlem2 29278 Lemma for ~ sumdmdi . (Co...
sumdmdi 29279 The subspace sum of two Hi...
dmdbr4ati 29280 Dual modular pair property...
dmdbr5ati 29281 Dual modular pair property...
dmdbr6ati 29282 Dual modular pair property...
dmdbr7ati 29283 Dual modular pair property...
mdoc1i 29284 Orthocomplements form a mo...
mdoc2i 29285 Orthocomplements form a mo...
dmdoc1i 29286 Orthocomplements form a du...
dmdoc2i 29287 Orthocomplements form a du...
mdcompli 29288 A condition equivalent to ...
dmdcompli 29289 A condition equivalent to ...
mddmdin0i 29290 If dual modular implies mo...
cdjreui 29291 A member of the sum of dis...
cdj1i 29292 Two ways to express " ` A ...
cdj3lem1 29293 A property of " ` A ` and ...
cdj3lem2 29294 Lemma for ~ cdj3i . Value...
cdj3lem2a 29295 Lemma for ~ cdj3i . Closu...
cdj3lem2b 29296 Lemma for ~ cdj3i . The f...
cdj3lem3 29297 Lemma for ~ cdj3i . Value...
cdj3lem3a 29298 Lemma for ~ cdj3i . Closu...
cdj3lem3b 29299 Lemma for ~ cdj3i . The s...
cdj3i 29300 Two ways to express " ` A ...
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
mathbox 29301 (_This theorem is a dummy ...
foo3 29302 A theorem about the univer...
xfree 29303 A partial converse to ~ 19...
xfree2 29304 A partial converse to ~ 19...
addltmulALT 29305 A proof readability experi...
bian1d 29306 Adding a superfluous conju...
or3di 29307 Distributive law for disju...
or3dir 29308 Distributive law for disju...
3o1cs 29309 Deduction eliminating disj...
3o2cs 29310 Deduction eliminating disj...
3o3cs 29311 Deduction eliminating disj...
spc2ed 29312 Existential specialization...
spc2d 29313 Specialization with 2 quan...
vtocl2d 29314 Implicit substitution of t...
eqri 29315 Infer equality of classes ...
ralcom4f 29316 Commutation of restricted ...
rexcom4f 29317 Commutation of restricted ...
19.9d2rf 29318 A deduction version of one...
19.9d2r 29319 A deduction version of one...
r19.29ffa 29320 A commonly used pattern ba...
sbceqbidf 29321 Equality theorem for class...
sbcies 29322 A special version of class...
moel 29323 "At most one" element in a...
mo5f 29324 Alternate definition of "a...
nmo 29325 Negation of "at most one"....
moimd 29326 "At most one" is preserved...
rmoeqALT 29327 Equality's restricted exis...
2reuswap2 29328 A condition allowing swap ...
reuxfr3d 29329 Transfer existential uniqu...
reuxfr4d 29330 Transfer existential uniqu...
rexunirn 29331 Restricted existential qua...
rmoxfrdOLD 29332 Transfer "at most one" res...
rmoxfrd 29333 Transfer "at most one" res...
ssrmo 29334 "At most one" existential ...
rmo3f 29335 Restricted "at most one" u...
rmo4fOLD 29336 Restricted "at most one" u...
rmo4f 29337 Restricted "at most one" u...
rabrab 29338 Abstract builder restricte...
difrab2 29339 Difference of two restrict...
rabexgfGS 29340 Separation Scheme in terms...
rabsnel 29341 Truth implied by equality ...
rabeqsnd 29342 Conditions for a restricte...
foresf1o 29343 From a surjective function...
rabfodom 29344 Domination relation for re...
abrexdomjm 29345 An indexed set is dominate...
abrexdom2jm 29346 An indexed set is dominate...
abrexexd 29347 Existence of a class abstr...
elabreximd 29348 Class substitution in an i...
elabreximdv 29349 Class substitution in an i...
abrexss 29350 A necessary condition for ...
rabss3d 29351 Subclass law for restricte...
inin 29352 Intersection with an inter...
inindif 29353 See ~ inundif . (Contribu...
difininv 29354 Condition for the intersec...
difeq 29355 Rewriting an equation with...
indifundif 29356 A remarkable equation with...
elpwincl1 29357 Closure of intersection wi...
elpwdifcl 29358 Closure of class differenc...
elpwiuncl 29359 Closure of indexed union w...
elpreq 29360 Equality wihin a pair. (C...
ifeqeqx 29361 An equality theorem tailor...
elimifd 29362 Elimination of a condition...
elim2if 29363 Elimination of two conditi...
elim2ifim 29364 Elimination of two conditi...
ifeq3da 29365 Given an expression ` C ` ...
uniinn0 29366 Sufficient and necessary c...
uniin1 29367 Union of intersection. Ge...
uniin2 29368 Union of intersection. Ge...
difuncomp 29369 Express a class difference...
pwuniss 29370 Condition for a class unio...
elpwunicl 29371 Closure of a set union wit...
cbviunf 29372 Rule used to change the bo...
iuneq12daf 29373 Equality deduction for ind...
iunin1f 29374 Indexed union of intersect...
iunxsngf 29375 A singleton index picks ou...
ssiun3 29376 Subset equivalence for an ...
iinssiun 29377 An indexed intersection is...
ssiun2sf 29378 Subset relationship for an...
iuninc 29379 The union of an increasing...
iundifdifd 29380 The intersection of a set ...
iundifdif 29381 The intersection of a set ...
iunrdx 29382 Re-index an indexed union....
iunpreima 29383 Preimage of an indexed uni...
disjnf 29384 In case ` x ` is not free ...
cbvdisjf 29385 Change bound variables in ...
disjss1f 29386 A subset of a disjoint col...
disjeq1f 29387 Equality theorem for disjo...
disjdifprg 29388 A trivial partition into a...
disjdifprg2 29389 A trivial partition of a s...
disji2f 29390 Property of a disjoint col...
disjif 29391 Property of a disjoint col...
disjorf 29392 Two ways to say that a col...
disjorsf 29393 Two ways to say that a col...
disjif2 29394 Property of a disjoint col...
disjabrex 29395 Rewriting a disjoint colle...
disjabrexf 29396 Rewriting a disjoint colle...
disjpreima 29397 A preimage of a disjoint s...
disjrnmpt 29398 Rewriting a disjoint colle...
disjin 29399 If a collection is disjoin...
disjin2 29400 If a collection is disjoin...
disjxpin 29401 Derive a disjunction over ...
iundisjf 29402 Rewrite a countable union ...
iundisj2f 29403 A disjoint union is disjoi...
disjrdx 29404 Re-index a disjunct collec...
disjex 29405 Two ways to say that two c...
disjexc 29406 A variant of ~ disjex , ap...
disjunsn 29407 Append an element to a dis...
disjun0 29408 Adding the empty element p...
disjiunel 29409 A set of elements B of a d...
disjuniel 29410 A set of elements B of a d...
xpdisjres 29411 Restriction of a constant ...
opeldifid 29412 Ordered pair elementhood o...
difres 29413 Case when class difference...
imadifxp 29414 Image of the difference wi...
relfi 29415 A relation (set) is finite...
funresdm1 29416 Restriction of a disjoint ...
fnunres1 29417 Restriction of a disjoint ...
fcoinver 29418 Build an equivalence relat...
fcoinvbr 29419 Binary relation for the eq...
brabgaf 29420 The law of concretion for ...
brelg 29421 Two things in a binary rel...
br8d 29422 Substitution for an eight-...
opabdm 29423 Domain of an ordered-pair ...
opabrn 29424 Range of an ordered-pair c...
ssrelf 29425 A subclass relationship de...
eqrelrd2 29426 A version of ~ eqrelrdv2 w...
erbr3b 29427 Biconditional for equivale...
iunsnima 29428 Image of a singleton by an...
ac6sf2 29429 Alternate version of ~ ac6...
fnresin 29430 Restriction of a function ...
f1o3d 29431 Describe an implicit one-t...
rinvf1o 29432 Sufficient conditions for ...
fresf1o 29433 Conditions for a restricti...
fmptco1f1o 29434 The action of composing (t...
f1mptrn 29435 Express injection for a ma...
dfimafnf 29436 Alternate definition of th...
funimass4f 29437 Membership relation for th...
elimampt 29438 Membership in the image of...
suppss2f 29439 Show that the support of a...
fovcld 29440 Closure law for an operati...
ofrn 29441 The range of the function ...
ofrn2 29442 The range of the function ...
off2 29443 The function operation pro...
ofresid 29444 Applying an operation rest...
fimarab 29445 Expressing the image of a ...
unipreima 29446 Preimage of a class union....
sspreima 29447 The preimage of a subset i...
opfv 29448 Value of a function produc...
xppreima 29449 The preimage of a Cartesia...
xppreima2 29450 The preimage of a Cartesia...
elunirn2 29451 Condition for the membersh...
abfmpunirn 29452 Membership in a union of a...
rabfmpunirn 29453 Membership in a union of a...
abfmpeld 29454 Membership in an element o...
abfmpel 29455 Membership in an element o...
fmptdF 29456 Domain and co-domain of th...
fmptcof2 29457 Composition of two functio...
fcomptf 29458 Express composition of two...
acunirnmpt 29459 Axiom of choice for the un...
acunirnmpt2 29460 Axiom of choice for the un...
acunirnmpt2f 29461 Axiom of choice for the un...
aciunf1lem 29462 Choice in an index union. ...
aciunf1 29463 Choice in an index union. ...
ofoprabco 29464 Function operation as a co...
ofpreima 29465 Express the preimage of a ...
ofpreima2 29466 Express the preimage of a ...
funcnvmptOLD 29467 Condition for a function i...
funcnvmpt 29468 Condition for a function i...
funcnv5mpt 29469 Two ways to say that a fun...
funcnv4mpt 29470 Two ways to say that a fun...
fgreu 29471 Exactly one point of a fun...
fcnvgreu 29472 If the converse of a relat...
rnmpt2ss 29473 The range of an operation ...
mptssALT 29474 Deduce subset relation of ...
partfun 29475 Rewrite a function defined...
dfcnv2 29476 Alternative definition of ...
mpt2mptxf 29477 Express a two-argument fun...
gtiso 29478 Two ways to write a strict...
isoun 29479 Infer an isomorphism from ...
disjdsct 29480 A disjoint collection is d...
df1stres 29481 Definition for a restricti...
df2ndres 29482 Definition for a restricti...
1stpreimas 29483 The preimage of a singleto...
1stpreima 29484 The preimage by ` 1st ` is...
2ndpreima 29485 The preimage by ` 2nd ` is...
curry2ima 29486 The image of a curried fun...
supssd 29487 Inequality deduction for s...
infssd 29488 Inequality deduction for i...
imafi2 29489 The image by a finite set ...
unifi3 29490 If a union is finite, then...
snct 29491 A singleton is countable. ...
prct 29492 An unordered pair is count...
mpt2cti 29493 An operation is countable ...
abrexct 29494 An image set of a countabl...
mptctf 29495 A countable mapping set is...
abrexctf 29496 An image set of a countabl...
padct 29497 Index a countable set with...
cnvoprab 29498 The converse of a class ab...
f1od2 29499 Describe an implicit one-t...
fcobij 29500 Composing functions with a...
fcobijfs 29501 Composing finitely support...
suppss3 29502 Deduce a function's suppor...
ffs2 29503 Rewrite a function's suppo...
ffsrn 29504 The range of a finitely su...
resf1o 29505 Restriction of functions t...
maprnin 29506 Restricting the range of t...
fpwrelmapffslem 29507 Lemma for ~ fpwrelmapffs ....
fpwrelmap 29508 Define a canonical mapping...
fpwrelmapffs 29509 Define a canonical mapping...
addeq0 29510 Two complex which add up t...
subeqxfrd 29511 Transfer two terms of a su...
znsqcld 29512 Squaring of nonzero relati...
nn0sqeq1 29513 Integer square one. (Cont...
1neg1t1neg1 29514 An integer unit times itse...
nnmulge 29515 Multiplying by an integer ...
lt2addrd 29516 If the right-hand side of ...
xrlelttric 29517 Trichotomy law for extende...
xaddeq0 29518 Two extended reals which a...
xrinfm 29519 The extended real numbers ...
le2halvesd 29520 A sum is less than the who...
xraddge02 29521 A number is less than or e...
xrge0addge 29522 A number is less than or e...
xlt2addrd 29523 If the right-hand side of ...
xrsupssd 29524 Inequality deduction for s...
xrge0infss 29525 Any subset of nonnegative ...
xrge0infssd 29526 Inequality deduction for i...
xrge0addcld 29527 Nonnegative extended reals...
xrge0subcld 29528 Condition for closure of n...
infxrge0lb 29529 A member of a set of nonne...
infxrge0glb 29530 The infimum of a set of no...
infxrge0gelb 29531 The infimum of a set of no...
dfrp2 29532 Alternate definition of th...
xrofsup 29533 The supremum is preserved ...
supxrnemnf 29534 The supremum of a nonempty...
xrhaus 29535 The topology of the extend...
joiniooico 29536 Disjoint joining an open i...
ubico 29537 A right-open interval does...
xeqlelt 29538 Equality in terms of 'less...
eliccelico 29539 Relate elementhood to a cl...
elicoelioo 29540 Relate elementhood to a cl...
iocinioc2 29541 Intersection between two o...
xrdifh 29542 Class difference of a half...
iocinif 29543 Relate intersection of two...
difioo 29544 The difference between two...
difico 29545 The difference between two...
uzssico 29546 Upper integer sets are a s...
fz2ssnn0 29547 A finite set of sequential...
nndiffz1 29548 Upper set of the positive ...
ssnnssfz 29549 For any finite subset of `...
fzspl 29550 Split the last element of ...
fzdif2 29551 Split the last element of ...
fzodif2 29552 Split the last element of ...
fzsplit3 29553 Split a finite interval of...
bcm1n 29554 The proportion of one bino...
iundisjfi 29555 Rewrite a countable union ...
iundisj2fi 29556 A disjoint union is disjoi...
iundisjcnt 29557 Rewrite a countable union ...
iundisj2cnt 29558 A countable disjoint union...
f1ocnt 29559 Given a countable set ` A ...
fz1nnct 29560 NN and integer ranges star...
fz1nntr 29561 NN and integer ranges star...
hashunif 29562 The cardinality of a disjo...
numdenneg 29563 Numerator and denominator ...
divnumden2 29564 Calculate the reduced form...
nnindf 29565 Principle of Mathematical ...
nnindd 29566 Principle of Mathematical ...
nn0min 29567 Extracting the minimum pos...
ltesubnnd 29568 Subtracting an integer num...
fprodeq02 29569 If one of the factors is z...
pr01ssre 29570 The range of the indicator...
fprodex01 29571 A product of factors equal...
prodpr 29572 A product over a pair is t...
prodtp 29573 A product over a triple is...
fsumub 29574 An upper bound for a term ...
fsumiunle 29575 Upper bound for a sum of n...
dfdec100 29576 Split the hundreds from a ...
dfdp2OLD 29579 Obsolete version of ~ df-d...
dp2eq1 29580 Equality theorem for the d...
dp2eq2 29581 Equality theorem for the d...
dp2eq1i 29582 Equality theorem for the d...
dp2eq2i 29583 Equality theorem for the d...
dp2eq12i 29584 Equality theorem for the d...
dp20u 29585 Add a zero in the tenths (...
dp20h 29586 Add a zero in the unit pla...
dp2cl 29587 Closure for the decimal fr...
dp2clq 29588 Closure for a decimal frac...
rpdp2cl 29589 Closure for a decimal frac...
rpdp2cl2 29590 Closure for a decimal frac...
dp2lt10 29591 Decimal fraction builds re...
dp2lt 29592 Comparing two decimal frac...
dp2ltsuc 29593 Comparing a decimal fracti...
dp2ltc 29594 Comparing two decimal expa...
dpval 29597 Define the value of the de...
dpcl 29598 Prove that the closure of ...
dpfrac1 29599 Prove a simple equivalence...
dpfrac1OLD 29600 Obsolete version of ~ dpfr...
dpval2 29601 Value of the decimal point...
dpval3 29602 Value of the decimal point...
dpmul10 29603 Multiply by 10 a decimal e...
decdiv10 29604 Divide a decimal number by...
dpmul100 29605 Multiply by 100 a decimal ...
dp3mul10 29606 Multiply by 10 a decimal e...
dpmul1000 29607 Multiply by 1000 a decimal...
dpval3rp 29608 Value of the decimal point...
dp0u 29609 Add a zero in the tenths p...
dp0h 29610 Remove a zero in the units...
rpdpcl 29611 Closure of the decimal poi...
dplt 29612 Comparing two decimal expa...
dplti 29613 Comparing a decimal expans...
dpgti 29614 Comparing a decimal expans...
dpltc 29615 Comparing two decimal inte...
dpexpp1 29616 Add one zero to the mantis...
0dp2dp 29617 Multiply by 10 a decimal e...
dpadd2 29618 Addition with one decimal,...
dpadd 29619 Addition with one decimal....
dpadd3 29620 Addition with two decimals...
dpmul 29621 Multiplication with one de...
dpmul4 29622 An upper bound to multipli...
threehalves 29623 Example theorem demonstrat...
1mhdrd 29624 Example theorem demonstrat...
xdivval 29627 Value of division: the (un...
xrecex 29628 Existence of reciprocal of...
xmulcand 29629 Cancellation law for exten...
xreceu 29630 Existential uniqueness of ...
xdivcld 29631 Closure law for the extend...
xdivcl 29632 Closure law for the extend...
xdivmul 29633 Relationship between divis...
rexdiv 29634 The extended real division...
xdivrec 29635 Relationship between divis...
xdivid 29636 A number divided by itself...
xdiv0 29637 Division into zero is zero...
xdiv0rp 29638 Division into zero is zero...
eliccioo 29639 Membership in a closed int...
elxrge02 29640 Elementhood in the set of ...
xdivpnfrp 29641 Plus infinity divided by a...
rpxdivcld 29642 Closure law for extended d...
xrpxdivcld 29643 Closure law for extended d...
bhmafibid1 29644 The Brahmagupta-Fibonacci ...
bhmafibid2 29645 The Brahmagupta-Fibonacci ...
2sqn0 29646 If the sum of two squares ...
2sqcoprm 29647 If the sum of two squares ...
2sqmod 29648 Given two decompositions o...
2sqmo 29649 There exists at most one d...
ressplusf 29650 The group operation functi...
ressnm 29651 The norm in a restricted s...
abvpropd2 29652 Weaker version of ~ abvpro...
oppgle 29653 less-than relation of an o...
oppglt 29654 less-than relation of an o...
ressprs 29655 The restriction of a preor...
oduprs 29656 Being a preset is a self-d...
posrasymb 29657 A poset ordering is asymet...
tospos 29658 A Toset is a Poset. (Cont...
resspos 29659 The restriction of a Poset...
resstos 29660 The restriction of a Toset...
tleile 29661 In a Toset, two elements m...
tltnle 29662 In a Toset, less-than is e...
odutos 29663 Being a toset is a self-du...
tlt2 29664 In a Toset, two elements m...
tlt3 29665 In a Toset, two elements m...
trleile 29666 In a Toset, two elements m...
toslublem 29667 Lemma for ~ toslub and ~ x...
toslub 29668 In a toset, the lowest upp...
tosglblem 29669 Lemma for ~ tosglb and ~ x...
tosglb 29670 Same theorem as ~ toslub ,...
clatp0cl 29671 The poset zero of a comple...
clatp1cl 29672 The poset one of a complet...
xrs0 29675 The zero of the extended r...
xrslt 29676 The "strictly less than" r...
xrsinvgval 29677 The inversion operation in...
xrsmulgzz 29678 The "multiple" function in...
xrstos 29679 The extended real numbers ...
xrsclat 29680 The extended real numbers ...
xrsp0 29681 The poset 0 of the extende...
xrsp1 29682 The poset 1 of the extende...
ressmulgnn 29683 Values for the group multi...
ressmulgnn0 29684 Values for the group multi...
xrge0base 29685 The base of the extended n...
xrge00 29686 The zero of the extended n...
xrge0plusg 29687 The additive law of the ex...
xrge0le 29688 The lower-or-equal relatio...
xrge0mulgnn0 29689 The group multiple functio...
xrge0addass 29690 Associativity of extended ...
xrge0addgt0 29691 The sum of nonnegative and...
xrge0adddir 29692 Right-distributivity of ex...
xrge0adddi 29693 Left-distributivity of ext...
xrge0npcan 29694 Extended nonnegative real ...
fsumrp0cl 29695 Closure of a finite sum of...
abliso 29696 The image of an Abelian gr...
isomnd 29701 A (left) ordered monoid is...
isogrp 29702 A (left) ordered group is ...
ogrpgrp 29703 An left ordered group is a...
omndmnd 29704 A left ordered monoid is a...
omndtos 29705 A left ordered monoid is a...
omndadd 29706 In an ordered monoid, the ...
omndaddr 29707 In a right ordered monoid,...
omndadd2d 29708 In a commutative left orde...
omndadd2rd 29709 In a left- and right- orde...
submomnd 29710 A submonoid of an ordered ...
xrge0omnd 29711 The nonnegative extended r...
omndmul2 29712 In an ordered monoid, the ...
omndmul3 29713 In an ordered monoid, the ...
omndmul 29714 In a commutative ordered m...
ogrpinvOLD 29715 In an ordered group, the o...
ogrpinv0le 29716 In an ordered group, the o...
ogrpsub 29717 In an ordered group, the o...
ogrpaddlt 29718 In an ordered group, stric...
ogrpaddltbi 29719 In a right ordered group, ...
ogrpaddltrd 29720 In a right ordered group, ...
ogrpaddltrbid 29721 In a right ordered group, ...
ogrpsublt 29722 In an ordered group, stric...
ogrpinv0lt 29723 In an ordered group, the o...
ogrpinvlt 29724 In an ordered group, the o...
sgnsv 29727 The sign mapping. (Contri...
sgnsval 29728 The sign value. (Contribu...
sgnsf 29729 The sign function. (Contr...
inftmrel 29734 The infinitesimal relation...
isinftm 29735 Express ` x ` is infinites...
isarchi 29736 Express the predicate " ` ...
pnfinf 29737 Plus infinity is an infini...
xrnarchi 29738 The completed real line is...
isarchi2 29739 Alternative way to express...
submarchi 29740 A submonoid is archimedean...
isarchi3 29741 This is the usual definiti...
archirng 29742 Property of Archimedean or...
archirngz 29743 Property of Archimedean le...
archiexdiv 29744 In an Archimedean group, g...
archiabllem1a 29745 Lemma for ~ archiabl : In...
archiabllem1b 29746 Lemma for ~ archiabl . (C...
archiabllem1 29747 Archimedean ordered groups...
archiabllem2a 29748 Lemma for ~ archiabl , whi...
archiabllem2c 29749 Lemma for ~ archiabl . (C...
archiabllem2b 29750 Lemma for ~ archiabl . (C...
archiabllem2 29751 Archimedean ordered groups...
archiabl 29752 Archimedean left- and righ...
isslmd 29755 The predicate "is a semimo...
slmdlema 29756 Lemma for properties of a ...
lmodslmd 29757 Left semimodules generaliz...
slmdcmn 29758 A semimodule is a commutat...
slmdmnd 29759 A semimodule is a monoid. ...
slmdsrg 29760 The scalar component of a ...
slmdbn0 29761 The base set of a semimodu...
slmdacl 29762 Closure of ring addition f...
slmdmcl 29763 Closure of ring multiplica...
slmdsn0 29764 The set of scalars in a se...
slmdvacl 29765 Closure of vector addition...
slmdass 29766 Semiring left module vecto...
slmdvscl 29767 Closure of scalar product ...
slmdvsdi 29768 Distributive law for scala...
slmdvsdir 29769 Distributive law for scala...
slmdvsass 29770 Associative law for scalar...
slmd0cl 29771 The ring zero in a semimod...
slmd1cl 29772 The ring unit in a semirin...
slmdvs1 29773 Scalar product with ring u...
slmd0vcl 29774 The zero vector is a vecto...
slmd0vlid 29775 Left identity law for the ...
slmd0vrid 29776 Right identity law for the...
slmd0vs 29777 Zero times a vector is the...
slmdvs0 29778 Anything times the zero ve...
gsumle 29779 A finite sum in an ordered...
gsummpt2co 29780 Split a finite sum into a ...
gsummpt2d 29781 Express a finite sum over ...
gsumvsca1 29782 Scalar product of a finite...
gsumvsca2 29783 Scalar product of a finite...
gsummptres 29784 Extend a finite group sum ...
xrge0tsmsd 29785 Any finite or infinite sum...
xrge0tsmsbi 29786 Any limit of a finite or i...
xrge0tsmseq 29787 Any limit of a finite or i...
rngurd 29788 Deduce the unit of a ring ...
ress1r 29789 ` 1r ` is unaffected by re...
dvrdir 29790 Distributive law for the d...
rdivmuldivd 29791 Multiplication of two rati...
ringinvval 29792 The ring inverse expressed...
dvrcan5 29793 Cancellation law for commo...
subrgchr 29794 If ` A ` is a subring of `...
isorng 29799 An ordered ring is a ring ...
orngring 29800 An ordered ring is a ring....
orngogrp 29801 An ordered ring is an orde...
isofld 29802 An ordered field is a fiel...
orngmul 29803 In an ordered ring, the or...
orngsqr 29804 In an ordered ring, all sq...
ornglmulle 29805 In an ordered ring, multip...
orngrmulle 29806 In an ordered ring, multip...
ornglmullt 29807 In an ordered ring, multip...
orngrmullt 29808 In an ordered ring, multip...
orngmullt 29809 In an ordered ring, the st...
ofldfld 29810 An ordered field is a fiel...
ofldtos 29811 An ordered field is a tota...
orng0le1 29812 In an ordered ring, the ri...
ofldlt1 29813 In an ordered field, the r...
ofldchr 29814 The characteristic of an o...
suborng 29815 Every subring of an ordere...
subofld 29816 Every subfield of an order...
isarchiofld 29817 Axiom of Archimedes : a ch...
rhmdvdsr 29818 A ring homomorphism preser...
rhmopp 29819 A ring homomorphism is als...
elrhmunit 29820 Ring homomorphisms preserv...
rhmdvd 29821 A ring homomorphism preser...
rhmunitinv 29822 Ring homomorphisms preserv...
kerunit 29823 If a unit element lies in ...
reldmresv 29826 The scalar restriction is ...
resvval 29827 Value of structure restric...
resvid2 29828 General behavior of trivia...
resvval2 29829 Value of nontrivial struct...
resvsca 29830 Base set of a structure re...
resvlem 29831 Other elements of a struct...
resvbas 29832 ` Base ` is unaffected by ...
resvplusg 29833 ` +g ` is unaffected by sc...
resvvsca 29834 ` .s ` is unaffected by sc...
resvmulr 29835 ` .s ` is unaffected by sc...
resv0g 29836 ` 0g ` is unaffected by sc...
resv1r 29837 ` 1r ` is unaffected by sc...
resvcmn 29838 Scalar restriction preserv...
gzcrng 29839 The gaussian integers form...
reofld 29840 The real numbers form an o...
nn0omnd 29841 The nonnegative integers f...
rearchi 29842 The field of the real numb...
nn0archi 29843 The monoid of the nonnegat...
xrge0slmod 29844 The extended nonnegative r...
symgfcoeu 29845 Uniqueness property of per...
psgndmfi 29846 For a finite base set, the...
psgnid 29847 Permutation sign of the id...
pmtrprfv2 29848 In a transposition of two ...
pmtrto1cl 29849 Useful lemma for the follo...
psgnfzto1stlem 29850 Lemma for ~ psgnfzto1st . ...
fzto1stfv1 29851 Value of our permutation `...
fzto1st1 29852 Special case where the per...
fzto1st 29853 The function moving one el...
fzto1stinvn 29854 Value of the inverse of ou...
psgnfzto1st 29855 The permutation sign for m...
pmtridf1o 29856 Transpositions of ` X ` an...
pmtridfv1 29857 Value at X of the transpos...
pmtridfv2 29858 Value at Y of the transpos...
smatfval 29861 Value of the submatrix. (...
smatrcl 29862 Closure of the rectangular...
smatlem 29863 Lemma for the next theorem...
smattl 29864 Entries of a submatrix, to...
smattr 29865 Entries of a submatrix, to...
smatbl 29866 Entries of a submatrix, bo...
smatbr 29867 Entries of a submatrix, bo...
smatcl 29868 Closure of the square subm...
matmpt2 29869 Write a square matrix as a...
1smat1 29870 The submatrix of the ident...
submat1n 29871 One case where the submatr...
submatres 29872 Special case where the sub...
submateqlem1 29873 Lemma for ~ submateq . (C...
submateqlem2 29874 Lemma for ~ submateq . (C...
submateq 29875 Sufficient condition for t...
submatminr1 29876 If we take a submatrix by ...
lmatval 29879 Value of the literal matri...
lmatfval 29880 Entries of a literal matri...
lmatfvlem 29881 Useful lemma to extract li...
lmatcl 29882 Closure of the literal mat...
lmat22lem 29883 Lemma for ~ lmat22e11 and ...
lmat22e11 29884 Entry of a 2x2 literal mat...
lmat22e12 29885 Entry of a 2x2 literal mat...
lmat22e21 29886 Entry of a 2x2 literal mat...
lmat22e22 29887 Entry of a 2x2 literal mat...
lmat22det 29888 The determinant of a liter...
mdetpmtr1 29889 The determinant of a matri...
mdetpmtr2 29890 The determinant of a matri...
mdetpmtr12 29891 The determinant of a matri...
mdetlap1 29892 A Laplace expansion of the...
madjusmdetlem1 29893 Lemma for ~ madjusmdet . ...
madjusmdetlem2 29894 Lemma for ~ madjusmdet . ...
madjusmdetlem3 29895 Lemma for ~ madjusmdet . ...
madjusmdetlem4 29896 Lemma for ~ madjusmdet . ...
madjusmdet 29897 Express the cofactor of th...
mdetlap 29898 Laplace expansion of the d...
fvproj 29899 Value of a function on pai...
fimaproj 29900 Image of a cartesian produ...
txomap 29901 Given two open maps ` F ` ...
qtopt1 29902 If every equivalence class...
qtophaus 29903 If an open map's graph in ...
circtopn 29904 The topology of the unit c...
circcn 29905 The function gluing the re...
reff 29906 For any cover refinement, ...
locfinreflem 29907 A locally finite refinemen...
locfinref 29908 A locally finite refinemen...
iscref 29911 The property that every op...
crefeq 29912 Equality theorem for the "...
creftop 29913 A space where every open c...
crefi 29914 The property that every op...
crefdf 29915 A formulation of ~ crefi e...
crefss 29916 The "every open cover has ...
cmpcref 29917 Equivalent definition of c...
cmpfiref 29918 Every open cover of a Comp...
ldlfcntref 29921 Every open cover of a Lind...
ispcmp 29924 The predicate "is a paraco...
cmppcmp 29925 Every compact space is par...
dispcmp 29926 Every discrete space is pa...
pcmplfin 29927 Given a paracompact topolo...
pcmplfinf 29928 Given a paracompact topolo...
metidval 29933 Value of the metric identi...
metidss 29934 As a relation, the metric ...
metidv 29935 ` A ` and ` B ` identify b...
metideq 29936 Basic property of the metr...
metider 29937 The metric identification ...
pstmval 29938 Value of the metric induce...
pstmfval 29939 Function value of the metr...
pstmxmet 29940 The metric induced by a ps...
hauseqcn 29941 In a Hausdorff topology, t...
unitsscn 29942 The closed unit is a subse...
elunitrn 29943 The closed unit is a subse...
elunitcn 29944 The closed unit is a subse...
elunitge0 29945 An element of the closed u...
unitssxrge0 29946 The closed unit is a subse...
unitdivcld 29947 Necessary conditions for a...
iistmd 29948 The closed unit forms a to...
unicls 29949 The union of the closed se...
tpr2tp 29950 The usual topology on ` ( ...
tpr2uni 29951 The usual topology on ` ( ...
xpinpreima 29952 Rewrite the cartesian prod...
xpinpreima2 29953 Rewrite the cartesian prod...
sqsscirc1 29954 The complex square of side...
sqsscirc2 29955 The complex square of side...
cnre2csqlem 29956 Lemma for ~ cnre2csqima . ...
cnre2csqima 29957 Image of a centered square...
tpr2rico 29958 For any point of an open s...
cnvordtrestixx 29959 The restriction of the 'gr...
prsdm 29960 Domain of the relation of ...
prsrn 29961 Range of the relation of a...
prsss 29962 Relation of a subpreset. ...
prsssdm 29963 Domain of a subpreset rela...
ordtprsval 29964 Value of the order topolog...
ordtprsuni 29965 Value of the order topolog...
ordtcnvNEW 29966 The order dual generates t...
ordtrestNEW 29967 The subspace topology of a...
ordtrest2NEWlem 29968 Lemma for ~ ordtrest2NEW ....
ordtrest2NEW 29969 An interval-closed set ` A...
ordtconnlem1 29970 Connectedness in the order...
ordtconn 29971 Connectedness in the order...
mndpluscn 29972 A mapping that is both a h...
mhmhmeotmd 29973 Deduce a Topological Monoi...
rmulccn 29974 Multiplication by a real c...
raddcn 29975 Addition in the real numbe...
xrmulc1cn 29976 The operation multiplying ...
fmcncfil 29977 The image of a Cauchy filt...
xrge0hmph 29978 The extended nonnegative r...
xrge0iifcnv 29979 Define a bijection from ` ...
xrge0iifcv 29980 The defined function's val...
xrge0iifiso 29981 The defined bijection from...
xrge0iifhmeo 29982 Expose a homeomorphism fro...
xrge0iifhom 29983 The defined function from ...
xrge0iif1 29984 Condition for the defined ...
xrge0iifmhm 29985 The defined function from ...
xrge0pluscn 29986 The addition operation of ...
xrge0mulc1cn 29987 The operation multiplying ...
xrge0tps 29988 The extended nonnegative r...
xrge0topn 29989 The topology of the extend...
xrge0haus 29990 The topology of the extend...
xrge0tmdOLD 29991 The extended nonnegative r...
xrge0tmd 29992 The extended nonnegative r...
lmlim 29993 Relate a limit in a given ...
lmlimxrge0 29994 Relate a limit in the nonn...
rge0scvg 29995 Implication of convergence...
fsumcvg4 29996 A serie with finite suppor...
pnfneige0 29997 A neighborhood of ` +oo ` ...
lmxrge0 29998 Express "sequence ` F ` co...
lmdvg 29999 If a monotonic sequence of...
lmdvglim 30000 If a monotonic real number...
pl1cn 30001 A univariate polynomial is...
zringnm 30004 The norm (function) for a ...
zzsnm 30005 The norm of the ring of th...
zlm0 30006 Zero of a ` ZZ ` -module. ...
zlm1 30007 Unit of a ` ZZ ` -module (...
zlmds 30008 Distance in a ` ZZ ` -modu...
zlmtset 30009 Topology in a ` ZZ ` -modu...
zlmnm 30010 Norm of a ` ZZ ` -module (...
zhmnrg 30011 The ` ZZ ` -module built f...
nmmulg 30012 The norm of a group produc...
zrhnm 30013 The norm of the image by `...
cnzh 30014 The ` ZZ ` -module of ` CC...
rezh 30015 The ` ZZ ` -module of ` RR...
qqhval 30018 Value of the canonical hom...
zrhf1ker 30019 The kernel of the homomorp...
zrhchr 30020 The kernel of the homomorp...
zrhker 30021 The kernel of the homomorp...
zrhunitpreima 30022 The preimage by ` ZRHom ` ...
elzrhunit 30023 Condition for the image by...
elzdif0 30024 Lemma for ~ qqhval2 . (Co...
qqhval2lem 30025 Lemma for ~ qqhval2 . (Co...
qqhval2 30026 Value of the canonical hom...
qqhvval 30027 Value of the canonical hom...
qqh0 30028 The image of ` 0 ` by the ...
qqh1 30029 The image of ` 1 ` by the ...
qqhf 30030 ` QQHom ` as a function. ...
qqhvq 30031 The image of a quotient by...
qqhghm 30032 The ` QQHom ` homomorphism...
qqhrhm 30033 The ` QQHom ` homomorphism...
qqhnm 30034 The norm of the image by `...
qqhcn 30035 The ` QQHom ` homomorphism...
qqhucn 30036 The ` QQHom ` homomorphism...
rrhval 30040 Value of the canonical hom...
rrhcn 30041 If the topology of ` R ` i...
rrhf 30042 If the topology of ` R ` i...
isrrext 30044 Express the property " ` R...
rrextnrg 30045 An extension of ` RR ` is ...
rrextdrg 30046 An extension of ` RR ` is ...
rrextnlm 30047 The norm of an extension o...
rrextchr 30048 The ring characteristic of...
rrextcusp 30049 An extension of ` RR ` is ...
rrexttps 30050 An extension of ` RR ` is ...
rrexthaus 30051 The topology of an extensi...
rrextust 30052 The uniformity of an exten...
rerrext 30053 The field of the real numb...
cnrrext 30054 The field of the complex n...
qqtopn 30055 The topology of the field ...
rrhfe 30056 If ` R ` is an extension o...
rrhcne 30057 If ` R ` is an extension o...
rrhqima 30058 The ` RRHom ` homomorphism...
rrh0 30059 The image of ` 0 ` by the ...
xrhval 30062 The value of the embedding...
zrhre 30063 The ` ZRHom ` homomorphism...
qqhre 30064 The ` QQHom ` homomorphism...
rrhre 30065 The ` RRHom ` homomorphism...
relmntop 30068 Manifold is a relation. (...
ismntoplly 30069 Property of being a manifo...
ismntop 30070 Property of being a manifo...
nexple 30071 A lower bound for an expon...
indv 30074 Value of the indicator fun...
indval 30075 Value of the indicator fun...
indval2 30076 Alternate value of the ind...
indf 30077 An indicator function as a...
indfval 30078 Value of the indicator fun...
ind1 30079 Value of the indicator fun...
ind0 30080 Value of the indicator fun...
ind1a 30081 Value of the indicator fun...
indpi1 30082 Preimage of the singleton ...
indsum 30083 Finite sum of a product wi...
indsumin 30084 Finite sum of a product wi...
prodindf 30085 The product of indicators ...
indf1o 30086 The bijection between a po...
indpreima 30087 A function with range ` { ...
indf1ofs 30088 The bijection between fini...
esumex 30091 An extended sum is a set b...
esumcl 30092 Closure for extended sum i...
esumeq12dvaf 30093 Equality deduction for ext...
esumeq12dva 30094 Equality deduction for ext...
esumeq12d 30095 Equality deduction for ext...
esumeq1 30096 Equality theorem for an ex...
esumeq1d 30097 Equality theorem for an ex...
esumeq2 30098 Equality theorem for exten...
esumeq2d 30099 Equality deduction for ext...
esumeq2dv 30100 Equality deduction for ext...
esumeq2sdv 30101 Equality deduction for ext...
nfesum1 30102 Bound-variable hypothesis ...
nfesum2 30103 Bound-variable hypothesis ...
cbvesum 30104 Change bound variable in a...
cbvesumv 30105 Change bound variable in a...
esumid 30106 Identify the extended sum ...
esumgsum 30107 A finite extended sum is t...
esumval 30108 Develop the value of the e...
esumel 30109 The extended sum is a limi...
esumnul 30110 Extended sum over the empt...
esum0 30111 Extended sum of zero. (Co...
esumf1o 30112 Re-index an extended sum u...
esumc 30113 Convert from the collectio...
esumrnmpt 30114 Rewrite an extended sum in...
esumsplit 30115 Split an extended sum into...
esummono 30116 Extended sum is monotonic....
esumpad 30117 Extend an extended sum by ...
esumpad2 30118 Remove zeroes from an exte...
esumadd 30119 Addition of infinite sums....
esumle 30120 If all of the terms of an ...
gsumesum 30121 Relate a group sum on ` ( ...
esumlub 30122 The extended sum is the lo...
esumaddf 30123 Addition of infinite sums....
esumlef 30124 If all of the terms of an ...
esumcst 30125 The extended sum of a cons...
esumsnf 30126 The extended sum of a sing...
esumsn 30127 The extended sum of a sing...
esumpr 30128 Extended sum over a pair. ...
esumpr2 30129 Extended sum over a pair, ...
esumrnmpt2 30130 Rewrite an extended sum in...
esumfzf 30131 Formulating a partial exte...
esumfsup 30132 Formulating an extended su...
esumfsupre 30133 Formulating an extended su...
esumss 30134 Change the index set to a ...
esumpinfval 30135 The value of the extended ...
esumpfinvallem 30136 Lemma for ~ esumpfinval . ...
esumpfinval 30137 The value of the extended ...
esumpfinvalf 30138 Same as ~ esumpfinval , mi...
esumpinfsum 30139 The value of the extended ...
esumpcvgval 30140 The value of the extended ...
esumpmono 30141 The partial sums in an ext...
esumcocn 30142 Lemma for ~ esummulc2 and ...
esummulc1 30143 An extended sum multiplied...
esummulc2 30144 An extended sum multiplied...
esumdivc 30145 An extended sum divided by...
hashf2 30146 Lemma for ~ hasheuni . (C...
hasheuni 30147 The cardinality of a disjo...
esumcvg 30148 The sequence of partial su...
esumcvg2 30149 Simpler version of ~ esumc...
esumcvgsum 30150 The value of the extended ...
esumsup 30151 Express an extended sum as...
esumgect 30152 "Send ` n ` to ` +oo ` " i...
esumcvgre 30153 All terms of a converging ...
esum2dlem 30154 Lemma for ~ esum2d (finite...
esum2d 30155 Write a double extended su...
esumiun 30156 Sum over a non necessarily...
ofceq 30159 Equality theorem for funct...
ofcfval 30160 Value of an operation appl...
ofcval 30161 Evaluate a function/consta...
ofcfn 30162 The function operation pro...
ofcfeqd2 30163 Equality theorem for funct...
ofcfval3 30164 General value of ` ( F oFC...
ofcf 30165 The function/constant oper...
ofcfval2 30166 The function operation exp...
ofcfval4 30167 The function/constant oper...
ofcc 30168 Left operation by a consta...
ofcof 30169 Relate function operation ...
sigaex 30172 Lemma for ~ issiga and ~ i...
sigaval 30173 The set of sigma-algebra w...
issiga 30174 An alternative definition ...
isrnsigaOLD 30175 The property of being a si...
isrnsiga 30176 The property of being a si...
0elsiga 30177 A sigma-algebra contains t...
baselsiga 30178 A sigma-algebra contains i...
sigasspw 30179 A sigma-algebra is a set o...
sigaclcu 30180 A sigma-algebra is closed ...
sigaclcuni 30181 A sigma-algebra is closed ...
sigaclfu 30182 A sigma-algebra is closed ...
sigaclcu2 30183 A sigma-algebra is closed ...
sigaclfu2 30184 A sigma-algebra is closed ...
sigaclcu3 30185 A sigma-algebra is closed ...
issgon 30186 Property of being a sigma-...
sgon 30187 A sigma-algebra is a sigma...
elsigass 30188 An element of a sigma-alge...
elrnsiga 30189 Dropping the base informat...
isrnsigau 30190 The property of being a si...
unielsiga 30191 A sigma-algebra contains i...
dmvlsiga 30192 Lebesgue-measurable subset...
pwsiga 30193 Any power set forms a sigm...
prsiga 30194 The smallest possible sigm...
sigaclci 30195 A sigma-algebra is closed ...
difelsiga 30196 A sigma-algebra is closed ...
unelsiga 30197 A sigma-algebra is closed ...
inelsiga 30198 A sigma-algebra is closed ...
sigainb 30199 Building a sigma-algebra f...
insiga 30200 The intersection of a coll...
sigagenval 30203 Value of the generated sig...
sigagensiga 30204 A generated sigma-algebra ...
sgsiga 30205 A generated sigma-algebra ...
unisg 30206 The sigma-algebra generate...
dmsigagen 30207 A sigma-algebra can be gen...
sssigagen 30208 A set is a subset of the s...
sssigagen2 30209 A subset of the generating...
elsigagen 30210 Any element of a set is al...
elsigagen2 30211 Any countable union of ele...
sigagenss 30212 The generated sigma-algebr...
sigagenss2 30213 Sufficient condition for i...
sigagenid 30214 The sigma-algebra generate...
ispisys 30215 The property of being a pi...
ispisys2 30216 The property of being a pi...
inelpisys 30217 Pi-systems are closed unde...
sigapisys 30218 All sigma-algebras are pi-...
isldsys 30219 The property of being a la...
pwldsys 30220 The power set of the unive...
unelldsys 30221 Lambda-systems are closed ...
sigaldsys 30222 All sigma-algebras are lam...
ldsysgenld 30223 The intersection of all la...
sigapildsyslem 30224 Lemma for ~ sigapildsys . ...
sigapildsys 30225 Sigma-algebra are exactly ...
ldgenpisyslem1 30226 Lemma for ~ ldgenpisys . ...
ldgenpisyslem2 30227 Lemma for ~ ldgenpisys . ...
ldgenpisyslem3 30228 Lemma for ~ ldgenpisys . ...
ldgenpisys 30229 The lambda system ` E ` ge...
dynkin 30230 Dynkin's lambda-pi theorem...
isros 30231 The property of being a ri...
rossspw 30232 A ring of sets is a collec...
0elros 30233 A ring of sets contains th...
unelros 30234 A ring of sets is closed u...
difelros 30235 A ring of sets is closed u...
inelros 30236 A ring of sets is closed u...
fiunelros 30237 A ring of sets is closed u...
issros 30238 The property of being a se...
srossspw 30239 A semi-ring of sets is a c...
0elsros 30240 A semi-ring of sets contai...
inelsros 30241 A semi-ring of sets is clo...
diffiunisros 30242 In semiring of sets, compl...
rossros 30243 Rings of sets are semi-rin...
brsiga 30246 The Borel Algebra on real ...
brsigarn 30247 The Borel Algebra is a sig...
brsigasspwrn 30248 The Borel Algebra is a set...
unibrsiga 30249 The union of the Borel Alg...
cldssbrsiga 30250 A Borel Algebra contains a...
sxval 30253 Value of the product sigma...
sxsiga 30254 A product sigma-algebra is...
sxsigon 30255 A product sigma-algebra is...
sxuni 30256 The base set of a product ...
elsx 30257 The cartesian product of t...
measbase 30260 The base set of a measure ...
measval 30261 The value of the ` measure...
ismeas 30262 The property of being a me...
isrnmeas 30263 The property of being a me...
dmmeas 30264 The domain of a measure is...
measbasedom 30265 The base set of a measure ...
measfrge0 30266 A measure is a function ov...
measfn 30267 A measure is a function on...
measvxrge0 30268 The values of a measure ar...
measvnul 30269 The measure of the empty s...
measge0 30270 A measure is nonnegative. ...
measle0 30271 If the measure of a given ...
measvun 30272 The measure of a countable...
measxun2 30273 The measure the union of t...
measun 30274 The measure the union of t...
measvunilem 30275 Lemma for ~ measvuni . (C...
measvunilem0 30276 Lemma for ~ measvuni . (C...
measvuni 30277 The measure of a countable...
measssd 30278 A measure is monotone with...
measunl 30279 A measure is sub-additive ...
measiuns 30280 The measure of the union o...
measiun 30281 A measure is sub-additive....
meascnbl 30282 A measure is continuous fr...
measinblem 30283 Lemma for ~ measinb . (Co...
measinb 30284 Building a measure restric...
measres 30285 Building a measure restric...
measinb2 30286 Building a measure restric...
measdivcstOLD 30287 Division of a measure by a...
measdivcst 30288 Division of a measure by a...
cntmeas 30289 The Counting measure is a ...
pwcntmeas 30290 The counting measure is a ...
cntnevol 30291 Counting and Lebesgue meas...
voliune 30292 The Lebesgue measure funct...
volfiniune 30293 The Lebesgue measure funct...
volmeas 30294 The Lebesgue measure is a ...
ddeval1 30297 Value of the delta measure...
ddeval0 30298 Value of the delta measure...
ddemeas 30299 The Dirac delta measure is...
relae 30303 'almost everywhere' is a r...
brae 30304 'almost everywhere' relati...
braew 30305 'almost everywhere' relati...
truae 30306 A truth holds almost every...
aean 30307 A conjunction holds almost...
faeval 30309 Value of the 'almost every...
relfae 30310 The 'almost everywhere' bu...
brfae 30311 'almost everywhere' relati...
ismbfm 30314 The predicate " ` F ` is a...
elunirnmbfm 30315 The property of being a me...
mbfmfun 30316 A measurable function is a...
mbfmf 30317 A measurable function as a...
isanmbfm 30318 The predicate to be a meas...
mbfmcnvima 30319 The preimage by a measurab...
mbfmbfm 30320 A measurable function to a...
mbfmcst 30321 A constant function is mea...
1stmbfm 30322 The first projection map i...
2ndmbfm 30323 The second projection map ...
imambfm 30324 If the sigma-algebra in th...
cnmbfm 30325 A continuous function is m...
mbfmco 30326 The composition of two mea...
mbfmco2 30327 The pair building of two m...
mbfmvolf 30328 Measurable functions with ...
elmbfmvol2 30329 Measurable functions with ...
mbfmcnt 30330 All functions are measurab...
br2base 30331 The base set for the gener...
dya2ub 30332 An upper bound for a dyadi...
sxbrsigalem0 30333 The closed half-spaces of ...
sxbrsigalem3 30334 The sigma-algebra generate...
dya2iocival 30335 The function ` I ` returns...
dya2iocress 30336 Dyadic intervals are subse...
dya2iocbrsiga 30337 Dyadic intervals are Borel...
dya2icobrsiga 30338 Dyadic intervals are Borel...
dya2icoseg 30339 For any point and any clos...
dya2icoseg2 30340 For any point and any open...
dya2iocrfn 30341 The function returning dya...
dya2iocct 30342 The dyadic rectangle set i...
dya2iocnrect 30343 For any point of an open r...
dya2iocnei 30344 For any point of an open s...
dya2iocuni 30345 Every open set of ` ( RR X...
dya2iocucvr 30346 The dyadic rectangular set...
sxbrsigalem1 30347 The Borel algebra on ` ( R...
sxbrsigalem2 30348 The sigma-algebra generate...
sxbrsigalem4 30349 The Borel algebra on ` ( R...
sxbrsigalem5 30350 First direction for ~ sxbr...
sxbrsigalem6 30351 First direction for ~ sxbr...
sxbrsiga 30352 The product sigma-algebra ...
omsval 30355 Value of the function mapp...
omsfval 30356 Value of the outer measure...
omscl 30357 A closure lemma for the co...
omsf 30358 A constructed outer measur...
oms0 30359 A constructed outer measur...
omsmon 30360 A constructed outer measur...
omssubaddlem 30361 For any small margin ` E `...
omssubadd 30362 A constructed outer measur...
carsgval 30365 Value of the Caratheodory ...
carsgcl 30366 Closure of the Caratheodor...
elcarsg 30367 Property of being a Catath...
baselcarsg 30368 The universe set, ` O ` , ...
0elcarsg 30369 The empty set is Caratheod...
carsguni 30370 The union of all Caratheod...
elcarsgss 30371 Caratheodory measurable se...
difelcarsg 30372 The Caratheodory measurabl...
inelcarsg 30373 The Caratheodory measurabl...
unelcarsg 30374 The Caratheodory-measurabl...
difelcarsg2 30375 The Caratheodory-measurabl...
carsgmon 30376 Utility lemma: Apply mono...
carsgsigalem 30377 Lemma for the following th...
fiunelcarsg 30378 The Caratheodory measurabl...
carsgclctunlem1 30379 Lemma for ~ carsgclctun . ...
carsggect 30380 The outer measure is count...
carsgclctunlem2 30381 Lemma for ~ carsgclctun . ...
carsgclctunlem3 30382 Lemma for ~ carsgclctun . ...
carsgclctun 30383 The Caratheodory measurabl...
carsgsiga 30384 The Caratheodory measurabl...
omsmeas 30385 The restriction of a const...
pmeasmono 30386 This theorem's hypotheses ...
pmeasadd 30387 A premeasure on a ring of ...
itgeq12dv 30388 Equality theorem for an in...
sitgval 30394 Value of the simple functi...
issibf 30395 The predicate " ` F ` is a...
sibf0 30396 The constant zero function...
sibfmbl 30397 A simple function is measu...
sibff 30398 A simple function is a fun...
sibfrn 30399 A simple function has fini...
sibfima 30400 Any preimage of a singleto...
sibfinima 30401 The measure of the interse...
sibfof 30402 Applying function operatio...
sitgfval 30403 Value of the Bochner integ...
sitgclg 30404 Closure of the Bochner int...
sitgclbn 30405 Closure of the Bochner int...
sitgclcn 30406 Closure of the Bochner int...
sitgclre 30407 Closure of the Bochner int...
sitg0 30408 The integral of the consta...
sitgf 30409 The integral for simple fu...
sitgaddlemb 30410 Lemma for * sitgadd . (Co...
sitmval 30411 Value of the simple functi...
sitmfval 30412 Value of the integral dist...
sitmcl 30413 Closure of the integral di...
sitmf 30414 The integral metric as a f...
oddpwdc 30416 Lemma for ~ eulerpart . T...
oddpwdcv 30417 Lemma for ~ eulerpart : va...
eulerpartlemsv1 30418 Lemma for ~ eulerpart . V...
eulerpartlemelr 30419 Lemma for ~ eulerpart . (...
eulerpartlemsv2 30420 Lemma for ~ eulerpart . V...
eulerpartlemsf 30421 Lemma for ~ eulerpart . (...
eulerpartlems 30422 Lemma for ~ eulerpart . (...
eulerpartlemsv3 30423 Lemma for ~ eulerpart . V...
eulerpartlemgc 30424 Lemma for ~ eulerpart . (...
eulerpartleme 30425 Lemma for ~ eulerpart . (...
eulerpartlemv 30426 Lemma for ~ eulerpart . (...
eulerpartlemo 30427 Lemma for ~ eulerpart : ` ...
eulerpartlemd 30428 Lemma for ~ eulerpart : ` ...
eulerpartlem1 30429 Lemma for ~ eulerpart . (...
eulerpartlemb 30430 Lemma for ~ eulerpart . T...
eulerpartlemt0 30431 Lemma for ~ eulerpart . (...
eulerpartlemf 30432 Lemma for ~ eulerpart : O...
eulerpartlemt 30433 Lemma for ~ eulerpart . (...
eulerpartgbij 30434 Lemma for ~ eulerpart : T...
eulerpartlemgv 30435 Lemma for ~ eulerpart : va...
eulerpartlemr 30436 Lemma for ~ eulerpart . (...
eulerpartlemmf 30437 Lemma for ~ eulerpart . (...
eulerpartlemgvv 30438 Lemma for ~ eulerpart : va...
eulerpartlemgu 30439 Lemma for ~ eulerpart : R...
eulerpartlemgh 30440 Lemma for ~ eulerpart : T...
eulerpartlemgf 30441 Lemma for ~ eulerpart : I...
eulerpartlemgs2 30442 Lemma for ~ eulerpart : T...
eulerpartlemn 30443 Lemma for ~ eulerpart . (...
eulerpart 30444 Euler's theorem on partiti...
subiwrd 30447 Lemma for ~ sseqp1 . (Con...
subiwrdlen 30448 Length of a subword of an ...
iwrdsplit 30449 Lemma for ~ sseqp1 . (Con...
sseqval 30450 Value of the strong sequen...
sseqfv1 30451 Value of the strong sequen...
sseqfn 30452 A strong recursive sequenc...
sseqmw 30453 Lemma for ~ sseqf amd ~ ss...
sseqf 30454 A strong recursive sequenc...
sseqfres 30455 The first elements in the ...
sseqfv2 30456 Value of the strong sequen...
sseqp1 30457 Value of the strong sequen...
fiblem 30460 Lemma for ~ fib0 , ~ fib1 ...
fib0 30461 Value of the Fibonacci seq...
fib1 30462 Value of the Fibonacci seq...
fibp1 30463 Value of the Fibonacci seq...
fib2 30464 Value of the Fibonacci seq...
fib3 30465 Value of the Fibonacci seq...
fib4 30466 Value of the Fibonacci seq...
fib5 30467 Value of the Fibonacci seq...
fib6 30468 Value of the Fibonacci seq...
elprob 30471 The property of being a pr...
domprobmeas 30472 A probability measure is a...
domprobsiga 30473 The domain of a probabilit...
probtot 30474 The probability of the uni...
prob01 30475 A probability is an elemen...
probnul 30476 The probability of the emp...
unveldomd 30477 The universe is an element...
unveldom 30478 The universe is an element...
nuleldmp 30479 The empty set is an elemen...
probcun 30480 The probability of the uni...
probun 30481 The probability of the uni...
probdif 30482 The probability of the dif...
probinc 30483 A probability law is incre...
probdsb 30484 The probability of the com...
probmeasd 30485 A probability measure is a...
probvalrnd 30486 The value of a probability...
probtotrnd 30487 The probability of the uni...
totprobd 30488 Law of total probability, ...
totprob 30489 Law of total probability. ...
probfinmeasbOLD 30490 Build a probability measur...
probfinmeasb 30491 Build a probability measur...
probmeasb 30492 Build a probability from a...
cndprobval 30495 The value of the condition...
cndprobin 30496 An identity linking condit...
cndprob01 30497 The conditional probabilit...
cndprobtot 30498 The conditional probabilit...
cndprobnul 30499 The conditional probabilit...
cndprobprob 30500 The conditional probabilit...
bayesth 30501 Bayes Theorem. (Contribut...
rrvmbfm 30504 A real-valued random varia...
isrrvv 30505 Elementhood to the set of ...
rrvvf 30506 A real-valued random varia...
rrvfn 30507 A real-valued random varia...
rrvdm 30508 The domain of a random var...
rrvrnss 30509 The range of a random vari...
rrvf2 30510 A real-valued random varia...
rrvdmss 30511 The domain of a random var...
rrvfinvima 30512 For a real-value random va...
0rrv 30513 The constant function equa...
rrvadd 30514 The sum of two random vari...
rrvmulc 30515 A random variable multipli...
rrvsum 30516 An indexed sum of random v...
orvcval 30519 Value of the preimage mapp...
orvcval2 30520 Another way to express the...
elorvc 30521 Elementhood of a preimage....
orvcval4 30522 The value of the preimage ...
orvcoel 30523 If the relation produces o...
orvccel 30524 If the relation produces c...
elorrvc 30525 Elementhood of a preimage ...
orrvcval4 30526 The value of the preimage ...
orrvcoel 30527 If the relation produces o...
orrvccel 30528 If the relation produces c...
orvcgteel 30529 Preimage maps produced by ...
orvcelval 30530 Preimage maps produced by ...
orvcelel 30531 Preimage maps produced by ...
dstrvval 30532 The value of the distribut...
dstrvprob 30533 The distribution of a rand...
orvclteel 30534 Preimage maps produced by ...
dstfrvel 30535 Elementhood of preimage ma...
dstfrvunirn 30536 The limit of all preimage ...
orvclteinc 30537 Preimage maps produced by ...
dstfrvinc 30538 A cumulative distribution ...
dstfrvclim1 30539 The limit of the cumulativ...
coinfliplem 30540 Division in the extended r...
coinflipprob 30541 The ` P ` we defined for c...
coinflipspace 30542 The space of our coin-flip...
coinflipuniv 30543 The universe of our coin-f...
coinfliprv 30544 The ` X ` we defined for c...
coinflippv 30545 The probability of heads i...
coinflippvt 30546 The probability of tails i...
ballotlemoex 30547 ` O ` is a set. (Contribu...
ballotlem1 30548 The size of the universe i...
ballotlemelo 30549 Elementhood in ` O ` . (C...
ballotlem2 30550 The probability that the f...
ballotlemfval 30551 The value of F. (Contribut...
ballotlemfelz 30552 ` ( F `` C ) ` has values ...
ballotlemfp1 30553 If the ` J ` th ballot is ...
ballotlemfc0 30554 ` F ` takes value 0 betwee...
ballotlemfcc 30555 ` F ` takes value 0 betwee...
ballotlemfmpn 30556 ` ( F `` C ) ` finishes co...
ballotlemfval0 30557 ` ( F `` C ) ` always star...
ballotleme 30558 Elements of ` E ` . (Cont...
ballotlemodife 30559 Elements of ` ( O \ E ) ` ...
ballotlem4 30560 If the first pick is a vot...
ballotlem5 30561 If A is not ahead througho...
ballotlemi 30562 Value of ` I ` for a given...
ballotlemiex 30563 Properties of ` ( I `` C )...
ballotlemi1 30564 The first tie cannot be re...
ballotlemii 30565 The first tie cannot be re...
ballotlemsup 30566 The set of zeroes of ` F `...
ballotlemimin 30567 ` ( I `` C ) ` is the firs...
ballotlemic 30568 If the first vote is for B...
ballotlem1c 30569 If the first vote is for A...
ballotlemsval 30570 Value of ` S ` . (Contrib...
ballotlemsv 30571 Value of ` S ` evaluated a...
ballotlemsgt1 30572 ` S ` maps values less tha...
ballotlemsdom 30573 Domain of ` S ` for a give...
ballotlemsel1i 30574 The range ` ( 1 ... ( I ``...
ballotlemsf1o 30575 The defined ` S ` is a bij...
ballotlemsi 30576 The image by ` S ` of the ...
ballotlemsima 30577 The image by ` S ` of an i...
ballotlemieq 30578 If two countings share the...
ballotlemrval 30579 Value of ` R ` . (Contrib...
ballotlemscr 30580 The image of ` ( R `` C ) ...
ballotlemrv 30581 Value of ` R ` evaluated a...
ballotlemrv1 30582 Value of ` R ` before the ...
ballotlemrv2 30583 Value of ` R ` after the t...
ballotlemro 30584 Range of ` R ` is included...
ballotlemgval 30585 Expand the value of ` .^ `...
ballotlemgun 30586 A property of the defined ...
ballotlemfg 30587 Express the value of ` ( F...
ballotlemfrc 30588 Express the value of ` ( F...
ballotlemfrci 30589 Reverse counting preserves...
ballotlemfrceq 30590 Value of ` F ` for a rever...
ballotlemfrcn0 30591 Value of ` F ` for a rever...
ballotlemrc 30592 Range of ` R ` . (Contrib...
ballotlemirc 30593 Applying ` R ` does not ch...
ballotlemrinv0 30594 Lemma for ~ ballotlemrinv ...
ballotlemrinv 30595 ` R ` is its own inverse :...
ballotlem1ri 30596 When the vote on the first...
ballotlem7 30597 ` R ` is a bijection betwe...
ballotlem8 30598 There are as many counting...
ballotth 30599 Bertrand's ballot problem ...
sgncl 30600 Closure of the signum. (C...
sgnclre 30601 Closure of the signum. (C...
sgnneg 30602 Negation of the signum. (...
sgn3da 30603 A conditional containing a...
sgnmul 30604 Signum of a product. (Con...
sgnmulrp2 30605 Multiplication by a positi...
sgnsub 30606 Subtraction of a number of...
sgnnbi 30607 Negative signum. (Contrib...
sgnpbi 30608 Positive signum. (Contrib...
sgn0bi 30609 Zero signum. (Contributed...
sgnsgn 30610 Signum is idempotent. (Co...
sgnmulsgn 30611 If two real numbers are of...
sgnmulsgp 30612 If two real numbers are of...
fzssfzo 30613 Condition for an integer i...
gsumncl 30614 Closure of a group sum in ...
gsumnunsn 30615 Closure of a group sum in ...
wrdfd 30616 A word is a zero-based seq...
wrdres 30617 Condition for the restrict...
wrdsplex 30618 Existence of a split of a ...
ccatmulgnn0dir 30619 Concatenation of words fol...
ofcccat 30620 Letterwise operations on w...
ofcs1 30621 Letterwise operations on a...
ofcs2 30622 Letterwise operations on a...
plymul02 30623 Product of a polynomial wi...
plymulx0 30624 Coefficients of a polynomi...
plymulx 30625 Coefficients of a polynomi...
plyrecld 30626 Closure of a polynomial wi...
signsplypnf 30627 The quotient of a polynomi...
signsply0 30628 Lemma for the rule of sign...
signspval 30629 The value of the skipping ...
signsw0glem 30630 Neutral element property o...
signswbase 30631 The base of ` W ` is the t...
signswplusg 30632 The operation of ` W ` . ...
signsw0g 30633 The neutral element of ` W...
signswmnd 30634 ` W ` is a monoid structur...
signswrid 30635 The zero-skipping operatio...
signswlid 30636 The zero-skipping operatio...
signswn0 30637 The zero-skipping operatio...
signswch 30638 The zero-skipping operatio...
signslema 30639 Computational part of sign...
signstfv 30640 Value of the zero-skipping...
signstfval 30641 Value of the zero-skipping...
signstcl 30642 Closure of the zero skippi...
signstf 30643 The zero skipping sign wor...
signstlen 30644 Length of the zero skippin...
signstf0 30645 Sign of a single letter wo...
signstfvn 30646 Zero-skipping sign in a wo...
signsvtn0 30647 If the last letter is non ...
signstfvp 30648 Zero-skipping sign in a wo...
signstfvneq0 30649 In case the first letter i...
signstfvcl 30650 Closure of the zero skippi...
signstfvc 30651 Zero-skipping sign in a wo...
signstres 30652 Restriction of a zero skip...
signstfveq0a 30653 Lemma for ~ signstfveq0 . ...
signstfveq0 30654 In case the last letter is...
signsvvfval 30655 The value of ` V ` , which...
signsvvf 30656 ` V ` is a function. (Con...
signsvf0 30657 There is no change of sign...
signsvf1 30658 In a single-letter word, w...
signsvfn 30659 Number of changes in a wor...
signsvtp 30660 Adding a letter of the sam...
signsvtn 30661 Adding a letter of a diffe...
signsvfpn 30662 Adding a letter of the sam...
signsvfnn 30663 Adding a letter of a diffe...
signlem0 30664 Adding a zero as the highe...
signshf 30665 ` H ` , corresponding to t...
signshwrd 30666 ` H ` , corresponding to t...
signshlen 30667 Length of ` H ` , correspo...
signshnz 30668 ` H ` is not the empty wor...
efcld 30669 Closure law for the expone...
iblidicc 30670 The identity function is i...
rpsqrtcn 30671 Continuity of the real pos...
divsqrtid 30672 A real number divided by i...
cxpcncf1 30673 The power function on comp...
efmul2picn 30674 Multiplying by ` ( _i x. (...
fct2relem 30675 Lemma for ~ ftc2re . (Con...
ftc2re 30676 The Fundamental Theorem of...
fdvposlt 30677 Functions with a positive ...
fdvneggt 30678 Functions with a negative ...
fdvposle 30679 Functions with a nonnegati...
fdvnegge 30680 Functions with a non-posit...
prodfzo03 30681 A product of three factors...
actfunsnf1o 30682 The action ` F ` of extend...
actfunsnrndisj 30683 The action ` F ` of extend...
itgexpif 30684 The basis for the circle m...
fsum2dsub 30685 Lemma for ~ breprexp - Re-...
reprval 30688 Value of the representatio...
repr0 30689 There is exactly one repre...
reprf 30690 Members of the representat...
reprsum 30691 Sums of values of the memb...
reprle 30692 Upper bound to the terms i...
reprsuc 30693 Express the representation...
reprfi 30694 Bounded representations ar...
reprss 30695 Representations with terms...
reprinrn 30696 Representations with term ...
reprlt 30697 There are no representatio...
hashreprin 30698 Express a sum of represent...
reprgt 30699 There are no representatio...
reprinfz1 30700 For the representation of ...
reprfi2 30701 Corollary of ~ reprinfz1 ....
reprfz1 30702 Corollary of ~ reprinfz1 ....
hashrepr 30703 Develop the number of repr...
reprpmtf1o 30704 Transposing ` 0 ` and ` X ...
reprdifc 30705 Express the representation...
chpvalz 30706 Value of the second Chebys...
chtvalz 30707 Value of the Chebyshev fun...
breprexplema 30708 Lemma for ~ breprexp (indu...
breprexplemb 30709 Lemma for ~ breprexp (clos...
breprexplemc 30710 Lemma for ~ breprexp (indu...
breprexp 30711 Express the ` S ` th power...
breprexpnat 30712 Express the ` S ` th power...
vtsval 30715 Value of the Vinogradov tr...
vtscl 30716 Closure of the Vinogradov ...
vtsprod 30717 Express the Vinogradov tri...
circlemeth 30718 The Hardy, Littlewood and ...
circlemethnat 30719 The Hardy, Littlewood and ...
circlevma 30720 The Circle Method, where t...
circlemethhgt 30721 The circle method, where t...
hgt750lemc 30725 An upper bound to the summ...
hgt750lemd 30726 An upper bound to the summ...
hgt749d 30727 A deduction version of ~ a...
logdivsqrle 30728 Conditions for ` ( ( log `...
hgt750lem 30729 Lemma for ~ tgoldbachgtd ....
hgt750lem2 30730 Decimal multiplication gal...
hgt750lemf 30731 Lemma for the statement 7....
hgt750lemg 30732 Lemma for the statement 7....
oddprm2 30733 Two ways to write the set ...
hgt750lemb 30734 An upper bound on the cont...
hgt750lema 30735 An upper bound on the cont...
hgt750leme 30736 An upper bound on the cont...
tgoldbachgnn 30737 Lemma for ~ tgoldbachgtd ....
tgoldbachgtde 30738 Lemma for ~ tgoldbachgtd ....
tgoldbachgtda 30739 Lemma for ~ tgoldbachgtd ....
tgoldbachgtd 30740 Odd integers greater than ...
tgoldbachgt 30741 Odd integers greater than ...
istrkg2d 30744 Property of fulfilling dim...
axtglowdim2OLD 30745 Lower dimension axiom for ...
axtgupdim2OLD 30746 Upper dimension axiom for ...
afsval 30749 Value of the AFS relation ...
brafs 30750 Binary relation form of th...
tg5segofs 30751 Rephrase ~ axtg5seg using ...
bnj170 30764 ` /\ ` -manipulation. (Co...
bnj240 30765 ` /\ ` -manipulation. (Co...
bnj248 30766 ` /\ ` -manipulation. (Co...
bnj250 30767 ` /\ ` -manipulation. (Co...
bnj251 30768 ` /\ ` -manipulation. (Co...
bnj252 30769 ` /\ ` -manipulation. (Co...
bnj253 30770 ` /\ ` -manipulation. (Co...
bnj255 30771 ` /\ ` -manipulation. (Co...
bnj256 30772 ` /\ ` -manipulation. (Co...
bnj257 30773 ` /\ ` -manipulation. (Co...
bnj258 30774 ` /\ ` -manipulation. (Co...
bnj268 30775 ` /\ ` -manipulation. (Co...
bnj290 30776 ` /\ ` -manipulation. (Co...
bnj291 30777 ` /\ ` -manipulation. (Co...
bnj312 30778 ` /\ ` -manipulation. (Co...
bnj334 30779 ` /\ ` -manipulation. (Co...
bnj345 30780 ` /\ ` -manipulation. (Co...
bnj422 30781 ` /\ ` -manipulation. (Co...
bnj432 30782 ` /\ ` -manipulation. (Co...
bnj446 30783 ` /\ ` -manipulation. (Co...
bnj23 30784 First-order logic and set ...
bnj31 30785 First-order logic and set ...
bnj62 30786 First-order logic and set ...
bnj89 30787 First-order logic and set ...
bnj90 30788 First-order logic and set ...
bnj101 30789 First-order logic and set ...
bnj105 30790 First-order logic and set ...
bnj115 30791 First-order logic and set ...
bnj132 30792 First-order logic and set ...
bnj133 30793 First-order logic and set ...
bnj142OLD 30794 First-order logic and set ...
bnj145OLD 30795 First-order logic and set ...
bnj156 30796 First-order logic and set ...
bnj158 30797 First-order logic and set ...
bnj168 30798 First-order logic and set ...
bnj206 30799 First-order logic and set ...
bnj216 30800 First-order logic and set ...
bnj219 30801 First-order logic and set ...
bnj226 30802 First-order logic and set ...
bnj228 30803 First-order logic and set ...
bnj519 30804 First-order logic and set ...
bnj521 30805 First-order logic and set ...
bnj524 30806 First-order logic and set ...
bnj525 30807 First-order logic and set ...
bnj534 30808 First-order logic and set ...
bnj538 30809 First-order logic and set ...
bnj538OLD 30810 First-order logic and set ...
bnj529 30811 First-order logic and set ...
bnj551 30812 First-order logic and set ...
bnj563 30813 First-order logic and set ...
bnj564 30814 First-order logic and set ...
bnj593 30815 First-order logic and set ...
bnj596 30816 First-order logic and set ...
bnj610 30817 Pass from equality ( ` x =...
bnj642 30818 ` /\ ` -manipulation. (Co...
bnj643 30819 ` /\ ` -manipulation. (Co...
bnj645 30820 ` /\ ` -manipulation. (Co...
bnj658 30821 ` /\ ` -manipulation. (Co...
bnj667 30822 ` /\ ` -manipulation. (Co...
bnj705 30823 ` /\ ` -manipulation. (Co...
bnj706 30824 ` /\ ` -manipulation. (Co...
bnj707 30825 ` /\ ` -manipulation. (Co...
bnj708 30826 ` /\ ` -manipulation. (Co...
bnj721 30827 ` /\ ` -manipulation. (Co...
bnj832 30828 ` /\ ` -manipulation. (Co...
bnj835 30829 ` /\ ` -manipulation. (Co...
bnj836 30830 ` /\ ` -manipulation. (Co...
bnj837 30831 ` /\ ` -manipulation. (Co...
bnj769 30832 ` /\ ` -manipulation. (Co...
bnj770 30833 ` /\ ` -manipulation. (Co...
bnj771 30834 ` /\ ` -manipulation. (Co...
bnj887 30835 ` /\ ` -manipulation. (Co...
bnj918 30836 First-order logic and set ...
bnj919 30837 First-order logic and set ...
bnj923 30838 First-order logic and set ...
bnj927 30839 First-order logic and set ...
bnj930 30840 First-order logic and set ...
bnj931 30841 First-order logic and set ...
bnj937 30842 First-order logic and set ...
bnj941 30843 First-order logic and set ...
bnj945 30844 Technical lemma for ~ bnj6...
bnj946 30845 First-order logic and set ...
bnj951 30846 ` /\ ` -manipulation. (Co...
bnj956 30847 First-order logic and set ...
bnj976 30848 First-order logic and set ...
bnj982 30849 First-order logic and set ...
bnj1019 30850 First-order logic and set ...
bnj1023 30851 First-order logic and set ...
bnj1095 30852 First-order logic and set ...
bnj1096 30853 First-order logic and set ...
bnj1098 30854 First-order logic and set ...
bnj1101 30855 First-order logic and set ...
bnj1113 30856 First-order logic and set ...
bnj1109 30857 First-order logic and set ...
bnj1131 30858 First-order logic and set ...
bnj1138 30859 First-order logic and set ...
bnj1142 30860 First-order logic and set ...
bnj1143 30861 First-order logic and set ...
bnj1146 30862 First-order logic and set ...
bnj1149 30863 First-order logic and set ...
bnj1185 30864 First-order logic and set ...
bnj1196 30865 First-order logic and set ...
bnj1198 30866 First-order logic and set ...
bnj1209 30867 First-order logic and set ...
bnj1211 30868 First-order logic and set ...
bnj1213 30869 First-order logic and set ...
bnj1212 30870 First-order logic and set ...
bnj1219 30871 First-order logic and set ...
bnj1224 30872 First-order logic and set ...
bnj1230 30873 First-order logic and set ...
bnj1232 30874 First-order logic and set ...
bnj1235 30875 First-order logic and set ...
bnj1239 30876 First-order logic and set ...
bnj1238 30877 First-order logic and set ...
bnj1241 30878 First-order logic and set ...
bnj1247 30879 First-order logic and set ...
bnj1254 30880 First-order logic and set ...
bnj1262 30881 First-order logic and set ...
bnj1266 30882 First-order logic and set ...
bnj1265 30883 First-order logic and set ...
bnj1275 30884 First-order logic and set ...
bnj1276 30885 First-order logic and set ...
bnj1292 30886 First-order logic and set ...
bnj1293 30887 First-order logic and set ...
bnj1294 30888 First-order logic and set ...
bnj1299 30889 First-order logic and set ...
bnj1304 30890 First-order logic and set ...
bnj1316 30891 First-order logic and set ...
bnj1317 30892 First-order logic and set ...
bnj1322 30893 First-order logic and set ...
bnj1340 30894 First-order logic and set ...
bnj1345 30895 First-order logic and set ...
bnj1350 30896 First-order logic and set ...
bnj1351 30897 First-order logic and set ...
bnj1352 30898 First-order logic and set ...
bnj1361 30899 First-order logic and set ...
bnj1366 30900 First-order logic and set ...
bnj1379 30901 First-order logic and set ...
bnj1383 30902 First-order logic and set ...
bnj1385 30903 First-order logic and set ...
bnj1386 30904 First-order logic and set ...
bnj1397 30905 First-order logic and set ...
bnj1400 30906 First-order logic and set ...
bnj1405 30907 First-order logic and set ...
bnj1422 30908 First-order logic and set ...
bnj1424 30909 First-order logic and set ...
bnj1436 30910 First-order logic and set ...
bnj1441 30911 First-order logic and set ...
bnj1454 30912 First-order logic and set ...
bnj1459 30913 First-order logic and set ...
bnj1464 30914 Conversion of implicit sub...
bnj1465 30915 First-order logic and set ...
bnj1468 30916 Conversion of implicit sub...
bnj1476 30917 First-order logic and set ...
bnj1502 30918 First-order logic and set ...
bnj1503 30919 First-order logic and set ...
bnj1517 30920 First-order logic and set ...
bnj1521 30921 First-order logic and set ...
bnj1533 30922 First-order logic and set ...
bnj1534 30923 First-order logic and set ...
bnj1536 30924 First-order logic and set ...
bnj1538 30925 First-order logic and set ...
bnj1541 30926 First-order logic and set ...
bnj1542 30927 First-order logic and set ...
bnj110 30928 Well-founded induction res...
bnj157 30929 Well-founded induction res...
bnj66 30930 Technical lemma for ~ bnj6...
bnj91 30931 First-order logic and set ...
bnj92 30932 First-order logic and set ...
bnj93 30933 Technical lemma for ~ bnj9...
bnj95 30934 Technical lemma for ~ bnj1...
bnj96 30935 Technical lemma for ~ bnj1...
bnj97 30936 Technical lemma for ~ bnj1...
bnj98 30937 Technical lemma for ~ bnj1...
bnj106 30938 First-order logic and set ...
bnj118 30939 First-order logic and set ...
bnj121 30940 First-order logic and set ...
bnj124 30941 Technical lemma for ~ bnj1...
bnj125 30942 Technical lemma for ~ bnj1...
bnj126 30943 Technical lemma for ~ bnj1...
bnj130 30944 Technical lemma for ~ bnj1...
bnj149 30945 Technical lemma for ~ bnj1...
bnj150 30946 Technical lemma for ~ bnj1...
bnj151 30947 Technical lemma for ~ bnj1...
bnj154 30948 Technical lemma for ~ bnj1...
bnj155 30949 Technical lemma for ~ bnj1...
bnj153 30950 Technical lemma for ~ bnj8...
bnj207 30951 Technical lemma for ~ bnj8...
bnj213 30952 First-order logic and set ...
bnj222 30953 Technical lemma for ~ bnj2...
bnj229 30954 Technical lemma for ~ bnj5...
bnj517 30955 Technical lemma for ~ bnj5...
bnj518 30956 Technical lemma for ~ bnj8...
bnj523 30957 Technical lemma for ~ bnj8...
bnj526 30958 Technical lemma for ~ bnj8...
bnj528 30959 Technical lemma for ~ bnj8...
bnj535 30960 Technical lemma for ~ bnj8...
bnj539 30961 Technical lemma for ~ bnj8...
bnj540 30962 Technical lemma for ~ bnj8...
bnj543 30963 Technical lemma for ~ bnj8...
bnj544 30964 Technical lemma for ~ bnj8...
bnj545 30965 Technical lemma for ~ bnj8...
bnj546 30966 Technical lemma for ~ bnj8...
bnj548 30967 Technical lemma for ~ bnj8...
bnj553 30968 Technical lemma for ~ bnj8...
bnj554 30969 Technical lemma for ~ bnj8...
bnj556 30970 Technical lemma for ~ bnj8...
bnj557 30971 Technical lemma for ~ bnj8...
bnj558 30972 Technical lemma for ~ bnj8...
bnj561 30973 Technical lemma for ~ bnj8...
bnj562 30974 Technical lemma for ~ bnj8...
bnj570 30975 Technical lemma for ~ bnj8...
bnj571 30976 Technical lemma for ~ bnj8...
bnj605 30977 Technical lemma. This lem...
bnj581 30978 Technical lemma for ~ bnj5...
bnj589 30979 Technical lemma for ~ bnj8...
bnj590 30980 Technical lemma for ~ bnj8...
bnj591 30981 Technical lemma for ~ bnj8...
bnj594 30982 Technical lemma for ~ bnj8...
bnj580 30983 Technical lemma for ~ bnj5...
bnj579 30984 Technical lemma for ~ bnj8...
bnj602 30985 Equality theorem for the `...
bnj607 30986 Technical lemma for ~ bnj8...
bnj609 30987 Technical lemma for ~ bnj8...
bnj611 30988 Technical lemma for ~ bnj8...
bnj600 30989 Technical lemma for ~ bnj8...
bnj601 30990 Technical lemma for ~ bnj8...
bnj852 30991 Technical lemma for ~ bnj6...
bnj864 30992 Technical lemma for ~ bnj6...
bnj865 30993 Technical lemma for ~ bnj6...
bnj873 30994 Technical lemma for ~ bnj6...
bnj849 30995 Technical lemma for ~ bnj6...
bnj882 30996 Definition (using hypothes...
bnj18eq1 30997 Equality theorem for trans...
bnj893 30998 Property of ` _trCl ` . U...
bnj900 30999 Technical lemma for ~ bnj6...
bnj906 31000 Property of ` _trCl ` . (...
bnj908 31001 Technical lemma for ~ bnj6...
bnj911 31002 Technical lemma for ~ bnj6...
bnj916 31003 Technical lemma for ~ bnj6...
bnj917 31004 Technical lemma for ~ bnj6...
bnj934 31005 Technical lemma for ~ bnj6...
bnj929 31006 Technical lemma for ~ bnj6...
bnj938 31007 Technical lemma for ~ bnj6...
bnj944 31008 Technical lemma for ~ bnj6...
bnj953 31009 Technical lemma for ~ bnj6...
bnj958 31010 Technical lemma for ~ bnj6...
bnj1000 31011 Technical lemma for ~ bnj8...
bnj965 31012 Technical lemma for ~ bnj8...
bnj964 31013 Technical lemma for ~ bnj6...
bnj966 31014 Technical lemma for ~ bnj6...
bnj967 31015 Technical lemma for ~ bnj6...
bnj969 31016 Technical lemma for ~ bnj6...
bnj970 31017 Technical lemma for ~ bnj6...
bnj910 31018 Technical lemma for ~ bnj6...
bnj978 31019 Technical lemma for ~ bnj6...
bnj981 31020 Technical lemma for ~ bnj6...
bnj983 31021 Technical lemma for ~ bnj6...
bnj984 31022 Technical lemma for ~ bnj6...
bnj985 31023 Technical lemma for ~ bnj6...
bnj986 31024 Technical lemma for ~ bnj6...
bnj996 31025 Technical lemma for ~ bnj6...
bnj998 31026 Technical lemma for ~ bnj6...
bnj999 31027 Technical lemma for ~ bnj6...
bnj1001 31028 Technical lemma for ~ bnj6...
bnj1006 31029 Technical lemma for ~ bnj6...
bnj1014 31030 Technical lemma for ~ bnj6...
bnj1015 31031 Technical lemma for ~ bnj6...
bnj1018 31032 Technical lemma for ~ bnj6...
bnj1020 31033 Technical lemma for ~ bnj6...
bnj1021 31034 Technical lemma for ~ bnj6...
bnj907 31035 Technical lemma for ~ bnj6...
bnj1029 31036 Property of ` _trCl ` . (...
bnj1033 31037 Technical lemma for ~ bnj6...
bnj1034 31038 Technical lemma for ~ bnj6...
bnj1039 31039 Technical lemma for ~ bnj6...
bnj1040 31040 Technical lemma for ~ bnj6...
bnj1047 31041 Technical lemma for ~ bnj6...
bnj1049 31042 Technical lemma for ~ bnj6...
bnj1052 31043 Technical lemma for ~ bnj6...
bnj1053 31044 Technical lemma for ~ bnj6...
bnj1071 31045 Technical lemma for ~ bnj6...
bnj1083 31046 Technical lemma for ~ bnj6...
bnj1090 31047 Technical lemma for ~ bnj6...
bnj1093 31048 Technical lemma for ~ bnj6...
bnj1097 31049 Technical lemma for ~ bnj6...
bnj1110 31050 Technical lemma for ~ bnj6...
bnj1112 31051 Technical lemma for ~ bnj6...
bnj1118 31052 Technical lemma for ~ bnj6...
bnj1121 31053 Technical lemma for ~ bnj6...
bnj1123 31054 Technical lemma for ~ bnj6...
bnj1030 31055 Technical lemma for ~ bnj6...
bnj1124 31056 Property of ` _trCl ` . (...
bnj1133 31057 Technical lemma for ~ bnj6...
bnj1128 31058 Technical lemma for ~ bnj6...
bnj1127 31059 Property of ` _trCl ` . (...
bnj1125 31060 Property of ` _trCl ` . (...
bnj1145 31061 Technical lemma for ~ bnj6...
bnj1147 31062 Property of ` _trCl ` . (...
bnj1137 31063 Property of ` _trCl ` . (...
bnj1148 31064 Property of ` _pred ` . (...
bnj1136 31065 Technical lemma for ~ bnj6...
bnj1152 31066 Technical lemma for ~ bnj6...
bnj1154 31067 Property of ` Fr ` . (Con...
bnj1171 31068 Technical lemma for ~ bnj6...
bnj1172 31069 Technical lemma for ~ bnj6...
bnj1173 31070 Technical lemma for ~ bnj6...
bnj1174 31071 Technical lemma for ~ bnj6...
bnj1175 31072 Technical lemma for ~ bnj6...
bnj1176 31073 Technical lemma for ~ bnj6...
bnj1177 31074 Technical lemma for ~ bnj6...
bnj1186 31075 Technical lemma for ~ bnj6...
bnj1190 31076 Technical lemma for ~ bnj6...
bnj1189 31077 Technical lemma for ~ bnj6...
bnj69 31078 Existence of a minimal ele...
bnj1228 31079 Existence of a minimal ele...
bnj1204 31080 Well-founded induction. T...
bnj1234 31081 Technical lemma for ~ bnj6...
bnj1245 31082 Technical lemma for ~ bnj6...
bnj1256 31083 Technical lemma for ~ bnj6...
bnj1259 31084 Technical lemma for ~ bnj6...
bnj1253 31085 Technical lemma for ~ bnj6...
bnj1279 31086 Technical lemma for ~ bnj6...
bnj1286 31087 Technical lemma for ~ bnj6...
bnj1280 31088 Technical lemma for ~ bnj6...
bnj1296 31089 Technical lemma for ~ bnj6...
bnj1309 31090 Technical lemma for ~ bnj6...
bnj1307 31091 Technical lemma for ~ bnj6...
bnj1311 31092 Technical lemma for ~ bnj6...
bnj1318 31093 Technical lemma for ~ bnj6...
bnj1326 31094 Technical lemma for ~ bnj6...
bnj1321 31095 Technical lemma for ~ bnj6...
bnj1364 31096 Property of ` _FrSe ` . (...
bnj1371 31097 Technical lemma for ~ bnj6...
bnj1373 31098 Technical lemma for ~ bnj6...
bnj1374 31099 Technical lemma for ~ bnj6...
bnj1384 31100 Technical lemma for ~ bnj6...
bnj1388 31101 Technical lemma for ~ bnj6...
bnj1398 31102 Technical lemma for ~ bnj6...
bnj1413 31103 Property of ` _trCl ` . (...
bnj1408 31104 Technical lemma for ~ bnj1...
bnj1414 31105 Property of ` _trCl ` . (...
bnj1415 31106 Technical lemma for ~ bnj6...
bnj1416 31107 Technical lemma for ~ bnj6...
bnj1418 31108 Property of ` _pred ` . (...
bnj1417 31109 Technical lemma for ~ bnj6...
bnj1421 31110 Technical lemma for ~ bnj6...
bnj1444 31111 Technical lemma for ~ bnj6...
bnj1445 31112 Technical lemma for ~ bnj6...
bnj1446 31113 Technical lemma for ~ bnj6...
bnj1447 31114 Technical lemma for ~ bnj6...
bnj1448 31115 Technical lemma for ~ bnj6...
bnj1449 31116 Technical lemma for ~ bnj6...
bnj1442 31117 Technical lemma for ~ bnj6...
bnj1450 31118 Technical lemma for ~ bnj6...
bnj1423 31119 Technical lemma for ~ bnj6...
bnj1452 31120 Technical lemma for ~ bnj6...
bnj1466 31121 Technical lemma for ~ bnj6...
bnj1467 31122 Technical lemma for ~ bnj6...
bnj1463 31123 Technical lemma for ~ bnj6...
bnj1489 31124 Technical lemma for ~ bnj6...
bnj1491 31125 Technical lemma for ~ bnj6...
bnj1312 31126 Technical lemma for ~ bnj6...
bnj1493 31127 Technical lemma for ~ bnj6...
bnj1497 31128 Technical lemma for ~ bnj6...
bnj1498 31129 Technical lemma for ~ bnj6...
bnj60 31130 Well-founded recursion, pa...
bnj1514 31131 Technical lemma for ~ bnj1...
bnj1518 31132 Technical lemma for ~ bnj1...
bnj1519 31133 Technical lemma for ~ bnj1...
bnj1520 31134 Technical lemma for ~ bnj1...
bnj1501 31135 Technical lemma for ~ bnj1...
bnj1500 31136 Well-founded recursion, pa...
bnj1525 31137 Technical lemma for ~ bnj1...
bnj1529 31138 Technical lemma for ~ bnj1...
bnj1523 31139 Technical lemma for ~ bnj1...
bnj1522 31140 Well-founded recursion, pa...
quartfull 31147 The quartic equation, writ...
deranglem 31148 Lemma for derangements. (...
derangval 31149 Define the derangement fun...
derangf 31150 The derangement number is ...
derang0 31151 The derangement number of ...
derangsn 31152 The derangement number of ...
derangenlem 31153 One half of ~ derangen . ...
derangen 31154 The derangement number is ...
subfacval 31155 The subfactorial is define...
derangen2 31156 Write the derangement numb...
subfacf 31157 The subfactorial is a func...
subfaclefac 31158 The subfactorial is less t...
subfac0 31159 The subfactorial at zero. ...
subfac1 31160 The subfactorial at one. ...
subfacp1lem1 31161 Lemma for ~ subfacp1 . Th...
subfacp1lem2a 31162 Lemma for ~ subfacp1 . Pr...
subfacp1lem2b 31163 Lemma for ~ subfacp1 . Pr...
subfacp1lem3 31164 Lemma for ~ subfacp1 . In...
subfacp1lem4 31165 Lemma for ~ subfacp1 . Th...
subfacp1lem5 31166 Lemma for ~ subfacp1 . In...
subfacp1lem6 31167 Lemma for ~ subfacp1 . By...
subfacp1 31168 A two-term recurrence for ...
subfacval2 31169 A closed-form expression f...
subfaclim 31170 The subfactorial converges...
subfacval3 31171 Another closed form expres...
derangfmla 31172 The derangements formula, ...
erdszelem1 31173 Lemma for ~ erdsze . (Con...
erdszelem2 31174 Lemma for ~ erdsze . (Con...
erdszelem3 31175 Lemma for ~ erdsze . (Con...
erdszelem4 31176 Lemma for ~ erdsze . (Con...
erdszelem5 31177 Lemma for ~ erdsze . (Con...
erdszelem6 31178 Lemma for ~ erdsze . (Con...
erdszelem7 31179 Lemma for ~ erdsze . (Con...
erdszelem8 31180 Lemma for ~ erdsze . (Con...
erdszelem9 31181 Lemma for ~ erdsze . (Con...
erdszelem10 31182 Lemma for ~ erdsze . (Con...
erdszelem11 31183 Lemma for ~ erdsze . (Con...
erdsze 31184 The Erdős-Szekeres th...
erdsze2lem1 31185 Lemma for ~ erdsze2 . (Co...
erdsze2lem2 31186 Lemma for ~ erdsze2 . (Co...
erdsze2 31187 Generalize the statement o...
kur14lem1 31188 Lemma for ~ kur14 . (Cont...
kur14lem2 31189 Lemma for ~ kur14 . Write...
kur14lem3 31190 Lemma for ~ kur14 . A clo...
kur14lem4 31191 Lemma for ~ kur14 . Compl...
kur14lem5 31192 Lemma for ~ kur14 . Closu...
kur14lem6 31193 Lemma for ~ kur14 . If ` ...
kur14lem7 31194 Lemma for ~ kur14 : main p...
kur14lem8 31195 Lemma for ~ kur14 . Show ...
kur14lem9 31196 Lemma for ~ kur14 . Since...
kur14lem10 31197 Lemma for ~ kur14 . Disch...
kur14 31198 Kuratowski's closure-compl...
ispconn 31205 The property of being a pa...
pconncn 31206 The property of being a pa...
pconntop 31207 A simply connected space i...
issconn 31208 The property of being a si...
sconnpconn 31209 A simply connected space i...
sconntop 31210 A simply connected space i...
sconnpht 31211 A closed path in a simply ...
cnpconn 31212 An image of a path-connect...
pconnconn 31213 A path-connected space is ...
txpconn 31214 The topological product of...
ptpconn 31215 The topological product of...
indispconn 31216 The indiscrete topology (o...
connpconn 31217 A connected and locally pa...
qtoppconn 31218 A quotient of a path-conne...
pconnpi1 31219 All fundamental groups in ...
sconnpht2 31220 Any two paths in a simply ...
sconnpi1 31221 A path-connected topologic...
txsconnlem 31222 Lemma for ~ txsconn . (Co...
txsconn 31223 The topological product of...
cvxpconn 31224 A convex subset of the com...
cvxsconn 31225 A convex subset of the com...
blsconn 31226 An open ball in the comple...
cnllysconn 31227 The topology of the comple...
resconn 31228 A subset of ` RR ` is simp...
ioosconn 31229 An open interval is simply...
iccsconn 31230 A closed interval is simpl...
retopsconn 31231 The real numbers are simpl...
iccllysconn 31232 A closed interval is local...
rellysconn 31233 The real numbers are local...
iisconn 31234 The unit interval is simpl...
iillysconn 31235 The unit interval is local...
iinllyconn 31236 The unit interval is local...
fncvm 31239 Lemma for covering maps. ...
cvmscbv 31240 Change bound variables in ...
iscvm 31241 The property of being a co...
cvmtop1 31242 Reverse closure for a cove...
cvmtop2 31243 Reverse closure for a cove...
cvmcn 31244 A covering map is a contin...
cvmcov 31245 Property of a covering map...
cvmsrcl 31246 Reverse closure for an eve...
cvmsi 31247 One direction of ~ cvmsval...
cvmsval 31248 Elementhood in the set ` S...
cvmsss 31249 An even covering is a subs...
cvmsn0 31250 An even covering is nonemp...
cvmsuni 31251 An even covering of ` U ` ...
cvmsdisj 31252 An even covering of ` U ` ...
cvmshmeo 31253 Every element of an even c...
cvmsf1o 31254 ` F ` , localized to an el...
cvmscld 31255 The sets of an even coveri...
cvmsss2 31256 An open subset of an evenl...
cvmcov2 31257 The covering map property ...
cvmseu 31258 Every element in ` U. T ` ...
cvmsiota 31259 Identify the unique elemen...
cvmopnlem 31260 Lemma for ~ cvmopn . (Con...
cvmfolem 31261 Lemma for ~ cvmfo . (Cont...
cvmopn 31262 A covering map is an open ...
cvmliftmolem1 31263 Lemma for ~ cvmliftmo . (...
cvmliftmolem2 31264 Lemma for ~ cvmliftmo . (...
cvmliftmoi 31265 A lift of a continuous fun...
cvmliftmo 31266 A lift of a continuous fun...
cvmliftlem1 31267 Lemma for ~ cvmlift . In ...
cvmliftlem2 31268 Lemma for ~ cvmlift . ` W ...
cvmliftlem3 31269 Lemma for ~ cvmlift . Sin...
cvmliftlem4 31270 Lemma for ~ cvmlift . The...
cvmliftlem5 31271 Lemma for ~ cvmlift . Def...
cvmliftlem6 31272 Lemma for ~ cvmlift . Ind...
cvmliftlem7 31273 Lemma for ~ cvmlift . Pro...
cvmliftlem8 31274 Lemma for ~ cvmlift . The...
cvmliftlem9 31275 Lemma for ~ cvmlift . The...
cvmliftlem10 31276 Lemma for ~ cvmlift . The...
cvmliftlem11 31277 Lemma for ~ cvmlift . (Co...
cvmliftlem13 31278 Lemma for ~ cvmlift . The...
cvmliftlem14 31279 Lemma for ~ cvmlift . Put...
cvmliftlem15 31280 Lemma for ~ cvmlift . Dis...
cvmlift 31281 One of the important prope...
cvmfo 31282 A covering map is an onto ...
cvmliftiota 31283 Write out a function ` H `...
cvmlift2lem1 31284 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9a 31285 Lemma for ~ cvmlift2 and ~...
cvmlift2lem2 31286 Lemma for ~ cvmlift2 . (C...
cvmlift2lem3 31287 Lemma for ~ cvmlift2 . (C...
cvmlift2lem4 31288 Lemma for ~ cvmlift2 . (C...
cvmlift2lem5 31289 Lemma for ~ cvmlift2 . (C...
cvmlift2lem6 31290 Lemma for ~ cvmlift2 . (C...
cvmlift2lem7 31291 Lemma for ~ cvmlift2 . (C...
cvmlift2lem8 31292 Lemma for ~ cvmlift2 . (C...
cvmlift2lem9 31293 Lemma for ~ cvmlift2 . (C...
cvmlift2lem10 31294 Lemma for ~ cvmlift2 . (C...
cvmlift2lem11 31295 Lemma for ~ cvmlift2 . (C...
cvmlift2lem12 31296 Lemma for ~ cvmlift2 . (C...
cvmlift2lem13 31297 Lemma for ~ cvmlift2 . (C...
cvmlift2 31298 A two-dimensional version ...
cvmliftphtlem 31299 Lemma for ~ cvmliftpht . ...
cvmliftpht 31300 If ` G ` and ` H ` are pat...
cvmlift3lem1 31301 Lemma for ~ cvmlift3 . (C...
cvmlift3lem2 31302 Lemma for ~ cvmlift2 . (C...
cvmlift3lem3 31303 Lemma for ~ cvmlift2 . (C...
cvmlift3lem4 31304 Lemma for ~ cvmlift2 . (C...
cvmlift3lem5 31305 Lemma for ~ cvmlift2 . (C...
cvmlift3lem6 31306 Lemma for ~ cvmlift3 . (C...
cvmlift3lem7 31307 Lemma for ~ cvmlift3 . (C...
cvmlift3lem8 31308 Lemma for ~ cvmlift2 . (C...
cvmlift3lem9 31309 Lemma for ~ cvmlift2 . (C...
cvmlift3 31310 A general version of ~ cvm...
snmlff 31311 The function ` F ` from ~ ...
snmlfval 31312 The function ` F ` from ~ ...
snmlval 31313 The property " ` A ` is si...
snmlflim 31314 If ` A ` is simply normal,...
mvtval 31397 The set of variable typeco...
mrexval 31398 The set of "raw expression...
mexval 31399 The set of expressions, wh...
mexval2 31400 The set of expressions, wh...
mdvval 31401 The set of disjoint variab...
mvrsval 31402 The set of variables in an...
mvrsfpw 31403 The set of variables in an...
mrsubffval 31404 The substitution of some v...
mrsubfval 31405 The substitution of some v...
mrsubval 31406 The substitution of some v...
mrsubcv 31407 The value of a substituted...
mrsubvr 31408 The value of a substituted...
mrsubff 31409 A substitution is a functi...
mrsubrn 31410 Although it is defined for...
mrsubff1 31411 When restricted to complet...
mrsubff1o 31412 When restricted to complet...
mrsub0 31413 The value of the substitut...
mrsubf 31414 A substitution is a functi...
mrsubccat 31415 Substitution distributes o...
mrsubcn 31416 A substitution does not ch...
elmrsubrn 31417 Characterization of the su...
mrsubco 31418 The composition of two sub...
mrsubvrs 31419 The set of variables in a ...
msubffval 31420 A substitution applied to ...
msubfval 31421 A substitution applied to ...
msubval 31422 A substitution applied to ...
msubrsub 31423 A substitution applied to ...
msubty 31424 The type of a substituted ...
elmsubrn 31425 Characterization of substi...
msubrn 31426 Although it is defined for...
msubff 31427 A substitution is a functi...
msubco 31428 The composition of two sub...
msubf 31429 A substitution is a functi...
mvhfval 31430 Value of the function mapp...
mvhval 31431 Value of the function mapp...
mpstval 31432 A pre-statement is an orde...
elmpst 31433 Property of being a pre-st...
msrfval 31434 Value of the reduct of a p...
msrval 31435 Value of the reduct of a p...
mpstssv 31436 A pre-statement is an orde...
mpst123 31437 Decompose a pre-statement ...
mpstrcl 31438 The elements of a pre-stat...
msrf 31439 The reduct of a pre-statem...
msrrcl 31440 If ` X ` and ` Y ` have th...
mstaval 31441 Value of the set of statem...
msrid 31442 The reduct of a statement ...
msrfo 31443 The reduct of a pre-statem...
mstapst 31444 A statement is a pre-state...
elmsta 31445 Property of being a statem...
ismfs 31446 A formal system is a tuple...
mfsdisj 31447 The constants and variable...
mtyf2 31448 The type function maps var...
mtyf 31449 The type function maps var...
mvtss 31450 The set of variable typeco...
maxsta 31451 An axiom is a statement. ...
mvtinf 31452 Each variable typecode has...
msubff1 31453 When restricted to complet...
msubff1o 31454 When restricted to complet...
mvhf 31455 The function mapping varia...
mvhf1 31456 The function mapping varia...
msubvrs 31457 The set of variables in a ...
mclsrcl 31458 Reverse closure for the cl...
mclsssvlem 31459 Lemma for ~ mclsssv . (Co...
mclsval 31460 The function mapping varia...
mclsssv 31461 The closure of a set of ex...
ssmclslem 31462 Lemma for ~ ssmcls . (Con...
vhmcls 31463 All variable hypotheses ar...
ssmcls 31464 The original expressions a...
ss2mcls 31465 The closure is monotonic u...
mclsax 31466 The closure is closed unde...
mclsind 31467 Induction theorem for clos...
mppspstlem 31468 Lemma for ~ mppspst . (Co...
mppsval 31469 Definition of a provable p...
elmpps 31470 Definition of a provable p...
mppspst 31471 A provable pre-statement i...
mthmval 31472 A theorem is a pre-stateme...
elmthm 31473 A theorem is a pre-stateme...
mthmi 31474 A statement whose reduct i...
mthmsta 31475 A theorem is a pre-stateme...
mppsthm 31476 A provable pre-statement i...
mthmblem 31477 Lemma for ~ mthmb . (Cont...
mthmb 31478 If two statements have the...
mthmpps 31479 Given a theorem, there is ...
mclsppslem 31480 The closure is closed unde...
mclspps 31481 The closure is closed unde...
problem1 31558 Practice problem 1. Clues...
problem2 31559 Practice problem 2. Clues...
problem2OLD 31560 Practice problem 2. Clues...
problem3 31561 Practice problem 3. Clues...
problem4 31562 Practice problem 4. Clues...
problem5 31563 Practice problem 5. Clues...
quad3 31564 Variant of quadratic equat...
climuzcnv 31565 Utility lemma to convert b...
sinccvglem 31566 ` ( ( sin `` x ) / x ) ~~>...
sinccvg 31567 ` ( ( sin `` x ) / x ) ~~>...
circum 31568 The circumference of a cir...
elfzm12 31569 Membership in a curtailed ...
nn0seqcvg 31570 A strictly-decreasing nonn...
lediv2aALT 31571 Division of both sides of ...
abs2sqlei 31572 The absolute values of two...
abs2sqlti 31573 The absolute values of two...
abs2sqle 31574 The absolute values of two...
abs2sqlt 31575 The absolute values of two...
abs2difi 31576 Difference of absolute val...
abs2difabsi 31577 Absolute value of differen...
axextprim 31578 ~ ax-ext without distinct ...
axrepprim 31579 ~ ax-rep without distinct ...
axunprim 31580 ~ ax-un without distinct v...
axpowprim 31581 ~ ax-pow without distinct ...
axregprim 31582 ~ ax-reg without distinct ...
axinfprim 31583 ~ ax-inf without distinct ...
axacprim 31584 ~ ax-ac without distinct v...
untelirr 31585 We call a class "untanged"...
untuni 31586 The union of a class is un...
untsucf 31587 If a class is untangled, t...
unt0 31588 The null set is untangled....
untint 31589 If there is an untangled e...
efrunt 31590 If ` A ` is well-founded b...
untangtr 31591 A transitive class is unta...
3orel2 31592 Partial elimination of a t...
3orel3 31593 Partial elimination of a t...
3pm3.2ni 31594 Triple negated disjunction...
3jaodd 31595 Double deduction form of ~...
3orit 31596 Closed form of ~ 3ori . (...
biimpexp 31597 A biconditional in the ant...
3orel13 31598 Elimination of two disjunc...
nepss 31599 Two classes are inequal if...
3ccased 31600 Triple disjunction form of...
dfso3 31601 Expansion of the definitio...
brtpid1 31602 A binary relation involvin...
brtpid2 31603 A binary relation involvin...
brtpid3 31604 A binary relation involvin...
ceqsrexv2 31605 Alternate elimitation of a...
iota5f 31606 A method for computing iot...
ceqsralv2 31607 Alternate elimination of a...
dford5 31608 A class is ordinal iff it ...
jath 31609 Closed form of ~ ja . Pro...
sqdivzi 31610 Distribution of square ove...
subdivcomb1 31611 Bring a term in a subtract...
subdivcomb2 31612 Bring a term in a subtract...
supfz 31613 The supremum of a finite s...
inffz 31614 The infimum of a finite se...
inffzOLD 31615 The infimum of a finite se...
fz0n 31616 The sequence ` ( 0 ... ( N...
shftvalg 31617 Value of a sequence shifte...
divcnvlin 31618 Limit of the ratio of two ...
climlec3 31619 Comparison of a constant t...
logi 31620 Calculate the logarithm of...
iexpire 31621 ` _i ` raised to itself is...
bcneg1 31622 The binomial coefficent ov...
bcm1nt 31623 The proportion of one bion...
bcprod 31624 A product identity for bin...
bccolsum 31625 A column-sum rule for bino...
iprodefisumlem 31626 Lemma for ~ iprodefisum . ...
iprodefisum 31627 Applying the exponential f...
iprodgam 31628 An infinite product versio...
faclimlem1 31629 Lemma for ~ faclim . Clos...
faclimlem2 31630 Lemma for ~ faclim . Show...
faclimlem3 31631 Lemma for ~ faclim . Alge...
faclim 31632 An infinite product expres...
iprodfac 31633 An infinite product expres...
faclim2 31634 Another factorial limit du...
pdivsq 31635 Condition for a prime divi...
dvdspw 31636 Exponentiation law for div...
gcd32 31637 Swap the second and third ...
gcdabsorb 31638 Absorption law for gcd. (...
brtp 31639 A condition for a binary r...
dftr6 31640 A potential definition of ...
coep 31641 Composition with epsilon. ...
coepr 31642 Composition with the conve...
dffr5 31643 A quantifier free definiti...
dfso2 31644 Quantifier free definition...
dfpo2 31645 Quantifier free definition...
br8 31646 Substitution for an eight-...
br6 31647 Substitution for a six-pla...
br4 31648 Substitution for a four-pl...
cnvco1 31649 Another distributive law o...
cnvco2 31650 Another distributive law o...
eldm3 31651 Quantifier-free definition...
elrn3 31652 Quantifier-free definition...
pocnv 31653 The converse of a partial ...
socnv 31654 The converse of a strict o...
sotrd 31655 Transitivity law for stric...
sotr3 31656 Transitivity law for stric...
soasym 31657 Asymmetry law for strict o...
sotrine 31658 Trichotomy law for strict ...
eqfunresadj 31659 Law for adjoining an eleme...
eqfunressuc 31660 Law for equality of restri...
funeldmb 31661 If ` (/) ` is not part of ...
elintfv 31662 Membership in an intersect...
funpsstri 31663 A condition for subset tri...
fundmpss 31664 If a class ` F ` is a prop...
fvresval 31665 The value of a function at...
funsseq 31666 Given two functions with e...
fununiq 31667 The uniqueness condition o...
funbreq 31668 An equality condition for ...
fprb 31669 A condition for functionho...
br1steq 31670 Uniqueness condition for t...
br2ndeq 31671 Uniqueness condition for t...
br1steqg 31672 Uniqueness condition for t...
br2ndeqg 31673 Uniqueness condition for t...
br1steqgOLD 31674 Obsolete version of ~ br1s...
br2ndeqgOLD 31675 Obsolete version of ~ br2n...
dfdm5 31676 Definition of domain in te...
dfrn5 31677 Definition of range in ter...
opelco3 31678 Alternate way of saying th...
elima4 31679 Quantifier-free expression...
fv1stcnv 31680 The value of the converse ...
fv2ndcnv 31681 The value of the converse ...
imaindm 31682 The image is unaffected by...
setinds 31683 Principle of ` _E ` induct...
setinds2f 31684 ` _E ` induction schema, u...
setinds2 31685 ` _E ` induction schema, u...
elpotr 31686 A class of transitive sets...
dford5reg 31687 Given ~ ax-reg , an ordina...
dfon2lem1 31688 Lemma for ~ dfon2 . (Cont...
dfon2lem2 31689 Lemma for ~ dfon2 . (Cont...
dfon2lem3 31690 Lemma for ~ dfon2 . All s...
dfon2lem4 31691 Lemma for ~ dfon2 . If tw...
dfon2lem5 31692 Lemma for ~ dfon2 . Two s...
dfon2lem6 31693 Lemma for ~ dfon2 . A tra...
dfon2lem7 31694 Lemma for ~ dfon2 . All e...
dfon2lem8 31695 Lemma for ~ dfon2 . The i...
dfon2lem9 31696 Lemma for ~ dfon2 . A cla...
dfon2 31697 ` On ` consists of all set...
domep 31698 The domain of the epsilon ...
rdgprc0 31699 The value of the recursive...
rdgprc 31700 The value of the recursive...
dfrdg2 31701 Alternate definition of th...
dfrdg3 31702 Generalization of ~ dfrdg2...
axextdfeq 31703 A version of ~ ax-ext for ...
ax8dfeq 31704 A version of ~ ax-8 for us...
axextdist 31705 ~ ax-ext with distinctors ...
axext4dist 31706 ~ axext4 with distinctors ...
19.12b 31707 Version of ~ 19.12vv with ...
exnel 31708 There is always a set not ...
distel 31709 Distinctors in terms of me...
axextndbi 31710 ~ axextnd as a bicondition...
hbntg 31711 A more general form of ~ h...
hbimtg 31712 A more general and closed ...
hbaltg 31713 A more general and closed ...
hbng 31714 A more general form of ~ h...
hbimg 31715 A more general form of ~ h...
tfisg 31716 A closed form of ~ tfis . ...
dftrpred2 31719 A definition of the transi...
trpredeq1 31720 Equality theorem for trans...
trpredeq2 31721 Equality theorem for trans...
trpredeq3 31722 Equality theorem for trans...
trpredeq1d 31723 Equality deduction for tra...
trpredeq2d 31724 Equality deduction for tra...
trpredeq3d 31725 Equality deduction for tra...
eltrpred 31726 A class is a transitive pr...
trpredlem1 31727 Technical lemma for transi...
trpredpred 31728 Assuming it exists, the pr...
trpredss 31729 The transitive predecessor...
trpredtr 31730 The transitive predecessor...
trpredmintr 31731 The transitive predecessor...
trpredelss 31732 Given a transitive predece...
dftrpred3g 31733 The transitive predecessor...
dftrpred4g 31734 Another recursive expressi...
trpredpo 31735 If ` R ` partially orders ...
trpred0 31736 The class of transitive pr...
trpredex 31737 The transitive predecessor...
trpredrec 31738 If ` Y ` is an ` R ` , ` A...
frmin 31739 Every (possibly proper) su...
frind 31740 The principle of founded i...
frindi 31741 The principle of founded i...
frinsg 31742 Founded Induction Schema. ...
frins 31743 Founded Induction Schema. ...
frins2fg 31744 Founded Induction schema, ...
frins2f 31745 Founded Induction schema, ...
frins2g 31746 Founded Induction schema, ...
frins2 31747 Founded Induction schema, ...
frins3 31748 Founded Induction schema, ...
orderseqlem 31749 Lemma for ~ poseq and ~ so...
poseq 31750 A partial ordering of sequ...
soseq 31751 A linear ordering of seque...
wsuceq123 31760 Equality theorem for well-...
wsuceq1 31761 Equality theorem for well-...
wsuceq2 31762 Equality theorem for well-...
wsuceq3 31763 Equality theorem for well-...
nfwsuc 31764 Bound-variable hypothesis ...
wlimeq12 31765 Equality theorem for the l...
wlimeq1 31766 Equality theorem for the l...
wlimeq2 31767 Equality theorem for the l...
nfwlim 31768 Bound-variable hypothesis ...
elwlim 31769 Membership in the limit cl...
elwlimOLD 31770 Membership in the limit cl...
wzel 31771 The zero of a well-founded...
wzelOLD 31772 The zero of a well-founded...
wsuclem 31773 Lemma for the supremum pro...
wsuclemOLD 31774 Obsolete version of ~ wsuc...
wsucex 31775 Existence theorem for well...
wsuccl 31776 If ` X ` is a set with an ...
wsuclb 31777 A well-founded successor i...
wlimss 31778 The class of limit points ...
frr3g 31779 Functions defined by found...
frrlem1 31780 Lemma for founded recursio...
frrlem2 31781 Lemma for founded recursio...
frrlem3 31782 Lemma for founded recursio...
frrlem4 31783 Lemma for founded recursio...
frrlem5 31784 Lemma for founded recursio...
frrlem5b 31785 Lemma for founded recursio...
frrlem5c 31786 Lemma for founded recursio...
frrlem5d 31787 Lemma for founded recursio...
frrlem5e 31788 Lemma for founded recursio...
frrlem6 31789 Lemma for founded recursio...
frrlem7 31790 Lemma for founded recursio...
frrlem10 31791 Lemma for founded recursio...
frrlem11 31792 Lemma for founded recursio...
elno 31799 Membership in the surreals...
sltval 31800 The value of the surreal l...
bdayval 31801 The value of the birthday ...
nofun 31802 A surreal is a function. ...
nodmon 31803 The domain of a surreal is...
norn 31804 The range of a surreal is ...
nofnbday 31805 A surreal is a function ov...
nodmord 31806 The domain of a surreal ha...
elno2 31807 An alternative condition f...
elno3 31808 Another condition for memb...
sltval2 31809 Alternate expression for s...
nofv 31810 The function value of a su...
nosgnn0 31811 ` (/) ` is not a surreal s...
nosgnn0i 31812 If ` X ` is a surreal sign...
noreson 31813 The restriction of a surre...
sltintdifex 31814 If ` A
sltres 31815 If the restrictions of two...
noxp1o 31816 The Cartesian product of a...
noseponlem 31817 Lemma for ~ nosepon . Con...
nosepon 31818 Given two unequal surreals...
noextend 31819 Extending a surreal by one...
noextendseq 31820 Extend a surreal by a sequ...
noextenddif 31821 Calculate the place where ...
noextendlt 31822 Extending a surreal with a...
noextendgt 31823 Extending a surreal with a...
nolesgn2o 31824 Given ` A ` less than or e...
nolesgn2ores 31825 Given ` A ` less than or e...
sltsolem1 31826 Lemma for ~ sltso . The s...
sltso 31827 Surreal less than totally ...
bdayfo 31828 The birthday function maps...
fvnobday 31829 The value of a surreal at ...
nosepnelem 31830 Lemma for ~ nosepne . (Co...
nosepne 31831 The value of two non-equal...
nosep1o 31832 If the value of a surreal ...
nosepdmlem 31833 Lemma for ~ nosepdm . (Co...
nosepdm 31834 The first place two surrea...
nosepeq 31835 The values of two surreals...
nosepssdm 31836 Given two non-equal surrea...
nodenselem4 31837 Lemma for ~ nodense . Sho...
nodenselem5 31838 Lemma for ~ nodense . If ...
nodenselem6 31839 The restriction of a surre...
nodenselem7 31840 Lemma for ~ nodense . ` A ...
nodenselem8 31841 Lemma for ~ nodense . Giv...
nodense 31842 Given two distinct surreal...
bdayimaon 31843 Lemma for full-eta propert...
nolt02olem 31844 Lemma for ~ nolt02o . If ...
nolt02o 31845 Given ` A ` less than ` B ...
noresle 31846 Restriction law for surrea...
nomaxmo 31847 A class of surreals has at...
noprefixmo 31848 In any class of surreals, ...
nosupno 31849 The next several theorems ...
nosupdm 31850 The domain of the surreal ...
nosupbday 31851 Birthday bounding law for ...
nosupfv 31852 The value of surreal supre...
nosupres 31853 A restriction law for surr...
nosupbnd1lem1 31854 Lemma for ~ nosupbnd1 . E...
nosupbnd1lem2 31855 Lemma for ~ nosupbnd1 . W...
nosupbnd1lem3 31856 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem4 31857 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem5 31858 Lemma for ~ nosupbnd1 . I...
nosupbnd1lem6 31859 Lemma for ~ nosupbnd1 . E...
nosupbnd1 31860 Bounding law from below fo...
nosupbnd2lem1 31861 Bounding law from above wh...
nosupbnd2 31862 Bounding law from above fo...
noetalem1 31863 Lemma for ~ noeta . Estab...
noetalem2 31864 Lemma for ~ noeta . ` Z ` ...
noetalem3 31865 Lemma for ~ noeta . When ...
noetalem4 31866 Lemma for ~ noeta . Bound...
noetalem5 31867 Lemma for ~ noeta . The f...
noeta 31868 The full-eta axiom for the...
sltirr 31871 Surreal less than is irref...
slttr 31872 Surreal less than is trans...
sltasym 31873 Surreal less than is asymm...
sltlin 31874 Surreal less than obeys tr...
slttrieq2 31875 Trichotomy law for surreal...
slttrine 31876 Trichotomy law for surreal...
slenlt 31877 Surreal less than or equal...
sltnle 31878 Surreal less than in terms...
sleloe 31879 Surreal less than or equal...
sletri3 31880 Trichotomy law for surreal...
sltletr 31881 Surreal transitive law. (...
slelttr 31882 Surreal transitive law. (...
sletr 31883 Surreal transitive law. (...
slttrd 31884 Surreal less than is trans...
sltletrd 31885 Surreal less than is trans...
slelttrd 31886 Surreal less than is trans...
sletrd 31887 Surreal less than or equal...
bdayfun 31888 The birthday function is a...
bdayfn 31889 The birthday function is a...
bdaydm 31890 The birthday function's do...
bdayrn 31891 The birthday function's ra...
bdayelon 31892 The value of the birthday ...
nocvxminlem 31893 Lemma for ~ nocvxmin . Gi...
nocvxmin 31894 Given a nonempty convex cl...
noprc 31895 The surreal numbers are a ...
brsslt 31900 Binary relation form of th...
ssltex1 31901 The first argument of surr...
ssltex2 31902 The second argument of sur...
ssltss1 31903 The first argument of surr...
ssltss2 31904 The second argument of sur...
ssltsep 31905 The separation property of...
sssslt1 31906 Relationship between surre...
sssslt2 31907 Relationship between surre...
nulsslt 31908 The empty set is less than...
nulssgt 31909 The empty set is greater t...
conway 31910 Conway's Simplicity Theore...
scutval 31911 The value of the surreal c...
scutcut 31912 Cut properties of the surr...
scutbday 31913 The birthday of the surrea...
sslttr 31914 Transitive law for surreal...
ssltun1 31915 Union law for surreal set ...
ssltun2 31916 Union law for surreal set ...
scutun12 31917 Union law for surreal cuts...
dmscut 31918 The domain of the surreal ...
scutf 31919 Functionhood statement for...
etasslt 31920 A restatement of ~ noeta u...
scutbdaybnd 31921 An upper bound on the birt...
scutbdaylt 31922 If a surreal lies in a gap...
slerec 31923 A comparison law for surre...
sltrec 31924 A comparison law for surre...
madeval 31935 The value of the made by f...
madeval2 31936 Alternative characterizati...
txpss3v 31985 A tail Cartesian product i...
txprel 31986 A tail Cartesian product i...
brtxp 31987 Characterize a ternary rel...
brtxp2 31988 The binary relation over a...
dfpprod2 31989 Expanded definition of par...
pprodcnveq 31990 A converse law for paralle...
pprodss4v 31991 The parallel product is a ...
brpprod 31992 Characterize a quaternary ...
brpprod3a 31993 Condition for parallel pro...
brpprod3b 31994 Condition for parallel pro...
relsset 31995 The subset class is a bina...
brsset 31996 For sets, the ` SSet ` bin...
idsset 31997 ` _I ` is equal to the int...
eltrans 31998 Membership in the class of...
dfon3 31999 A quantifier-free definiti...
dfon4 32000 Another quantifier-free de...
brtxpsd 32001 Expansion of a common form...
brtxpsd2 32002 Another common abbreviatio...
brtxpsd3 32003 A third common abbreviatio...
relbigcup 32004 The ` Bigcup ` relationshi...
brbigcup 32005 Binary relation over ` Big...
dfbigcup2 32006 ` Bigcup ` using maps-to n...
fobigcup 32007 ` Bigcup ` maps the univer...
fnbigcup 32008 ` Bigcup ` is a function o...
fvbigcup 32009 For sets, ` Bigcup ` yield...
elfix 32010 Membership in the fixpoint...
elfix2 32011 Alternative membership in ...
dffix2 32012 The fixpoints of a class i...
fixssdm 32013 The fixpoints of a class a...
fixssrn 32014 The fixpoints of a class a...
fixcnv 32015 The fixpoints of a class a...
fixun 32016 The fixpoint operator dist...
ellimits 32017 Membership in the class of...
limitssson 32018 The class of all limit ord...
dfom5b 32019 A quantifier-free definiti...
sscoid 32020 A condition for subset and...
dffun10 32021 Another potential definiti...
elfuns 32022 Membership in the class of...
elfunsg 32023 Closed form of ~ elfuns . ...
brsingle 32024 The binary relation form o...
elsingles 32025 Membership in the class of...
fnsingle 32026 The singleton relationship...
fvsingle 32027 The value of the singleton...
dfsingles2 32028 Alternate definition of th...
snelsingles 32029 A singleton is a member of...
dfiota3 32030 A definiton of iota using ...
dffv5 32031 Another quantifier free de...
unisnif 32032 Express union of singleton...
brimage 32033 Binary relation form of th...
brimageg 32034 Closed form of ~ brimage ....
funimage 32035 ` Image A ` is a function....
fnimage 32036 ` Image R ` is a function ...
imageval 32037 The image functor in maps-...
fvimage 32038 Value of the image functor...
brcart 32039 Binary relation form of th...
brdomain 32040 Binary relation form of th...
brrange 32041 Binary relation form of th...
brdomaing 32042 Closed form of ~ brdomain ...
brrangeg 32043 Closed form of ~ brrange ....
brimg 32044 Binary relation form of th...
brapply 32045 Binary relation form of th...
brcup 32046 Binary relation form of th...
brcap 32047 Binary relation form of th...
brsuccf 32048 Binary relation form of th...
funpartlem 32049 Lemma for ~ funpartfun . ...
funpartfun 32050 The functional part of ` F...
funpartss 32051 The functional part of ` F...
funpartfv 32052 The function value of the ...
fullfunfnv 32053 The full functional part o...
fullfunfv 32054 The function value of the ...
brfullfun 32055 A binary relation form con...
brrestrict 32056 Binary relation form of th...
dfrecs2 32057 A quantifier-free definiti...
dfrdg4 32058 A quantifier-free definiti...
dfint3 32059 Quantifier-free definition...
imagesset 32060 The Image functor applied ...
brub 32061 Binary relation form of th...
brlb 32062 Binary relation form of th...
altopex 32067 Alternative ordered pairs ...
altopthsn 32068 Two alternate ordered pair...
altopeq12 32069 Equality for alternate ord...
altopeq1 32070 Equality for alternate ord...
altopeq2 32071 Equality for alternate ord...
altopth1 32072 Equality of the first memb...
altopth2 32073 Equality of the second mem...
altopthg 32074 Alternate ordered pair the...
altopthbg 32075 Alternate ordered pair the...
altopth 32076 The alternate ordered pair...
altopthb 32077 Alternate ordered pair the...
altopthc 32078 Alternate ordered pair the...
altopthd 32079 Alternate ordered pair the...
altxpeq1 32080 Equality for alternate Car...
altxpeq2 32081 Equality for alternate Car...
elaltxp 32082 Membership in alternate Ca...
altopelaltxp 32083 Alternate ordered pair mem...
altxpsspw 32084 An inclusion rule for alte...
altxpexg 32085 The alternate Cartesian pr...
rankaltopb 32086 Compute the rank of an alt...
nfaltop 32087 Bound-variable hypothesis ...
sbcaltop 32088 Distribution of class subs...
cgrrflx2d 32091 Deduction form of ~ axcgrr...
cgrtr4d 32092 Deduction form of ~ axcgrt...
cgrtr4and 32093 Deduction form of ~ axcgrt...
cgrrflx 32094 Reflexivity law for congru...
cgrrflxd 32095 Deduction form of ~ cgrrfl...
cgrcomim 32096 Congruence commutes on the...
cgrcom 32097 Congruence commutes betwee...
cgrcomand 32098 Deduction form of ~ cgrcom...
cgrtr 32099 Transitivity law for congr...
cgrtrand 32100 Deduction form of ~ cgrtr ...
cgrtr3 32101 Transitivity law for congr...
cgrtr3and 32102 Deduction form of ~ cgrtr3...
cgrcoml 32103 Congruence commutes on the...
cgrcomr 32104 Congruence commutes on the...
cgrcomlr 32105 Congruence commutes on bot...
cgrcomland 32106 Deduction form of ~ cgrcom...
cgrcomrand 32107 Deduction form of ~ cgrcom...
cgrcomlrand 32108 Deduction form of ~ cgrcom...
cgrtriv 32109 Degenerate segments are co...
cgrid2 32110 Identity law for congruenc...
cgrdegen 32111 Two congruent segments are...
brofs 32112 Binary relation form of th...
5segofs 32113 Rephrase ~ ax5seg using th...
ofscom 32114 The outer five segment pre...
cgrextend 32115 Link congruence over a pai...
cgrextendand 32116 Deduction form of ~ cgrext...
segconeq 32117 Two points that satsify th...
segconeu 32118 Existential uniqueness ver...
btwntriv2 32119 Betweenness always holds f...
btwncomim 32120 Betweenness commutes. Imp...
btwncom 32121 Betweenness commutes. (Co...
btwncomand 32122 Deduction form of ~ btwnco...
btwntriv1 32123 Betweenness always holds f...
btwnswapid 32124 If you can swap the first ...
btwnswapid2 32125 If you can swap arguments ...
btwnintr 32126 Inner transitivity law for...
btwnexch3 32127 Exchange the first endpoin...
btwnexch3and 32128 Deduction form of ~ btwnex...
btwnouttr2 32129 Outer transitivity law for...
btwnexch2 32130 Exchange the outer point o...
btwnouttr 32131 Outer transitivity law for...
btwnexch 32132 Outer transitivity law for...
btwnexchand 32133 Deduction form of ~ btwnex...
btwndiff 32134 There is always a ` c ` di...
trisegint 32135 A line segment between two...
funtransport 32138 The ` TransportTo ` relati...
fvtransport 32139 Calculate the value of the...
transportcl 32140 Closure law for segment tr...
transportprops 32141 Calculate the defining pro...
brifs 32150 Binary relation form of th...
ifscgr 32151 Inner five segment congrue...
cgrsub 32152 Removing identical parts f...
brcgr3 32153 Binary relation form of th...
cgr3permute3 32154 Permutation law for three-...
cgr3permute1 32155 Permutation law for three-...
cgr3permute2 32156 Permutation law for three-...
cgr3permute4 32157 Permutation law for three-...
cgr3permute5 32158 Permutation law for three-...
cgr3tr4 32159 Transitivity law for three...
cgr3com 32160 Commutativity law for thre...
cgr3rflx 32161 Identity law for three-pla...
cgrxfr 32162 A line segment can be divi...
btwnxfr 32163 A condition for extending ...
colinrel 32164 Colinearity is a relations...
brcolinear2 32165 Alternate colinearity bina...
brcolinear 32166 The binary relation form o...
colinearex 32167 The colinear predicate exi...
colineardim1 32168 If ` A ` is colinear with ...
colinearperm1 32169 Permutation law for coline...
colinearperm3 32170 Permutation law for coline...
colinearperm2 32171 Permutation law for coline...
colinearperm4 32172 Permutation law for coline...
colinearperm5 32173 Permutation law for coline...
colineartriv1 32174 Trivial case of colinearit...
colineartriv2 32175 Trivial case of colinearit...
btwncolinear1 32176 Betweenness implies coline...
btwncolinear2 32177 Betweenness implies coline...
btwncolinear3 32178 Betweenness implies coline...
btwncolinear4 32179 Betweenness implies coline...
btwncolinear5 32180 Betweenness implies coline...
btwncolinear6 32181 Betweenness implies coline...
colinearxfr 32182 Transfer law for colineari...
lineext 32183 Extend a line with a missi...
brofs2 32184 Change some conditions for...
brifs2 32185 Change some conditions for...
brfs 32186 Binary relation form of th...
fscgr 32187 Congruence law for the gen...
linecgr 32188 Congruence rule for lines....
linecgrand 32189 Deduction form of ~ linecg...
lineid 32190 Identity law for points on...
idinside 32191 Law for finding a point in...
endofsegid 32192 If ` A ` , ` B ` , and ` C...
endofsegidand 32193 Deduction form of ~ endofs...
btwnconn1lem1 32194 Lemma for ~ btwnconn1 . T...
btwnconn1lem2 32195 Lemma for ~ btwnconn1 . N...
btwnconn1lem3 32196 Lemma for ~ btwnconn1 . E...
btwnconn1lem4 32197 Lemma for ~ btwnconn1 . A...
btwnconn1lem5 32198 Lemma for ~ btwnconn1 . N...
btwnconn1lem6 32199 Lemma for ~ btwnconn1 . N...
btwnconn1lem7 32200 Lemma for ~ btwnconn1 . U...
btwnconn1lem8 32201 Lemma for ~ btwnconn1 . N...
btwnconn1lem9 32202 Lemma for ~ btwnconn1 . N...
btwnconn1lem10 32203 Lemma for ~ btwnconn1 . N...
btwnconn1lem11 32204 Lemma for ~ btwnconn1 . N...
btwnconn1lem12 32205 Lemma for ~ btwnconn1 . U...
btwnconn1lem13 32206 Lemma for ~ btwnconn1 . B...
btwnconn1lem14 32207 Lemma for ~ btwnconn1 . F...
btwnconn1 32208 Connectitivy law for betwe...
btwnconn2 32209 Another connectivity law f...
btwnconn3 32210 Inner connectivity law for...
midofsegid 32211 If two points fall in the ...
segcon2 32212 Generalization of ~ axsegc...
brsegle 32215 Binary relation form of th...
brsegle2 32216 Alternate characterization...
seglecgr12im 32217 Substitution law for segme...
seglecgr12 32218 Substitution law for segme...
seglerflx 32219 Segment comparison is refl...
seglemin 32220 Any segment is at least as...
segletr 32221 Segment less than is trans...
segleantisym 32222 Antisymmetry law for segme...
seglelin 32223 Linearity law for segment ...
btwnsegle 32224 If ` B ` falls between ` A...
colinbtwnle 32225 Given three colinear point...
broutsideof 32228 Binary relation form of ` ...
broutsideof2 32229 Alternate form of ` Outsid...
outsidene1 32230 Outsideness implies inequa...
outsidene2 32231 Outsideness implies inequa...
btwnoutside 32232 A principle linking outsid...
broutsideof3 32233 Characterization of outsid...
outsideofrflx 32234 Reflexitivity of outsidene...
outsideofcom 32235 Commutitivity law for outs...
outsideoftr 32236 Transitivity law for outsi...
outsideofeq 32237 Uniqueness law for ` Outsi...
outsideofeu 32238 Given a non-degenerate ray...
outsidele 32239 Relate ` OutsideOf ` to ` ...
outsideofcol 32240 Outside of implies colinea...
funray 32247 Show that the ` Ray ` rela...
fvray 32248 Calculate the value of the...
funline 32249 Show that the ` Line ` rel...
linedegen 32250 When ` Line ` is applied w...
fvline 32251 Calculate the value of the...
liness 32252 A line is a subset of the ...
fvline2 32253 Alternate definition of a ...
lineunray 32254 A line is composed of a po...
lineelsb2 32255 If ` S ` lies on ` P Q ` ,...
linerflx1 32256 Reflexivity law for line m...
linecom 32257 Commutativity law for line...
linerflx2 32258 Reflexivity law for line m...
ellines 32259 Membership in the set of a...
linethru 32260 If ` A ` is a line contain...
hilbert1.1 32261 There is a line through an...
hilbert1.2 32262 There is at most one line ...
linethrueu 32263 There is a unique line goi...
lineintmo 32264 Two distinct lines interse...
fwddifval 32269 Calculate the value of the...
fwddifnval 32270 The value of the forward d...
fwddifn0 32271 The value of the n-iterate...
fwddifnp1 32272 The value of the n-iterate...
rankung 32273 The rank of the union of t...
ranksng 32274 The rank of a singleton. ...
rankelg 32275 The membership relation is...
rankpwg 32276 The rank of a power set. ...
rank0 32277 The rank of the empty set ...
rankeq1o 32278 The only set with rank ` 1...
elhf 32281 Membership in the heredita...
elhf2 32282 Alternate form of membersh...
elhf2g 32283 Hereditarily finiteness vi...
0hf 32284 The empty set is a heredit...
hfun 32285 The union of two HF sets i...
hfsn 32286 The singleton of an HF set...
hfadj 32287 Adjoining one HF element t...
hfelhf 32288 Any member of an HF set is...
hftr 32289 The class of all hereditar...
hfext 32290 Extensionality for HF sets...
hfuni 32291 The union of an HF set is ...
hfpw 32292 The power class of an HF s...
hfninf 32293 ` _om ` is not hereditaril...
a1i14 32294 Add two antecedents to a w...
a1i24 32295 Add two antecedents to a w...
exp5d 32296 An exportation inference. ...
exp5g 32297 An exportation inference. ...
exp5k 32298 An exportation inference. ...
exp56 32299 An exportation inference. ...
exp58 32300 An exportation inference. ...
exp510 32301 An exportation inference. ...
exp511 32302 An exportation inference. ...
exp512 32303 An exportation inference. ...
3com12d 32304 Commutation in consequent....
imp5p 32305 A triple importation infer...
imp5q 32306 A triple importation infer...
ecase13d 32307 Deduction for elimination ...
subtr 32308 Transitivity of implicit s...
subtr2 32309 Transitivity of implicit s...
trer 32310 A relation intersected wit...
elicc3 32311 An equivalent membership c...
finminlem 32312 A useful lemma about finit...
gtinf 32313 Any number greater than an...
gtinfOLD 32314 Any number greater than an...
opnrebl 32315 A set is open in the stand...
opnrebl2 32316 A set is open in the stand...
nn0prpwlem 32317 Lemma for ~ nn0prpw . Use...
nn0prpw 32318 Two nonnegative integers a...
topbnd 32319 Two equivalent expressions...
opnbnd 32320 A set is open iff it is di...
cldbnd 32321 A set is closed iff it con...
ntruni 32322 A union of interiors is a ...
clsun 32323 A pairwise union of closur...
clsint2 32324 The closure of an intersec...
opnregcld 32325 A set is regularly closed ...
cldregopn 32326 A set if regularly open if...
neiin 32327 Two neighborhoods intersec...
hmeoclda 32328 Homeomorphisms preserve cl...
hmeocldb 32329 Homeomorphisms preserve cl...
ivthALT 32330 An alternate proof of the ...
fnerel 32333 Fineness is a relation. (...
isfne 32334 The predicate " ` B ` is f...
isfne4 32335 The predicate " ` B ` is f...
isfne4b 32336 A condition for a topology...
isfne2 32337 The predicate " ` B ` is f...
isfne3 32338 The predicate " ` B ` is f...
fnebas 32339 A finer cover covers the s...
fnetg 32340 A finer cover generates a ...
fnessex 32341 If ` B ` is finer than ` A...
fneuni 32342 If ` B ` is finer than ` A...
fneint 32343 If a cover is finer than a...
fness 32344 A cover is finer than its ...
fneref 32345 Reflexivity of the finenes...
fnetr 32346 Transitivity of the finene...
fneval 32347 Two covers are finer than ...
fneer 32348 Fineness intersected with ...
topfne 32349 Fineness for covers corres...
topfneec 32350 A cover is equivalent to a...
topfneec2 32351 A topology is precisely id...
fnessref 32352 A cover is finer iff it ha...
refssfne 32353 A cover is a refinement if...
neibastop1 32354 A collection of neighborho...
neibastop2lem 32355 Lemma for ~ neibastop2 . ...
neibastop2 32356 In the topology generated ...
neibastop3 32357 The topology generated by ...
topmtcl 32358 The meet of a collection o...
topmeet 32359 Two equivalent formulation...
topjoin 32360 Two equivalent formulation...
fnemeet1 32361 The meet of a collection o...
fnemeet2 32362 The meet of equivalence cl...
fnejoin1 32363 Join of equivalence classe...
fnejoin2 32364 Join of equivalence classe...
fgmin 32365 Minimality property of a g...
neifg 32366 The neighborhood filter of...
tailfval 32367 The tail function for a di...
tailval 32368 The tail of an element in ...
eltail 32369 An element of a tail. (Co...
tailf 32370 The tail function of a dir...
tailini 32371 A tail contains its initia...
tailfb 32372 The collection of tails of...
filnetlem1 32373 Lemma for ~ filnet . Chan...
filnetlem2 32374 Lemma for ~ filnet . The ...
filnetlem3 32375 Lemma for ~ filnet . (Con...
filnetlem4 32376 Lemma for ~ filnet . (Con...
filnet 32377 A filter has the same conv...
tb-ax1 32378 The first of three axioms ...
tb-ax2 32379 The second of three axioms...
tb-ax3 32380 The third of three axioms ...
tbsyl 32381 The weak syllogism from Ta...
re1ax2lem 32382 Lemma for ~ re1ax2 . (Con...
re1ax2 32383 ~ ax-2 rederived from the ...
naim1 32384 Constructor theorem for ` ...
naim2 32385 Constructor theorem for ` ...
naim1i 32386 Constructor rule for ` -/\...
naim2i 32387 Constructor rule for ` -/\...
naim12i 32388 Constructor rule for ` -/\...
nabi1 32389 Constructor theorem for ` ...
nabi2 32390 Constructor theorem for ` ...
nabi1i 32391 Constructor rule for ` -/\...
nabi2i 32392 Constructor rule for ` -/\...
nabi12i 32393 Constructor rule for ` -/\...
df3nandALT1 32396 The double nand expressed ...
df3nandALT2 32397 The double nand expressed ...
andnand1 32398 Double and in terms of dou...
imnand2 32399 An ` -> ` nand relation. ...
allt 32400 For all sets, ` T. ` is tr...
alnof 32401 For all sets, ` F. ` is no...
nalf 32402 Not all sets hold ` F. ` a...
extt 32403 There exists a set that ho...
nextnt 32404 There does not exist a set...
nextf 32405 There does not exist a set...
unnf 32406 There does not exist exact...
unnt 32407 There does not exist exact...
mont 32408 There does not exist at mo...
mof 32409 There exist at most one se...
meran1 32410 A single axiom for proposi...
meran2 32411 A single axiom for proposi...
meran3 32412 A single axiom for proposi...
waj-ax 32413 A single axiom for proposi...
lukshef-ax2 32414 A single axiom for proposi...
arg-ax 32415 ? (Contributed by Anthony...
negsym1 32416 In the paper "On Variable ...
imsym1 32417 A symmetry with ` -> ` . ...
bisym1 32418 A symmetry with ` <-> ` . ...
consym1 32419 A symmetry with ` /\ ` . ...
dissym1 32420 A symmetry with ` \/ ` . ...
nandsym1 32421 A symmetry with ` -/\ ` . ...
unisym1 32422 A symmetry with ` A. ` . ...
exisym1 32423 A symmetry with ` E. ` . ...
unqsym1 32424 A symmetry with ` E! ` . ...
amosym1 32425 A symmetry with ` E* ` . ...
subsym1 32426 A symmetry with ` [ x / y ...
ontopbas 32427 An ordinal number is a top...
onsstopbas 32428 The class of ordinal numbe...
onpsstopbas 32429 The class of ordinal numbe...
ontgval 32430 The topology generated fro...
ontgsucval 32431 The topology generated fro...
onsuctop 32432 A successor ordinal number...
onsuctopon 32433 One of the topologies on a...
ordtoplem 32434 Membership of the class of...
ordtop 32435 An ordinal is a topology i...
onsucconni 32436 A successor ordinal number...
onsucconn 32437 A successor ordinal number...
ordtopconn 32438 An ordinal topology is con...
onintopssconn 32439 An ordinal topology is con...
onsuct0 32440 A successor ordinal number...
ordtopt0 32441 An ordinal topology is T_0...
onsucsuccmpi 32442 The successor of a success...
onsucsuccmp 32443 The successor of a success...
limsucncmpi 32444 The successor of a limit o...
limsucncmp 32445 The successor of a limit o...
ordcmp 32446 An ordinal topology is com...
ssoninhaus 32447 The ordinal topologies ` 1...
onint1 32448 The ordinal T_1 spaces are...
oninhaus 32449 The ordinal Hausdorff spac...
fveleq 32450 Please add description her...
findfvcl 32451 Please add description her...
findreccl 32452 Please add description her...
findabrcl 32453 Please add description her...
nnssi2 32454 Convert a theorem for real...
nnssi3 32455 Convert a theorem for real...
nndivsub 32456 Please add description her...
nndivlub 32457 A factor of a positive int...
ee7.2aOLD 32460 Lemma for Euclid's Element...
dnival 32461 Value of the "distance to ...
dnicld1 32462 Closure theorem for the "d...
dnicld2 32463 Closure theorem for the "d...
dnif 32464 The "distance to nearest i...
dnizeq0 32465 The distance to nearest in...
dnizphlfeqhlf 32466 The distance to nearest in...
rddif2 32467 Variant of ~ rddif . (Con...
dnibndlem1 32468 Lemma for ~ dnibnd . (Con...
dnibndlem2 32469 Lemma for ~ dnibnd . (Con...
dnibndlem3 32470 Lemma for ~ dnibnd . (Con...
dnibndlem4 32471 Lemma for ~ dnibnd . (Con...
dnibndlem5 32472 Lemma for ~ dnibnd . (Con...
dnibndlem6 32473 Lemma for ~ dnibnd . (Con...
dnibndlem7 32474 Lemma for ~ dnibnd . (Con...
dnibndlem8 32475 Lemma for ~ dnibnd . (Con...
dnibndlem9 32476 Lemma for ~ dnibnd . (Con...
dnibndlem10 32477 Lemma for ~ dnibnd . (Con...
dnibndlem11 32478 Lemma for ~ dnibnd . (Con...
dnibndlem12 32479 Lemma for ~ dnibnd . (Con...
dnibndlem13 32480 Lemma for ~ dnibnd . (Con...
dnibnd 32481 The "distance to nearest i...
dnicn 32482 The "distance to nearest i...
knoppcnlem1 32483 Lemma for ~ knoppcn . (Co...
knoppcnlem2 32484 Lemma for ~ knoppcn . (Co...
knoppcnlem3 32485 Lemma for ~ knoppcn . (Co...
knoppcnlem4 32486 Lemma for ~ knoppcn . (Co...
knoppcnlem5 32487 Lemma for ~ knoppcn . (Co...
knoppcnlem6 32488 Lemma for ~ knoppcn . (Co...
knoppcnlem7 32489 Lemma for ~ knoppcn . (Co...
knoppcnlem8 32490 Lemma for ~ knoppcn . (Co...
knoppcnlem9 32491 Lemma for ~ knoppcn . (Co...
knoppcnlem10 32492 Lemma for ~ knoppcn . (Co...
knoppcnlem11 32493 Lemma for ~ knoppcn . (Co...
knoppcn 32494 The continuous nowhere dif...
knoppcld 32495 Closure theorem for Knopp'...
addgtge0d 32496 Addition of positive and n...
unblimceq0lem 32497 Lemma for ~ unblimceq0 . ...
unblimceq0 32498 If ` F ` is unbounded near...
unbdqndv1 32499 If the difference quotient...
unbdqndv2lem1 32500 Lemma for ~ unbdqndv2 . (...
unbdqndv2lem2 32501 Lemma for ~ unbdqndv2 . (...
unbdqndv2 32502 Variant of ~ unbdqndv1 wit...
knoppndvlem1 32503 Lemma for ~ knoppndv . (C...
knoppndvlem2 32504 Lemma for ~ knoppndv . (C...
knoppndvlem3 32505 Lemma for ~ knoppndv . (C...
knoppndvlem4 32506 Lemma for ~ knoppndv . (C...
knoppndvlem5 32507 Lemma for ~ knoppndv . (C...
knoppndvlem6 32508 Lemma for ~ knoppndv . (C...
knoppndvlem7 32509 Lemma for ~ knoppndv . (C...
knoppndvlem8 32510 Lemma for ~ knoppndv . (C...
knoppndvlem9 32511 Lemma for ~ knoppndv . (C...
knoppndvlem10 32512 Lemma for ~ knoppndv . (C...
knoppndvlem11 32513 Lemma for ~ knoppndv . (C...
knoppndvlem12 32514 Lemma for ~ knoppndv . (C...
knoppndvlem13 32515 Lemma for ~ knoppndv . (C...
knoppndvlem14 32516 Lemma for ~ knoppndv . (C...
knoppndvlem15 32517 Lemma for ~ knoppndv . (C...
knoppndvlem16 32518 Lemma for ~ knoppndv . (C...
knoppndvlem17 32519 Lemma for ~ knoppndv . (C...
knoppndvlem18 32520 Lemma for ~ knoppndv . (C...
knoppndvlem19 32521 Lemma for ~ knoppndv . (C...
knoppndvlem20 32522 Lemma for ~ knoppndv . (C...
knoppndvlem21 32523 Lemma for ~ knoppndv . (C...
knoppndvlem22 32524 Lemma for ~ knoppndv . (C...
knoppndv 32525 The continuous nowhere dif...
knoppf 32526 Knopp's function is a func...
knoppcn2 32527 Variant of ~ knoppcn with ...
cnndvlem1 32528 Lemma for ~ cnndv . (Cont...
cnndvlem2 32529 Lemma for ~ cnndv . (Cont...
cnndv 32530 There exists a continuous ...
bj-mp2c 32531 A double modus ponens infe...
bj-mp2d 32532 A double modus ponens infe...
bj-0 32533 A syntactic theorem. See ...
bj-1 32534 In this proof, the use of ...
bj-a1k 32535 Weakening of ~ ax-1 . Thi...
bj-jarri 32536 Inference associated with ...
bj-jarrii 32537 Inference associated with ...
bj-imim2ALT 32538 More direct proof of ~ imi...
bj-imim21 32539 The propositional function...
bj-imim21i 32540 Inference associated with ...
bj-orim2 32541 Proof of ~ orim2 from the ...
bj-curry 32542 A non-intuitionistic posit...
bj-peirce 32543 Proof of ~ peirce from min...
bj-currypeirce 32544 Curry's axiom (a non-intui...
bj-peircecurry 32545 Peirce's axiom ~ peirce im...
pm4.81ALT 32546 Alternate proof of ~ pm4.8...
bj-con4iALT 32547 Alternate proof of ~ con4i...
bj-con2com 32548 A commuted form of the con...
bj-con2comi 32549 Inference associated with ...
bj-pm2.01i 32550 Inference associated with ...
bj-nimn 32551 If a formula is true, then...
bj-nimni 32552 Inference associated with ...
bj-peircei 32553 Inference associated with ...
bj-looinvi 32554 Inference associated with ...
bj-looinvii 32555 Inference associated with ...
bj-jaoi1 32556 Shortens ~ orfa2 (58>53), ...
bj-jaoi2 32557 Shortens ~ consensus (110>...
bj-dfbi4 32558 Alternate definition of th...
bj-dfbi5 32559 Alternate definition of th...
bj-dfbi6 32560 Alternate definition of th...
bj-bijust0 32561 The general statement that...
bj-consensus 32562 Version of ~ consensus exp...
bj-consensusALT 32563 Alternate proof of ~ bj-co...
bj-dfifc2 32564 This should be the alterna...
bj-df-ifc 32565 The definition of "ifc" if...
bj-ififc 32566 A theorem linking ` if- ` ...
bj-imbi12 32567 Uncurried (imported) form ...
bj-biorfi 32568 This should be labeled "bi...
bj-falor 32569 Dual of ~ truan (which has...
bj-falor2 32570 Dual of ~ truan . (Contri...
bj-bibibi 32571 A property of the bicondit...
bj-imn3ani 32572 Duplication of ~ bnj1224 ....
bj-andnotim 32573 Two ways of expressing a c...
bj-bi3ant 32574 This used to be in the mai...
bj-bisym 32575 This used to be in the mai...
bj-axdd2 32576 This implication, proved u...
bj-axd2d 32577 This implication, proved u...
bj-axtd 32578 This implication, proved f...
bj-gl4lem 32579 Lemma for ~ bj-gl4 . Note...
bj-gl4 32580 In a normal modal logic, t...
bj-axc4 32581 Over minimal calculus, the...
prvlem1 32586 An elementary property of ...
prvlem2 32587 An elementary property of ...
bj-babygodel 32588 See the section header com...
bj-babylob 32589 See the section header com...
bj-godellob 32590 Proof of Gödel's theo...
bj-genr 32591 Generalization rule on the...
bj-genl 32592 Generalization rule on the...
bj-genan 32593 Generalization rule on a c...
bj-2alim 32594 Closed form of ~ 2alimi . ...
bj-2exim 32595 Closed form of ~ 2eximi . ...
bj-alanim 32596 Closed form of ~ alanimi ....
bj-2albi 32597 Closed form of ~ 2albii . ...
bj-notalbii 32598 Equivalence of universal q...
bj-2exbi 32599 Closed form of ~ 2exbii . ...
bj-3exbi 32600 Closed form of ~ 3exbii . ...
bj-sylgt2 32601 Uncurried (imported) form ...
bj-exlimh 32602 Closed form of close to ~ ...
bj-exlimh2 32603 Uncurried (imported) form ...
bj-alrimhi 32604 An inference associated wi...
bj-alexim 32605 Closed form of ~ aleximi (...
bj-nexdh 32606 Closed form of ~ nexdh (ac...
bj-nexdh2 32607 Uncurried (imported) form ...
bj-hbxfrbi 32608 Closed form of ~ hbxfrbi ....
bj-exlime 32609 Variant of ~ exlimih where...
bj-exnalimn 32610 A transformation of quanti...
bj-exalim 32611 Distributing quantifiers o...
bj-exalimi 32612 An inference for distribut...
bj-exalims 32613 Distributing quantifiers o...
bj-exalimsi 32614 An inference for distribut...
bj-ax12ig 32615 A lemma used to prove a we...
bj-ax12i 32616 A weakening of ~ bj-ax12ig...
bj-ax12wlem 32617 A lemma used to prove a we...
bj-ssbjust 32618 Justification theorem for ...
bj-ssbim 32621 Distribute substitution ov...
bj-ssbbi 32622 Biconditional property for...
bj-ssbimi 32623 Distribute substitution ov...
bj-ssbbii 32624 Biconditional property for...
bj-alsb 32625 If a proposition is true f...
bj-sbex 32626 If a proposition is true f...
bj-ssbeq 32627 Substitution in an equalit...
bj-ssb0 32628 Substitution for a variabl...
bj-ssbequ 32629 Equality property for subs...
bj-ssblem1 32630 A lemma for the definiens ...
bj-ssblem2 32631 An instance of ~ ax-11 pro...
bj-ssb1a 32632 One direction of a simplif...
bj-ssb1 32633 A simplified definition of...
bj-ax12 32634 A weaker form of ~ ax-12 a...
bj-ax12ssb 32635 The axiom ~ bj-ax12 expres...
bj-modal5e 32636 Dual statement of ~ hbe1 (...
bj-19.41al 32637 Special case of ~ 19.41 pr...
bj-equsexval 32638 Special case of ~ equsexv ...
bj-sb56 32639 Proof of ~ sb56 from Tarsk...
bj-dfssb2 32640 An alternate definition of...
bj-ssbn 32641 The result of a substituti...
bj-ssbft 32642 See ~ sbft . This proof i...
bj-ssbequ2 32643 Note that ~ ax-12 is used ...
bj-ssbequ1 32644 This uses ~ ax-12 with a d...
bj-ssbid2 32645 A special case of ~ bj-ssb...
bj-ssbid2ALT 32646 Alternate proof of ~ bj-ss...
bj-ssbid1 32647 A special case of ~ bj-ssb...
bj-ssbid1ALT 32648 Alternate proof of ~ bj-ss...
bj-ssbssblem 32649 Composition of two substit...
bj-ssbcom3lem 32650 Lemma for bj-ssbcom3 when ...
bj-ax6elem1 32651 Lemma for ~ bj-ax6e . (Co...
bj-ax6elem2 32652 Lemma for ~ bj-ax6e . (Co...
bj-ax6e 32653 Proof of ~ ax6e (hence ~ a...
bj-extru 32654 There exists a variable su...
bj-alequexv 32655 Version of ~ bj-alequex wi...
bj-spimvwt 32656 Closed form of ~ spimvw . ...
bj-spimevw 32657 Existential introduction, ...
bj-spnfw 32658 Theorem close to a closed ...
bj-cbvexiw 32659 Change bound variable. Th...
bj-cbvexivw 32660 Change bound variable. Th...
bj-modald 32661 A short form of the axiom ...
bj-denot 32662 A weakening of ~ ax-6 and ...
bj-eqs 32663 A lemma for substitutions,...
bj-cbvexw 32664 Change bound variable. Th...
bj-ax12w 32665 The general statement that...
bj-elequ2g 32666 A form of ~ elequ2 with a ...
bj-ax89 32667 A theorem which could be u...
bj-elequ12 32668 An identity law for the no...
bj-cleljusti 32669 One direction of ~ cleljus...
bj-alcomexcom 32670 Commutation of universal q...
bj-hbalt 32671 Closed form of ~ hbal . W...
axc11n11 32672 Proof of ~ axc11n from { ~...
axc11n11r 32673 Proof of ~ axc11n from { ~...
bj-axc16g16 32674 Proof of ~ axc16g from { ~...
bj-ax12v3 32675 A weak version of ~ ax-12 ...
bj-ax12v3ALT 32676 Alternate proof of ~ bj-ax...
bj-sb 32677 A weak variant of ~ sbid2 ...
bj-modalbe 32678 The predicate-calculus ver...
bj-spst 32679 Closed form of ~ sps . On...
bj-19.21bit 32680 Closed form of ~ 19.21bi ....
bj-19.23bit 32681 Closed form of ~ 19.23bi ....
bj-nexrt 32682 Closed form of ~ nexr . C...
bj-alrim 32683 Closed form of ~ alrimi . ...
bj-alrim2 32684 Uncurried (imported) form ...
bj-nfdt0 32685 A theorem close to a close...
bj-nfdt 32686 Closed form of ~ nf5d and ...
bj-nexdt 32687 Closed form of ~ nexd . (...
bj-nexdvt 32688 Closed form of ~ nexdv . ...
bj-19.3t 32689 Closed form of ~ 19.3 . (...
bj-alexbiex 32690 Adding a second quantifier...
bj-exexbiex 32691 Adding a second quantifier...
bj-alalbial 32692 Adding a second quantifier...
bj-exalbial 32693 Adding a second quantifier...
bj-19.9htbi 32694 Strengthening ~ 19.9ht by ...
bj-hbntbi 32695 Strengthening ~ hbnt by re...
bj-biexal1 32696 A general FOL biconditiona...
bj-biexal2 32697 A general FOL biconditiona...
bj-biexal3 32698 A general FOL biconditiona...
bj-bialal 32699 A general FOL biconditiona...
bj-biexex 32700 A general FOL biconditiona...
bj-hbext 32701 Closed form of ~ hbex . (...
bj-nfalt 32702 Closed form of ~ nfal . (...
bj-nfext 32703 Closed form of ~ nfex . (...
bj-eeanvw 32704 Version of ~ eeanv with a ...
bj-modal4e 32705 Dual statement of ~ hba1 (...
bj-modalb 32706 A short form of the axiom ...
bj-axc10 32707 Alternate (shorter) proof ...
bj-alequex 32708 A fol lemma. See ~ bj-ale...
bj-spimt2 32709 A step in the proof of ~ s...
bj-cbv3ta 32710 Closed form of ~ cbv3 . (...
bj-cbv3tb 32711 Closed form of ~ cbv3 . (...
bj-hbsb3t 32712 A theorem close to a close...
bj-hbsb3 32713 Shorter proof of ~ hbsb3 ....
bj-nfs1t 32714 A theorem close to a close...
bj-nfs1t2 32715 A theorem close to a close...
bj-nfs1 32716 Shorter proof of ~ nfs1 (t...
bj-axc10v 32717 Version of ~ axc10 with a ...
bj-spimtv 32718 Version of ~ spimt with a ...
bj-spimedv 32719 Version of ~ spimed with a...
bj-spimev 32720 Version of ~ spime with a ...
bj-spimvv 32721 Version of ~ spimv and ~ s...
bj-spimevv 32722 Version of ~ spimev with a...
bj-spvv 32723 Version of ~ spv with a dv...
bj-speiv 32724 Version of ~ spei with a d...
bj-chvarv 32725 Version of ~ chvar with a ...
bj-chvarvv 32726 Version of ~ chvarv with a...
bj-cbv3v2 32727 Version of ~ cbv3 with two...
bj-cbv3hv2 32728 Version of ~ cbv3h with tw...
bj-cbv1v 32729 Version of ~ cbv1 with a d...
bj-cbv1hv 32730 Version of ~ cbv1h with a ...
bj-cbv2hv 32731 Version of ~ cbv2h with a ...
bj-cbv2v 32732 Version of ~ cbv2 with a d...
bj-cbvalvv 32733 Version of ~ cbvalv with a...
bj-cbvexvv 32734 Version of ~ cbvexv with a...
bj-cbvaldv 32735 Version of ~ cbvald with a...
bj-cbvexdv 32736 Version of ~ cbvexd with a...
bj-cbval2v 32737 Version of ~ cbval2 with a...
bj-cbvex2v 32738 Version of ~ cbvex2 with a...
bj-cbval2vv 32739 Version of ~ cbval2v with ...
bj-cbvex2vv 32740 Version of ~ cbvex2v with ...
bj-cbvaldvav 32741 Version of ~ cbvaldva with...
bj-cbvexdvav 32742 Version of ~ cbvexdva with...
bj-cbvex4vv 32743 Version of ~ cbvex4v with ...
bj-equsalhv 32744 Version of ~ equsalh with ...
bj-axc11nv 32745 Version of ~ axc11n with a...
bj-aecomsv 32746 Version of ~ aecoms with a...
bj-axc11v 32747 Version of ~ axc11 with a ...
bj-dral1v 32748 Version of ~ dral1 with a ...
bj-drex1v 32749 Version of ~ drex1 with a ...
bj-drnf1v 32750 Version of ~ drnf1 with a ...
bj-drnf2v 32751 Version of ~ drnf2 with a ...
bj-equs45fv 32752 Version of ~ equs45f with ...
bj-sb2v 32753 Version of ~ sb2 with a dv...
bj-stdpc4v 32754 Version of ~ stdpc4 with a...
bj-2stdpc4v 32755 Version of ~ 2stdpc4 with ...
bj-sb3v 32756 Version of ~ sb3 with a dv...
bj-sb4v 32757 Version of ~ sb4 with a dv...
bj-hbs1 32758 Version of ~ hbsb2 with a ...
bj-nfs1v 32759 Version of ~ nfsb2 with a ...
bj-hbsb2av 32760 Version of ~ hbsb2a with a...
bj-hbsb3v 32761 Version of ~ hbsb3 with a ...
bj-equsb1v 32762 Version of ~ equsb1 with a...
bj-sbftv 32763 Version of ~ sbft with a d...
bj-sbfv 32764 Version of ~ sbf with a dv...
bj-sbfvv 32765 Version of ~ sbf with two ...
bj-sbtv 32766 Version of ~ sbt with a dv...
bj-sb6 32767 Remove dependency on ~ ax-...
bj-sb5 32768 Remove dependency on ~ ax-...
bj-axext3 32769 Remove dependency on ~ ax-...
bj-axext4 32770 Remove dependency on ~ ax-...
bj-hbab1 32771 Remove dependency on ~ ax-...
bj-nfsab1 32772 Remove dependency on ~ ax-...
bj-abeq2 32773 Remove dependency on ~ ax-...
bj-abeq1 32774 Remove dependency on ~ ax-...
bj-abbi 32775 Remove dependency on ~ ax-...
bj-abbi2i 32776 Remove dependency on ~ ax-...
bj-abbii 32777 Remove dependency on ~ ax-...
bj-abbid 32778 Remove dependency on ~ ax-...
bj-abbidv 32779 Remove dependency on ~ ax-...
bj-abbi2dv 32780 Remove dependency on ~ ax-...
bj-abbi1dv 32781 Remove dependency on ~ ax-...
bj-abid2 32782 Remove dependency on ~ ax-...
bj-clabel 32783 Remove dependency on ~ ax-...
bj-sbab 32784 Remove dependency on ~ ax-...
bj-nfab1 32785 Remove dependency on ~ ax-...
bj-vjust 32786 Remove dependency on ~ ax-...
bj-cdeqab 32787 Remove dependency on ~ ax-...
bj-axrep1 32788 Remove dependency on ~ ax-...
bj-axrep2 32789 Remove dependency on ~ ax-...
bj-axrep3 32790 Remove dependency on ~ ax-...
bj-axrep4 32791 Remove dependency on ~ ax-...
bj-axrep5 32792 Remove dependency on ~ ax-...
bj-axsep 32793 Remove dependency on ~ ax-...
bj-nalset 32794 Remove dependency on ~ ax-...
bj-zfpow 32795 Remove dependency on ~ ax-...
bj-el 32796 Remove dependency on ~ ax-...
bj-dtru 32797 Remove dependency on ~ ax-...
bj-axc16b 32798 Remove dependency on ~ ax-...
bj-eunex 32799 Remove dependency on ~ ax-...
bj-dtrucor 32800 Remove dependency on ~ ax-...
bj-dtrucor2v 32801 Version of ~ dtrucor2 with...
bj-dvdemo1 32802 Remove dependency on ~ ax-...
bj-dvdemo2 32803 Remove dependency on ~ ax-...
bj-sb3b 32804 Simplified definition of s...
bj-hbaeb2 32805 Biconditional version of a...
bj-hbaeb 32806 Biconditional version of ~...
bj-hbnaeb 32807 Biconditional version of ~...
bj-dvv 32808 A special instance of ~ bj...
bj-equsal1t 32809 Duplication of ~ wl-equsal...
bj-equsal1ti 32810 Inference associated with ...
bj-equsal1 32811 One direction of ~ equsal ...
bj-equsal2 32812 One direction of ~ equsal ...
bj-equsal 32813 Shorter proof of ~ equsal ...
stdpc5t 32814 Closed form of ~ stdpc5 . ...
bj-stdpc5 32815 More direct proof of ~ std...
2stdpc5 32816 A double ~ stdpc5 (one dir...
bj-19.21t 32817 Proof of ~ 19.21t from ~ s...
exlimii 32818 Inference associated with ...
ax11-pm 32819 Proof of ~ ax-11 similar t...
ax6er 32820 Commuted form of ~ ax6e . ...
exlimiieq1 32821 Inferring a theorem when i...
exlimiieq2 32822 Inferring a theorem when i...
ax11-pm2 32823 Proof of ~ ax-11 from the ...
bj-sbsb 32824 Biconditional showing two ...
bj-dfsb2 32825 Alternate (dual) definitio...
bj-sbf3 32826 Substitution has no effect...
bj-sbf4 32827 Substitution has no effect...
bj-sbnf 32828 Move non-free predicate in...
bj-eu3f 32829 Version of ~ eu3v where th...
bj-eumo0 32830 Existential uniqueness imp...
bj-sbidmOLD 32831 Obsolete proof of ~ sbidm ...
bj-mo3OLD 32832 Obsolete proof of ~ mo3 te...
bj-syl66ib 32833 A mixed syllogism inferenc...
bj-dvelimdv 32834 Deduction form of ~ dvelim...
bj-dvelimdv1 32835 Curried (exported) form of...
bj-dvelimv 32836 A version of ~ dvelim usin...
bj-nfeel2 32837 Non-freeness in an equalit...
bj-axc14nf 32838 Proof of a version of ~ ax...
bj-axc14 32839 Alternate proof of ~ axc14...
eliminable1 32840 A theorem used to prove th...
eliminable2a 32841 A theorem used to prove th...
eliminable2b 32842 A theorem used to prove th...
eliminable2c 32843 A theorem used to prove th...
eliminable3a 32844 A theorem used to prove th...
eliminable3b 32845 A theorem used to prove th...
bj-termab 32846 Every class can be written...
bj-cleljustab 32847 An instance of ~ df-clel w...
bj-clelsb3 32848 Remove dependency on ~ ax-...
bj-hblem 32849 Remove dependency on ~ ax-...
bj-nfcjust 32850 Remove dependency on ~ ax-...
bj-nfcrii 32851 Remove dependency on ~ ax-...
bj-nfcri 32852 Remove dependency on ~ ax-...
bj-nfnfc 32853 Remove dependency on ~ ax-...
bj-vexwt 32854 Closed form of ~ bj-vexw ....
bj-vexw 32855 If ` ph ` is a theorem, th...
bj-vexwvt 32856 Closed form of ~ bj-vexwv ...
bj-vexwv 32857 Version of ~ bj-vexw with ...
bj-denotes 32858 This would be the justific...
bj-issetwt 32859 Closed form of ~ bj-issetw...
bj-issetw 32860 The closest one can get to...
bj-elissetv 32861 Version of ~ bj-elisset wi...
bj-elisset 32862 Remove from ~ elisset depe...
bj-issetiv 32863 Version of ~ bj-isseti wit...
bj-isseti 32864 Remove from ~ isseti depen...
bj-ralvw 32865 A weak version of ~ ralv n...
bj-rexvwv 32866 A weak version of ~ rexv n...
bj-rababwv 32867 A weak version of ~ rabab ...
bj-ralcom4 32868 Remove from ~ ralcom4 depe...
bj-rexcom4 32869 Remove from ~ rexcom4 depe...
bj-rexcom4a 32870 Remove from ~ rexcom4a dep...
bj-rexcom4bv 32871 Version of ~ bj-rexcom4b w...
bj-rexcom4b 32872 Remove from ~ rexcom4b dep...
bj-ceqsalt0 32873 The FOL content of ~ ceqsa...
bj-ceqsalt1 32874 The FOL content of ~ ceqsa...
bj-ceqsalt 32875 Remove from ~ ceqsalt depe...
bj-ceqsaltv 32876 Version of ~ bj-ceqsalt wi...
bj-ceqsalg0 32877 The FOL content of ~ ceqsa...
bj-ceqsalg 32878 Remove from ~ ceqsalg depe...
bj-ceqsalgALT 32879 Alternate proof of ~ bj-ce...
bj-ceqsalgv 32880 Version of ~ bj-ceqsalg wi...
bj-ceqsalgvALT 32881 Alternate proof of ~ bj-ce...
bj-ceqsal 32882 Remove from ~ ceqsal depen...
bj-ceqsalv 32883 Remove from ~ ceqsalv depe...
bj-spcimdv 32884 Remove from ~ spcimdv depe...
bj-spcimdvv 32885 Remove from ~ spcimdv depe...
bj-nfcsym 32886 The class-form not-free pr...
bj-ax8 32887 Proof of ~ ax-8 from ~ df-...
bj-df-clel 32888 Candidate definition for ~...
bj-dfclel 32889 Characterization of the el...
bj-ax9 32890 Proof of ~ ax-9 from Tarsk...
bj-ax9-2 32891 Proof of ~ ax-9 from Tarsk...
bj-cleqhyp 32892 The hypothesis of ~ bj-df-...
bj-df-cleq 32893 Candidate definition for ~...
bj-dfcleq 32894 Proof of class extensional...
bj-sbeqALT 32895 Substitution in an equalit...
bj-sbeq 32896 Distribute proper substitu...
bj-sbceqgALT 32897 Distribute proper substitu...
bj-csbsnlem 32898 Lemma for ~ bj-csbsn (in t...
bj-csbsn 32899 Substitution in a singleto...
bj-sbel1 32900 Version of ~ sbcel1g when ...
bj-abv 32901 The class of sets verifyin...
bj-ab0 32902 The class of sets verifyin...
bj-abf 32903 Shorter proof of ~ abf (wh...
bj-csbprc 32904 More direct proof of ~ csb...
bj-exlimmpi 32905 Lemma for ~ bj-vtoclg1f1 (...
bj-exlimmpbi 32906 Lemma for theorems of the ...
bj-exlimmpbir 32907 Lemma for theorems of the ...
bj-vtoclf 32908 Remove dependency on ~ ax-...
bj-vtocl 32909 Remove dependency on ~ ax-...
bj-vtoclg1f1 32910 The FOL content of ~ vtocl...
bj-vtoclg1f 32911 Reprove ~ vtoclg1f from ~ ...
bj-vtoclg1fv 32912 Version of ~ bj-vtoclg1f w...
bj-rabbida2 32913 Version of ~ rabbidva2 wit...
bj-rabbida 32914 Version of ~ rabbidva with...
bj-rabbid 32915 Version of ~ rabbidv with ...
bj-rabeqd 32916 Deduction form of ~ rabeq ...
bj-rabeqbid 32917 Version of ~ rabeqbidv wit...
bj-rabeqbida 32918 Version of ~ rabeqbidva wi...
bj-seex 32919 Version of ~ seex with a d...
bj-nfcf 32920 Version of ~ df-nfc with a...
bj-axsep2 32921 Remove dependency on ~ ax-...
bj-unrab 32922 Generalization of ~ unrab ...
bj-inrab 32923 Generalization of ~ inrab ...
bj-inrab2 32924 Shorter proof of ~ inrab ....
bj-inrab3 32925 Generalization of ~ dfrab3...
bj-rabtr 32926 Restricted class abstracti...
bj-rabtrALT 32927 Alternate proof of ~ bj-ra...
bj-rabtrALTALT 32928 Alternate proof of ~ bj-ra...
bj-rabtrAUTO 32929 Proof of ~ bj-rabtr found ...
bj-ru0 32932 The FOL part of Russell's ...
bj-ru1 32933 A version of Russell's par...
bj-ru 32934 Remove dependency on ~ ax-...
bj-n0i 32935 Inference associated with ...
bj-disjcsn 32936 A class is disjoint from i...
bj-disjsn01 32937 Disjointness of the single...
bj-1ex 32938 ` 1o ` is a set. (Contrib...
bj-2ex 32939 ` 2o ` is a set. (Contrib...
bj-0nel1 32940 The empty set does not bel...
bj-1nel0 32941 ` 1o ` does not belong to ...
bj-xpimasn 32942 The image of a singleton, ...
bj-xpima1sn 32943 The image of a singleton b...
bj-xpima1snALT 32944 Alternate proof of ~ bj-xp...
bj-xpima2sn 32945 The image of a singleton b...
bj-xpnzex 32946 If the first factor of a p...
bj-xpexg2 32947 Curried (exported) form of...
bj-xpnzexb 32948 If the first factor of a p...
bj-cleq 32949 Substitution property for ...
bj-sels 32950 If a class is a set, then ...
bj-snsetex 32951 The class of sets "whose s...
bj-clex 32952 Sethood of certain classes...
bj-sngleq 32955 Substitution property for ...
bj-elsngl 32956 Characterization of the el...
bj-snglc 32957 Characterization of the el...
bj-snglss 32958 The singletonization of a ...
bj-0nelsngl 32959 The empty set is not a mem...
bj-snglinv 32960 Inverse of singletonizatio...
bj-snglex 32961 A class is a set if and on...
bj-tageq 32964 Substitution property for ...
bj-eltag 32965 Characterization of the el...
bj-0eltag 32966 The empty set belongs to t...
bj-tagn0 32967 The tagging of a class is ...
bj-tagss 32968 The tagging of a class is ...
bj-snglsstag 32969 The singletonization is in...
bj-sngltagi 32970 The singletonization is in...
bj-sngltag 32971 The singletonization and t...
bj-tagci 32972 Characterization of the el...
bj-tagcg 32973 Characterization of the el...
bj-taginv 32974 Inverse of tagging. (Cont...
bj-tagex 32975 A class is a set if and on...
bj-xtageq 32976 The products of a given cl...
bj-xtagex 32977 The product of a set and t...
bj-projeq 32980 Substitution property for ...
bj-projeq2 32981 Substitution property for ...
bj-projun 32982 The class projection on a ...
bj-projex 32983 Sethood of the class proje...
bj-projval 32984 Value of the class project...
bj-1upleq 32987 Substitution property for ...
bj-pr1eq 32990 Substitution property for ...
bj-pr1un 32991 The first projection prese...
bj-pr1val 32992 Value of the first project...
bj-pr11val 32993 Value of the first project...
bj-pr1ex 32994 Sethood of the first proje...
bj-1uplth 32995 The characteristic propert...
bj-1uplex 32996 A monuple is a set if and ...
bj-1upln0 32997 A monuple is nonempty. (C...
bj-2upleq 33000 Substitution property for ...
bj-pr21val 33001 Value of the first project...
bj-pr2eq 33004 Substitution property for ...
bj-pr2un 33005 The second projection pres...
bj-pr2val 33006 Value of the second projec...
bj-pr22val 33007 Value of the second projec...
bj-pr2ex 33008 Sethood of the second proj...
bj-2uplth 33009 The characteristic propert...
bj-2uplex 33010 A couple is a set if and o...
bj-2upln0 33011 A couple is nonempty. (Co...
bj-2upln1upl 33012 A couple is never equal to...
bj-disj2r 33013 Relative version of ~ ssdi...
bj-sscon 33014 Contraposition law for rel...
bj-vjust2 33015 Justification theorem for ...
bj-df-v 33016 Alternate definition of th...
bj-df-nul 33017 Alternate definition of th...
bj-nul 33018 Two formulations of the ax...
bj-nuliota 33019 Definition of the empty se...
bj-nuliotaALT 33020 Alternate proof of ~ bj-nu...
bj-vtoclgfALT 33021 Alternate proof of ~ vtocl...
bj-pwcfsdom 33022 Remove hypothesis from ~ p...
bj-grur1 33023 Remove hypothesis from ~ g...
bj-evaleq 33024 Equality theorem for the `...
bj-evalfun 33025 The evaluation at a class ...
bj-evalfn 33026 The evaluation at a class ...
bj-evalval 33027 Value of the evaluation at...
bj-evalid 33028 The evaluation at a set of...
bj-ndxarg 33029 Proof of ~ ndxarg from ~ b...
bj-ndxid 33030 Proof of ~ ndxid from ~ nd...
bj-evalidval 33031 Closed general form of ~ s...
bj-rest00 33034 An elementwise intersectio...
bj-restsn 33035 An elementwise intersectio...
bj-restsnss 33036 Special case of ~ bj-rests...
bj-restsnss2 33037 Special case of ~ bj-rests...
bj-restsn0 33038 An elementwise intersectio...
bj-restsn10 33039 Special case of ~ bj-rests...
bj-restsnid 33040 The elementwise intersecti...
bj-rest10 33041 An elementwise intersectio...
bj-rest10b 33042 Alternate version of ~ bj-...
bj-restn0 33043 An elementwise intersectio...
bj-restn0b 33044 Alternate version of ~ bj-...
bj-restpw 33045 The elementwise intersecti...
bj-rest0 33046 An elementwise intersectio...
bj-restb 33047 An elementwise intersectio...
bj-restv 33048 An elementwise intersectio...
bj-resta 33049 An elementwise intersectio...
bj-restuni 33050 The union of an elementwis...
bj-restuni2 33051 The union of an elementwis...
bj-restreg 33052 A reformulation of the axi...
bj-intss 33053 A nonempty intersection of...
bj-raldifsn 33054 All elements in a set sati...
bj-0int 33055 If ` A ` is a collection o...
bj-mooreset 33056 A Moore collection is a se...
bj-ismoore 33059 Characterization of Moore ...
bj-ismoorec 33060 Characterization of Moore ...
bj-ismoored0 33061 Necessary condition to be ...
bj-ismoored 33062 Necessary condition to be ...
bj-ismoored2 33063 Necessary condition to be ...
bj-ismooredr 33064 Sufficient condition to be...
bj-ismooredr2 33065 Sufficient condition to be...
bj-discrmoore 33066 The discrete Moore collect...
bj-0nmoore 33067 The empty set is not a Moo...
bj-snmoore 33068 A singleton is a Moore col...
bj-0nelmpt 33069 The empty set is not an el...
bj-mptval 33070 Value of a function given ...
bj-dfmpt2a 33071 An equivalent definition o...
bj-mpt2mptALT 33072 Alternate proof of ~ mpt2m...
bj-elid 33085 Characterization of the el...
bj-elid2 33086 Characterization of the el...
bj-elid3 33087 Characterization of the el...
bj-diagval 33090 Value of the diagonal. (C...
bj-eldiag 33091 Characterization of the el...
bj-eldiag2 33092 Characterization of the el...
bj-inftyexpiinv 33095 Utility theorem for the in...
bj-inftyexpiinj 33096 Injectivity of the paramet...
bj-inftyexpidisj 33097 An element of the circle a...
bj-ccinftydisj 33100 The circle at infinity is ...
bj-elccinfty 33101 A lemma for infinite exten...
bj-ccssccbar 33104 Complex numbers are extend...
bj-ccinftyssccbar 33105 Infinite extended complex ...
bj-pinftyccb 33108 The class ` pinfty ` is an...
bj-pinftynrr 33109 The extended complex numbe...
bj-minftyccb 33112 The class ` minfty ` is an...
bj-minftynrr 33113 The extended complex numbe...
bj-pinftynminfty 33114 The extended complex numbe...
bj-rrhatsscchat 33123 The real projective line i...
bj-cmnssmnd 33136 Commutative monoids are mo...
bj-cmnssmndel 33137 Commutative monoids are mo...
bj-ablssgrp 33138 Abelian groups are groups....
bj-ablssgrpel 33139 Abelian groups are groups ...
bj-ablsscmn 33140 Abelian groups are commuta...
bj-ablsscmnel 33141 Abelian groups are commuta...
bj-modssabl 33142 (The additive groups of) m...
bj-vecssmod 33143 Vector spaces are modules....
bj-vecssmodel 33144 Vector spaces are modules ...
bj-finsumval0 33147 Value of a finite sum. (C...
bj-rrvecssvec 33150 Real vector spaces are vec...
bj-rrvecssvecel 33151 Real vector spaces are vec...
bj-rrvecsscmn 33152 (The additive groups of) r...
bj-rrvecsscmnel 33153 (The additive groups of) r...
bj-subcom 33154 A consequence of commutati...
bj-ldiv 33155 Left-division. (Contribut...
bj-rdiv 33156 Right-division. (Contribu...
bj-mdiv 33157 A division law. (Contribu...
bj-lineq 33158 Solution of a (scalar) lin...
bj-lineqi 33159 Solution of a (scalar) lin...
bj-bary1lem 33160 A lemma for barycentric co...
bj-bary1lem1 33161 Existence and uniqueness (...
bj-bary1 33162 Barycentric coordinates in...
taupilem3 33165 Lemma for tau-related theo...
taupilemrplb 33166 A set of positive reals ha...
taupilem1 33167 Lemma for ~ taupi . A pos...
taupilem2 33168 Lemma for ~ taupi . The s...
taupi 33169 Relationship between ` _ta...
dfgcd3 33170 Alternate definition of th...
csbdif 33171 Distribution of class subs...
csbpredg 33172 Move class substitution in...
csbwrecsg 33173 Move class substitution in...
csbrecsg 33174 Move class substitution in...
csbrdgg 33175 Move class substitution in...
csboprabg 33176 Move class substitution in...
csbmpt22g 33177 Move class substitution in...
mpnanrd 33178 Eliminate the right side o...
con1bii2 33179 A contraposition inference...
con2bii2 33180 A contraposition inference...
vtoclefex 33181 Implicit substitution of a...
rnmptsn 33182 The range of a function ma...
f1omptsnlem 33183 This is the core of the pr...
f1omptsn 33184 A function mapping to sing...
mptsnunlem 33185 This is the core of the pr...
mptsnun 33186 A class ` B ` is equal to ...
dissneqlem 33187 This is the core of the pr...
dissneq 33188 Any topology that contains...
exlimim 33189 Closed form of ~ exlimimd ...
exlimimd 33190 Existential elimination ru...
exlimimdd 33191 Existential elimination ru...
exellim 33192 Closed form of ~ exellimdd...
exellimddv 33193 Eliminate an antecedent wh...
topdifinfindis 33194 Part of Exercise 3 of [Mun...
topdifinffinlem 33195 This is the core of the pr...
topdifinffin 33196 Part of Exercise 3 of [Mun...
topdifinf 33197 Part of Exercise 3 of [Mun...
topdifinfeq 33198 Two different ways of defi...
icorempt2 33199 Closed-below, open-above i...
icoreresf 33200 Closed-below, open-above i...
icoreval 33201 Value of the closed-below,...
icoreelrnab 33202 Elementhood in the set of ...
isbasisrelowllem1 33203 Lemma for ~ isbasisrelowl ...
isbasisrelowllem2 33204 Lemma for ~ isbasisrelowl ...
icoreclin 33205 The set of closed-below, o...
isbasisrelowl 33206 The set of all closed-belo...
icoreunrn 33207 The union of all closed-be...
istoprelowl 33208 The set of all closed-belo...
icoreelrn 33209 A class abstraction which ...
iooelexlt 33210 An element of an open inte...
relowlssretop 33211 The lower limit topology o...
relowlpssretop 33212 The lower limit topology o...
sucneqond 33213 Inequality of an ordinal s...
sucneqoni 33214 Inequality of an ordinal s...
onsucuni3 33215 If an ordinal number has a...
1oequni2o 33216 The ordinal number ` 1o ` ...
rdgsucuni 33217 If an ordinal number has a...
rdgeqoa 33218 If a recursive function wi...
elxp8 33219 Membership in a Cartesian ...
dffinxpf 33222 This theorem is the same a...
finxpeq1 33223 Equality theorem for Carte...
finxpeq2 33224 Equality theorem for Carte...
csbfinxpg 33225 Distribute proper substitu...
finxpreclem1 33226 Lemma for ` ^^ ` recursion...
finxpreclem2 33227 Lemma for ` ^^ ` recursion...
finxp0 33228 The value of Cartesian exp...
finxp1o 33229 The value of Cartesian exp...
finxpreclem3 33230 Lemma for ` ^^ ` recursion...
finxpreclem4 33231 Lemma for ` ^^ ` recursion...
finxpreclem5 33232 Lemma for ` ^^ ` recursion...
finxpreclem6 33233 Lemma for ` ^^ ` recursion...
finxpsuclem 33234 Lemma for ~ finxpsuc . (C...
finxpsuc 33235 The value of Cartesian exp...
finxp2o 33236 The value of Cartesian exp...
finxp3o 33237 The value of Cartesian exp...
finxpnom 33238 Cartesian exponentiation w...
finxp00 33239 Cartesian exponentiation o...
wl-section-prop 33240 Intuitionistic logic is no...
wl-section-boot 33244 In this section, I provide...
wl-imim1i 33245 Inference adding common co...
wl-syl 33246 An inference version of th...
wl-syl5 33247 A syllogism rule of infere...
wl-pm2.18d 33248 Deduction based on reducti...
wl-con4i 33249 Inference rule. Copy of ~...
wl-pm2.24i 33250 Inference rule. Copy of ~...
wl-a1i 33251 Inference rule. Copy of ~...
wl-mpi 33252 A nested modus ponens infe...
wl-imim2i 33253 Inference adding common an...
wl-syl6 33254 A syllogism rule of infere...
wl-ax3 33255 ~ ax-3 proved from Lukasie...
wl-ax1 33256 ~ ax-1 proved from Lukasie...
wl-pm2.27 33257 This theorem, called "Asse...
wl-com12 33258 Inference that swaps (comm...
wl-pm2.21 33259 From a wff and its negatio...
wl-con1i 33260 A contraposition inference...
wl-ja 33261 Inference joining the ante...
wl-imim2 33262 A closed form of syllogism...
wl-a1d 33263 Deduction introducing an e...
wl-ax2 33264 ~ ax-2 proved from Lukasie...
wl-id 33265 Principle of identity. Th...
wl-notnotr 33266 Converse of double negatio...
wl-pm2.04 33267 Swap antecedents. Theorem...
wl-section-impchain 33268 An implication like ` ( ps...
wl-impchain-mp-x 33269 This series of theorems pr...
wl-impchain-mp-0 33270 This theorem is the start ...
wl-impchain-mp-1 33271 This theorem is in fact a ...
wl-impchain-mp-2 33272 This theorem is in fact a ...
wl-impchain-com-1.x 33273 It is often convenient to ...
wl-impchain-com-1.1 33274 A degenerate form of antec...
wl-impchain-com-1.2 33275 This theorem is in fact a ...
wl-impchain-com-1.3 33276 This theorem is in fact a ...
wl-impchain-com-1.4 33277 This theorem is in fact a ...
wl-impchain-com-n.m 33278 This series of theorems al...
wl-impchain-com-2.3 33279 This theorem is in fact a ...
wl-impchain-com-2.4 33280 This theorem is in fact a ...
wl-impchain-com-3.2.1 33281 This theorem is in fact a ...
wl-impchain-a1-x 33282 If an implication chain is...
wl-impchain-a1-1 33283 Inference rule, a copy of ...
wl-impchain-a1-2 33284 Inference rule, a copy of ...
wl-impchain-a1-3 33285 Inference rule, a copy of ...
wl-ax13lem1 33287 A version of ~ ax-wl-13v w...
wl-jarri 33288 Dropping a nested antecede...
wl-jarli 33289 Dropping a nested conseque...
wl-mps 33290 Replacing a nested consequ...
wl-syls1 33291 Replacing a nested consequ...
wl-syls2 33292 Replacing a nested anteced...
wl-embant 33293 A true wff can always be a...
wl-orel12 33294 In a conjunctive normal fo...
wl-cases2-dnf 33295 A particular instance of ~...
wl-dfnan2 33296 An alternative definition ...
wl-nancom 33297 The 'nand' operator commut...
wl-nannan 33298 Lemma for handling nested ...
wl-nannot 33299 Show equivalence between n...
wl-nanbi1 33300 Introduce a right anti-con...
wl-nanbi2 33301 Introduce a left anti-conj...
wl-naev 33302 If some set variables can ...
wl-hbae1 33303 This specialization of ~ h...
wl-naevhba1v 33304 An instance of ~ hbn1w app...
wl-hbnaev 33305 Any variable is free in ` ...
wl-spae 33306 Prove an instance of ~ sp ...
wl-cbv3vv 33307 Avoiding ~ ax-11 . (Contr...
wl-speqv 33308 Under the assumption ` -. ...
wl-19.8eqv 33309 Under the assumption ` -. ...
wl-19.2reqv 33310 Under the assumption ` -. ...
wl-dveeq12 33311 The current form of ~ ax-1...
wl-nfalv 33312 If ` x ` is not present in...
wl-nfimf1 33313 An antecedent is irrelevan...
wl-nfnbi 33314 Being free does not depend...
wl-nfae1 33315 Unlike ~ nfae , this speci...
wl-nfnae1 33316 Unlike ~ nfnae , this spec...
wl-aetr 33317 A transitive law for varia...
wl-dral1d 33318 A version of ~ dral1 with ...
wl-cbvalnaed 33319 ~ wl-cbvalnae with a conte...
wl-cbvalnae 33320 A more general version of ...
wl-exeq 33321 The semantics of ` E. x y ...
wl-aleq 33322 The semantics of ` A. x y ...
wl-nfeqfb 33323 Extend ~ nfeqf to an equiv...
wl-nfs1t 33324 If ` y ` is not free in ` ...
wl-equsald 33325 Deduction version of ~ equ...
wl-equsal 33326 A useful equivalence relat...
wl-equsal1t 33327 The expression ` x = y ` i...
wl-equsalcom 33328 This simple equivalence ea...
wl-equsal1i 33329 The antecedent ` x = y ` i...
wl-sb6rft 33330 A specialization of ~ wl-e...
wl-sbrimt 33331 Substitution with a variab...
wl-sblimt 33332 Substitution with a variab...
wl-sb8t 33333 Substitution of variable i...
wl-sb8et 33334 Substitution of variable i...
wl-sbhbt 33335 Closed form of ~ sbhb . C...
wl-sbnf1 33336 Two ways expressing that `...
wl-equsb3 33337 ~ equsb3 with a distinctor...
wl-equsb4 33338 Substitution applied to an...
wl-sb6nae 33339 Version of ~ sb6 suitable ...
wl-sb5nae 33340 Version of ~ sb5 suitable ...
wl-2sb6d 33341 Version of ~ 2sb6 with a c...
wl-sbcom2d-lem1 33342 Lemma used to prove ~ wl-s...
wl-sbcom2d-lem2 33343 Lemma used to prove ~ wl-s...
wl-sbcom2d 33344 Version of ~ sbcom2 with a...
wl-sbalnae 33345 A theorem used in eliminat...
wl-sbal1 33346 A theorem used in eliminat...
wl-sbal2 33347 Move quantifier in and out...
wl-lem-exsb 33348 This theorem provides a ba...
wl-lem-nexmo 33349 This theorem provides a ba...
wl-lem-moexsb 33350 The antecedent ` A. x ( ph...
wl-alanbii 33351 This theorem extends ~ ala...
wl-mo2df 33352 Version of ~ mo2 with a co...
wl-mo2tf 33353 Closed form of ~ mo2 with ...
wl-eudf 33354 Version of ~ df-eu with a ...
wl-eutf 33355 Closed form of ~ df-eu wit...
wl-euequ1f 33356 ~ euequ1 proved with a dis...
wl-mo2t 33357 Closed form of ~ mo2 . (C...
wl-mo3t 33358 Closed form of ~ mo3 . (C...
wl-sb8eut 33359 Substitution of variable i...
wl-sb8mot 33360 Substitution of variable i...
wl-ax11-lem1 33362 A transitive law for varia...
wl-ax11-lem2 33363 Lemma. (Contributed by Wo...
wl-ax11-lem3 33364 Lemma. (Contributed by Wo...
wl-ax11-lem4 33365 Lemma. (Contributed by Wo...
wl-ax11-lem5 33366 Lemma. (Contributed by Wo...
wl-ax11-lem6 33367 Lemma. (Contributed by Wo...
wl-ax11-lem7 33368 Lemma. (Contributed by Wo...
wl-ax11-lem8 33369 Lemma. (Contributed by Wo...
wl-ax11-lem9 33370 The easy part when ` x ` c...
wl-ax11-lem10 33371 We now have prepared every...
wl-sbcom3 33372 Substituting ` y ` for ` x...
wel-wl 33374 Redefine ` e. ` in a set c...
wel2-wl 33376 Redefine ` e. ` in a set c...
wl-ax8clv1 33378 Lifting the distinct varia...
wl-clelv2-just 33379 Show that the definition ~...
wl-ax8clv2 33381 Axiom ~ ax-wl-8cl carries ...
rabiun 33382 Abstraction restricted to ...
iundif1 33383 Indexed union of class dif...
imadifss 33384 The difference of images i...
cureq 33385 Equality theorem for curry...
unceq 33386 Equality theorem for uncur...
curf 33387 Functional property of cur...
uncf 33388 Functional property of unc...
curfv 33389 Value of currying. (Contr...
uncov 33390 Value of uncurrying. (Con...
curunc 33391 Currying of uncurrying. (...
unccur 33392 Uncurrying of currying. (...
phpreu 33393 Theorem related to pigeonh...
finixpnum 33394 A finite Cartesian product...
fin2solem 33395 Lemma for ~ fin2so . (Con...
fin2so 33396 Any totally ordered Tarski...
ltflcei 33397 Theorem to move the floor ...
leceifl 33398 Theorem to move the floor ...
sin2h 33399 Half-angle rule for sine. ...
cos2h 33400 Half-angle rule for cosine...
tan2h 33401 Half-angle rule for tangen...
pigt3 33402 ` _pi ` is greater than 3....
lindsdom 33403 A linearly independent set...
lindsenlbs 33404 A maximal linearly indepen...
matunitlindflem1 33405 One direction of ~ matunit...
matunitlindflem2 33406 One direction of ~ matunit...
matunitlindf 33407 A matrix over a field is i...
ptrest 33408 Expressing a restriction o...
ptrecube 33409 Any point in an open set o...
poimirlem1 33410 Lemma for ~ poimir - the v...
poimirlem2 33411 Lemma for ~ poimir - conse...
poimirlem3 33412 Lemma for ~ poimir to add ...
poimirlem4 33413 Lemma for ~ poimir connect...
poimirlem5 33414 Lemma for ~ poimir to esta...
poimirlem6 33415 Lemma for ~ poimir establi...
poimirlem7 33416 Lemma for ~ poimir , simil...
poimirlem8 33417 Lemma for ~ poimir , estab...
poimirlem9 33418 Lemma for ~ poimir , estab...
poimirlem10 33419 Lemma for ~ poimir establi...
poimirlem11 33420 Lemma for ~ poimir connect...
poimirlem12 33421 Lemma for ~ poimir connect...
poimirlem13 33422 Lemma for ~ poimir - for a...
poimirlem14 33423 Lemma for ~ poimir - for a...
poimirlem15 33424 Lemma for ~ poimir , that ...
poimirlem16 33425 Lemma for ~ poimir establi...
poimirlem17 33426 Lemma for ~ poimir establi...
poimirlem18 33427 Lemma for ~ poimir stating...
poimirlem19 33428 Lemma for ~ poimir establi...
poimirlem20 33429 Lemma for ~ poimir establi...
poimirlem21 33430 Lemma for ~ poimir stating...
poimirlem22 33431 Lemma for ~ poimir , that ...
poimirlem23 33432 Lemma for ~ poimir , two w...
poimirlem24 33433 Lemma for ~ poimir , two w...
poimirlem25 33434 Lemma for ~ poimir stating...
poimirlem26 33435 Lemma for ~ poimir showing...
poimirlem27 33436 Lemma for ~ poimir showing...
poimirlem28 33437 Lemma for ~ poimir , a var...
poimirlem29 33438 Lemma for ~ poimir connect...
poimirlem30 33439 Lemma for ~ poimir combini...
poimirlem31 33440 Lemma for ~ poimir , assig...
poimirlem32 33441 Lemma for ~ poimir , combi...
poimir 33442 Poincare-Miranda theorem. ...
broucube 33443 Brouwer - or as Kulpa call...
heicant 33444 Heine-Cantor theorem: a co...
opnmbllem0 33445 Lemma for ~ ismblfin ; cou...
mblfinlem1 33446 Lemma for ~ ismblfin , ord...
mblfinlem2 33447 Lemma for ~ ismblfin , eff...
mblfinlem3 33448 The difference between two...
mblfinlem4 33449 Backward direction of ~ is...
ismblfin 33450 Measurability in terms of ...
ovoliunnfl 33451 ~ ovoliun is incompatible ...
ex-ovoliunnfl 33452 Demonstration of ~ ovoliun...
voliunnfl 33453 ~ voliun is incompatible w...
volsupnfl 33454 ~ volsup is incompatible w...
0mbf 33455 The empty function is meas...
mbfresfi 33456 Measurability of a piecewi...
mbfposadd 33457 If the sum of two measurab...
cnambfre 33458 A real-valued, a.e. contin...
dvtanlem 33459 Lemma for ~ dvtan - the do...
dvtan 33460 Derivative of tangent. (C...
itg2addnclem 33461 An alternate expression fo...
itg2addnclem2 33462 Lemma for ~ itg2addnc . T...
itg2addnclem3 33463 Lemma incomprehensible in ...
itg2addnc 33464 Alternate proof of ~ itg2a...
itg2gt0cn 33465 ~ itg2gt0 holds on functio...
ibladdnclem 33466 Lemma for ~ ibladdnc ; cf ...
ibladdnc 33467 Choice-free analogue of ~ ...
itgaddnclem1 33468 Lemma for ~ itgaddnc ; cf....
itgaddnclem2 33469 Lemma for ~ itgaddnc ; cf....
itgaddnc 33470 Choice-free analogue of ~ ...
iblsubnc 33471 Choice-free analogue of ~ ...
itgsubnc 33472 Choice-free analogue of ~ ...
iblabsnclem 33473 Lemma for ~ iblabsnc ; cf....
iblabsnc 33474 Choice-free analogue of ~ ...
iblmulc2nc 33475 Choice-free analogue of ~ ...
itgmulc2nclem1 33476 Lemma for ~ itgmulc2nc ; c...
itgmulc2nclem2 33477 Lemma for ~ itgmulc2nc ; c...
itgmulc2nc 33478 Choice-free analogue of ~ ...
itgabsnc 33479 Choice-free analogue of ~ ...
bddiblnc 33480 Choice-free proof of ~ bdd...
cnicciblnc 33481 Choice-free proof of ~ cni...
itggt0cn 33482 ~ itggt0 holds for continu...
ftc1cnnclem 33483 Lemma for ~ ftc1cnnc ; cf....
ftc1cnnc 33484 Choice-free proof of ~ ftc...
ftc1anclem1 33485 Lemma for ~ ftc1anc - the ...
ftc1anclem2 33486 Lemma for ~ ftc1anc - rest...
ftc1anclem3 33487 Lemma for ~ ftc1anc - the ...
ftc1anclem4 33488 Lemma for ~ ftc1anc . (Co...
ftc1anclem5 33489 Lemma for ~ ftc1anc , the ...
ftc1anclem6 33490 Lemma for ~ ftc1anc - cons...
ftc1anclem7 33491 Lemma for ~ ftc1anc . (Co...
ftc1anclem8 33492 Lemma for ~ ftc1anc . (Co...
ftc1anc 33493 ~ ftc1a holds for function...
ftc2nc 33494 Choice-free proof of ~ ftc...
asindmre 33495 Real part of domain of dif...
dvasin 33496 Derivative of arcsine. (C...
dvacos 33497 Derivative of arccosine. ...
dvreasin 33498 Real derivative of arcsine...
dvreacos 33499 Real derivative of arccosi...
areacirclem1 33500 Antiderivative of cross-se...
areacirclem2 33501 Endpoint-inclusive continu...
areacirclem3 33502 Integrability of cross-sec...
areacirclem4 33503 Endpoint-inclusive continu...
areacirclem5 33504 Finding the cross-section ...
areacirc 33505 The area of a circle of ra...
anim12da 33506 Conjoin antecedents and co...
unirep 33507 Define a quantity whose de...
cover2 33508 Two ways of expressing the...
cover2g 33509 Two ways of expressing the...
brabg2 33510 Relation by a binary relat...
opelopab3 33511 Ordered pair membership in...
cocanfo 33512 Cancellation of a surjecti...
brresi 33513 Restriction of a binary re...
fnopabeqd 33514 Equality deduction for fun...
fvopabf4g 33515 Function value of an opera...
eqfnun 33516 Two functions on ` A u. B ...
fnopabco 33517 Composition of a function ...
opropabco 33518 Composition of an operator...
f1opr 33519 Condition for an operation...
cocnv 33520 Composition with a functio...
f1ocan1fv 33521 Cancel a composition by a ...
f1ocan2fv 33522 Cancel a composition by th...
inixp 33523 Intersection of Cartesian ...
upixp 33524 Universal property of the ...
abrexdom 33525 An indexed set is dominate...
abrexdom2 33526 An indexed set is dominate...
ac6gf 33527 Axiom of Choice. (Contrib...
indexa 33528 If for every element of an...
indexdom 33529 If for every element of an...
frinfm 33530 A subset of a well-founded...
welb 33531 A nonempty subset of a wel...
supex2g 33532 Existence of supremum. (C...
supclt 33533 Closure of supremum. (Con...
supubt 33534 Upper bound property of su...
filbcmb 33535 Combine a finite set of lo...
rdr 33536 Two ways of expressing the...
fzmul 33537 Membership of a product in...
sdclem2 33538 Lemma for ~ sdc . (Contri...
sdclem1 33539 Lemma for ~ sdc . (Contri...
sdc 33540 Strong dependent choice. ...
fdc 33541 Finite version of dependen...
fdc1 33542 Variant of ~ fdc with no s...
seqpo 33543 Two ways to say that a seq...
incsequz 33544 An increasing sequence of ...
incsequz2 33545 An increasing sequence of ...
nnubfi 33546 A bounded above set of pos...
nninfnub 33547 An infinite set of positiv...
subspopn 33548 An open set is open in the...
neificl 33549 Neighborhoods are closed u...
lpss2 33550 Limit points of a subset a...
metf1o 33551 Use a bijection with a met...
blssp 33552 A ball in the subspace met...
mettrifi 33553 Generalized triangle inequ...
lmclim2 33554 A sequence in a metric spa...
geomcau 33555 If the distance between co...
caures 33556 The restriction of a Cauch...
caushft 33557 A shifted Cauchy sequence ...
constcncf 33558 A constant function is a c...
idcncf 33559 The identity function is a...
sub1cncf 33560 Subtracting a constant is ...
sub2cncf 33561 Subtraction from a constan...
cnres2 33562 The restriction of a conti...
cnresima 33563 A continuous function is c...
cncfres 33564 A continuous function on c...
istotbnd 33568 The predicate "is a totall...
istotbnd2 33569 The predicate "is a totall...
istotbnd3 33570 A metric space is totally ...
totbndmet 33571 The predicate "totally bou...
0totbnd 33572 The metric (there is only ...
sstotbnd2 33573 Condition for a subset of ...
sstotbnd 33574 Condition for a subset of ...
sstotbnd3 33575 Use a net that is not nece...
totbndss 33576 A subset of a totally boun...
equivtotbnd 33577 If the metric ` M ` is "st...
isbnd 33579 The predicate "is a bounde...
bndmet 33580 A bounded metric space is ...
isbndx 33581 A "bounded extended metric...
isbnd2 33582 The predicate "is a bounde...
isbnd3 33583 A metric space is bounded ...
isbnd3b 33584 A metric space is bounded ...
bndss 33585 A subset of a bounded metr...
blbnd 33586 A ball is bounded. (Contr...
ssbnd 33587 A subset of a metric space...
totbndbnd 33588 A totally bounded metric s...
equivbnd 33589 If the metric ` M ` is "st...
bnd2lem 33590 Lemma for ~ equivbnd2 and ...
equivbnd2 33591 If balls are totally bound...
prdsbnd 33592 The product metric over fi...
prdstotbnd 33593 The product metric over fi...
prdsbnd2 33594 If balls are totally bound...
cntotbnd 33595 A subset of the complex nu...
cnpwstotbnd 33596 A subset of ` A ^ I ` , wh...
ismtyval 33599 The set of isometries betw...
isismty 33600 The condition "is an isome...
ismtycnv 33601 The inverse of an isometry...
ismtyima 33602 The image of a ball under ...
ismtyhmeolem 33603 Lemma for ~ ismtyhmeo . (...
ismtyhmeo 33604 An isometry is a homeomorp...
ismtybndlem 33605 Lemma for ~ ismtybnd . (C...
ismtybnd 33606 Isometries preserve bounde...
ismtyres 33607 A restriction of an isomet...
heibor1lem 33608 Lemma for ~ heibor1 . A c...
heibor1 33609 One half of ~ heibor , tha...
heiborlem1 33610 Lemma for ~ heibor . We w...
heiborlem2 33611 Lemma for ~ heibor . Subs...
heiborlem3 33612 Lemma for ~ heibor . Usin...
heiborlem4 33613 Lemma for ~ heibor . Usin...
heiborlem5 33614 Lemma for ~ heibor . The ...
heiborlem6 33615 Lemma for ~ heibor . Sinc...
heiborlem7 33616 Lemma for ~ heibor . Sinc...
heiborlem8 33617 Lemma for ~ heibor . The ...
heiborlem9 33618 Lemma for ~ heibor . Disc...
heiborlem10 33619 Lemma for ~ heibor . The ...
heibor 33620 Generalized Heine-Borel Th...
bfplem1 33621 Lemma for ~ bfp . The seq...
bfplem2 33622 Lemma for ~ bfp . Using t...
bfp 33623 Banach fixed point theorem...
rrnval 33626 The n-dimensional Euclidea...
rrnmval 33627 The value of the Euclidean...
rrnmet 33628 Euclidean space is a metri...
rrndstprj1 33629 The distance between two p...
rrndstprj2 33630 Bound on the distance betw...
rrncmslem 33631 Lemma for ~ rrncms . (Con...
rrncms 33632 Euclidean space is complet...
repwsmet 33633 The supremum metric on ` R...
rrnequiv 33634 The supremum metric on ` R...
rrntotbnd 33635 A set in Euclidean space i...
rrnheibor 33636 Heine-Borel theorem for Eu...
ismrer1 33637 An isometry between ` RR `...
reheibor 33638 Heine-Borel theorem for re...
iccbnd 33639 A closed interval in ` RR ...
icccmpALT 33640 A closed interval in ` RR ...
isass 33645 The predicate "is an assoc...
isexid 33646 The predicate ` G ` has a ...
ismgmOLD 33649 Obsolete version of ~ ismg...
clmgmOLD 33650 Obsolete version of ~ mgmc...
opidonOLD 33651 Obsolete version of ~ mndp...
rngopidOLD 33652 Obsolete version of ~ mndp...
opidon2OLD 33653 Obsolete version of ~ mndp...
isexid2 33654 If ` G e. ( Magma i^i ExId...
exidu1 33655 Unicity of the left and ri...
idrval 33656 The value of the identity ...
iorlid 33657 A magma right and left ide...
cmpidelt 33658 A magma right and left ide...
smgrpismgmOLD 33661 Obsolete version of ~ sgrp...
issmgrpOLD 33662 Obsolete version of ~ issg...
smgrpmgm 33663 A semi-group is a magma. ...
smgrpassOLD 33664 Obsolete version of ~ sgrp...
mndoissmgrpOLD 33667 Obsolete version of ~ mnds...
mndoisexid 33668 A monoid has an identity e...
mndoismgmOLD 33669 Obsolete version of ~ mndm...
mndomgmid 33670 A monoid is a magma with a...
ismndo 33671 The predicate "is a monoid...
ismndo1 33672 The predicate "is a monoid...
ismndo2 33673 The predicate "is a monoid...
grpomndo 33674 A group is a monoid. (Con...
exidcl 33675 Closure of the binary oper...
exidreslem 33676 Lemma for ~ exidres and ~ ...
exidres 33677 The restriction of a binar...
exidresid 33678 The restriction of a binar...
ablo4pnp 33679 A commutative/associative ...
grpoeqdivid 33680 Two group elements are equ...
grposnOLD 33681 The group operation for th...
elghomlem1OLD 33684 Obsolete as of 15-Mar-2020...
elghomlem2OLD 33685 Obsolete as of 15-Mar-2020...
elghomOLD 33686 Obsolete version of ~ isgh...
ghomlinOLD 33687 Obsolete version of ~ ghml...
ghomidOLD 33688 Obsolete version of ~ ghmi...
ghomf 33689 Mapping property of a grou...
ghomco 33690 The composition of two gro...
ghomdiv 33691 Group homomorphisms preser...
grpokerinj 33692 A group homomorphism is in...
relrngo 33695 The class of all unital ri...
isrngo 33696 The predicate "is a (unita...
isrngod 33697 Conditions that determine ...
rngoi 33698 The properties of a unital...
rngosm 33699 Functionality of the multi...
rngocl 33700 Closure of the multiplicat...
rngoid 33701 The multiplication operati...
rngoideu 33702 The unit element of a ring...
rngodi 33703 Distributive law for the m...
rngodir 33704 Distributive law for the m...
rngoass 33705 Associative law for the mu...
rngo2 33706 A ring element plus itself...
rngoablo 33707 A ring's addition operatio...
rngoablo2 33708 In a unital ring the addit...
rngogrpo 33709 A ring's addition operatio...
rngone0 33710 The base set of a ring is ...
rngogcl 33711 Closure law for the additi...
rngocom 33712 The addition operation of ...
rngoaass 33713 The addition operation of ...
rngoa32 33714 The addition operation of ...
rngoa4 33715 Rearrangement of 4 terms i...
rngorcan 33716 Right cancellation law for...
rngolcan 33717 Left cancellation law for ...
rngo0cl 33718 A ring has an additive ide...
rngo0rid 33719 The additive identity of a...
rngo0lid 33720 The additive identity of a...
rngolz 33721 The zero of a unital ring ...
rngorz 33722 The zero of a unital ring ...
rngosn3 33723 Obsolete as of 25-Jan-2020...
rngosn4 33724 Obsolete as of 25-Jan-2020...
rngosn6 33725 Obsolete as of 25-Jan-2020...
rngonegcl 33726 A ring is closed under neg...
rngoaddneg1 33727 Adding the negative in a r...
rngoaddneg2 33728 Adding the negative in a r...
rngosub 33729 Subtraction in a ring, in ...
rngmgmbs4 33730 The range of an internal o...
rngodm1dm2 33731 In a unital ring the domai...
rngorn1 33732 In a unital ring the range...
rngorn1eq 33733 In a unital ring the range...
rngomndo 33734 In a unital ring the multi...
rngoidmlem 33735 The unit of a ring is an i...
rngolidm 33736 The unit of a ring is an i...
rngoridm 33737 The unit of a ring is an i...
rngo1cl 33738 The unit of a ring belongs...
rngoueqz 33739 Obsolete as of 23-Jan-2020...
rngonegmn1l 33740 Negation in a ring is the ...
rngonegmn1r 33741 Negation in a ring is the ...
rngoneglmul 33742 Negation of a product in a...
rngonegrmul 33743 Negation of a product in a...
rngosubdi 33744 Ring multiplication distri...
rngosubdir 33745 Ring multiplication distri...
zerdivemp1x 33746 In a unitary ring a left i...
isdivrngo 33749 The predicate "is a divisi...
drngoi 33750 The properties of a divisi...
gidsn 33751 Obsolete as of 23-Jan-2020...
zrdivrng 33752 The zero ring is not a div...
dvrunz 33753 In a division ring the uni...
isgrpda 33754 Properties that determine ...
isdrngo1 33755 The predicate "is a divisi...
divrngcl 33756 The product of two nonzero...
isdrngo2 33757 A division ring is a ring ...
isdrngo3 33758 A division ring is a ring ...
rngohomval 33763 The set of ring homomorphi...
isrngohom 33764 The predicate "is a ring h...
rngohomf 33765 A ring homomorphism is a f...
rngohomcl 33766 Closure law for a ring hom...
rngohom1 33767 A ring homomorphism preser...
rngohomadd 33768 Ring homomorphisms preserv...
rngohommul 33769 Ring homomorphisms preserv...
rngogrphom 33770 A ring homomorphism is a g...
rngohom0 33771 A ring homomorphism preser...
rngohomsub 33772 Ring homomorphisms preserv...
rngohomco 33773 The composition of two rin...
rngokerinj 33774 A ring homomorphism is inj...
rngoisoval 33776 The set of ring isomorphis...
isrngoiso 33777 The predicate "is a ring i...
rngoiso1o 33778 A ring isomorphism is a bi...
rngoisohom 33779 A ring isomorphism is a ri...
rngoisocnv 33780 The inverse of a ring isom...
rngoisoco 33781 The composition of two rin...
isriscg 33783 The ring isomorphism relat...
isrisc 33784 The ring isomorphism relat...
risc 33785 The ring isomorphism relat...
risci 33786 Determine that two rings a...
riscer 33787 Ring isomorphism is an equ...
iscom2 33794 A device to add commutativ...
iscrngo 33795 The predicate "is a commut...
iscrngo2 33796 The predicate "is a commut...
iscringd 33797 Conditions that determine ...
flddivrng 33798 A field is a division ring...
crngorngo 33799 A commutative ring is a ri...
crngocom 33800 The multiplication operati...
crngm23 33801 Commutative/associative la...
crngm4 33802 Commutative/associative la...
fldcrng 33803 A field is a commutative r...
isfld2 33804 The predicate "is a field"...
crngohomfo 33805 The image of a homomorphis...
idlval 33812 The class of ideals of a r...
isidl 33813 The predicate "is an ideal...
isidlc 33814 The predicate "is an ideal...
idlss 33815 An ideal of ` R ` is a sub...
idlcl 33816 An element of an ideal is ...
idl0cl 33817 An ideal contains ` 0 ` . ...
idladdcl 33818 An ideal is closed under a...
idllmulcl 33819 An ideal is closed under m...
idlrmulcl 33820 An ideal is closed under m...
idlnegcl 33821 An ideal is closed under n...
idlsubcl 33822 An ideal is closed under s...
rngoidl 33823 A ring ` R ` is an ` R ` i...
0idl 33824 The set containing only ` ...
1idl 33825 Two ways of expressing the...
0rngo 33826 In a ring, ` 0 = 1 ` iff t...
divrngidl 33827 The only ideals in a divis...
intidl 33828 The intersection of a none...
inidl 33829 The intersection of two id...
unichnidl 33830 The union of a nonempty ch...
keridl 33831 The kernel of a ring homom...
pridlval 33832 The class of prime ideals ...
ispridl 33833 The predicate "is a prime ...
pridlidl 33834 A prime ideal is an ideal....
pridlnr 33835 A prime ideal is a proper ...
pridl 33836 The main property of a pri...
ispridl2 33837 A condition that shows an ...
maxidlval 33838 The set of maximal ideals ...
ismaxidl 33839 The predicate "is a maxima...
maxidlidl 33840 A maximal ideal is an idea...
maxidlnr 33841 A maximal ideal is proper....
maxidlmax 33842 A maximal ideal is a maxim...
maxidln1 33843 One is not contained in an...
maxidln0 33844 A ring with a maximal idea...
isprrngo 33849 The predicate "is a prime ...
prrngorngo 33850 A prime ring is a ring. (...
smprngopr 33851 A simple ring (one whose o...
divrngpr 33852 A division ring is a prime...
isdmn 33853 The predicate "is a domain...
isdmn2 33854 The predicate "is a domain...
dmncrng 33855 A domain is a commutative ...
dmnrngo 33856 A domain is a ring. (Cont...
flddmn 33857 A field is a domain. (Con...
igenval 33860 The ideal generated by a s...
igenss 33861 A set is a subset of the i...
igenidl 33862 The ideal generated by a s...
igenmin 33863 The ideal generated by a s...
igenidl2 33864 The ideal generated by an ...
igenval2 33865 The ideal generated by a s...
prnc 33866 A principal ideal (an idea...
isfldidl 33867 Determine if a ring is a f...
isfldidl2 33868 Determine if a ring is a f...
ispridlc 33869 The predicate "is a prime ...
pridlc 33870 Property of a prime ideal ...
pridlc2 33871 Property of a prime ideal ...
pridlc3 33872 Property of a prime ideal ...
isdmn3 33873 The predicate "is a domain...
dmnnzd 33874 A domain has no zero-divis...
dmncan1 33875 Cancellation law for domai...
dmncan2 33876 Cancellation law for domai...
efald2 33877 A proof by contradiction. ...
notbinot1 33878 Simplification rule of neg...
bicontr 33879 Biimplication of its own n...
impor 33880 An equivalent formula for ...
orfa 33881 The falsum ` F. ` can be r...
notbinot2 33882 Commutation rule between n...
biimpor 33883 A rewriting rule for biimp...
unitresl 33884 A lemma for Conjunctive No...
unitresr 33885 A lemma for Conjunctive No...
orfa1 33886 Add a contradicting disjun...
orfa2 33887 Remove a contradicting dis...
bifald 33888 Infer the equivalence to a...
orsild 33889 A lemma for not-or-not eli...
orsird 33890 A lemma for not-or-not eli...
orcomdd 33891 Commutativity of logic dis...
cnf1dd 33892 A lemma for Conjunctive No...
cnf2dd 33893 A lemma for Conjunctive No...
cnfn1dd 33894 A lemma for Conjunctive No...
cnfn2dd 33895 A lemma for Conjunctive No...
or32dd 33896 A rearrangement of disjunc...
notornotel1 33897 A lemma for not-or-not eli...
notornotel2 33898 A lemma for not-or-not eli...
contrd 33899 A proof by contradiction, ...
an12i 33900 An inference from commutin...
exmid2 33901 An excluded middle law. (...
selconj 33902 An inference for selecting...
truconj 33903 Add true as a conjunct. (...
orel 33904 An inference for disjuncti...
negel 33905 An inference for negation ...
botel 33906 An inference for bottom el...
tradd 33907 Add top ad a conjunct. (C...
sbtru 33908 Substitution does not chan...
sbfal 33909 Substitution does not chan...
sbcani 33910 Distribution of class subs...
sbcori 33911 Distribution of class subs...
sbcimi 33912 Distribution of class subs...
sbceqi 33913 Distribution of class subs...
sbcni 33914 Move class substitution in...
sbali 33915 Discard class substitution...
sbexi 33916 Discard class substitution...
sbcalf 33917 Move universal quantifier ...
sbcexf 33918 Move existential quantifie...
sbcalfi 33919 Move universal quantifier ...
sbcexfi 33920 Move existential quantifie...
csbvargi 33921 The proper substitution of...
csbconstgi 33922 The proper substitution of...
spsbcdi 33923 A lemma for eliminating a ...
alrimii 33924 A lemma for introducing a ...
spesbcdi 33925 A lemma for introducing an...
exlimddvf 33926 A lemma for eliminating an...
exlimddvfi 33927 A lemma for eliminating an...
sbceq1ddi 33928 A lemma for eliminating in...
sbccom2lem 33929 Lemma for ~ sbccom2 . (Co...
sbccom2 33930 Commutative law for double...
sbccom2f 33931 Commutative law for double...
sbccom2fi 33932 Commutative law for double...
sbcgfi 33933 Substitution for a variabl...
csbcom2fi 33934 Commutative law for double...
csbgfi 33935 Substitution for a variabl...
fald 33936 Refutation of falsity, in ...
tsim1 33937 A Tseitin axiom for logica...
tsim2 33938 A Tseitin axiom for logica...
tsim3 33939 A Tseitin axiom for logica...
tsbi1 33940 A Tseitin axiom for logica...
tsbi2 33941 A Tseitin axiom for logica...
tsbi3 33942 A Tseitin axiom for logica...
tsbi4 33943 A Tseitin axiom for logica...
tsxo1 33944 A Tseitin axiom for logica...
tsxo2 33945 A Tseitin axiom for logica...
tsxo3 33946 A Tseitin axiom for logica...
tsxo4 33947 A Tseitin axiom for logica...
tsan1 33948 A Tseitin axiom for logica...
tsan2 33949 A Tseitin axiom for logica...
tsan3 33950 A Tseitin axiom for logica...
tsna1 33951 A Tseitin axiom for logica...
tsna2 33952 A Tseitin axiom for logica...
tsna3 33953 A Tseitin axiom for logica...
tsor1 33954 A Tseitin axiom for logica...
tsor2 33955 A Tseitin axiom for logica...
tsor3 33956 A Tseitin axiom for logica...
ts3an1 33957 A Tseitin axiom for triple...
ts3an2 33958 A Tseitin axiom for triple...
ts3an3 33959 A Tseitin axiom for triple...
ts3or1 33960 A Tseitin axiom for triple...
ts3or2 33961 A Tseitin axiom for triple...
ts3or3 33962 A Tseitin axiom for triple...
iuneq2f 33963 Equality deduction for ind...
abeq12 33964 Equality deduction for cla...
rabeq12f 33965 Equality deduction for res...
csbeq12 33966 Equality deduction for sub...
nfbii2 33967 Equality deduction for not...
sbeqi 33968 Equality deduction for sub...
ralbi12f 33969 Equality deduction for res...
oprabbi 33970 Equality deduction for cla...
mpt2bi123f 33971 Equality deduction for map...
iuneq12f 33972 Equality deduction for ind...
iineq12f 33973 Equality deduction for ind...
opabbi 33974 Equality deduction for cla...
mptbi12f 33975 Equality deduction for map...
scottexf 33976 A version of ~ scottex wit...
scott0f 33977 A version of ~ scott0 with...
scottn0f 33978 A version of ~ scott0f wit...
ac6s3f 33979 Generalization of the Axio...
ac6s6 33980 Generalization of the Axio...
ac6s6f 33981 Generalization of the Axio...
elv 33983 New way ( ~ elv , ~ el2v t...
el2v 33984 New way ( ~ elv , ~ el2v t...
el2v1 33985 New way ( ~ elv , ~ el2v t...
el2v2 33986 New way ( ~ elv , ~ el2v t...
el3v 33987 New way ( ~ elv , ~ el2v t...
el3v1 33988 New way ( ~ elv , ~ el2v t...
el3v2 33989 New way ( ~ elv , ~ el2v t...
el3v3 33990 New way ( ~ elv , ~ el2v t...
el3v12 33991 New way ( ~ elv , ~ el2v t...
el3v13 33992 New way ( ~ elv , ~ el2v t...
el3v23 33993 New way ( ~ elv , ~ el2v t...
biancom 33994 Commuting conjunction in a...
biancomd 33995 Commuting conjunction in a...
anbi1ci 33996 Introduce a left and the s...
anbi1cd 33997 Introduce a left and the s...
an2anr 33998 Double commutation in conj...
anan 33999 Multiple commutations in c...
triantru3 34000 A wff is equivalent to its...
eqeltr 34001 Substitution of equal clas...
eqelb 34002 Substitution of equal clas...
eqeqan1d 34003 Implication of introducing...
eqeqan2d 34004 Implication of introducing...
ineqcom 34005 Two ways of saying that tw...
ineqcomi 34006 Disjointness inference (wh...
inres2 34007 Two ways of expressing the...
ssbr 34008 Subclass theorem for binar...
coideq 34009 Equality theorem for compo...
ralanid 34010 Cancellation law for restr...
nexmo 34011 If there is no case where ...
3albii 34012 Inference adding three uni...
3ralbii 34013 Inference adding three res...
rabbii 34014 Equivalent wff's correspon...
rabbieq 34015 Equivalent wff's correspon...
rabimbieq 34016 Restricted equivalent wff'...
abeqin 34017 Intersection with class ab...
abeqinbi 34018 Intersection with class ab...
rabeqel 34019 Class element of a restric...
eqrelf 34020 The equality connective be...
releleccnv 34021 Elementhood in a converse ...
releccnveq 34022 Equality of converse ` R `...
opelvvdif 34023 Negated elementhood of ord...
vvdifopab 34024 Ordered-pair class abstrac...
brvdif 34025 Binary relation with unive...
brvdif2 34026 Binary relation with unive...
brvvdif 34027 Binary relation with the c...
brvbrvvdif 34028 Binary relation with the c...
brcnvep 34029 The converse of the binary...
elecALTV 34030 Elementhood in the ` R ` -...
opelresALTV 34031 Ordered pair elementhood i...
brresALTV 34032 Binary relation on a restr...
brcnvepres 34033 Restricted converse epsilo...
brinxp2ALTV 34034 Intersection with cross pr...
brres2 34035 Binary relation on a restr...
eldmres 34036 Elementhood in the domain ...
eldm4 34037 Elementhood in a domain. ...
eldmres2 34038 Elementhood in the domain ...
eceq1i 34039 Equality theorem for ` C `...
eceq2i 34040 Equality theorem for the `...
eceq2d 34041 Equality theorem for the `...
elecres 34042 Elementhood in the restric...
ecres 34043 Restricted coset of ` B ` ...
ecres2 34044 The restricted coset of ` ...
eccnvepres 34045 Restricted converse epsilo...
eleccnvep 34046 Elementhood in the convers...
eccnvep 34047 The converse epsilon coset...
extep 34048 Property of epsilon relati...
eccnvepres2 34049 The restricted converse ep...
eccnvepres3 34050 Condition for a restricted...
eldmqsres 34051 Elementhood in a restricte...
eldmqsres2 34052 Elementhood in a restricte...
qsss1 34053 Subclass theorem for quoti...
qseq1i 34054 Equality theorem for quoti...
qseq1d 34055 Equality theorem for quoti...
qseq2i 34056 Equality theorem for quoti...
qseq2d 34057 Equality theorem for quoti...
qseq12 34058 Equality theorem for quoti...
brinxprnres 34059 Binary relation on a restr...
inxprnres 34060 Restriction of a class as ...
dfres4 34061 Alternate definition of th...
exan3 34062 Equivalent expressions wit...
exanres 34063 Equivalent expressions wit...
exanres3 34064 Equivalent expressions wit...
exanres2 34065 Equivalent expressions wit...
cnvepres 34066 Restricted converse epsilo...
ssrel3 34067 Subclass relation in anoth...
eqrel2 34068 Equality of relations. (C...
relinxp 34069 Intersection with a Cartes...
rncnv 34070 Range of converse is the d...
dfdm6 34071 Alternate definition of do...
dfrn6 34072 Alternate definition of ra...
rncnvepres 34073 The range of the restricte...
dmecd 34074 Equality of the coset of `...
dmec2d 34075 Equality of the coset of `...
inxpssres 34076 Intersection with a Cartes...
brid 34077 Property of the identity b...
ideq2 34078 For sets, the identity bin...
idresssidinxp 34079 Condition for the identity...
idreseqidinxp 34080 Condition for the identity...
extid 34081 Property of identity relat...
inxpss 34082 Two ways to say that an in...
idinxpss 34083 Two ways to say that an in...
inxpss3 34084 Two ways to say that an in...
inxpss2 34085 Two ways to say that inter...
inxpssidinxp 34086 Two ways to say that inter...
idinxpssinxp 34087 Two ways to say that inter...
idinxpres 34088 The intersection of the id...
idinxpssinxp2 34089 Identity intersection with...
idinxpssinxp3 34090 Identity intersection with...
idinxpssinxp4 34091 Identity intersection with...
relcnveq3 34092 Two ways of saying a relat...
relcnveq 34093 Two ways of saying a relat...
relcnveq2 34094 Two ways of saying a relat...
relcnveq4 34095 Two ways of saying a relat...
qsresid 34096 Simplification of a specia...
nel02 34097 The empty set has no eleme...
n0elqs 34098 Two ways of expressing tha...
n0elqs2 34099 Two ways of expressing tha...
ecex2 34100 Condition for a coset to b...
uniqsALTV 34101 The union of a quotient se...
rnresequniqs 34102 The range of a restriction...
n0el2 34103 Two ways of expressing tha...
cnvepresex 34104 Sethood condition for the ...
inex2ALTV 34105 Sethood condition for the ...
inex3 34106 More general sethood condi...
inxpex 34107 Sethood condition for the ...
eqres 34108 Converting a class constan...
opidORIG 34109 Please delete when ~ opidg...
opideq 34110 Equality conditions for or...
opelinxp 34111 Ordered pair element in an...
iss2 34112 A subclass of the identity...
eldmcnv 34113 Elementhood in a domain of...
dfrel5 34114 Alternate definition of th...
dfrel6 34115 Alternate definition of th...
cnvresrn 34116 Converse restricted to ran...
ecin0 34117 Two ways of saying that th...
ecinn0 34118 Two ways of saying that th...
ineleq 34119 Lemma for ~ inecmo . (Con...
inecmo 34120 Lemma for ~~? dfeldisj5 (v...
inecmo2 34121 Lemma for ~~? dfeldisj5 , ...
ineccnvmo 34122 Lemma for ~ ineccnvmo2 . ...
alrmomo 34123 Lemma for ~ ineccnvmo2 . ...
alrmomo2 34124 Lemma for ~ inecmo3 . (Co...
ineccnvmo2 34125 Lemma for ~~? dffunsALTV5 ...
inecmo3 34126 Lemma for ~~? dfdisjs5 , ~...
motr 34127 Lemma for ~~? trcoss . (C...
bropabid 34128 Lemma for ~~? inxptxp . (...
inxp2 34129 Intersection with a Cartes...
opabssi 34130 Lemma for ~ opabf . (Cont...
opabf 34131 A class abstraction of a c...
ec0 34132 The empty-coset of a class...
0qs 34133 Quotient set with the empt...
xrnss3v 34135 A range Cartesian product ...
xrnrel 34136 A range Cartesian product ...
prtlem60 34137 Lemma for ~ prter3 . (Con...
bicomdd 34138 Commute two sides of a bic...
jca2r 34139 Inference conjoining the c...
jca3 34140 Inference conjoining the c...
prtlem70 34141 Lemma for ~ prter3 : a rea...
ibdr 34142 Reverse of ~ ibd . (Contr...
pm5.31r 34143 Variant of ~ pm5.31 . (Co...
prtlem100 34144 Lemma for ~ prter3 . (Con...
prtlem5 34145 Lemma for ~ prter1 , ~ prt...
prtlem80 34146 Lemma for ~ prter2 . (Con...
brabsb2 34147 A closed form of ~ brabsb ...
eqbrrdv2 34148 Other version of ~ eqbrrdi...
prtlem9 34149 Lemma for ~ prter3 . (Con...
prtlem10 34150 Lemma for ~ prter3 . (Con...
prtlem11 34151 Lemma for ~ prter2 . (Con...
prtlem12 34152 Lemma for ~ prtex and ~ pr...
prtlem13 34153 Lemma for ~ prter1 , ~ prt...
prtlem16 34154 Lemma for ~ prtex , ~ prte...
prtlem400 34155 Lemma for ~ prter2 and als...
erprt 34158 The quotient set of an equ...
prtlem14 34159 Lemma for ~ prter1 , ~ prt...
prtlem15 34160 Lemma for ~ prter1 and ~ p...
prtlem17 34161 Lemma for ~ prter2 . (Con...
prtlem18 34162 Lemma for ~ prter2 . (Con...
prtlem19 34163 Lemma for ~ prter2 . (Con...
prter1 34164 Every partition generates ...
prtex 34165 The equivalence relation g...
prter2 34166 The quotient set of the eq...
prter3 34167 For every partition there ...
axc5 34178 This theorem repeats ~ sp ...
ax4fromc4 34179 Rederivation of axiom ~ ax...
ax10fromc7 34180 Rederivation of axiom ~ ax...
ax6fromc10 34181 Rederivation of axiom ~ ax...
hba1-o 34182 The setvar ` x ` is not fr...
axc4i-o 34183 Inference version of ~ ax-...
equid1 34184 Proof of ~ equid from our ...
equcomi1 34185 Proof of ~ equcomi from ~ ...
aecom-o 34186 Commutation law for identi...
aecoms-o 34187 A commutation rule for ide...
hbae-o 34188 All variables are effectiv...
dral1-o 34189 Formula-building lemma for...
ax12fromc15 34190 Rederivation of axiom ~ ax...
ax13fromc9 34191 Derive ~ ax-13 from ~ ax-c...
ax5ALT 34192 Axiom to quantify a variab...
sps-o 34193 Generalization of antecede...
hbequid 34194 Bound-variable hypothesis ...
nfequid-o 34195 Bound-variable hypothesis ...
axc5c7 34196 Proof of a single axiom th...
axc5c7toc5 34197 Rederivation of ~ ax-c5 fr...
axc5c7toc7 34198 Rederivation of ~ ax-c7 fr...
axc711 34199 Proof of a single axiom th...
nfa1-o 34200 ` x ` is not free in ` A. ...
axc711toc7 34201 Rederivation of ~ ax-c7 fr...
axc711to11 34202 Rederivation of ~ ax-11 fr...
axc5c711 34203 Proof of a single axiom th...
axc5c711toc5 34204 Rederivation of ~ ax-c5 fr...
axc5c711toc7 34205 Rederivation of ~ ax-c7 fr...
axc5c711to11 34206 Rederivation of ~ ax-11 fr...
equidqe 34207 ~ equid with existential q...
axc5sp1 34208 A special case of ~ ax-c5 ...
equidq 34209 ~ equid with universal qua...
equid1ALT 34210 Alternate proof of ~ equid...
axc11nfromc11 34211 Rederivation of ~ ax-c11n ...
naecoms-o 34212 A commutation rule for dis...
hbnae-o 34213 All variables are effectiv...
dvelimf-o 34214 Proof of ~ dvelimh that us...
dral2-o 34215 Formula-building lemma for...
aev-o 34216 A "distinctor elimination"...
ax5eq 34217 Theorem to add distinct qu...
dveeq2-o 34218 Quantifier introduction wh...
axc16g-o 34219 A generalization of axiom ...
dveeq1-o 34220 Quantifier introduction wh...
dveeq1-o16 34221 Version of ~ dveeq1 using ...
ax5el 34222 Theorem to add distinct qu...
axc11n-16 34223 This theorem shows that, g...
dveel2ALT 34224 Alternate proof of ~ dveel...
ax12f 34225 Basis step for constructin...
ax12eq 34226 Basis step for constructin...
ax12el 34227 Basis step for constructin...
ax12indn 34228 Induction step for constru...
ax12indi 34229 Induction step for constru...
ax12indalem 34230 Lemma for ~ ax12inda2 and ...
ax12inda2ALT 34231 Alternate proof of ~ ax12i...
ax12inda2 34232 Induction step for constru...
ax12inda 34233 Induction step for constru...
ax12v2-o 34234 Rederivation of ~ ax-c15 f...
ax12a2-o 34235 Derive ~ ax-c15 from a hyp...
axc11-o 34236 Show that ~ ax-c11 can be ...
fsumshftd 34237 Index shift of a finite su...
fsumshftdOLD 34238 Obsolete version of ~ fsum...
riotaclbgBAD 34240 Closure of restricted iota...
riotaclbBAD 34241 Closure of restricted iota...
riotasvd 34242 Deduction version of ~ rio...
riotasv2d 34243 Value of description binde...
riotasv2s 34244 The value of description b...
riotasv 34245 Value of description binde...
riotasv3d 34246 A property ` ch ` holding ...
elimhyps 34247 A version of ~ elimhyp usi...
dedths 34248 A version of weak deductio...
renegclALT 34249 Closure law for negative o...
elimhyps2 34250 Generalization of ~ elimhy...
dedths2 34251 Generalization of ~ dedths...
19.9alt 34252 Version of ~ 19.9t for uni...
nfcxfrdf 34253 A utility lemma to transfe...
nfded 34254 A deduction theorem that c...
nfded2 34255 A deduction theorem that c...
nfunidALT2 34256 Deduction version of ~ nfu...
nfunidALT 34257 Deduction version of ~ nfu...
nfopdALT 34258 Deduction version of bound...
cnaddcom 34259 Recover the commutative la...
toycom 34260 Show the commutative law f...
lshpset 34265 The set of all hyperplanes...
islshp 34266 The predicate "is a hyperp...
islshpsm 34267 Hyperplane properties expr...
lshplss 34268 A hyperplane is a subspace...
lshpne 34269 A hyperplane is not equal ...
lshpnel 34270 A hyperplane's generating ...
lshpnelb 34271 The subspace sum of a hype...
lshpnel2N 34272 Condition that determines ...
lshpne0 34273 The member of the span in ...
lshpdisj 34274 A hyperplane and the span ...
lshpcmp 34275 If two hyperplanes are com...
lshpinN 34276 The intersection of two di...
lsatset 34277 The set of all 1-dim subsp...
islsat 34278 The predicate "is a 1-dim ...
lsatlspsn2 34279 The span of a nonzero sing...
lsatlspsn 34280 The span of a nonzero sing...
islsati 34281 A 1-dim subspace (atom) (o...
lsateln0 34282 A 1-dim subspace (atom) (o...
lsatlss 34283 The set of 1-dim subspaces...
lsatlssel 34284 An atom is a subspace. (C...
lsatssv 34285 An atom is a set of vector...
lsatn0 34286 A 1-dim subspace (atom) of...
lsatspn0 34287 The span of a vector is an...
lsator0sp 34288 The span of a vector is ei...
lsatssn0 34289 A subspace (or any class) ...
lsatcmp 34290 If two atoms are comparabl...
lsatcmp2 34291 If an atom is included in ...
lsatel 34292 A nonzero vector in an ato...
lsatelbN 34293 A nonzero vector in an ato...
lsat2el 34294 Two atoms sharing a nonzer...
lsmsat 34295 Convert comparison of atom...
lsatfixedN 34296 Show equality with the spa...
lsmsatcv 34297 Subspace sum has the cover...
lssatomic 34298 The lattice of subspaces i...
lssats 34299 The lattice of subspaces i...
lpssat 34300 Two subspaces in a proper ...
lrelat 34301 Subspaces are relatively a...
lssatle 34302 The ordering of two subspa...
lssat 34303 Two subspaces in a proper ...
islshpat 34304 Hyperplane properties expr...
lcvfbr 34307 The covers relation for a ...
lcvbr 34308 The covers relation for a ...
lcvbr2 34309 The covers relation for a ...
lcvbr3 34310 The covers relation for a ...
lcvpss 34311 The covers relation implie...
lcvnbtwn 34312 The covers relation implie...
lcvntr 34313 The covers relation is not...
lcvnbtwn2 34314 The covers relation implie...
lcvnbtwn3 34315 The covers relation implie...
lsmcv2 34316 Subspace sum has the cover...
lcvat 34317 If a subspace covers anoth...
lsatcv0 34318 An atom covers the zero su...
lsatcveq0 34319 A subspace covered by an a...
lsat0cv 34320 A subspace is an atom iff ...
lcvexchlem1 34321 Lemma for ~ lcvexch . (Co...
lcvexchlem2 34322 Lemma for ~ lcvexch . (Co...
lcvexchlem3 34323 Lemma for ~ lcvexch . (Co...
lcvexchlem4 34324 Lemma for ~ lcvexch . (Co...
lcvexchlem5 34325 Lemma for ~ lcvexch . (Co...
lcvexch 34326 Subspaces satisfy the exch...
lcvp 34327 Covering property of Defin...
lcv1 34328 Covering property of a sub...
lcv2 34329 Covering property of a sub...
lsatexch 34330 The atom exchange property...
lsatnle 34331 The meet of a subspace and...
lsatnem0 34332 The meet of distinct atoms...
lsatexch1 34333 The atom exch1ange propert...
lsatcv0eq 34334 If the sum of two atoms co...
lsatcv1 34335 Two atoms covering the zer...
lsatcvatlem 34336 Lemma for ~ lsatcvat . (C...
lsatcvat 34337 A nonzero subspace less th...
lsatcvat2 34338 A subspace covered by the ...
lsatcvat3 34339 A condition implying that ...
islshpcv 34340 Hyperplane properties expr...
l1cvpat 34341 A subspace covered by the ...
l1cvat 34342 Create an atom under an el...
lshpat 34343 Create an atom under a hyp...
lflset 34346 The set of linear function...
islfl 34347 The predicate "is a linear...
lfli 34348 Property of a linear funct...
islfld 34349 Properties that determine ...
lflf 34350 A linear functional is a f...
lflcl 34351 A linear functional value ...
lfl0 34352 A linear functional is zer...
lfladd 34353 Property of a linear funct...
lflsub 34354 Property of a linear funct...
lflmul 34355 Property of a linear funct...
lfl0f 34356 The zero function is a fun...
lfl1 34357 A nonzero functional has a...
lfladdcl 34358 Closure of addition of two...
lfladdcom 34359 Commutativity of functiona...
lfladdass 34360 Associativity of functiona...
lfladd0l 34361 Functional addition with t...
lflnegcl 34362 Closure of the negative of...
lflnegl 34363 A functional plus its nega...
lflvscl 34364 Closure of a scalar produc...
lflvsdi1 34365 Distributive law for (righ...
lflvsdi2 34366 Reverse distributive law f...
lflvsdi2a 34367 Reverse distributive law f...
lflvsass 34368 Associative law for (right...
lfl0sc 34369 The (right vector space) s...
lflsc0N 34370 The scalar product with th...
lfl1sc 34371 The (right vector space) s...
lkrfval 34374 The kernel of a functional...
lkrval 34375 Value of the kernel of a f...
ellkr 34376 Membership in the kernel o...
lkrval2 34377 Value of the kernel of a f...
ellkr2 34378 Membership in the kernel o...
lkrcl 34379 A member of the kernel of ...
lkrf0 34380 The value of a functional ...
lkr0f 34381 The kernel of the zero fun...
lkrlss 34382 The kernel of a linear fun...
lkrssv 34383 The kernel of a linear fun...
lkrsc 34384 The kernel of a nonzero sc...
lkrscss 34385 The kernel of a scalar pro...
eqlkr 34386 Two functionals with the s...
eqlkr2 34387 Two functionals with the s...
eqlkr3 34388 Two functionals with the s...
lkrlsp 34389 The subspace sum of a kern...
lkrlsp2 34390 The subspace sum of a kern...
lkrlsp3 34391 The subspace sum of a kern...
lkrshp 34392 The kernel of a nonzero fu...
lkrshp3 34393 The kernels of nonzero fun...
lkrshpor 34394 The kernel of a functional...
lkrshp4 34395 A kernel is a hyperplane i...
lshpsmreu 34396 Lemma for ~ lshpkrex . Sh...
lshpkrlem1 34397 Lemma for ~ lshpkrex . Th...
lshpkrlem2 34398 Lemma for ~ lshpkrex . Th...
lshpkrlem3 34399 Lemma for ~ lshpkrex . De...
lshpkrlem4 34400 Lemma for ~ lshpkrex . Pa...
lshpkrlem5 34401 Lemma for ~ lshpkrex . Pa...
lshpkrlem6 34402 Lemma for ~ lshpkrex . Sh...
lshpkrcl 34403 The set ` G ` defined by h...
lshpkr 34404 The kernel of functional `...
lshpkrex 34405 There exists a functional ...
lshpset2N 34406 The set of all hyperplanes...
islshpkrN 34407 The predicate "is a hyperp...
lfl1dim 34408 Equivalent expressions for...
lfl1dim2N 34409 Equivalent expressions for...
ldualset 34412 Define the (left) dual of ...
ldualvbase 34413 The vectors of a dual spac...
ldualelvbase 34414 Utility theorem for conver...
ldualfvadd 34415 Vector addition in the dua...
ldualvadd 34416 Vector addition in the dua...
ldualvaddcl 34417 The value of vector additi...
ldualvaddval 34418 The value of the value of ...
ldualsca 34419 The ring of scalars of the...
ldualsbase 34420 Base set of scalar ring fo...
ldualsaddN 34421 Scalar addition for the du...
ldualsmul 34422 Scalar multiplication for ...
ldualfvs 34423 Scalar product operation f...
ldualvs 34424 Scalar product operation v...
ldualvsval 34425 Value of scalar product op...
ldualvscl 34426 The scalar product operati...
ldualvaddcom 34427 Commutative law for vector...
ldualvsass 34428 Associative law for scalar...
ldualvsass2 34429 Associative law for scalar...
ldualvsdi1 34430 Distributive law for scala...
ldualvsdi2 34431 Reverse distributive law f...
ldualgrplem 34432 Lemma for ~ ldualgrp . (C...
ldualgrp 34433 The dual of a vector space...
ldual0 34434 The zero scalar of the dua...
ldual1 34435 The unit scalar of the dua...
ldualneg 34436 The negative of a scalar o...
ldual0v 34437 The zero vector of the dua...
ldual0vcl 34438 The dual zero vector is a ...
lduallmodlem 34439 Lemma for ~ lduallmod . (...
lduallmod 34440 The dual of a left module ...
lduallvec 34441 The dual of a left vector ...
ldualvsub 34442 The value of vector subtra...
ldualvsubcl 34443 Closure of vector subtract...
ldualvsubval 34444 The value of the value of ...
ldualssvscl 34445 Closure of scalar product ...
ldualssvsubcl 34446 Closure of vector subtract...
ldual0vs 34447 Scalar zero times a functi...
lkr0f2 34448 The kernel of the zero fun...
lduallkr3 34449 The kernels of nonzero fun...
lkrpssN 34450 Proper subset relation bet...
lkrin 34451 Intersection of the kernel...
eqlkr4 34452 Two functionals with the s...
ldual1dim 34453 Equivalent expressions for...
ldualkrsc 34454 The kernel of a nonzero sc...
lkrss 34455 The kernel of a scalar pro...
lkrss2N 34456 Two functionals with kerne...
lkreqN 34457 Proportional functionals h...
lkrlspeqN 34458 Condition for colinear fun...
isopos 34467 The predicate "is an ortho...
opposet 34468 Every orthoposet is a pose...
oposlem 34469 Lemma for orthoposet prope...
op01dm 34470 Conditions necessary for z...
op0cl 34471 An orthoposet has a zero e...
op1cl 34472 An orthoposet has a unit e...
op0le 34473 Orthoposet zero is less th...
ople0 34474 An element less than or eq...
opnlen0 34475 An element not less than a...
lub0N 34476 The least upper bound of t...
opltn0 34477 A lattice element greater ...
ople1 34478 Any element is less than t...
op1le 34479 If the orthoposet unit is ...
glb0N 34480 The greatest lower bound o...
opoccl 34481 Closure of orthocomplement...
opococ 34482 Double negative law for or...
opcon3b 34483 Contraposition law for ort...
opcon2b 34484 Orthocomplement contraposi...
opcon1b 34485 Orthocomplement contraposi...
oplecon3 34486 Contraposition law for ort...
oplecon3b 34487 Contraposition law for ort...
oplecon1b 34488 Contraposition law for str...
opoc1 34489 Orthocomplement of orthopo...
opoc0 34490 Orthocomplement of orthopo...
opltcon3b 34491 Contraposition law for str...
opltcon1b 34492 Contraposition law for str...
opltcon2b 34493 Contraposition law for str...
opexmid 34494 Law of excluded middle for...
opnoncon 34495 Law of contradiction for o...
riotaocN 34496 The orthocomplement of the...
cmtfvalN 34497 Value of commutes relation...
cmtvalN 34498 Equivalence for commutes r...
isolat 34499 The predicate "is an ortho...
ollat 34500 An ortholattice is a latti...
olop 34501 An ortholattice is an orth...
olposN 34502 An ortholattice is a poset...
isolatiN 34503 Properties that determine ...
oldmm1 34504 De Morgan's law for meet i...
oldmm2 34505 De Morgan's law for meet i...
oldmm3N 34506 De Morgan's law for meet i...
oldmm4 34507 De Morgan's law for meet i...
oldmj1 34508 De Morgan's law for join i...
oldmj2 34509 De Morgan's law for join i...
oldmj3 34510 De Morgan's law for join i...
oldmj4 34511 De Morgan's law for join i...
olj01 34512 An ortholattice element jo...
olj02 34513 An ortholattice element jo...
olm11 34514 The meet of an ortholattic...
olm12 34515 The meet of an ortholattic...
latmassOLD 34516 Ortholattice meet is assoc...
latm12 34517 A rearrangement of lattice...
latm32 34518 A rearrangement of lattice...
latmrot 34519 Rotate lattice meet of 3 c...
latm4 34520 Rearrangement of lattice m...
latmmdiN 34521 Lattice meet distributes o...
latmmdir 34522 Lattice meet distributes o...
olm01 34523 Meet with lattice zero is ...
olm02 34524 Meet with lattice zero is ...
isoml 34525 The predicate "is an ortho...
isomliN 34526 Properties that determine ...
omlol 34527 An orthomodular lattice is...
omlop 34528 An orthomodular lattice is...
omllat 34529 An orthomodular lattice is...
omllaw 34530 The orthomodular law. (Co...
omllaw2N 34531 Variation of orthomodular ...
omllaw3 34532 Orthomodular law equivalen...
omllaw4 34533 Orthomodular law equivalen...
omllaw5N 34534 The orthomodular law. Rem...
cmtcomlemN 34535 Lemma for ~ cmtcomN . ( ~...
cmtcomN 34536 Commutation is symmetric. ...
cmt2N 34537 Commutation with orthocomp...
cmt3N 34538 Commutation with orthocomp...
cmt4N 34539 Commutation with orthocomp...
cmtbr2N 34540 Alternate definition of th...
cmtbr3N 34541 Alternate definition for t...
cmtbr4N 34542 Alternate definition for t...
lecmtN 34543 Ordered elements commute. ...
cmtidN 34544 Any element commutes with ...
omlfh1N 34545 Foulis-Holland Theorem, pa...
omlfh3N 34546 Foulis-Holland Theorem, pa...
omlmod1i2N 34547 Analogue of modular law ~ ...
omlspjN 34548 Contraction of a Sasaki pr...
cvrfval 34555 Value of covers relation "...
cvrval 34556 Binary relation expressing...
cvrlt 34557 The covers relation implie...
cvrnbtwn 34558 There is no element betwee...
ncvr1 34559 No element covers the latt...
cvrletrN 34560 Property of an element abo...
cvrval2 34561 Binary relation expressing...
cvrnbtwn2 34562 The covers relation implie...
cvrnbtwn3 34563 The covers relation implie...
cvrcon3b 34564 Contraposition law for the...
cvrle 34565 The covers relation implie...
cvrnbtwn4 34566 The covers relation implie...
cvrnle 34567 The covers relation implie...
cvrne 34568 The covers relation implie...
cvrnrefN 34569 The covers relation is not...
cvrcmp 34570 If two lattice elements th...
cvrcmp2 34571 If two lattice elements co...
pats 34572 The set of atoms in a pose...
isat 34573 The predicate "is an atom"...
isat2 34574 The predicate "is an atom"...
atcvr0 34575 An atom covers zero. ( ~ ...
atbase 34576 An atom is a member of the...
atssbase 34577 The set of atoms is a subs...
0ltat 34578 An atom is greater than ze...
leatb 34579 A poset element less than ...
leat 34580 A poset element less than ...
leat2 34581 A nonzero poset element le...
leat3 34582 A poset element less than ...
meetat 34583 The meet of any element wi...
meetat2 34584 The meet of any element wi...
isatl 34586 The predicate "is an atomi...
atllat 34587 An atomic lattice is a lat...
atlpos 34588 An atomic lattice is a pos...
atl0dm 34589 Condition necessary for ze...
atl0cl 34590 An atomic lattice has a ze...
atl0le 34591 Orthoposet zero is less th...
atlle0 34592 An element less than or eq...
atlltn0 34593 A lattice element greater ...
isat3 34594 The predicate "is an atom"...
atn0 34595 An atom is not zero. ( ~ ...
atnle0 34596 An atom is not less than o...
atlen0 34597 A lattice element is nonze...
atcmp 34598 If two atoms are comparabl...
atncmp 34599 Frequently-used variation ...
atnlt 34600 Two atoms cannot satisfy t...
atcvreq0 34601 An element covered by an a...
atncvrN 34602 Two atoms cannot satisfy t...
atlex 34603 Every nonzero element of a...
atnle 34604 Two ways of expressing "an...
atnem0 34605 The meet of distinct atoms...
atlatmstc 34606 An atomic, complete, ortho...
atlatle 34607 The ordering of two Hilber...
atlrelat1 34608 An atomistic lattice with ...
iscvlat 34610 The predicate "is an atomi...
iscvlat2N 34611 The predicate "is an atomi...
cvlatl 34612 An atomic lattice with the...
cvllat 34613 An atomic lattice with the...
cvlposN 34614 An atomic lattice with the...
cvlexch1 34615 An atomic covering lattice...
cvlexch2 34616 An atomic covering lattice...
cvlexchb1 34617 An atomic covering lattice...
cvlexchb2 34618 An atomic covering lattice...
cvlexch3 34619 An atomic covering lattice...
cvlexch4N 34620 An atomic covering lattice...
cvlatexchb1 34621 A version of ~ cvlexchb1 f...
cvlatexchb2 34622 A version of ~ cvlexchb2 f...
cvlatexch1 34623 Atom exchange property. (...
cvlatexch2 34624 Atom exchange property. (...
cvlatexch3 34625 Atom exchange property. (...
cvlcvr1 34626 The covering property. Pr...
cvlcvrp 34627 A Hilbert lattice satisfie...
cvlatcvr1 34628 An atom is covered by its ...
cvlatcvr2 34629 An atom is covered by its ...
cvlsupr2 34630 Two equivalent ways of exp...
cvlsupr3 34631 Two equivalent ways of exp...
cvlsupr4 34632 Consequence of superpositi...
cvlsupr5 34633 Consequence of superpositi...
cvlsupr6 34634 Consequence of superpositi...
cvlsupr7 34635 Consequence of superpositi...
cvlsupr8 34636 Consequence of superpositi...
ishlat1 34639 The predicate "is a Hilber...
ishlat2 34640 The predicate "is a Hilber...
ishlat3N 34641 The predicate "is a Hilber...
ishlatiN 34642 Properties that determine ...
hlomcmcv 34643 A Hilbert lattice is ortho...
hloml 34644 A Hilbert lattice is ortho...
hlclat 34645 A Hilbert lattice is compl...
hlcvl 34646 A Hilbert lattice is an at...
hlatl 34647 A Hilbert lattice is atomi...
hlol 34648 A Hilbert lattice is an or...
hlop 34649 A Hilbert lattice is an or...
hllat 34650 A Hilbert lattice is a lat...
hlomcmat 34651 A Hilbert lattice is ortho...
hlpos 34652 A Hilbert lattice is a pos...
hlatjcl 34653 Closure of join operation....
hlatjcom 34654 Commutatitivity of join op...
hlatjidm 34655 Idempotence of join operat...
hlatjass 34656 Lattice join is associativ...
hlatj12 34657 Swap 1st and 2nd members o...
hlatj32 34658 Swap 2nd and 3rd members o...
hlatjrot 34659 Rotate lattice join of 3 c...
hlatj4 34660 Rearrangement of lattice j...
hlatlej1 34661 A join's first argument is...
hlatlej2 34662 A join's second argument i...
glbconN 34663 De Morgan's law for GLB an...
glbconxN 34664 De Morgan's law for GLB an...
atnlej1 34665 If an atom is not less tha...
atnlej2 34666 If an atom is not less tha...
hlsuprexch 34667 A Hilbert lattice has the ...
hlexch1 34668 A Hilbert lattice has the ...
hlexch2 34669 A Hilbert lattice has the ...
hlexchb1 34670 A Hilbert lattice has the ...
hlexchb2 34671 A Hilbert lattice has the ...
hlsupr 34672 A Hilbert lattice has the ...
hlsupr2 34673 A Hilbert lattice has the ...
hlhgt4 34674 A Hilbert lattice has a he...
hlhgt2 34675 A Hilbert lattice has a he...
hl0lt1N 34676 Lattice 0 is less than lat...
hlexch3 34677 A Hilbert lattice has the ...
hlexch4N 34678 A Hilbert lattice has the ...
hlatexchb1 34679 A version of ~ hlexchb1 fo...
hlatexchb2 34680 A version of ~ hlexchb2 fo...
hlatexch1 34681 Atom exchange property. (...
hlatexch2 34682 Atom exchange property. (...
hlatmstcOLDN 34683 An atomic, complete, ortho...
hlatle 34684 The ordering of two Hilber...
hlateq 34685 The equality of two Hilber...
hlrelat1 34686 An atomistic lattice with ...
hlrelat5N 34687 An atomistic lattice with ...
hlrelat 34688 A Hilbert lattice is relat...
hlrelat2 34689 A consequence of relative ...
exatleN 34690 A condition for an atom to...
hl2at 34691 A Hilbert lattice has at l...
atex 34692 At least one atom exists. ...
intnatN 34693 If the intersection with a...
2llnne2N 34694 Condition implying that tw...
2llnneN 34695 Condition implying that tw...
cvr1 34696 A Hilbert lattice has the ...
cvr2N 34697 Less-than and covers equiv...
hlrelat3 34698 The Hilbert lattice is rel...
cvrval3 34699 Binary relation expressing...
cvrval4N 34700 Binary relation expressing...
cvrval5 34701 Binary relation expressing...
cvrp 34702 A Hilbert lattice satisfie...
atcvr1 34703 An atom is covered by its ...
atcvr2 34704 An atom is covered by its ...
cvrexchlem 34705 Lemma for ~ cvrexch . ( ~...
cvrexch 34706 A Hilbert lattice satisfie...
cvratlem 34707 Lemma for ~ cvrat . ( ~ a...
cvrat 34708 A nonzero Hilbert lattice ...
ltltncvr 34709 A chained strong ordering ...
ltcvrntr 34710 Non-transitive condition f...
cvrntr 34711 The covers relation is not...
atcvr0eq 34712 The covers relation is not...
lnnat 34713 A line (the join of two di...
atcvrj0 34714 Two atoms covering the zer...
cvrat2 34715 A Hilbert lattice element ...
atcvrneN 34716 Inequality derived from at...
atcvrj1 34717 Condition for an atom to b...
atcvrj2b 34718 Condition for an atom to b...
atcvrj2 34719 Condition for an atom to b...
atleneN 34720 Inequality derived from at...
atltcvr 34721 An equivalence of less-tha...
atle 34722 Any nonzero element has an...
atlt 34723 Two atoms are unequal iff ...
atlelt 34724 Transfer less-than relatio...
2atlt 34725 Given an atom less than an...
atexchcvrN 34726 Atom exchange property. V...
atexchltN 34727 Atom exchange property. V...
cvrat3 34728 A condition implying that ...
cvrat4 34729 A condition implying exist...
cvrat42 34730 Commuted version of ~ cvra...
2atjm 34731 The meet of a line (expres...
atbtwn 34732 Property of a 3rd atom ` R...
atbtwnexOLDN 34733 There exists a 3rd atom ` ...
atbtwnex 34734 Given atoms ` P ` in ` X `...
3noncolr2 34735 Two ways to express 3 non-...
3noncolr1N 34736 Two ways to express 3 non-...
hlatcon3 34737 Atom exchange combined wit...
hlatcon2 34738 Atom exchange combined wit...
4noncolr3 34739 A way to express 4 non-col...
4noncolr2 34740 A way to express 4 non-col...
4noncolr1 34741 A way to express 4 non-col...
athgt 34742 A Hilbert lattice, whose h...
3dim0 34743 There exists a 3-dimension...
3dimlem1 34744 Lemma for ~ 3dim1 . (Cont...
3dimlem2 34745 Lemma for ~ 3dim1 . (Cont...
3dimlem3a 34746 Lemma for ~ 3dim3 . (Cont...
3dimlem3 34747 Lemma for ~ 3dim1 . (Cont...
3dimlem3OLDN 34748 Lemma for ~ 3dim1 . (Cont...
3dimlem4a 34749 Lemma for ~ 3dim3 . (Cont...
3dimlem4 34750 Lemma for ~ 3dim1 . (Cont...
3dimlem4OLDN 34751 Lemma for ~ 3dim1 . (Cont...
3dim1lem5 34752 Lemma for ~ 3dim1 . (Cont...
3dim1 34753 Construct a 3-dimensional ...
3dim2 34754 Construct 2 new layers on ...
3dim3 34755 Construct a new layer on t...
2dim 34756 Generate a height-3 elemen...
1dimN 34757 An atom is covered by a he...
1cvrco 34758 The orthocomplement of an ...
1cvratex 34759 There exists an atom less ...
1cvratlt 34760 An atom less than or equal...
1cvrjat 34761 An element covered by the ...
1cvrat 34762 Create an atom under an el...
ps-1 34763 The join of two atoms ` R ...
ps-2 34764 Lattice analogue for the p...
2atjlej 34765 Two atoms are different if...
hlatexch3N 34766 Rearrange join of atoms in...
hlatexch4 34767 Exchange 2 atoms. (Contri...
ps-2b 34768 Variation of projective ge...
3atlem1 34769 Lemma for ~ 3at . (Contri...
3atlem2 34770 Lemma for ~ 3at . (Contri...
3atlem3 34771 Lemma for ~ 3at . (Contri...
3atlem4 34772 Lemma for ~ 3at . (Contri...
3atlem5 34773 Lemma for ~ 3at . (Contri...
3atlem6 34774 Lemma for ~ 3at . (Contri...
3atlem7 34775 Lemma for ~ 3at . (Contri...
3at 34776 Any three non-colinear ato...
llnset 34791 The set of lattice lines i...
islln 34792 The predicate "is a lattic...
islln4 34793 The predicate "is a lattic...
llni 34794 Condition implying a latti...
llnbase 34795 A lattice line is a lattic...
islln3 34796 The predicate "is a lattic...
islln2 34797 The predicate "is a lattic...
llni2 34798 The join of two different ...
llnnleat 34799 An atom cannot majorize a ...
llnneat 34800 A lattice line is not an a...
2atneat 34801 The join of two distinct a...
llnn0 34802 A lattice line is nonzero....
islln2a 34803 The predicate "is a lattic...
llnle 34804 Any element greater than 0...
atcvrlln2 34805 An atom under a line is co...
atcvrlln 34806 An element covering an ato...
llnexatN 34807 Given an atom on a line, t...
llncmp 34808 If two lattice lines are c...
llnnlt 34809 Two lattice lines cannot s...
2llnmat 34810 Two intersecting lines int...
2at0mat0 34811 Special case of ~ 2atmat0 ...
2atmat0 34812 The meet of two unequal li...
2atm 34813 An atom majorized by two d...
ps-2c 34814 Variation of projective ge...
lplnset 34815 The set of lattice planes ...
islpln 34816 The predicate "is a lattic...
islpln4 34817 The predicate "is a lattic...
lplni 34818 Condition implying a latti...
islpln3 34819 The predicate "is a lattic...
lplnbase 34820 A lattice plane is a latti...
islpln5 34821 The predicate "is a lattic...
islpln2 34822 The predicate "is a lattic...
lplni2 34823 The join of 3 different at...
lvolex3N 34824 There is an atom outside o...
llnmlplnN 34825 The intersection of a line...
lplnle 34826 Any element greater than 0...
lplnnle2at 34827 A lattice line (or atom) c...
lplnnleat 34828 A lattice plane cannot maj...
lplnnlelln 34829 A lattice plane is not les...
2atnelpln 34830 The join of two atoms is n...
lplnneat 34831 No lattice plane is an ato...
lplnnelln 34832 No lattice plane is a latt...
lplnn0N 34833 A lattice plane is nonzero...
islpln2a 34834 The predicate "is a lattic...
islpln2ah 34835 The predicate "is a lattic...
lplnriaN 34836 Property of a lattice plan...
lplnribN 34837 Property of a lattice plan...
lplnric 34838 Property of a lattice plan...
lplnri1 34839 Property of a lattice plan...
lplnri2N 34840 Property of a lattice plan...
lplnri3N 34841 Property of a lattice plan...
lplnllnneN 34842 Two lattice lines defined ...
llncvrlpln2 34843 A lattice line under a lat...
llncvrlpln 34844 An element covering a latt...
2lplnmN 34845 If the join of two lattice...
2llnmj 34846 The meet of two lattice li...
2atmat 34847 The meet of two intersecti...
lplncmp 34848 If two lattice planes are ...
lplnexatN 34849 Given a lattice line on a ...
lplnexllnN 34850 Given an atom on a lattice...
lplnnlt 34851 Two lattice planes cannot ...
2llnjaN 34852 The join of two different ...
2llnjN 34853 The join of two different ...
2llnm2N 34854 The meet of two different ...
2llnm3N 34855 Two lattice lines in a lat...
2llnm4 34856 Two lattice lines that maj...
2llnmeqat 34857 An atom equals the interse...
lvolset 34858 The set of 3-dim lattice v...
islvol 34859 The predicate "is a 3-dim ...
islvol4 34860 The predicate "is a 3-dim ...
lvoli 34861 Condition implying a 3-dim...
islvol3 34862 The predicate "is a 3-dim ...
lvoli3 34863 Condition implying a 3-dim...
lvolbase 34864 A 3-dim lattice volume is ...
islvol5 34865 The predicate "is a 3-dim ...
islvol2 34866 The predicate "is a 3-dim ...
lvoli2 34867 The join of 4 different at...
lvolnle3at 34868 A lattice plane (or lattic...
lvolnleat 34869 An atom cannot majorize a ...
lvolnlelln 34870 A lattice line cannot majo...
lvolnlelpln 34871 A lattice plane cannot maj...
3atnelvolN 34872 The join of 3 atoms is not...
2atnelvolN 34873 The join of two atoms is n...
lvolneatN 34874 No lattice volume is an at...
lvolnelln 34875 No lattice volume is a lat...
lvolnelpln 34876 No lattice volume is a lat...
lvoln0N 34877 A lattice volume is nonzer...
islvol2aN 34878 The predicate "is a lattic...
4atlem0a 34879 Lemma for ~ 4at . (Contri...
4atlem0ae 34880 Lemma for ~ 4at . (Contri...
4atlem0be 34881 Lemma for ~ 4at . (Contri...
4atlem3 34882 Lemma for ~ 4at . Break i...
4atlem3a 34883 Lemma for ~ 4at . Break i...
4atlem3b 34884 Lemma for ~ 4at . Break i...
4atlem4a 34885 Lemma for ~ 4at . Frequen...
4atlem4b 34886 Lemma for ~ 4at . Frequen...
4atlem4c 34887 Lemma for ~ 4at . Frequen...
4atlem4d 34888 Lemma for ~ 4at . Frequen...
4atlem9 34889 Lemma for ~ 4at . Substit...
4atlem10a 34890 Lemma for ~ 4at . Substit...
4atlem10b 34891 Lemma for ~ 4at . Substit...
4atlem10 34892 Lemma for ~ 4at . Combine...
4atlem11a 34893 Lemma for ~ 4at . Substit...
4atlem11b 34894 Lemma for ~ 4at . Substit...
4atlem11 34895 Lemma for ~ 4at . Combine...
4atlem12a 34896 Lemma for ~ 4at . Substit...
4atlem12b 34897 Lemma for ~ 4at . Substit...
4atlem12 34898 Lemma for ~ 4at . Combine...
4at 34899 Four atoms determine a lat...
4at2 34900 Four atoms determine a lat...
lplncvrlvol2 34901 A lattice line under a lat...
lplncvrlvol 34902 An element covering a latt...
lvolcmp 34903 If two lattice planes are ...
lvolnltN 34904 Two lattice volumes cannot...
2lplnja 34905 The join of two different ...
2lplnj 34906 The join of two different ...
2lplnm2N 34907 The meet of two different ...
2lplnmj 34908 The meet of two lattice pl...
dalemkehl 34909 Lemma for ~ dath . Freque...
dalemkelat 34910 Lemma for ~ dath . Freque...
dalemkeop 34911 Lemma for ~ dath . Freque...
dalempea 34912 Lemma for ~ dath . Freque...
dalemqea 34913 Lemma for ~ dath . Freque...
dalemrea 34914 Lemma for ~ dath . Freque...
dalemsea 34915 Lemma for ~ dath . Freque...
dalemtea 34916 Lemma for ~ dath . Freque...
dalemuea 34917 Lemma for ~ dath . Freque...
dalemyeo 34918 Lemma for ~ dath . Freque...
dalemzeo 34919 Lemma for ~ dath . Freque...
dalemclpjs 34920 Lemma for ~ dath . Freque...
dalemclqjt 34921 Lemma for ~ dath . Freque...
dalemclrju 34922 Lemma for ~ dath . Freque...
dalem-clpjq 34923 Lemma for ~ dath . Freque...
dalemceb 34924 Lemma for ~ dath . Freque...
dalempeb 34925 Lemma for ~ dath . Freque...
dalemqeb 34926 Lemma for ~ dath . Freque...
dalemreb 34927 Lemma for ~ dath . Freque...
dalemseb 34928 Lemma for ~ dath . Freque...
dalemteb 34929 Lemma for ~ dath . Freque...
dalemueb 34930 Lemma for ~ dath . Freque...
dalempjqeb 34931 Lemma for ~ dath . Freque...
dalemsjteb 34932 Lemma for ~ dath . Freque...
dalemtjueb 34933 Lemma for ~ dath . Freque...
dalemqrprot 34934 Lemma for ~ dath . Freque...
dalemyeb 34935 Lemma for ~ dath . Freque...
dalemcnes 34936 Lemma for ~ dath . Freque...
dalempnes 34937 Lemma for ~ dath . Freque...
dalemqnet 34938 Lemma for ~ dath . Freque...
dalempjsen 34939 Lemma for ~ dath . Freque...
dalemply 34940 Lemma for ~ dath . Freque...
dalemsly 34941 Lemma for ~ dath . Freque...
dalemswapyz 34942 Lemma for ~ dath . Swap t...
dalemrot 34943 Lemma for ~ dath . Rotate...
dalemrotyz 34944 Lemma for ~ dath . Rotate...
dalem1 34945 Lemma for ~ dath . Show t...
dalemcea 34946 Lemma for ~ dath . Freque...
dalem2 34947 Lemma for ~ dath . Show t...
dalemdea 34948 Lemma for ~ dath . Freque...
dalemeea 34949 Lemma for ~ dath . Freque...
dalem3 34950 Lemma for ~ dalemdnee . (...
dalem4 34951 Lemma for ~ dalemdnee . (...
dalemdnee 34952 Lemma for ~ dath . Axis o...
dalem5 34953 Lemma for ~ dath . Atom `...
dalem6 34954 Lemma for ~ dath . Analog...
dalem7 34955 Lemma for ~ dath . Analog...
dalem8 34956 Lemma for ~ dath . Plane ...
dalem-cly 34957 Lemma for ~ dalem9 . Cent...
dalem9 34958 Lemma for ~ dath . Since ...
dalem10 34959 Lemma for ~ dath . Atom `...
dalem11 34960 Lemma for ~ dath . Analog...
dalem12 34961 Lemma for ~ dath . Analog...
dalem13 34962 Lemma for ~ dalem14 . (Co...
dalem14 34963 Lemma for ~ dath . Planes...
dalem15 34964 Lemma for ~ dath . The ax...
dalem16 34965 Lemma for ~ dath . The at...
dalem17 34966 Lemma for ~ dath . When p...
dalem18 34967 Lemma for ~ dath . Show t...
dalem19 34968 Lemma for ~ dath . Show t...
dalemccea 34969 Lemma for ~ dath . Freque...
dalemddea 34970 Lemma for ~ dath . Freque...
dalem-ccly 34971 Lemma for ~ dath . Freque...
dalem-ddly 34972 Lemma for ~ dath . Freque...
dalemccnedd 34973 Lemma for ~ dath . Freque...
dalemclccjdd 34974 Lemma for ~ dath . Freque...
dalemcceb 34975 Lemma for ~ dath . Freque...
dalemswapyzps 34976 Lemma for ~ dath . Swap t...
dalemrotps 34977 Lemma for ~ dath . Rotate...
dalemcjden 34978 Lemma for ~ dath . Show t...
dalem20 34979 Lemma for ~ dath . Show t...
dalem21 34980 Lemma for ~ dath . Show t...
dalem22 34981 Lemma for ~ dath . Show t...
dalem23 34982 Lemma for ~ dath . Show t...
dalem24 34983 Lemma for ~ dath . Show t...
dalem25 34984 Lemma for ~ dath . Show t...
dalem27 34985 Lemma for ~ dath . Show t...
dalem28 34986 Lemma for ~ dath . Lemma ...
dalem29 34987 Lemma for ~ dath . Analog...
dalem30 34988 Lemma for ~ dath . Analog...
dalem31N 34989 Lemma for ~ dath . Analog...
dalem32 34990 Lemma for ~ dath . Analog...
dalem33 34991 Lemma for ~ dath . Analog...
dalem34 34992 Lemma for ~ dath . Analog...
dalem35 34993 Lemma for ~ dath . Analog...
dalem36 34994 Lemma for ~ dath . Analog...
dalem37 34995 Lemma for ~ dath . Analog...
dalem38 34996 Lemma for ~ dath . Plane ...
dalem39 34997 Lemma for ~ dath . Auxili...
dalem40 34998 Lemma for ~ dath . Analog...
dalem41 34999 Lemma for ~ dath . (Contr...
dalem42 35000 Lemma for ~ dath . Auxili...
dalem43 35001 Lemma for ~ dath . Planes...
dalem44 35002 Lemma for ~ dath . Dummy ...
dalem45 35003 Lemma for ~ dath . Dummy ...
dalem46 35004 Lemma for ~ dath . Analog...
dalem47 35005 Lemma for ~ dath . Analog...
dalem48 35006 Lemma for ~ dath . Analog...
dalem49 35007 Lemma for ~ dath . Analog...
dalem50 35008 Lemma for ~ dath . Analog...
dalem51 35009 Lemma for ~ dath . Constr...
dalem52 35010 Lemma for ~ dath . Lines ...
dalem53 35011 Lemma for ~ dath . The au...
dalem54 35012 Lemma for ~ dath . Line `...
dalem55 35013 Lemma for ~ dath . Lines ...
dalem56 35014 Lemma for ~ dath . Analog...
dalem57 35015 Lemma for ~ dath . Axis o...
dalem58 35016 Lemma for ~ dath . Analog...
dalem59 35017 Lemma for ~ dath . Analog...
dalem60 35018 Lemma for ~ dath . ` B ` i...
dalem61 35019 Lemma for ~ dath . Show t...
dalem62 35020 Lemma for ~ dath . Elimin...
dalem63 35021 Lemma for ~ dath . Combin...
dath 35022 Desargues' Theorem of proj...
dath2 35023 Version of Desargues' Theo...
lineset 35024 The set of lines in a Hilb...
isline 35025 The predicate "is a line"....
islinei 35026 Condition implying "is a l...
pointsetN 35027 The set of points in a Hil...
ispointN 35028 The predicate "is a point"...
atpointN 35029 The singleton of an atom i...
psubspset 35030 The set of projective subs...
ispsubsp 35031 The predicate "is a projec...
ispsubsp2 35032 The predicate "is a projec...
psubspi 35033 Property of a projective s...
psubspi2N 35034 Property of a projective s...
0psubN 35035 The empty set is a project...
snatpsubN 35036 The singleton of an atom i...
pointpsubN 35037 A point (singleton of an a...
linepsubN 35038 A line is a projective sub...
atpsubN 35039 The set of all atoms is a ...
psubssat 35040 A projective subspace cons...
psubatN 35041 A member of a projective s...
pmapfval 35042 The projective map of a Hi...
pmapval 35043 Value of the projective ma...
elpmap 35044 Member of a projective map...
pmapssat 35045 The projective map of a Hi...
pmapssbaN 35046 A weakening of ~ pmapssat ...
pmaple 35047 The projective map of a Hi...
pmap11 35048 The projective map of a Hi...
pmapat 35049 The projective map of an a...
elpmapat 35050 Member of the projective m...
pmap0 35051 Value of the projective ma...
pmapeq0 35052 A projective map value is ...
pmap1N 35053 Value of the projective ma...
pmapsub 35054 The projective map of a Hi...
pmapglbx 35055 The projective map of the ...
pmapglb 35056 The projective map of the ...
pmapglb2N 35057 The projective map of the ...
pmapglb2xN 35058 The projective map of the ...
pmapmeet 35059 The projective map of a me...
isline2 35060 Definition of line in term...
linepmap 35061 A line described with a pr...
isline3 35062 Definition of line in term...
isline4N 35063 Definition of line in term...
lneq2at 35064 A line equals the join of ...
lnatexN 35065 There is an atom in a line...
lnjatN 35066 Given an atom in a line, t...
lncvrelatN 35067 A lattice element covered ...
lncvrat 35068 A line covers the atoms it...
lncmp 35069 If two lines are comparabl...
2lnat 35070 Two intersecting lines int...
2atm2atN 35071 Two joins with a common at...
2llnma1b 35072 Generalization of ~ 2llnma...
2llnma1 35073 Two different intersecting...
2llnma3r 35074 Two different intersecting...
2llnma2 35075 Two different intersecting...
2llnma2rN 35076 Two different intersecting...
cdlema1N 35077 A condition for required f...
cdlema2N 35078 A condition for required f...
cdlemblem 35079 Lemma for ~ cdlemb . (Con...
cdlemb 35080 Given two atoms not less t...
paddfval 35083 Projective subspace sum op...
paddval 35084 Projective subspace sum op...
elpadd 35085 Member of a projective sub...
elpaddn0 35086 Member of projective subsp...
paddvaln0N 35087 Projective subspace sum op...
elpaddri 35088 Condition implying members...
elpaddatriN 35089 Condition implying members...
elpaddat 35090 Membership in a projective...
elpaddatiN 35091 Consequence of membership ...
elpadd2at 35092 Membership in a projective...
elpadd2at2 35093 Membership in a projective...
paddunssN 35094 Projective subspace sum in...
elpadd0 35095 Member of projective subsp...
paddval0 35096 Projective subspace sum wi...
padd01 35097 Projective subspace sum wi...
padd02 35098 Projective subspace sum wi...
paddcom 35099 Projective subspace sum co...
paddssat 35100 A projective subspace sum ...
sspadd1 35101 A projective subspace sum ...
sspadd2 35102 A projective subspace sum ...
paddss1 35103 Subset law for projective ...
paddss2 35104 Subset law for projective ...
paddss12 35105 Subset law for projective ...
paddasslem1 35106 Lemma for ~ paddass . (Co...
paddasslem2 35107 Lemma for ~ paddass . (Co...
paddasslem3 35108 Lemma for ~ paddass . Res...
paddasslem4 35109 Lemma for ~ paddass . Com...
paddasslem5 35110 Lemma for ~ paddass . Sho...
paddasslem6 35111 Lemma for ~ paddass . (Co...
paddasslem7 35112 Lemma for ~ paddass . Com...
paddasslem8 35113 Lemma for ~ paddass . (Co...
paddasslem9 35114 Lemma for ~ paddass . Com...
paddasslem10 35115 Lemma for ~ paddass . Use...
paddasslem11 35116 Lemma for ~ paddass . The...
paddasslem12 35117 Lemma for ~ paddass . The...
paddasslem13 35118 Lemma for ~ paddass . The...
paddasslem14 35119 Lemma for ~ paddass . Rem...
paddasslem15 35120 Lemma for ~ paddass . Use...
paddasslem16 35121 Lemma for ~ paddass . Use...
paddasslem17 35122 Lemma for ~ paddass . The...
paddasslem18 35123 Lemma for ~ paddass . Com...
paddass 35124 Projective subspace sum is...
padd12N 35125 Commutative/associative la...
padd4N 35126 Rearrangement of 4 terms i...
paddidm 35127 Projective subspace sum is...
paddclN 35128 The projective sum of two ...
paddssw1 35129 Subset law for projective ...
paddssw2 35130 Subset law for projective ...
paddss 35131 Subset law for projective ...
pmodlem1 35132 Lemma for ~ pmod1i . (Con...
pmodlem2 35133 Lemma for ~ pmod1i . (Con...
pmod1i 35134 The modular law holds in a...
pmod2iN 35135 Dual of the modular law. ...
pmodN 35136 The modular law for projec...
pmodl42N 35137 Lemma derived from modular...
pmapjoin 35138 The projective map of the ...
pmapjat1 35139 The projective map of the ...
pmapjat2 35140 The projective map of the ...
pmapjlln1 35141 The projective map of the ...
hlmod1i 35142 A version of the modular l...
atmod1i1 35143 Version of modular law ~ p...
atmod1i1m 35144 Version of modular law ~ p...
atmod1i2 35145 Version of modular law ~ p...
llnmod1i2 35146 Version of modular law ~ p...
atmod2i1 35147 Version of modular law ~ p...
atmod2i2 35148 Version of modular law ~ p...
llnmod2i2 35149 Version of modular law ~ p...
atmod3i1 35150 Version of modular law tha...
atmod3i2 35151 Version of modular law tha...
atmod4i1 35152 Version of modular law tha...
atmod4i2 35153 Version of modular law tha...
llnexchb2lem 35154 Lemma for ~ llnexchb2 . (...
llnexchb2 35155 Line exchange property (co...
llnexch2N 35156 Line exchange property (co...
dalawlem1 35157 Lemma for ~ dalaw . Speci...
dalawlem2 35158 Lemma for ~ dalaw . Utili...
dalawlem3 35159 Lemma for ~ dalaw . First...
dalawlem4 35160 Lemma for ~ dalaw . Secon...
dalawlem5 35161 Lemma for ~ dalaw . Speci...
dalawlem6 35162 Lemma for ~ dalaw . First...
dalawlem7 35163 Lemma for ~ dalaw . Secon...
dalawlem8 35164 Lemma for ~ dalaw . Speci...
dalawlem9 35165 Lemma for ~ dalaw . Speci...
dalawlem10 35166 Lemma for ~ dalaw . Combi...
dalawlem11 35167 Lemma for ~ dalaw . First...
dalawlem12 35168 Lemma for ~ dalaw . Secon...
dalawlem13 35169 Lemma for ~ dalaw . Speci...
dalawlem14 35170 Lemma for ~ dalaw . Combi...
dalawlem15 35171 Lemma for ~ dalaw . Swap ...
dalaw 35172 Desargues' law, derived fr...
pclfvalN 35175 The projective subspace cl...
pclvalN 35176 Value of the projective su...
pclclN 35177 Closure of the projective ...
elpclN 35178 Membership in the projecti...
elpcliN 35179 Implication of membership ...
pclssN 35180 Ordering is preserved by s...
pclssidN 35181 A set of atoms is included...
pclidN 35182 The projective subspace cl...
pclbtwnN 35183 A projective subspace sand...
pclunN 35184 The projective subspace cl...
pclun2N 35185 The projective subspace cl...
pclfinN 35186 The projective subspace cl...
pclcmpatN 35187 The set of projective subs...
polfvalN 35190 The projective subspace po...
polvalN 35191 Value of the projective su...
polval2N 35192 Alternate expression for v...
polsubN 35193 The polarity of a set of a...
polssatN 35194 The polarity of a set of a...
pol0N 35195 The polarity of the empty ...
pol1N 35196 The polarity of the whole ...
2pol0N 35197 The closed subspace closur...
polpmapN 35198 The polarity of a projecti...
2polpmapN 35199 Double polarity of a proje...
2polvalN 35200 Value of double polarity. ...
2polssN 35201 A set of atoms is a subset...
3polN 35202 Triple polarity cancels to...
polcon3N 35203 Contraposition law for pol...
2polcon4bN 35204 Contraposition law for pol...
polcon2N 35205 Contraposition law for pol...
polcon2bN 35206 Contraposition law for pol...
pclss2polN 35207 The projective subspace cl...
pcl0N 35208 The projective subspace cl...
pcl0bN 35209 The projective subspace cl...
pmaplubN 35210 The LUB of a projective ma...
sspmaplubN 35211 A set of atoms is a subset...
2pmaplubN 35212 Double projective map of a...
paddunN 35213 The closure of the project...
poldmj1N 35214 De Morgan's law for polari...
pmapj2N 35215 The projective map of the ...
pmapocjN 35216 The projective map of the ...
polatN 35217 The polarity of the single...
2polatN 35218 Double polarity of the sin...
pnonsingN 35219 The intersection of a set ...
psubclsetN 35222 The set of closed projecti...
ispsubclN 35223 The predicate "is a closed...
psubcliN 35224 Property of a closed proje...
psubcli2N 35225 Property of a closed proje...
psubclsubN 35226 A closed projective subspa...
psubclssatN 35227 A closed projective subspa...
pmapidclN 35228 Projective map of the LUB ...
0psubclN 35229 The empty set is a closed ...
1psubclN 35230 The set of all atoms is a ...
atpsubclN 35231 A point (singleton of an a...
pmapsubclN 35232 A projective map value is ...
ispsubcl2N 35233 Alternate predicate for "i...
psubclinN 35234 The intersection of two cl...
paddatclN 35235 The projective sum of a cl...
pclfinclN 35236 The projective subspace cl...
linepsubclN 35237 A line is a closed project...
polsubclN 35238 A polarity is a closed pro...
poml4N 35239 Orthomodular law for proje...
poml5N 35240 Orthomodular law for proje...
poml6N 35241 Orthomodular law for proje...
osumcllem1N 35242 Lemma for ~ osumclN . (Co...
osumcllem2N 35243 Lemma for ~ osumclN . (Co...
osumcllem3N 35244 Lemma for ~ osumclN . (Co...
osumcllem4N 35245 Lemma for ~ osumclN . (Co...
osumcllem5N 35246 Lemma for ~ osumclN . (Co...
osumcllem6N 35247 Lemma for ~ osumclN . Use...
osumcllem7N 35248 Lemma for ~ osumclN . (Co...
osumcllem8N 35249 Lemma for ~ osumclN . (Co...
osumcllem9N 35250 Lemma for ~ osumclN . (Co...
osumcllem10N 35251 Lemma for ~ osumclN . Con...
osumcllem11N 35252 Lemma for ~ osumclN . (Co...
osumclN 35253 Closure of orthogonal sum....
pmapojoinN 35254 For orthogonal elements, p...
pexmidN 35255 Excluded middle law for cl...
pexmidlem1N 35256 Lemma for ~ pexmidN . Hol...
pexmidlem2N 35257 Lemma for ~ pexmidN . (Co...
pexmidlem3N 35258 Lemma for ~ pexmidN . Use...
pexmidlem4N 35259 Lemma for ~ pexmidN . (Co...
pexmidlem5N 35260 Lemma for ~ pexmidN . (Co...
pexmidlem6N 35261 Lemma for ~ pexmidN . (Co...
pexmidlem7N 35262 Lemma for ~ pexmidN . Con...
pexmidlem8N 35263 Lemma for ~ pexmidN . The...
pexmidALTN 35264 Excluded middle law for cl...
pl42lem1N 35265 Lemma for ~ pl42N . (Cont...
pl42lem2N 35266 Lemma for ~ pl42N . (Cont...
pl42lem3N 35267 Lemma for ~ pl42N . (Cont...
pl42lem4N 35268 Lemma for ~ pl42N . (Cont...
pl42N 35269 Law holding in a Hilbert l...
watfvalN 35278 The W atoms function. (Co...
watvalN 35279 Value of the W atoms funct...
iswatN 35280 The predicate "is a W atom...
lhpset 35281 The set of co-atoms (latti...
islhp 35282 The predicate "is a co-ato...
islhp2 35283 The predicate "is a co-ato...
lhpbase 35284 A co-atom is a member of t...
lhp1cvr 35285 The lattice unit covers a ...
lhplt 35286 An atom under a co-atom is...
lhp2lt 35287 The join of two atoms unde...
lhpexlt 35288 There exists an atom less ...
lhp0lt 35289 A co-atom is greater than ...
lhpn0 35290 A co-atom is nonzero. TOD...
lhpexle 35291 There exists an atom under...
lhpexnle 35292 There exists an atom not u...
lhpexle1lem 35293 Lemma for ~ lhpexle1 and o...
lhpexle1 35294 There exists an atom under...
lhpexle2lem 35295 Lemma for ~ lhpexle2 . (C...
lhpexle2 35296 There exists atom under a ...
lhpexle3lem 35297 There exists atom under a ...
lhpexle3 35298 There exists atom under a ...
lhpex2leN 35299 There exist at least two d...
lhpoc 35300 The orthocomplement of a c...
lhpoc2N 35301 The orthocomplement of an ...
lhpocnle 35302 The orthocomplement of a c...
lhpocat 35303 The orthocomplement of a c...
lhpocnel 35304 The orthocomplement of a c...
lhpocnel2 35305 The orthocomplement of a c...
lhpjat1 35306 The join of a co-atom (hyp...
lhpjat2 35307 The join of a co-atom (hyp...
lhpj1 35308 The join of a co-atom (hyp...
lhpmcvr 35309 The meet of a lattice hype...
lhpmcvr2 35310 Alternate way to express t...
lhpmcvr3 35311 Specialization of ~ lhpmcv...
lhpmcvr4N 35312 Specialization of ~ lhpmcv...
lhpmcvr5N 35313 Specialization of ~ lhpmcv...
lhpmcvr6N 35314 Specialization of ~ lhpmcv...
lhpm0atN 35315 If the meet of a lattice h...
lhpmat 35316 An element covered by the ...
lhpmatb 35317 An element covered by the ...
lhp2at0 35318 Join and meet with differe...
lhp2atnle 35319 Inequality for 2 different...
lhp2atne 35320 Inequality for joins with ...
lhp2at0nle 35321 Inequality for 2 different...
lhp2at0ne 35322 Inequality for joins with ...
lhpelim 35323 Eliminate an atom not unde...
lhpmod2i2 35324 Modular law for hyperplane...
lhpmod6i1 35325 Modular law for hyperplane...
lhprelat3N 35326 The Hilbert lattice is rel...
cdlemb2 35327 Given two atoms not under ...
lhple 35328 Property of a lattice elem...
lhpat 35329 Create an atom under a co-...
lhpat4N 35330 Property of an atom under ...
lhpat2 35331 Create an atom under a co-...
lhpat3 35332 There is only one atom und...
4atexlemk 35333 Lemma for ~ 4atexlem7 . (...
4atexlemw 35334 Lemma for ~ 4atexlem7 . (...
4atexlempw 35335 Lemma for ~ 4atexlem7 . (...
4atexlemp 35336 Lemma for ~ 4atexlem7 . (...
4atexlemq 35337 Lemma for ~ 4atexlem7 . (...
4atexlems 35338 Lemma for ~ 4atexlem7 . (...
4atexlemt 35339 Lemma for ~ 4atexlem7 . (...
4atexlemutvt 35340 Lemma for ~ 4atexlem7 . (...
4atexlempnq 35341 Lemma for ~ 4atexlem7 . (...
4atexlemnslpq 35342 Lemma for ~ 4atexlem7 . (...
4atexlemkl 35343 Lemma for ~ 4atexlem7 . (...
4atexlemkc 35344 Lemma for ~ 4atexlem7 . (...
4atexlemwb 35345 Lemma for ~ 4atexlem7 . (...
4atexlempsb 35346 Lemma for ~ 4atexlem7 . (...
4atexlemqtb 35347 Lemma for ~ 4atexlem7 . (...
4atexlempns 35348 Lemma for ~ 4atexlem7 . (...
4atexlemswapqr 35349 Lemma for ~ 4atexlem7 . S...
4atexlemu 35350 Lemma for ~ 4atexlem7 . (...
4atexlemv 35351 Lemma for ~ 4atexlem7 . (...
4atexlemunv 35352 Lemma for ~ 4atexlem7 . (...
4atexlemtlw 35353 Lemma for ~ 4atexlem7 . (...
4atexlemntlpq 35354 Lemma for ~ 4atexlem7 . (...
4atexlemc 35355 Lemma for ~ 4atexlem7 . (...
4atexlemnclw 35356 Lemma for ~ 4atexlem7 . (...
4atexlemex2 35357 Lemma for ~ 4atexlem7 . S...
4atexlemcnd 35358 Lemma for ~ 4atexlem7 . (...
4atexlemex4 35359 Lemma for ~ 4atexlem7 . S...
4atexlemex6 35360 Lemma for ~ 4atexlem7 . (...
4atexlem7 35361 Whenever there are at leas...
4atex 35362 Whenever there are at leas...
4atex2 35363 More general version of ~ ...
4atex2-0aOLDN 35364 Same as ~ 4atex2 except th...
4atex2-0bOLDN 35365 Same as ~ 4atex2 except th...
4atex2-0cOLDN 35366 Same as ~ 4atex2 except th...
4atex3 35367 More general version of ~ ...
lautset 35368 The set of lattice automor...
islaut 35369 The predictate "is a latti...
lautle 35370 Less-than or equal propert...
laut1o 35371 A lattice automorphism is ...
laut11 35372 One-to-one property of a l...
lautcl 35373 A lattice automorphism val...
lautcnvclN 35374 Reverse closure of a latti...
lautcnvle 35375 Less-than or equal propert...
lautcnv 35376 The converse of a lattice ...
lautlt 35377 Less-than property of a la...
lautcvr 35378 Covering property of a lat...
lautj 35379 Meet property of a lattice...
lautm 35380 Meet property of a lattice...
lauteq 35381 A lattice automorphism arg...
idlaut 35382 The identity function is a...
lautco 35383 The composition of two lat...
pautsetN 35384 The set of projective auto...
ispautN 35385 The predictate "is a proje...
ldilfset 35394 The mapping from fiducial ...
ldilset 35395 The set of lattice dilatio...
isldil 35396 The predicate "is a lattic...
ldillaut 35397 A lattice dilation is an a...
ldil1o 35398 A lattice dilation is a on...
ldilval 35399 Value of a lattice dilatio...
idldil 35400 The identity function is a...
ldilcnv 35401 The converse of a lattice ...
ldilco 35402 The composition of two lat...
ltrnfset 35403 The set of all lattice tra...
ltrnset 35404 The set of lattice transla...
isltrn 35405 The predicate "is a lattic...
isltrn2N 35406 The predicate "is a lattic...
ltrnu 35407 Uniqueness property of a l...
ltrnldil 35408 A lattice translation is a...
ltrnlaut 35409 A lattice translation is a...
ltrn1o 35410 A lattice translation is a...
ltrncl 35411 Closure of a lattice trans...
ltrn11 35412 One-to-one property of a l...
ltrncnvnid 35413 If a translation is differ...
ltrncoidN 35414 Two translations are equal...
ltrnle 35415 Less-than or equal propert...
ltrncnvleN 35416 Less-than or equal propert...
ltrnm 35417 Lattice translation of a m...
ltrnj 35418 Lattice translation of a m...
ltrncvr 35419 Covering property of a lat...
ltrnval1 35420 Value of a lattice transla...
ltrnid 35421 A lattice translation is t...
ltrnnid 35422 If a lattice translation i...
ltrnatb 35423 The lattice translation of...
ltrncnvatb 35424 The converse of the lattic...
ltrnel 35425 The lattice translation of...
ltrnat 35426 The lattice translation of...
ltrncnvat 35427 The converse of the lattic...
ltrncnvel 35428 The converse of the lattic...
ltrncoelN 35429 Composition of lattice tra...
ltrncoat 35430 Composition of lattice tra...
ltrncoval 35431 Two ways to express value ...
ltrncnv 35432 The converse of a lattice ...
ltrn11at 35433 Frequently used one-to-one...
ltrneq2 35434 The equality of two transl...
ltrneq 35435 The equality of two transl...
idltrn 35436 The identity function is a...
ltrnmw 35437 Property of lattice transl...
ltrnmwOLD 35438 Property of lattice transl...
dilfsetN 35439 The mapping from fiducial ...
dilsetN 35440 The set of dilations for a...
isdilN 35441 The predicate "is a dilati...
trnfsetN 35442 The mapping from fiducial ...
trnsetN 35443 The set of translations fo...
istrnN 35444 The predicate "is a transl...
trlfset 35447 The set of all traces of l...
trlset 35448 The set of traces of latti...
trlval 35449 The value of the trace of ...
trlval2 35450 The value of the trace of ...
trlcl 35451 Closure of the trace of a ...
trlcnv 35452 The trace of the converse ...
trljat1 35453 The value of a translation...
trljat2 35454 The value of a translation...
trljat3 35455 The value of a translation...
trlat 35456 If an atom differs from it...
trl0 35457 If an atom not under the f...
trlator0 35458 The trace of a lattice tra...
trlatn0 35459 The trace of a lattice tra...
trlnidat 35460 The trace of a lattice tra...
ltrnnidn 35461 If a lattice translation i...
ltrnideq 35462 Property of the identity l...
trlid0 35463 The trace of the identity ...
trlnidatb 35464 A lattice translation is n...
trlid0b 35465 A lattice translation is t...
trlnid 35466 Different translations wit...
ltrn2ateq 35467 Property of the equality o...
ltrnateq 35468 If any atom (under ` W ` )...
ltrnatneq 35469 If any atom (under ` W ` )...
ltrnatlw 35470 If the value of an atom eq...
trlle 35471 The trace of a lattice tra...
trlne 35472 The trace of a lattice tra...
trlnle 35473 The atom not under the fid...
trlval3 35474 The value of the trace of ...
trlval4 35475 The value of the trace of ...
trlval5 35476 The value of the trace of ...
arglem1N 35477 Lemma for Desargues' law. ...
cdlemc1 35478 Part of proof of Lemma C i...
cdlemc2 35479 Part of proof of Lemma C i...
cdlemc3 35480 Part of proof of Lemma C i...
cdlemc4 35481 Part of proof of Lemma C i...
cdlemc5 35482 Lemma for ~ cdlemc . (Con...
cdlemc6 35483 Lemma for ~ cdlemc . (Con...
cdlemc 35484 Lemma C in [Crawley] p. 11...
cdlemd1 35485 Part of proof of Lemma D i...
cdlemd2 35486 Part of proof of Lemma D i...
cdlemd3 35487 Part of proof of Lemma D i...
cdlemd4 35488 Part of proof of Lemma D i...
cdlemd5 35489 Part of proof of Lemma D i...
cdlemd6 35490 Part of proof of Lemma D i...
cdlemd7 35491 Part of proof of Lemma D i...
cdlemd8 35492 Part of proof of Lemma D i...
cdlemd9 35493 Part of proof of Lemma D i...
cdlemd 35494 If two translations agree ...
ltrneq3 35495 Two translations agree at ...
cdleme00a 35496 Part of proof of Lemma E i...
cdleme0aa 35497 Part of proof of Lemma E i...
cdleme0a 35498 Part of proof of Lemma E i...
cdleme0b 35499 Part of proof of Lemma E i...
cdleme0c 35500 Part of proof of Lemma E i...
cdleme0cp 35501 Part of proof of Lemma E i...
cdleme0cq 35502 Part of proof of Lemma E i...
cdleme0dN 35503 Part of proof of Lemma E i...
cdleme0e 35504 Part of proof of Lemma E i...
cdleme0fN 35505 Part of proof of Lemma E i...
cdleme0gN 35506 Part of proof of Lemma E i...
cdlemeulpq 35507 Part of proof of Lemma E i...
cdleme01N 35508 Part of proof of Lemma E i...
cdleme02N 35509 Part of proof of Lemma E i...
cdleme0ex1N 35510 Part of proof of Lemma E i...
cdleme0ex2N 35511 Part of proof of Lemma E i...
cdleme0moN 35512 Part of proof of Lemma E i...
cdleme1b 35513 Part of proof of Lemma E i...
cdleme1 35514 Part of proof of Lemma E i...
cdleme2 35515 Part of proof of Lemma E i...
cdleme3b 35516 Part of proof of Lemma E i...
cdleme3c 35517 Part of proof of Lemma E i...
cdleme3d 35518 Part of proof of Lemma E i...
cdleme3e 35519 Part of proof of Lemma E i...
cdleme3fN 35520 Part of proof of Lemma E i...
cdleme3g 35521 Part of proof of Lemma E i...
cdleme3h 35522 Part of proof of Lemma E i...
cdleme3fa 35523 Part of proof of Lemma E i...
cdleme3 35524 Part of proof of Lemma E i...
cdleme4 35525 Part of proof of Lemma E i...
cdleme4a 35526 Part of proof of Lemma E i...
cdleme5 35527 Part of proof of Lemma E i...
cdleme6 35528 Part of proof of Lemma E i...
cdleme7aa 35529 Part of proof of Lemma E i...
cdleme7a 35530 Part of proof of Lemma E i...
cdleme7b 35531 Part of proof of Lemma E i...
cdleme7c 35532 Part of proof of Lemma E i...
cdleme7d 35533 Part of proof of Lemma E i...
cdleme7e 35534 Part of proof of Lemma E i...
cdleme7ga 35535 Part of proof of Lemma E i...
cdleme7 35536 Part of proof of Lemma E i...
cdleme8 35537 Part of proof of Lemma E i...
cdleme9a 35538 Part of proof of Lemma E i...
cdleme9b 35539 Utility lemma for Lemma E ...
cdleme9 35540 Part of proof of Lemma E i...
cdleme10 35541 Part of proof of Lemma E i...
cdleme8tN 35542 Part of proof of Lemma E i...
cdleme9taN 35543 Part of proof of Lemma E i...
cdleme9tN 35544 Part of proof of Lemma E i...
cdleme10tN 35545 Part of proof of Lemma E i...
cdleme16aN 35546 Part of proof of Lemma E i...
cdleme11a 35547 Part of proof of Lemma E i...
cdleme11c 35548 Part of proof of Lemma E i...
cdleme11dN 35549 Part of proof of Lemma E i...
cdleme11e 35550 Part of proof of Lemma E i...
cdleme11fN 35551 Part of proof of Lemma E i...
cdleme11g 35552 Part of proof of Lemma E i...
cdleme11h 35553 Part of proof of Lemma E i...
cdleme11j 35554 Part of proof of Lemma E i...
cdleme11k 35555 Part of proof of Lemma E i...
cdleme11l 35556 Part of proof of Lemma E i...
cdleme11 35557 Part of proof of Lemma E i...
cdleme12 35558 Part of proof of Lemma E i...
cdleme13 35559 Part of proof of Lemma E i...
cdleme14 35560 Part of proof of Lemma E i...
cdleme15a 35561 Part of proof of Lemma E i...
cdleme15b 35562 Part of proof of Lemma E i...
cdleme15c 35563 Part of proof of Lemma E i...
cdleme15d 35564 Part of proof of Lemma E i...
cdleme15 35565 Part of proof of Lemma E i...
cdleme16b 35566 Part of proof of Lemma E i...
cdleme16c 35567 Part of proof of Lemma E i...
cdleme16d 35568 Part of proof of Lemma E i...
cdleme16e 35569 Part of proof of Lemma E i...
cdleme16f 35570 Part of proof of Lemma E i...
cdleme16g 35571 Part of proof of Lemma E i...
cdleme16 35572 Part of proof of Lemma E i...
cdleme17a 35573 Part of proof of Lemma E i...
cdleme17b 35574 Lemma leading to ~ cdleme1...
cdleme17c 35575 Part of proof of Lemma E i...
cdleme17d1 35576 Part of proof of Lemma E i...
cdleme0nex 35577 Part of proof of Lemma E i...
cdleme18a 35578 Part of proof of Lemma E i...
cdleme18b 35579 Part of proof of Lemma E i...
cdleme18c 35580 Part of proof of Lemma E i...
cdleme22gb 35581 Utility lemma for Lemma E ...
cdleme18d 35582 Part of proof of Lemma E i...
cdlemesner 35583 Part of proof of Lemma E i...
cdlemedb 35584 Part of proof of Lemma E i...
cdlemeda 35585 Part of proof of Lemma E i...
cdlemednpq 35586 Part of proof of Lemma E i...
cdlemednuN 35587 Part of proof of Lemma E i...
cdleme20zN 35588 Part of proof of Lemma E i...
cdleme20y 35589 Part of proof of Lemma E i...
cdleme20yOLD 35590 Part of proof of Lemma E i...
cdleme19a 35591 Part of proof of Lemma E i...
cdleme19b 35592 Part of proof of Lemma E i...
cdleme19c 35593 Part of proof of Lemma E i...
cdleme19d 35594 Part of proof of Lemma E i...
cdleme19e 35595 Part of proof of Lemma E i...
cdleme19f 35596 Part of proof of Lemma E i...
cdleme20aN 35597 Part of proof of Lemma E i...
cdleme20bN 35598 Part of proof of Lemma E i...
cdleme20c 35599 Part of proof of Lemma E i...
cdleme20d 35600 Part of proof of Lemma E i...
cdleme20e 35601 Part of proof of Lemma E i...
cdleme20f 35602 Part of proof of Lemma E i...
cdleme20g 35603 Part of proof of Lemma E i...
cdleme20h 35604 Part of proof of Lemma E i...
cdleme20i 35605 Part of proof of Lemma E i...
cdleme20j 35606 Part of proof of Lemma E i...
cdleme20k 35607 Part of proof of Lemma E i...
cdleme20l1 35608 Part of proof of Lemma E i...
cdleme20l2 35609 Part of proof of Lemma E i...
cdleme20l 35610 Part of proof of Lemma E i...
cdleme20m 35611 Part of proof of Lemma E i...
cdleme20 35612 Combine ~ cdleme19f and ~ ...
cdleme21a 35613 Part of proof of Lemma E i...
cdleme21b 35614 Part of proof of Lemma E i...
cdleme21c 35615 Part of proof of Lemma E i...
cdleme21at 35616 Part of proof of Lemma E i...
cdleme21ct 35617 Part of proof of Lemma E i...
cdleme21d 35618 Part of proof of Lemma E i...
cdleme21e 35619 Part of proof of Lemma E i...
cdleme21f 35620 Part of proof of Lemma E i...
cdleme21g 35621 Part of proof of Lemma E i...
cdleme21h 35622 Part of proof of Lemma E i...
cdleme21i 35623 Part of proof of Lemma E i...
cdleme21j 35624 Combine ~ cdleme20 and ~ c...
cdleme21 35625 Part of proof of Lemma E i...
cdleme21k 35626 Eliminate ` S =/= T ` cond...
cdleme22aa 35627 Part of proof of Lemma E i...
cdleme22a 35628 Part of proof of Lemma E i...
cdleme22b 35629 Part of proof of Lemma E i...
cdleme22cN 35630 Part of proof of Lemma E i...
cdleme22d 35631 Part of proof of Lemma E i...
cdleme22e 35632 Part of proof of Lemma E i...
cdleme22eALTN 35633 Part of proof of Lemma E i...
cdleme22f 35634 Part of proof of Lemma E i...
cdleme22f2 35635 Part of proof of Lemma E i...
cdleme22g 35636 Part of proof of Lemma E i...
cdleme23a 35637 Part of proof of Lemma E i...
cdleme23b 35638 Part of proof of Lemma E i...
cdleme23c 35639 Part of proof of Lemma E i...
cdleme24 35640 Quantified version of ~ cd...
cdleme25a 35641 Lemma for ~ cdleme25b . (...
cdleme25b 35642 Transform ~ cdleme24 . TO...
cdleme25c 35643 Transform ~ cdleme25b . (...
cdleme25dN 35644 Transform ~ cdleme25c . (...
cdleme25cl 35645 Show closure of the unique...
cdleme25cv 35646 Change bound variables in ...
cdleme26e 35647 Part of proof of Lemma E i...
cdleme26ee 35648 Part of proof of Lemma E i...
cdleme26eALTN 35649 Part of proof of Lemma E i...
cdleme26fALTN 35650 Part of proof of Lemma E i...
cdleme26f 35651 Part of proof of Lemma E i...
cdleme26f2ALTN 35652 Part of proof of Lemma E i...
cdleme26f2 35653 Part of proof of Lemma E i...
cdleme27cl 35654 Part of proof of Lemma E i...
cdleme27a 35655 Part of proof of Lemma E i...
cdleme27b 35656 Lemma for ~ cdleme27N . (...
cdleme27N 35657 Part of proof of Lemma E i...
cdleme28a 35658 Lemma for ~ cdleme25b . T...
cdleme28b 35659 Lemma for ~ cdleme25b . T...
cdleme28c 35660 Part of proof of Lemma E i...
cdleme28 35661 Quantified version of ~ cd...
cdleme29ex 35662 Lemma for ~ cdleme29b . (...
cdleme29b 35663 Transform ~ cdleme28 . (C...
cdleme29c 35664 Transform ~ cdleme28b . (...
cdleme29cl 35665 Show closure of the unique...
cdleme30a 35666 Part of proof of Lemma E i...
cdleme31so 35667 Part of proof of Lemma E i...
cdleme31sn 35668 Part of proof of Lemma E i...
cdleme31sn1 35669 Part of proof of Lemma E i...
cdleme31se 35670 Part of proof of Lemma D i...
cdleme31se2 35671 Part of proof of Lemma D i...
cdleme31sc 35672 Part of proof of Lemma E i...
cdleme31sde 35673 Part of proof of Lemma D i...
cdleme31snd 35674 Part of proof of Lemma D i...
cdleme31sdnN 35675 Part of proof of Lemma E i...
cdleme31sn1c 35676 Part of proof of Lemma E i...
cdleme31sn2 35677 Part of proof of Lemma E i...
cdleme31fv 35678 Part of proof of Lemma E i...
cdleme31fv1 35679 Part of proof of Lemma E i...
cdleme31fv1s 35680 Part of proof of Lemma E i...
cdleme31fv2 35681 Part of proof of Lemma E i...
cdleme31id 35682 Part of proof of Lemma E i...
cdlemefrs29pre00 35683 ***START OF VALUE AT ATOM ...
cdlemefrs29bpre0 35684 TODO fix comment. (Contri...
cdlemefrs29bpre1 35685 TODO: FIX COMMENT. (Contr...
cdlemefrs29cpre1 35686 TODO: FIX COMMENT. (Contr...
cdlemefrs29clN 35687 TODO: NOT USED? Show clo...
cdlemefrs32fva 35688 Part of proof of Lemma E i...
cdlemefrs32fva1 35689 Part of proof of Lemma E i...
cdlemefr29exN 35690 Lemma for ~ cdlemefs29bpre...
cdlemefr27cl 35691 Part of proof of Lemma E i...
cdlemefr32sn2aw 35692 Show that ` [_ R / s ]_ N ...
cdlemefr32snb 35693 Show closure of ` [_ R / s...
cdlemefr29bpre0N 35694 TODO fix comment. (Contri...
cdlemefr29clN 35695 Show closure of the unique...
cdleme43frv1snN 35696 Value of ` [_ R / s ]_ N `...
cdlemefr32fvaN 35697 Part of proof of Lemma E i...
cdlemefr32fva1 35698 Part of proof of Lemma E i...
cdlemefr31fv1 35699 Value of ` ( F `` R ) ` wh...
cdlemefs29pre00N 35700 FIX COMMENT. TODO: see if ...
cdlemefs27cl 35701 Part of proof of Lemma E i...
cdlemefs32sn1aw 35702 Show that ` [_ R / s ]_ N ...
cdlemefs32snb 35703 Show closure of ` [_ R / s...
cdlemefs29bpre0N 35704 TODO: FIX COMMENT. (Contr...
cdlemefs29bpre1N 35705 TODO: FIX COMMENT. (Contr...
cdlemefs29cpre1N 35706 TODO: FIX COMMENT. (Contr...
cdlemefs29clN 35707 Show closure of the unique...
cdleme43fsv1snlem 35708 Value of ` [_ R / s ]_ N `...
cdleme43fsv1sn 35709 Value of ` [_ R / s ]_ N `...
cdlemefs32fvaN 35710 Part of proof of Lemma E i...
cdlemefs32fva1 35711 Part of proof of Lemma E i...
cdlemefs31fv1 35712 Value of ` ( F `` R ) ` wh...
cdlemefr44 35713 Value of f(r) when r is an...
cdlemefs44 35714 Value of f_s(r) when r is ...
cdlemefr45 35715 Value of f(r) when r is an...
cdlemefr45e 35716 Explicit expansion of ~ cd...
cdlemefs45 35717 Value of f_s(r) when r is ...
cdlemefs45ee 35718 Explicit expansion of ~ cd...
cdlemefs45eN 35719 Explicit expansion of ~ cd...
cdleme32sn1awN 35720 Show that ` [_ R / s ]_ N ...
cdleme41sn3a 35721 Show that ` [_ R / s ]_ N ...
cdleme32sn2awN 35722 Show that ` [_ R / s ]_ N ...
cdleme32snaw 35723 Show that ` [_ R / s ]_ N ...
cdleme32snb 35724 Show closure of ` [_ R / s...
cdleme32fva 35725 Part of proof of Lemma D i...
cdleme32fva1 35726 Part of proof of Lemma D i...
cdleme32fvaw 35727 Show that ` ( F `` R ) ` i...
cdleme32fvcl 35728 Part of proof of Lemma D i...
cdleme32a 35729 Part of proof of Lemma D i...
cdleme32b 35730 Part of proof of Lemma D i...
cdleme32c 35731 Part of proof of Lemma D i...
cdleme32d 35732 Part of proof of Lemma D i...
cdleme32e 35733 Part of proof of Lemma D i...
cdleme32f 35734 Part of proof of Lemma D i...
cdleme32le 35735 Part of proof of Lemma D i...
cdleme35a 35736 Part of proof of Lemma E i...
cdleme35fnpq 35737 Part of proof of Lemma E i...
cdleme35b 35738 Part of proof of Lemma E i...
cdleme35c 35739 Part of proof of Lemma E i...
cdleme35d 35740 Part of proof of Lemma E i...
cdleme35e 35741 Part of proof of Lemma E i...
cdleme35f 35742 Part of proof of Lemma E i...
cdleme35g 35743 Part of proof of Lemma E i...
cdleme35h 35744 Part of proof of Lemma E i...
cdleme35h2 35745 Part of proof of Lemma E i...
cdleme35sn2aw 35746 Part of proof of Lemma E i...
cdleme35sn3a 35747 Part of proof of Lemma E i...
cdleme36a 35748 Part of proof of Lemma E i...
cdleme36m 35749 Part of proof of Lemma E i...
cdleme37m 35750 Part of proof of Lemma E i...
cdleme38m 35751 Part of proof of Lemma E i...
cdleme38n 35752 Part of proof of Lemma E i...
cdleme39a 35753 Part of proof of Lemma E i...
cdleme39n 35754 Part of proof of Lemma E i...
cdleme40m 35755 Part of proof of Lemma E i...
cdleme40n 35756 Part of proof of Lemma E i...
cdleme40v 35757 Part of proof of Lemma E i...
cdleme40w 35758 Part of proof of Lemma E i...
cdleme42a 35759 Part of proof of Lemma E i...
cdleme42c 35760 Part of proof of Lemma E i...
cdleme42d 35761 Part of proof of Lemma E i...
cdleme41sn3aw 35762 Part of proof of Lemma E i...
cdleme41sn4aw 35763 Part of proof of Lemma E i...
cdleme41snaw 35764 Part of proof of Lemma E i...
cdleme41fva11 35765 Part of proof of Lemma E i...
cdleme42b 35766 Part of proof of Lemma E i...
cdleme42e 35767 Part of proof of Lemma E i...
cdleme42f 35768 Part of proof of Lemma E i...
cdleme42g 35769 Part of proof of Lemma E i...
cdleme42h 35770 Part of proof of Lemma E i...
cdleme42i 35771 Part of proof of Lemma E i...
cdleme42k 35772 Part of proof of Lemma E i...
cdleme42ke 35773 Part of proof of Lemma E i...
cdleme42keg 35774 Part of proof of Lemma E i...
cdleme42mN 35775 Part of proof of Lemma E i...
cdleme42mgN 35776 Part of proof of Lemma E i...
cdleme43aN 35777 Part of proof of Lemma E i...
cdleme43bN 35778 Lemma for Lemma E in [Craw...
cdleme43cN 35779 Part of proof of Lemma E i...
cdleme43dN 35780 Part of proof of Lemma E i...
cdleme46f2g2 35781 Conversion for ` G ` to re...
cdleme46f2g1 35782 Conversion for ` G ` to re...
cdleme17d2 35783 Part of proof of Lemma E i...
cdleme17d3 35784 TODO: FIX COMMENT. (Contr...
cdleme17d4 35785 TODO: FIX COMMENT. (Contr...
cdleme17d 35786 Part of proof of Lemma E i...
cdleme48fv 35787 Part of proof of Lemma D i...
cdleme48fvg 35788 Remove ` P =/= Q ` conditi...
cdleme46fvaw 35789 Show that ` ( F `` R ) ` i...
cdleme48bw 35790 TODO: fix comment. TODO: ...
cdleme48b 35791 TODO: fix comment. (Contr...
cdleme46frvlpq 35792 Show that ` ( F `` S ) ` i...
cdleme46fsvlpq 35793 Show that ` ( F `` R ) ` i...
cdlemeg46fvcl 35794 TODO: fix comment. (Contr...
cdleme4gfv 35795 Part of proof of Lemma D i...
cdlemeg47b 35796 TODO: FIX COMMENT. (Contr...
cdlemeg47rv 35797 Value of g_s(r) when r is ...
cdlemeg47rv2 35798 Value of g_s(r) when r is ...
cdlemeg49le 35799 Part of proof of Lemma D i...
cdlemeg46bOLDN 35800 TODO FIX COMMENT. (Contrib...
cdlemeg46c 35801 TODO FIX COMMENT. (Contrib...
cdlemeg46rvOLDN 35802 Value of g_s(r) when r is ...
cdlemeg46rv2OLDN 35803 Value of g_s(r) when r is ...
cdlemeg46fvaw 35804 Show that ` ( F `` R ) ` i...
cdlemeg46nlpq 35805 Show that ` ( G `` S ) ` i...
cdlemeg46ngfr 35806 TODO FIX COMMENT g(f(s))=s...
cdlemeg46nfgr 35807 TODO FIX COMMENT f(g(s))=s...
cdlemeg46sfg 35808 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fjgN 35809 NOT NEEDED? TODO FIX COMM...
cdlemeg46rjgN 35810 NOT NEEDED? TODO FIX COMM...
cdlemeg46fjv 35811 TODO FIX COMMENT f(r) ` \/...
cdlemeg46fsfv 35812 TODO FIX COMMENT f(r) ` \/...
cdlemeg46frv 35813 TODO FIX COMMENT. (f(r) ` ...
cdlemeg46v1v2 35814 TODO FIX COMMENT v_1 = v_2...
cdlemeg46vrg 35815 TODO FIX COMMENT v_1 ` <_ ...
cdlemeg46rgv 35816 TODO FIX COMMENT r ` <_ ` ...
cdlemeg46req 35817 TODO FIX COMMENT r = (v_1 ...
cdlemeg46gfv 35818 TODO FIX COMMENT p. 115 pe...
cdlemeg46gfr 35819 TODO FIX COMMENT p. 116 pe...
cdlemeg46gfre 35820 TODO FIX COMMENT p. 116 pe...
cdlemeg46gf 35821 TODO FIX COMMENT Eliminate...
cdlemeg46fgN 35822 TODO FIX COMMENT p. 116 pe...
cdleme48d 35823 TODO: fix comment. (Contr...
cdleme48gfv1 35824 TODO: fix comment. (Contr...
cdleme48gfv 35825 TODO: fix comment. (Contr...
cdleme48fgv 35826 TODO: fix comment. (Contr...
cdlemeg49lebilem 35827 Part of proof of Lemma D i...
cdleme50lebi 35828 Part of proof of Lemma D i...
cdleme50eq 35829 Part of proof of Lemma D i...
cdleme50f 35830 Part of proof of Lemma D i...
cdleme50f1 35831 Part of proof of Lemma D i...
cdleme50rnlem 35832 Part of proof of Lemma D i...
cdleme50rn 35833 Part of proof of Lemma D i...
cdleme50f1o 35834 Part of proof of Lemma D i...
cdleme50laut 35835 Part of proof of Lemma D i...
cdleme50ldil 35836 Part of proof of Lemma D i...
cdleme50trn1 35837 Part of proof that ` F ` i...
cdleme50trn2a 35838 Part of proof that ` F ` i...
cdleme50trn2 35839 Part of proof that ` F ` i...
cdleme50trn12 35840 Part of proof that ` F ` i...
cdleme50trn3 35841 Part of proof that ` F ` i...
cdleme50trn123 35842 Part of proof that ` F ` i...
cdleme51finvfvN 35843 Part of proof of Lemma E i...
cdleme51finvN 35844 Part of proof of Lemma E i...
cdleme50ltrn 35845 Part of proof of Lemma E i...
cdleme51finvtrN 35846 Part of proof of Lemma E i...
cdleme50ex 35847 Part of Lemma E in [Crawle...
cdleme 35848 Lemma E in [Crawley] p. 11...
cdlemf1 35849 Part of Lemma F in [Crawle...
cdlemf2 35850 Part of Lemma F in [Crawle...
cdlemf 35851 Lemma F in [Crawley] p. 11...
cdlemfnid 35852 ~ cdlemf with additional c...
cdlemftr3 35853 Special case of ~ cdlemf s...
cdlemftr2 35854 Special case of ~ cdlemf s...
cdlemftr1 35855 Part of proof of Lemma G o...
cdlemftr0 35856 Special case of ~ cdlemf s...
trlord 35857 The ordering of two Hilber...
cdlemg1a 35858 Shorter expression for ` G...
cdlemg1b2 35859 This theorem can be used t...
cdlemg1idlemN 35860 Lemma for ~ cdlemg1idN . ...
cdlemg1fvawlemN 35861 Lemma for ~ ltrniotafvawN ...
cdlemg1ltrnlem 35862 Lemma for ~ ltrniotacl . ...
cdlemg1finvtrlemN 35863 Lemma for ~ ltrniotacnvN ....
cdlemg1bOLDN 35864 This theorem can be used t...
cdlemg1idN 35865 Version of ~ cdleme31id wi...
ltrniotafvawN 35866 Version of ~ cdleme46fvaw ...
ltrniotacl 35867 Version of ~ cdleme50ltrn ...
ltrniotacnvN 35868 Version of ~ cdleme51finvt...
ltrniotaval 35869 Value of the unique transl...
ltrniotacnvval 35870 Converse value of the uniq...
ltrniotaidvalN 35871 Value of the unique transl...
ltrniotavalbN 35872 Value of the unique transl...
cdlemeiota 35873 A translation is uniquely ...
cdlemg1ci2 35874 Any function of the form o...
cdlemg1cN 35875 Any translation belongs to...
cdlemg1cex 35876 Any translation is one of ...
cdlemg2cN 35877 Any translation belongs to...
cdlemg2dN 35878 This theorem can be used t...
cdlemg2cex 35879 Any translation is one of ...
cdlemg2ce 35880 Utility theorem to elimina...
cdlemg2jlemOLDN 35881 Part of proof of Lemma E i...
cdlemg2fvlem 35882 Lemma for ~ cdlemg2fv . (...
cdlemg2klem 35883 ~ cdleme42keg with simpler...
cdlemg2idN 35884 Version of ~ cdleme31id wi...
cdlemg3a 35885 Part of proof of Lemma G i...
cdlemg2jOLDN 35886 TODO: Replace this with ~...
cdlemg2fv 35887 Value of a translation in ...
cdlemg2fv2 35888 Value of a translation in ...
cdlemg2k 35889 ~ cdleme42keg with simpler...
cdlemg2kq 35890 ~ cdlemg2k with ` P ` and ...
cdlemg2l 35891 TODO: FIX COMMENT. (Contr...
cdlemg2m 35892 TODO: FIX COMMENT. (Contr...
cdlemg5 35893 TODO: Is there a simpler ...
cdlemb3 35894 Given two atoms not under ...
cdlemg7fvbwN 35895 Properties of a translatio...
cdlemg4a 35896 TODO: FIX COMMENT If fg(p...
cdlemg4b1 35897 TODO: FIX COMMENT. (Contr...
cdlemg4b2 35898 TODO: FIX COMMENT. (Contr...
cdlemg4b12 35899 TODO: FIX COMMENT. (Contr...
cdlemg4c 35900 TODO: FIX COMMENT. (Contr...
cdlemg4d 35901 TODO: FIX COMMENT. (Contr...
cdlemg4e 35902 TODO: FIX COMMENT. (Contr...
cdlemg4f 35903 TODO: FIX COMMENT. (Contr...
cdlemg4g 35904 TODO: FIX COMMENT. (Contr...
cdlemg4 35905 TODO: FIX COMMENT. (Contr...
cdlemg6a 35906 TODO: FIX COMMENT. TODO: ...
cdlemg6b 35907 TODO: FIX COMMENT. TODO: ...
cdlemg6c 35908 TODO: FIX COMMENT. (Contr...
cdlemg6d 35909 TODO: FIX COMMENT. (Contr...
cdlemg6e 35910 TODO: FIX COMMENT. (Contr...
cdlemg6 35911 TODO: FIX COMMENT. (Contr...
cdlemg7fvN 35912 Value of a translation com...
cdlemg7aN 35913 TODO: FIX COMMENT. (Contr...
cdlemg7N 35914 TODO: FIX COMMENT. (Contr...
cdlemg8a 35915 TODO: FIX COMMENT. (Contr...
cdlemg8b 35916 TODO: FIX COMMENT. (Contr...
cdlemg8c 35917 TODO: FIX COMMENT. (Contr...
cdlemg8d 35918 TODO: FIX COMMENT. (Contr...
cdlemg8 35919 TODO: FIX COMMENT. (Contr...
cdlemg9a 35920 TODO: FIX COMMENT. (Contr...
cdlemg9b 35921 The triples ` <. P , ( F `...
cdlemg9 35922 The triples ` <. P , ( F `...
cdlemg10b 35923 TODO: FIX COMMENT. TODO: ...
cdlemg10bALTN 35924 TODO: FIX COMMENT. TODO: ...
cdlemg11a 35925 TODO: FIX COMMENT. (Contr...
cdlemg11aq 35926 TODO: FIX COMMENT. TODO: ...
cdlemg10c 35927 TODO: FIX COMMENT. TODO: ...
cdlemg10a 35928 TODO: FIX COMMENT. (Contr...
cdlemg10 35929 TODO: FIX COMMENT. (Contr...
cdlemg11b 35930 TODO: FIX COMMENT. (Contr...
cdlemg12a 35931 TODO: FIX COMMENT. (Contr...
cdlemg12b 35932 The triples ` <. P , ( F `...
cdlemg12c 35933 The triples ` <. P , ( F `...
cdlemg12d 35934 TODO: FIX COMMENT. (Contr...
cdlemg12e 35935 TODO: FIX COMMENT. (Contr...
cdlemg12f 35936 TODO: FIX COMMENT. (Contr...
cdlemg12g 35937 TODO: FIX COMMENT. TODO: ...
cdlemg12 35938 TODO: FIX COMMENT. (Contr...
cdlemg13a 35939 TODO: FIX COMMENT. (Contr...
cdlemg13 35940 TODO: FIX COMMENT. (Contr...
cdlemg14f 35941 TODO: FIX COMMENT. (Contr...
cdlemg14g 35942 TODO: FIX COMMENT. (Contr...
cdlemg15a 35943 Eliminate the ` ( F `` P )...
cdlemg15 35944 Eliminate the ` ( (...
cdlemg16 35945 Part of proof of Lemma G o...
cdlemg16ALTN 35946 This version of ~ cdlemg16...
cdlemg16z 35947 Eliminate ` ( ( F `...
cdlemg16zz 35948 Eliminate ` P =/= Q ` from...
cdlemg17a 35949 TODO: FIX COMMENT. (Contr...
cdlemg17b 35950 Part of proof of Lemma G i...
cdlemg17dN 35951 TODO: fix comment. (Contr...
cdlemg17dALTN 35952 Same as ~ cdlemg17dN with ...
cdlemg17e 35953 TODO: fix comment. (Contr...
cdlemg17f 35954 TODO: fix comment. (Contr...
cdlemg17g 35955 TODO: fix comment. (Contr...
cdlemg17h 35956 TODO: fix comment. (Contr...
cdlemg17i 35957 TODO: fix comment. (Contr...
cdlemg17ir 35958 TODO: fix comment. (Contr...
cdlemg17j 35959 TODO: fix comment. (Contr...
cdlemg17pq 35960 Utility theorem for swappi...
cdlemg17bq 35961 ~ cdlemg17b with ` P ` and...
cdlemg17iqN 35962 ~ cdlemg17i with ` P ` and...
cdlemg17irq 35963 ~ cdlemg17ir with ` P ` an...
cdlemg17jq 35964 ~ cdlemg17j with ` P ` and...
cdlemg17 35965 Part of Lemma G of [Crawle...
cdlemg18a 35966 Show two lines are differe...
cdlemg18b 35967 Lemma for ~ cdlemg18c . T...
cdlemg18c 35968 Show two lines intersect a...
cdlemg18d 35969 Show two lines intersect a...
cdlemg18 35970 Show two lines intersect a...
cdlemg19a 35971 Show two lines intersect a...
cdlemg19 35972 Show two lines intersect a...
cdlemg20 35973 Show two lines intersect a...
cdlemg21 35974 Version of cdlemg19 with `...
cdlemg22 35975 ~ cdlemg21 with ` ( F `` P...
cdlemg24 35976 Combine ~ cdlemg16z and ~ ...
cdlemg37 35977 Use ~ cdlemg8 to eliminate...
cdlemg25zz 35978 ~ cdlemg16zz restated for ...
cdlemg26zz 35979 ~ cdlemg16zz restated for ...
cdlemg27a 35980 For use with case when ` (...
cdlemg28a 35981 Part of proof of Lemma G o...
cdlemg31b0N 35982 TODO: Fix comment. (Cont...
cdlemg31b0a 35983 TODO: Fix comment. (Cont...
cdlemg27b 35984 TODO: Fix comment. (Cont...
cdlemg31a 35985 TODO: fix comment. (Contr...
cdlemg31b 35986 TODO: fix comment. (Contr...
cdlemg31c 35987 Show that when ` N ` is an...
cdlemg31d 35988 Eliminate ` ( F `` P ) =/=...
cdlemg33b0 35989 TODO: Fix comment. (Cont...
cdlemg33c0 35990 TODO: Fix comment. (Cont...
cdlemg28b 35991 Part of proof of Lemma G o...
cdlemg28 35992 Part of proof of Lemma G o...
cdlemg29 35993 Eliminate ` ( F `` P ) =/=...
cdlemg33a 35994 TODO: Fix comment. (Cont...
cdlemg33b 35995 TODO: Fix comment. (Cont...
cdlemg33c 35996 TODO: Fix comment. (Cont...
cdlemg33d 35997 TODO: Fix comment. (Cont...
cdlemg33e 35998 TODO: Fix comment. (Cont...
cdlemg33 35999 Combine ~ cdlemg33b , ~ cd...
cdlemg34 36000 Use cdlemg33 to eliminate ...
cdlemg35 36001 TODO: Fix comment. TODO:...
cdlemg36 36002 Use cdlemg35 to eliminate ...
cdlemg38 36003 Use ~ cdlemg37 to eliminat...
cdlemg39 36004 Eliminate ` =/= ` conditio...
cdlemg40 36005 Eliminate ` P =/= Q ` cond...
cdlemg41 36006 Convert ~ cdlemg40 to func...
ltrnco 36007 The composition of two tra...
trlcocnv 36008 Swap the arguments of the ...
trlcoabs 36009 Absorption into a composit...
trlcoabs2N 36010 Absorption of the trace of...
trlcoat 36011 The trace of a composition...
trlcocnvat 36012 Commonly used special case...
trlconid 36013 The composition of two dif...
trlcolem 36014 Lemma for ~ trlco . (Cont...
trlco 36015 The trace of a composition...
trlcone 36016 If two translations have d...
cdlemg42 36017 Part of proof of Lemma G o...
cdlemg43 36018 Part of proof of Lemma G o...
cdlemg44a 36019 Part of proof of Lemma G o...
cdlemg44b 36020 Eliminate ` ( F `` P ) =/=...
cdlemg44 36021 Part of proof of Lemma G o...
cdlemg47a 36022 TODO: fix comment. TODO: ...
cdlemg46 36023 Part of proof of Lemma G o...
cdlemg47 36024 Part of proof of Lemma G o...
cdlemg48 36025 Elmininate ` h ` from ~ cd...
ltrncom 36026 Composition is commutative...
ltrnco4 36027 Rearrange a composition of...
trljco 36028 Trace joined with trace of...
trljco2 36029 Trace joined with trace of...
tgrpfset 36032 The translation group maps...
tgrpset 36033 The translation group for ...
tgrpbase 36034 The base set of the transl...
tgrpopr 36035 The group operation of the...
tgrpov 36036 The group operation value ...
tgrpgrplem 36037 Lemma for ~ tgrpgrp . (Co...
tgrpgrp 36038 The translation group is a...
tgrpabl 36039 The translation group is a...
tendofset 36046 The set of all trace-prese...
tendoset 36047 The set of trace-preservin...
istendo 36048 The predicate "is a trace-...
tendotp 36049 Trace-preserving property ...
istendod 36050 Deduce the predicate "is a...
tendof 36051 Functionality of a trace-p...
tendoeq1 36052 Condition determining equa...
tendovalco 36053 Value of composition of tr...
tendocoval 36054 Value of composition of en...
tendocl 36055 Closure of a trace-preserv...
tendoco2 36056 Distribution of compositio...
tendoidcl 36057 The identity is a trace-pr...
tendo1mul 36058 Multiplicative identity mu...
tendo1mulr 36059 Multiplicative identity mu...
tendococl 36060 The composition of two tra...
tendoid 36061 The identity value of a tr...
tendoeq2 36062 Condition determining equa...
tendoplcbv 36063 Define sum operation for t...
tendopl 36064 Value of endomorphism sum ...
tendopl2 36065 Value of result of endomor...
tendoplcl2 36066 Value of result of endomor...
tendoplco2 36067 Value of result of endomor...
tendopltp 36068 Trace-preserving property ...
tendoplcl 36069 Endomorphism sum is a trac...
tendoplcom 36070 The endomorphism sum opera...
tendoplass 36071 The endomorphism sum opera...
tendodi1 36072 Endomorphism composition d...
tendodi2 36073 Endomorphism composition d...
tendo0cbv 36074 Define additive identity f...
tendo02 36075 Value of additive identity...
tendo0co2 36076 The additive identity trac...
tendo0tp 36077 Trace-preserving property ...
tendo0cl 36078 The additive identity is a...
tendo0pl 36079 Property of the additive i...
tendo0plr 36080 Property of the additive i...
tendoicbv 36081 Define inverse function fo...
tendoi 36082 Value of inverse endomorph...
tendoi2 36083 Value of additive inverse ...
tendoicl 36084 Closure of the additive in...
tendoipl 36085 Property of the additive i...
tendoipl2 36086 Property of the additive i...
erngfset 36087 The division rings on trac...
erngset 36088 The division ring on trace...
erngbase 36089 The base set of the divisi...
erngfplus 36090 Ring addition operation. ...
erngplus 36091 Ring addition operation. ...
erngplus2 36092 Ring addition operation. ...
erngfmul 36093 Ring multiplication operat...
erngmul 36094 Ring addition operation. ...
erngfset-rN 36095 The division rings on trac...
erngset-rN 36096 The division ring on trace...
erngbase-rN 36097 The base set of the divisi...
erngfplus-rN 36098 Ring addition operation. ...
erngplus-rN 36099 Ring addition operation. ...
erngplus2-rN 36100 Ring addition operation. ...
erngfmul-rN 36101 Ring multiplication operat...
erngmul-rN 36102 Ring addition operation. ...
cdlemh1 36103 Part of proof of Lemma H o...
cdlemh2 36104 Part of proof of Lemma H o...
cdlemh 36105 Lemma H of [Crawley] p. 11...
cdlemi1 36106 Part of proof of Lemma I o...
cdlemi2 36107 Part of proof of Lemma I o...
cdlemi 36108 Lemma I of [Crawley] p. 11...
cdlemj1 36109 Part of proof of Lemma J o...
cdlemj2 36110 Part of proof of Lemma J o...
cdlemj3 36111 Part of proof of Lemma J o...
tendocan 36112 Cancellation law: if the v...
tendoid0 36113 A trace-preserving endomor...
tendo0mul 36114 Additive identity multipli...
tendo0mulr 36115 Additive identity multipli...
tendo1ne0 36116 The identity (unity) is no...
tendoconid 36117 The composition (product) ...
tendotr 36118 The trace of the value of ...
cdlemk1 36119 Part of proof of Lemma K o...
cdlemk2 36120 Part of proof of Lemma K o...
cdlemk3 36121 Part of proof of Lemma K o...
cdlemk4 36122 Part of proof of Lemma K o...
cdlemk5a 36123 Part of proof of Lemma K o...
cdlemk5 36124 Part of proof of Lemma K o...
cdlemk6 36125 Part of proof of Lemma K o...
cdlemk8 36126 Part of proof of Lemma K o...
cdlemk9 36127 Part of proof of Lemma K o...
cdlemk9bN 36128 Part of proof of Lemma K o...
cdlemki 36129 Part of proof of Lemma K o...
cdlemkvcl 36130 Part of proof of Lemma K o...
cdlemk10 36131 Part of proof of Lemma K o...
cdlemksv 36132 Part of proof of Lemma K o...
cdlemksel 36133 Part of proof of Lemma K o...
cdlemksat 36134 Part of proof of Lemma K o...
cdlemksv2 36135 Part of proof of Lemma K o...
cdlemk7 36136 Part of proof of Lemma K o...
cdlemk11 36137 Part of proof of Lemma K o...
cdlemk12 36138 Part of proof of Lemma K o...
cdlemkoatnle 36139 Utility lemma. (Contribut...
cdlemk13 36140 Part of proof of Lemma K o...
cdlemkole 36141 Utility lemma. (Contribut...
cdlemk14 36142 Part of proof of Lemma K o...
cdlemk15 36143 Part of proof of Lemma K o...
cdlemk16a 36144 Part of proof of Lemma K o...
cdlemk16 36145 Part of proof of Lemma K o...
cdlemk17 36146 Part of proof of Lemma K o...
cdlemk1u 36147 Part of proof of Lemma K o...
cdlemk5auN 36148 Part of proof of Lemma K o...
cdlemk5u 36149 Part of proof of Lemma K o...
cdlemk6u 36150 Part of proof of Lemma K o...
cdlemkj 36151 Part of proof of Lemma K o...
cdlemkuvN 36152 Part of proof of Lemma K o...
cdlemkuel 36153 Part of proof of Lemma K o...
cdlemkuat 36154 Part of proof of Lemma K o...
cdlemkuv2 36155 Part of proof of Lemma K o...
cdlemk18 36156 Part of proof of Lemma K o...
cdlemk19 36157 Part of proof of Lemma K o...
cdlemk7u 36158 Part of proof of Lemma K o...
cdlemk11u 36159 Part of proof of Lemma K o...
cdlemk12u 36160 Part of proof of Lemma K o...
cdlemk21N 36161 Part of proof of Lemma K o...
cdlemk20 36162 Part of proof of Lemma K o...
cdlemkoatnle-2N 36163 Utility lemma. (Contribut...
cdlemk13-2N 36164 Part of proof of Lemma K o...
cdlemkole-2N 36165 Utility lemma. (Contribut...
cdlemk14-2N 36166 Part of proof of Lemma K o...
cdlemk15-2N 36167 Part of proof of Lemma K o...
cdlemk16-2N 36168 Part of proof of Lemma K o...
cdlemk17-2N 36169 Part of proof of Lemma K o...
cdlemkj-2N 36170 Part of proof of Lemma K o...
cdlemkuv-2N 36171 Part of proof of Lemma K o...
cdlemkuel-2N 36172 Part of proof of Lemma K o...
cdlemkuv2-2 36173 Part of proof of Lemma K o...
cdlemk18-2N 36174 Part of proof of Lemma K o...
cdlemk19-2N 36175 Part of proof of Lemma K o...
cdlemk7u-2N 36176 Part of proof of Lemma K o...
cdlemk11u-2N 36177 Part of proof of Lemma K o...
cdlemk12u-2N 36178 Part of proof of Lemma K o...
cdlemk21-2N 36179 Part of proof of Lemma K o...
cdlemk20-2N 36180 Part of proof of Lemma K o...
cdlemk22 36181 Part of proof of Lemma K o...
cdlemk30 36182 Part of proof of Lemma K o...
cdlemkuu 36183 Convert between function a...
cdlemk31 36184 Part of proof of Lemma K o...
cdlemk32 36185 Part of proof of Lemma K o...
cdlemkuel-3 36186 Part of proof of Lemma K o...
cdlemkuv2-3N 36187 Part of proof of Lemma K o...
cdlemk18-3N 36188 Part of proof of Lemma K o...
cdlemk22-3 36189 Part of proof of Lemma K o...
cdlemk23-3 36190 Part of proof of Lemma K o...
cdlemk24-3 36191 Part of proof of Lemma K o...
cdlemk25-3 36192 Part of proof of Lemma K o...
cdlemk26b-3 36193 Part of proof of Lemma K o...
cdlemk26-3 36194 Part of proof of Lemma K o...
cdlemk27-3 36195 Part of proof of Lemma K o...
cdlemk28-3 36196 Part of proof of Lemma K o...
cdlemk33N 36197 Part of proof of Lemma K o...
cdlemk34 36198 Part of proof of Lemma K o...
cdlemk29-3 36199 Part of proof of Lemma K o...
cdlemk35 36200 Part of proof of Lemma K o...
cdlemk36 36201 Part of proof of Lemma K o...
cdlemk37 36202 Part of proof of Lemma K o...
cdlemk38 36203 Part of proof of Lemma K o...
cdlemk39 36204 Part of proof of Lemma K o...
cdlemk40 36205 TODO: fix comment. (Contr...
cdlemk40t 36206 TODO: fix comment. (Contr...
cdlemk40f 36207 TODO: fix comment. (Contr...
cdlemk41 36208 Part of proof of Lemma K o...
cdlemkfid1N 36209 Lemma for ~ cdlemkfid3N . ...
cdlemkid1 36210 Lemma for ~ cdlemkid . (C...
cdlemkfid2N 36211 Lemma for ~ cdlemkfid3N . ...
cdlemkid2 36212 Lemma for ~ cdlemkid . (C...
cdlemkfid3N 36213 TODO: is this useful or sh...
cdlemky 36214 Part of proof of Lemma K o...
cdlemkyu 36215 Convert between function a...
cdlemkyuu 36216 ~ cdlemkyu with some hypot...
cdlemk11ta 36217 Part of proof of Lemma K o...
cdlemk19ylem 36218 Lemma for ~ cdlemk19y . (...
cdlemk11tb 36219 Part of proof of Lemma K o...
cdlemk19y 36220 ~ cdlemk19 with simpler hy...
cdlemkid3N 36221 Lemma for ~ cdlemkid . (C...
cdlemkid4 36222 Lemma for ~ cdlemkid . (C...
cdlemkid5 36223 Lemma for ~ cdlemkid . (C...
cdlemkid 36224 The value of the tau funct...
cdlemk35s 36225 Substitution version of ~ ...
cdlemk35s-id 36226 Substitution version of ~ ...
cdlemk39s 36227 Substitution version of ~ ...
cdlemk39s-id 36228 Substitution version of ~ ...
cdlemk42 36229 Part of proof of Lemma K o...
cdlemk19xlem 36230 Lemma for ~ cdlemk19x . (...
cdlemk19x 36231 ~ cdlemk19 with simpler hy...
cdlemk42yN 36232 Part of proof of Lemma K o...
cdlemk11tc 36233 Part of proof of Lemma K o...
cdlemk11t 36234 Part of proof of Lemma K o...
cdlemk45 36235 Part of proof of Lemma K o...
cdlemk46 36236 Part of proof of Lemma K o...
cdlemk47 36237 Part of proof of Lemma K o...
cdlemk48 36238 Part of proof of Lemma K o...
cdlemk49 36239 Part of proof of Lemma K o...
cdlemk50 36240 Part of proof of Lemma K o...
cdlemk51 36241 Part of proof of Lemma K o...
cdlemk52 36242 Part of proof of Lemma K o...
cdlemk53a 36243 Lemma for ~ cdlemk53 . (C...
cdlemk53b 36244 Lemma for ~ cdlemk53 . (C...
cdlemk53 36245 Part of proof of Lemma K o...
cdlemk54 36246 Part of proof of Lemma K o...
cdlemk55a 36247 Lemma for ~ cdlemk55 . (C...
cdlemk55b 36248 Lemma for ~ cdlemk55 . (C...
cdlemk55 36249 Part of proof of Lemma K o...
cdlemkyyN 36250 Part of proof of Lemma K o...
cdlemk43N 36251 Part of proof of Lemma K o...
cdlemk35u 36252 Substitution version of ~ ...
cdlemk55u1 36253 Lemma for ~ cdlemk55u . (...
cdlemk55u 36254 Part of proof of Lemma K o...
cdlemk39u1 36255 Lemma for ~ cdlemk39u . (...
cdlemk39u 36256 Part of proof of Lemma K o...
cdlemk19u1 36257 ~ cdlemk19 with simpler hy...
cdlemk19u 36258 Part of Lemma K of [Crawle...
cdlemk56 36259 Part of Lemma K of [Crawle...
cdlemk19w 36260 Use a fixed element to eli...
cdlemk56w 36261 Use a fixed element to eli...
cdlemk 36262 Lemma K of [Crawley] p. 11...
tendoex 36263 Generalization of Lemma K ...
cdleml1N 36264 Part of proof of Lemma L o...
cdleml2N 36265 Part of proof of Lemma L o...
cdleml3N 36266 Part of proof of Lemma L o...
cdleml4N 36267 Part of proof of Lemma L o...
cdleml5N 36268 Part of proof of Lemma L o...
cdleml6 36269 Part of proof of Lemma L o...
cdleml7 36270 Part of proof of Lemma L o...
cdleml8 36271 Part of proof of Lemma L o...
cdleml9 36272 Part of proof of Lemma L o...
dva1dim 36273 Two expressions for the 1-...
dvhb1dimN 36274 Two expressions for the 1-...
erng1lem 36275 Value of the endomorphism ...
erngdvlem1 36276 Lemma for ~ eringring . (...
erngdvlem2N 36277 Lemma for ~ eringring . (...
erngdvlem3 36278 Lemma for ~ eringring . (...
erngdvlem4 36279 Lemma for ~ erngdv . (Con...
eringring 36280 An endomorphism ring is a ...
erngdv 36281 An endomorphism ring is a ...
erng0g 36282 The division ring zero of ...
erng1r 36283 The division ring unit of ...
erngdvlem1-rN 36284 Lemma for ~ eringring . (...
erngdvlem2-rN 36285 Lemma for ~ eringring . (...
erngdvlem3-rN 36286 Lemma for ~ eringring . (...
erngdvlem4-rN 36287 Lemma for ~ erngdv . (Con...
erngring-rN 36288 An endomorphism ring is a ...
erngdv-rN 36289 An endomorphism ring is a ...
dvafset 36292 The constructed partial ve...
dvaset 36293 The constructed partial ve...
dvasca 36294 The ring base set of the c...
dvabase 36295 The ring base set of the c...
dvafplusg 36296 Ring addition operation fo...
dvaplusg 36297 Ring addition operation fo...
dvaplusgv 36298 Ring addition operation fo...
dvafmulr 36299 Ring multiplication operat...
dvamulr 36300 Ring multiplication operat...
dvavbase 36301 The vectors (vector base s...
dvafvadd 36302 The vector sum operation f...
dvavadd 36303 Ring addition operation fo...
dvafvsca 36304 Ring addition operation fo...
dvavsca 36305 Ring addition operation fo...
tendospid 36306 Identity property of endom...
tendospcl 36307 Closure of endomorphism sc...
tendospass 36308 Associative law for endomo...
tendospdi1 36309 Forward distributive law f...
tendocnv 36310 Converse of a trace-preser...
tendospdi2 36311 Reverse distributive law f...
tendospcanN 36312 Cancellation law for trace...
dvaabl 36313 The constructed partial ve...
dvalveclem 36314 Lemma for ~ dvalvec . (Co...
dvalvec 36315 The constructed partial ve...
dva0g 36316 The zero vector of partial...
diaffval 36319 The partial isomorphism A ...
diafval 36320 The partial isomorphism A ...
diaval 36321 The partial isomorphism A ...
diaelval 36322 Member of the partial isom...
diafn 36323 Functionality and domain o...
diadm 36324 Domain of the partial isom...
diaeldm 36325 Member of domain of the pa...
diadmclN 36326 A member of domain of the ...
diadmleN 36327 A member of domain of the ...
dian0 36328 The value of the partial i...
dia0eldmN 36329 The lattice zero belongs t...
dia1eldmN 36330 The fiducial hyperplane (t...
diass 36331 The value of the partial i...
diael 36332 A member of the value of t...
diatrl 36333 Trace of a member of the p...
diaelrnN 36334 Any value of the partial i...
dialss 36335 The value of partial isomo...
diaord 36336 The partial isomorphism A ...
dia11N 36337 The partial isomorphism A ...
diaf11N 36338 The partial isomorphism A ...
diaclN 36339 Closure of partial isomorp...
diacnvclN 36340 Closure of partial isomorp...
dia0 36341 The value of the partial i...
dia1N 36342 The value of the partial i...
dia1elN 36343 The largest subspace in th...
diaglbN 36344 Partial isomorphism A of a...
diameetN 36345 Partial isomorphism A of a...
diainN 36346 Inverse partial isomorphis...
diaintclN 36347 The intersection of partia...
diasslssN 36348 The partial isomorphism A ...
diassdvaN 36349 The partial isomorphism A ...
dia1dim 36350 Two expressions for the 1-...
dia1dim2 36351 Two expressions for a 1-di...
dia1dimid 36352 A vector (translation) bel...
dia2dimlem1 36353 Lemma for ~ dia2dim . Sho...
dia2dimlem2 36354 Lemma for ~ dia2dim . Def...
dia2dimlem3 36355 Lemma for ~ dia2dim . Def...
dia2dimlem4 36356 Lemma for ~ dia2dim . Sho...
dia2dimlem5 36357 Lemma for ~ dia2dim . The...
dia2dimlem6 36358 Lemma for ~ dia2dim . Eli...
dia2dimlem7 36359 Lemma for ~ dia2dim . Eli...
dia2dimlem8 36360 Lemma for ~ dia2dim . Eli...
dia2dimlem9 36361 Lemma for ~ dia2dim . Eli...
dia2dimlem10 36362 Lemma for ~ dia2dim . Con...
dia2dimlem11 36363 Lemma for ~ dia2dim . Con...
dia2dimlem12 36364 Lemma for ~ dia2dim . Obt...
dia2dimlem13 36365 Lemma for ~ dia2dim . Eli...
dia2dim 36366 A two-dimensional subspace...
dvhfset 36369 The constructed full vecto...
dvhset 36370 The constructed full vecto...
dvhsca 36371 The ring of scalars of the...
dvhbase 36372 The ring base set of the c...
dvhfplusr 36373 Ring addition operation fo...
dvhfmulr 36374 Ring multiplication operat...
dvhmulr 36375 Ring multiplication operat...
dvhvbase 36376 The vectors (vector base s...
dvhelvbasei 36377 Vector membership in the c...
dvhvaddcbv 36378 Change bound variables to ...
dvhvaddval 36379 The vector sum operation f...
dvhfvadd 36380 The vector sum operation f...
dvhvadd 36381 The vector sum operation f...
dvhopvadd 36382 The vector sum operation f...
dvhopvadd2 36383 The vector sum operation f...
dvhvaddcl 36384 Closure of the vector sum ...
dvhvaddcomN 36385 Commutativity of vector su...
dvhvaddass 36386 Associativity of vector su...
dvhvscacbv 36387 Change bound variables to ...
dvhvscaval 36388 The scalar product operati...
dvhfvsca 36389 Scalar product operation f...
dvhvsca 36390 Scalar product operation f...
dvhopvsca 36391 Scalar product operation f...
dvhvscacl 36392 Closure of the scalar prod...
tendoinvcl 36393 Closure of multiplicative ...
tendolinv 36394 Left multiplicative invers...
tendorinv 36395 Right multiplicative inver...
dvhgrp 36396 The full vector space ` U ...
dvhlveclem 36397 Lemma for ~ dvhlvec . TOD...
dvhlvec 36398 The full vector space ` U ...
dvhlmod 36399 The full vector space ` U ...
dvh0g 36400 The zero vector of vector ...
dvheveccl 36401 Properties of a unit vecto...
dvhopclN 36402 Closure of a ` DVecH ` vec...
dvhopaddN 36403 Sum of ` DVecH ` vectors e...
dvhopspN 36404 Scalar product of ` DVecH ...
dvhopN 36405 Decompose a ` DVecH ` vect...
dvhopellsm 36406 Ordered pair membership in...
cdlemm10N 36407 The image of the map ` G `...
docaffvalN 36410 Subspace orthocomplement f...
docafvalN 36411 Subspace orthocomplement f...
docavalN 36412 Subspace orthocomplement f...
docaclN 36413 Closure of subspace orthoc...
diaocN 36414 Value of partial isomorphi...
doca2N 36415 Double orthocomplement of ...
doca3N 36416 Double orthocomplement of ...
dvadiaN 36417 Any closed subspace is a m...
diarnN 36418 Partial isomorphism A maps...
diaf1oN 36419 The partial isomorphism A ...
djaffvalN 36422 Subspace join for ` DVecA ...
djafvalN 36423 Subspace join for ` DVecA ...
djavalN 36424 Subspace join for ` DVecA ...
djaclN 36425 Closure of subspace join f...
djajN 36426 Transfer lattice join to `...
dibffval 36429 The partial isomorphism B ...
dibfval 36430 The partial isomorphism B ...
dibval 36431 The partial isomorphism B ...
dibopelvalN 36432 Member of the partial isom...
dibval2 36433 Value of the partial isomo...
dibopelval2 36434 Member of the partial isom...
dibval3N 36435 Value of the partial isomo...
dibelval3 36436 Member of the partial isom...
dibopelval3 36437 Member of the partial isom...
dibelval1st 36438 Membership in value of the...
dibelval1st1 36439 Membership in value of the...
dibelval1st2N 36440 Membership in value of the...
dibelval2nd 36441 Membership in value of the...
dibn0 36442 The value of the partial i...
dibfna 36443 Functionality and domain o...
dibdiadm 36444 Domain of the partial isom...
dibfnN 36445 Functionality and domain o...
dibdmN 36446 Domain of the partial isom...
dibeldmN 36447 Member of domain of the pa...
dibord 36448 The isomorphism B for a la...
dib11N 36449 The isomorphism B for a la...
dibf11N 36450 The partial isomorphism A ...
dibclN 36451 Closure of partial isomorp...
dibvalrel 36452 The value of partial isomo...
dib0 36453 The value of partial isomo...
dib1dim 36454 Two expressions for the 1-...
dibglbN 36455 Partial isomorphism B of a...
dibintclN 36456 The intersection of partia...
dib1dim2 36457 Two expressions for a 1-di...
dibss 36458 The partial isomorphism B ...
diblss 36459 The value of partial isomo...
diblsmopel 36460 Membership in subspace sum...
dicffval 36463 The partial isomorphism C ...
dicfval 36464 The partial isomorphism C ...
dicval 36465 The partial isomorphism C ...
dicopelval 36466 Membership in value of the...
dicelvalN 36467 Membership in value of the...
dicval2 36468 The partial isomorphism C ...
dicelval3 36469 Member of the partial isom...
dicopelval2 36470 Membership in value of the...
dicelval2N 36471 Membership in value of the...
dicfnN 36472 Functionality and domain o...
dicdmN 36473 Domain of the partial isom...
dicvalrelN 36474 The value of partial isomo...
dicssdvh 36475 The partial isomorphism C ...
dicelval1sta 36476 Membership in value of the...
dicelval1stN 36477 Membership in value of the...
dicelval2nd 36478 Membership in value of the...
dicvaddcl 36479 Membership in value of the...
dicvscacl 36480 Membership in value of the...
dicn0 36481 The value of the partial i...
diclss 36482 The value of partial isomo...
diclspsn 36483 The value of isomorphism C...
cdlemn2 36484 Part of proof of Lemma N o...
cdlemn2a 36485 Part of proof of Lemma N o...
cdlemn3 36486 Part of proof of Lemma N o...
cdlemn4 36487 Part of proof of Lemma N o...
cdlemn4a 36488 Part of proof of Lemma N o...
cdlemn5pre 36489 Part of proof of Lemma N o...
cdlemn5 36490 Part of proof of Lemma N o...
cdlemn6 36491 Part of proof of Lemma N o...
cdlemn7 36492 Part of proof of Lemma N o...
cdlemn8 36493 Part of proof of Lemma N o...
cdlemn9 36494 Part of proof of Lemma N o...
cdlemn10 36495 Part of proof of Lemma N o...
cdlemn11a 36496 Part of proof of Lemma N o...
cdlemn11b 36497 Part of proof of Lemma N o...
cdlemn11c 36498 Part of proof of Lemma N o...
cdlemn11pre 36499 Part of proof of Lemma N o...
cdlemn11 36500 Part of proof of Lemma N o...
cdlemn 36501 Lemma N of [Crawley] p. 12...
dihordlem6 36502 Part of proof of Lemma N o...
dihordlem7 36503 Part of proof of Lemma N o...
dihordlem7b 36504 Part of proof of Lemma N o...
dihjustlem 36505 Part of proof after Lemma ...
dihjust 36506 Part of proof after Lemma ...
dihord1 36507 Part of proof after Lemma ...
dihord2a 36508 Part of proof after Lemma ...
dihord2b 36509 Part of proof after Lemma ...
dihord2cN 36510 Part of proof after Lemma ...
dihord11b 36511 Part of proof after Lemma ...
dihord10 36512 Part of proof after Lemma ...
dihord11c 36513 Part of proof after Lemma ...
dihord2pre 36514 Part of proof after Lemma ...
dihord2pre2 36515 Part of proof after Lemma ...
dihord2 36516 Part of proof after Lemma ...
dihffval 36519 The isomorphism H for a la...
dihfval 36520 Isomorphism H for a lattic...
dihval 36521 Value of isomorphism H for...
dihvalc 36522 Value of isomorphism H for...
dihlsscpre 36523 Closure of isomorphism H f...
dihvalcqpre 36524 Value of isomorphism H for...
dihvalcq 36525 Value of isomorphism H for...
dihvalb 36526 Value of isomorphism H for...
dihopelvalbN 36527 Ordered pair member of the...
dihvalcqat 36528 Value of isomorphism H for...
dih1dimb 36529 Two expressions for a 1-di...
dih1dimb2 36530 Isomorphism H at an atom u...
dih1dimc 36531 Isomorphism H at an atom n...
dib2dim 36532 Extend ~ dia2dim to partia...
dih2dimb 36533 Extend ~ dib2dim to isomor...
dih2dimbALTN 36534 Extend ~ dia2dim to isomor...
dihopelvalcqat 36535 Ordered pair member of the...
dihvalcq2 36536 Value of isomorphism H for...
dihopelvalcpre 36537 Member of value of isomorp...
dihopelvalc 36538 Member of value of isomorp...
dihlss 36539 The value of isomorphism H...
dihss 36540 The value of isomorphism H...
dihssxp 36541 An isomorphism H value is ...
dihopcl 36542 Closure of an ordered pair...
xihopellsmN 36543 Ordered pair membership in...
dihopellsm 36544 Ordered pair membership in...
dihord6apre 36545 Part of proof that isomorp...
dihord3 36546 The isomorphism H for a la...
dihord4 36547 The isomorphism H for a la...
dihord5b 36548 Part of proof that isomorp...
dihord6b 36549 Part of proof that isomorp...
dihord6a 36550 Part of proof that isomorp...
dihord5apre 36551 Part of proof that isomorp...
dihord5a 36552 Part of proof that isomorp...
dihord 36553 The isomorphism H is order...
dih11 36554 The isomorphism H is one-t...
dihf11lem 36555 Functionality of the isomo...
dihf11 36556 The isomorphism H for a la...
dihfn 36557 Functionality and domain o...
dihdm 36558 Domain of isomorphism H. (...
dihcl 36559 Closure of isomorphism H. ...
dihcnvcl 36560 Closure of isomorphism H c...
dihcnvid1 36561 The converse isomorphism o...
dihcnvid2 36562 The isomorphism of a conve...
dihcnvord 36563 Ordering property for conv...
dihcnv11 36564 The converse of isomorphis...
dihsslss 36565 The isomorphism H maps to ...
dihrnlss 36566 The isomorphism H maps to ...
dihrnss 36567 The isomorphism H maps to ...
dihvalrel 36568 The value of isomorphism H...
dih0 36569 The value of isomorphism H...
dih0bN 36570 A lattice element is zero ...
dih0vbN 36571 A vector is zero iff its s...
dih0cnv 36572 The isomorphism H converse...
dih0rn 36573 The zero subspace belongs ...
dih0sb 36574 A subspace is zero iff the...
dih1 36575 The value of isomorphism H...
dih1rn 36576 The full vector space belo...
dih1cnv 36577 The isomorphism H converse...
dihwN 36578 Value of isomorphism H at ...
dihmeetlem1N 36579 Isomorphism H of a conjunc...
dihglblem5apreN 36580 A conjunction property of ...
dihglblem5aN 36581 A conjunction property of ...
dihglblem2aN 36582 Lemma for isomorphism H of...
dihglblem2N 36583 The GLB of a set of lattic...
dihglblem3N 36584 Isomorphism H of a lattice...
dihglblem3aN 36585 Isomorphism H of a lattice...
dihglblem4 36586 Isomorphism H of a lattice...
dihglblem5 36587 Isomorphism H of a lattice...
dihmeetlem2N 36588 Isomorphism H of a conjunc...
dihglbcpreN 36589 Isomorphism H of a lattice...
dihglbcN 36590 Isomorphism H of a lattice...
dihmeetcN 36591 Isomorphism H of a lattice...
dihmeetbN 36592 Isomorphism H of a lattice...
dihmeetbclemN 36593 Lemma for isomorphism H of...
dihmeetlem3N 36594 Lemma for isomorphism H of...
dihmeetlem4preN 36595 Lemma for isomorphism H of...
dihmeetlem4N 36596 Lemma for isomorphism H of...
dihmeetlem5 36597 Part of proof that isomorp...
dihmeetlem6 36598 Lemma for isomorphism H of...
dihmeetlem7N 36599 Lemma for isomorphism H of...
dihjatc1 36600 Lemma for isomorphism H of...
dihjatc2N 36601 Isomorphism H of join with...
dihjatc3 36602 Isomorphism H of join with...
dihmeetlem8N 36603 Lemma for isomorphism H of...
dihmeetlem9N 36604 Lemma for isomorphism H of...
dihmeetlem10N 36605 Lemma for isomorphism H of...
dihmeetlem11N 36606 Lemma for isomorphism H of...
dihmeetlem12N 36607 Lemma for isomorphism H of...
dihmeetlem13N 36608 Lemma for isomorphism H of...
dihmeetlem14N 36609 Lemma for isomorphism H of...
dihmeetlem15N 36610 Lemma for isomorphism H of...
dihmeetlem16N 36611 Lemma for isomorphism H of...
dihmeetlem17N 36612 Lemma for isomorphism H of...
dihmeetlem18N 36613 Lemma for isomorphism H of...
dihmeetlem19N 36614 Lemma for isomorphism H of...
dihmeetlem20N 36615 Lemma for isomorphism H of...
dihmeetALTN 36616 Isomorphism H of a lattice...
dih1dimatlem0 36617 Lemma for ~ dih1dimat . (...
dih1dimatlem 36618 Lemma for ~ dih1dimat . (...
dih1dimat 36619 Any 1-dimensional subspace...
dihlsprn 36620 The span of a vector belon...
dihlspsnssN 36621 A subspace included in a 1...
dihlspsnat 36622 The inverse isomorphism H ...
dihatlat 36623 The isomorphism H of an at...
dihat 36624 There exists at least one ...
dihpN 36625 The value of isomorphism H...
dihlatat 36626 The reverse isomorphism H ...
dihatexv 36627 There is a nonzero vector ...
dihatexv2 36628 There is a nonzero vector ...
dihglblem6 36629 Isomorphism H of a lattice...
dihglb 36630 Isomorphism H of a lattice...
dihglb2 36631 Isomorphism H of a lattice...
dihmeet 36632 Isomorphism H of a lattice...
dihintcl 36633 The intersection of closed...
dihmeetcl 36634 Closure of closed subspace...
dihmeet2 36635 Reverse isomorphism H of a...
dochffval 36638 Subspace orthocomplement f...
dochfval 36639 Subspace orthocomplement f...
dochval 36640 Subspace orthocomplement f...
dochval2 36641 Subspace orthocomplement f...
dochcl 36642 Closure of subspace orthoc...
dochlss 36643 A subspace orthocomplement...
dochssv 36644 A subspace orthocomplement...
dochfN 36645 Domain and codomain of the...
dochvalr 36646 Orthocomplement of a close...
doch0 36647 Orthocomplement of the zer...
doch1 36648 Orthocomplement of the uni...
dochoc0 36649 The zero subspace is close...
dochoc1 36650 The unit subspace (all vec...
dochvalr2 36651 Orthocomplement of a close...
dochvalr3 36652 Orthocomplement of a close...
doch2val2 36653 Double orthocomplement for...
dochss 36654 Subset law for orthocomple...
dochocss 36655 Double negative law for or...
dochoc 36656 Double negative law for or...
dochsscl 36657 If a set of vectors is inc...
dochoccl 36658 A set of vectors is closed...
dochord 36659 Ordering law for orthocomp...
dochord2N 36660 Ordering law for orthocomp...
dochord3 36661 Ordering law for orthocomp...
doch11 36662 Orthocomplement is one-to-...
dochsordN 36663 Strict ordering law for or...
dochn0nv 36664 An orthocomplement is nonz...
dihoml4c 36665 Version of ~ dihoml4 with ...
dihoml4 36666 Orthomodular law for const...
dochspss 36667 The span of a set of vecto...
dochocsp 36668 The span of an orthocomple...
dochspocN 36669 The span of an orthocomple...
dochocsn 36670 The double orthocomplement...
dochsncom 36671 Swap vectors in an orthoco...
dochsat 36672 The double orthocomplement...
dochshpncl 36673 If a hyperplane is not clo...
dochlkr 36674 Equivalent conditions for ...
dochkrshp 36675 The closure of a kernel is...
dochkrshp2 36676 Properties of the closure ...
dochkrshp3 36677 Properties of the closure ...
dochkrshp4 36678 Properties of the closure ...
dochdmj1 36679 De Morgan-like law for sub...
dochnoncon 36680 Law of noncontradiction. ...
dochnel2 36681 A nonzero member of a subs...
dochnel 36682 A nonzero vector doesn't b...
djhffval 36685 Subspace join for ` DVecH ...
djhfval 36686 Subspace join for ` DVecH ...
djhval 36687 Subspace join for ` DVecH ...
djhval2 36688 Value of subspace join for...
djhcl 36689 Closure of subspace join f...
djhlj 36690 Transfer lattice join to `...
djhljjN 36691 Lattice join in terms of `...
djhjlj 36692 ` DVecH ` vector space clo...
djhj 36693 ` DVecH ` vector space clo...
djhcom 36694 Subspace join commutes. (...
djhspss 36695 Subspace span of union is ...
djhsumss 36696 Subspace sum is a subset o...
dihsumssj 36697 The subspace sum of two is...
djhunssN 36698 Subspace union is a subset...
dochdmm1 36699 De Morgan-like law for clo...
djhexmid 36700 Excluded middle property o...
djh01 36701 Closed subspace join with ...
djh02 36702 Closed subspace join with ...
djhlsmcl 36703 A closed subspace sum equa...
djhcvat42 36704 A covering property. ( ~ ...
dihjatb 36705 Isomorphism H of lattice j...
dihjatc 36706 Isomorphism H of lattice j...
dihjatcclem1 36707 Lemma for isomorphism H of...
dihjatcclem2 36708 Lemma for isomorphism H of...
dihjatcclem3 36709 Lemma for ~ dihjatcc . (C...
dihjatcclem4 36710 Lemma for isomorphism H of...
dihjatcc 36711 Isomorphism H of lattice j...
dihjat 36712 Isomorphism H of lattice j...
dihprrnlem1N 36713 Lemma for ~ dihprrn , show...
dihprrnlem2 36714 Lemma for ~ dihprrn . (Co...
dihprrn 36715 The span of a vector pair ...
djhlsmat 36716 The sum of two subspace at...
dihjat1lem 36717 Subspace sum of a closed s...
dihjat1 36718 Subspace sum of a closed s...
dihsmsprn 36719 Subspace sum of a closed s...
dihjat2 36720 The subspace sum of a clos...
dihjat3 36721 Isomorphism H of lattice j...
dihjat4 36722 Transfer the subspace sum ...
dihjat6 36723 Transfer the subspace sum ...
dihsmsnrn 36724 The subspace sum of two si...
dihsmatrn 36725 The subspace sum of a clos...
dihjat5N 36726 Transfer lattice join with...
dvh4dimat 36727 There is an atom that is o...
dvh3dimatN 36728 There is an atom that is o...
dvh2dimatN 36729 Given an atom, there exist...
dvh1dimat 36730 There exists an atom. (Co...
dvh1dim 36731 There exists a nonzero vec...
dvh4dimlem 36732 Lemma for ~ dvh4dimN . (C...
dvhdimlem 36733 Lemma for ~ dvh2dim and ~ ...
dvh2dim 36734 There is a vector that is ...
dvh3dim 36735 There is a vector that is ...
dvh4dimN 36736 There is a vector that is ...
dvh3dim2 36737 There is a vector that is ...
dvh3dim3N 36738 There is a vector that is ...
dochsnnz 36739 The orthocomplement of a s...
dochsatshp 36740 The orthocomplement of a s...
dochsatshpb 36741 The orthocomplement of a s...
dochsnshp 36742 The orthocomplement of a n...
dochshpsat 36743 A hyperplane is closed iff...
dochkrsat 36744 The orthocomplement of a k...
dochkrsat2 36745 The orthocomplement of a k...
dochsat0 36746 The orthocomplement of a k...
dochkrsm 36747 The subspace sum of a clos...
dochexmidat 36748 Special case of excluded m...
dochexmidlem1 36749 Lemma for ~ dochexmid . H...
dochexmidlem2 36750 Lemma for ~ dochexmid . (...
dochexmidlem3 36751 Lemma for ~ dochexmid . U...
dochexmidlem4 36752 Lemma for ~ dochexmid . (...
dochexmidlem5 36753 Lemma for ~ dochexmid . (...
dochexmidlem6 36754 Lemma for ~ dochexmid . (...
dochexmidlem7 36755 Lemma for ~ dochexmid . C...
dochexmidlem8 36756 Lemma for ~ dochexmid . T...
dochexmid 36757 Excluded middle law for cl...
dochsnkrlem1 36758 Lemma for ~ dochsnkr . (C...
dochsnkrlem2 36759 Lemma for ~ dochsnkr . (C...
dochsnkrlem3 36760 Lemma for ~ dochsnkr . (C...
dochsnkr 36761 A (closed) kernel expresse...
dochsnkr2 36762 Kernel of the explicit fun...
dochsnkr2cl 36763 The ` X ` determining func...
dochflcl 36764 Closure of the explicit fu...
dochfl1 36765 The value of the explicit ...
dochfln0 36766 The value of a functional ...
dochkr1 36767 A nonzero functional has a...
dochkr1OLDN 36768 A nonzero functional has a...
lpolsetN 36771 The set of polarities of a...
islpolN 36772 The predicate "is a polari...
islpoldN 36773 Properties that determine ...
lpolfN 36774 Functionality of a polarit...
lpolvN 36775 The polarity of the whole ...
lpolconN 36776 Contraposition property of...
lpolsatN 36777 The polarity of an atomic ...
lpolpolsatN 36778 Property of a polarity. (...
dochpolN 36779 The subspace orthocompleme...
lcfl1lem 36780 Property of a functional w...
lcfl1 36781 Property of a functional w...
lcfl2 36782 Property of a functional w...
lcfl3 36783 Property of a functional w...
lcfl4N 36784 Property of a functional w...
lcfl5 36785 Property of a functional w...
lcfl5a 36786 Property of a functional w...
lcfl6lem 36787 Lemma for ~ lcfl6 . A fun...
lcfl7lem 36788 Lemma for ~ lcfl7N . If t...
lcfl6 36789 Property of a functional w...
lcfl7N 36790 Property of a functional w...
lcfl8 36791 Property of a functional w...
lcfl8a 36792 Property of a functional w...
lcfl8b 36793 Property of a nonzero func...
lcfl9a 36794 Property implying that a f...
lclkrlem1 36795 The set of functionals hav...
lclkrlem2a 36796 Lemma for ~ lclkr . Use ~...
lclkrlem2b 36797 Lemma for ~ lclkr . (Cont...
lclkrlem2c 36798 Lemma for ~ lclkr . (Cont...
lclkrlem2d 36799 Lemma for ~ lclkr . (Cont...
lclkrlem2e 36800 Lemma for ~ lclkr . The k...
lclkrlem2f 36801 Lemma for ~ lclkr . Const...
lclkrlem2g 36802 Lemma for ~ lclkr . Compa...
lclkrlem2h 36803 Lemma for ~ lclkr . Elimi...
lclkrlem2i 36804 Lemma for ~ lclkr . Elimi...
lclkrlem2j 36805 Lemma for ~ lclkr . Kerne...
lclkrlem2k 36806 Lemma for ~ lclkr . Kerne...
lclkrlem2l 36807 Lemma for ~ lclkr . Elimi...
lclkrlem2m 36808 Lemma for ~ lclkr . Const...
lclkrlem2n 36809 Lemma for ~ lclkr . (Cont...
lclkrlem2o 36810 Lemma for ~ lclkr . When ...
lclkrlem2p 36811 Lemma for ~ lclkr . When ...
lclkrlem2q 36812 Lemma for ~ lclkr . The s...
lclkrlem2r 36813 Lemma for ~ lclkr . When ...
lclkrlem2s 36814 Lemma for ~ lclkr . Thus,...
lclkrlem2t 36815 Lemma for ~ lclkr . We el...
lclkrlem2u 36816 Lemma for ~ lclkr . ~ lclk...
lclkrlem2v 36817 Lemma for ~ lclkr . When ...
lclkrlem2w 36818 Lemma for ~ lclkr . This ...
lclkrlem2x 36819 Lemma for ~ lclkr . Elimi...
lclkrlem2y 36820 Lemma for ~ lclkr . Resta...
lclkrlem2 36821 The set of functionals hav...
lclkr 36822 The set of functionals wit...
lcfls1lem 36823 Property of a functional w...
lcfls1N 36824 Property of a functional w...
lcfls1c 36825 Property of a functional w...
lclkrslem1 36826 The set of functionals hav...
lclkrslem2 36827 The set of functionals hav...
lclkrs 36828 The set of functionals hav...
lclkrs2 36829 The set of functionals wit...
lcfrvalsnN 36830 Reconstruction from the du...
lcfrlem1 36831 Lemma for ~ lcfr . Note t...
lcfrlem2 36832 Lemma for ~ lcfr . (Contr...
lcfrlem3 36833 Lemma for ~ lcfr . (Contr...
lcfrlem4 36834 Lemma for ~ lcfr . (Contr...
lcfrlem5 36835 Lemma for ~ lcfr . The se...
lcfrlem6 36836 Lemma for ~ lcfr . Closur...
lcfrlem7 36837 Lemma for ~ lcfr . Closur...
lcfrlem8 36838 Lemma for ~ lcf1o and ~ lc...
lcfrlem9 36839 Lemma for ~ lcf1o . (This...
lcf1o 36840 Define a function ` J ` th...
lcfrlem10 36841 Lemma for ~ lcfr . (Contr...
lcfrlem11 36842 Lemma for ~ lcfr . (Contr...
lcfrlem12N 36843 Lemma for ~ lcfr . (Contr...
lcfrlem13 36844 Lemma for ~ lcfr . (Contr...
lcfrlem14 36845 Lemma for ~ lcfr . (Contr...
lcfrlem15 36846 Lemma for ~ lcfr . (Contr...
lcfrlem16 36847 Lemma for ~ lcfr . (Contr...
lcfrlem17 36848 Lemma for ~ lcfr . Condit...
lcfrlem18 36849 Lemma for ~ lcfr . (Contr...
lcfrlem19 36850 Lemma for ~ lcfr . (Contr...
lcfrlem20 36851 Lemma for ~ lcfr . (Contr...
lcfrlem21 36852 Lemma for ~ lcfr . (Contr...
lcfrlem22 36853 Lemma for ~ lcfr . (Contr...
lcfrlem23 36854 Lemma for ~ lcfr . TODO: ...
lcfrlem24 36855 Lemma for ~ lcfr . (Contr...
lcfrlem25 36856 Lemma for ~ lcfr . Specia...
lcfrlem26 36857 Lemma for ~ lcfr . Specia...
lcfrlem27 36858 Lemma for ~ lcfr . Specia...
lcfrlem28 36859 Lemma for ~ lcfr . TODO: ...
lcfrlem29 36860 Lemma for ~ lcfr . (Contr...
lcfrlem30 36861 Lemma for ~ lcfr . (Contr...
lcfrlem31 36862 Lemma for ~ lcfr . (Contr...
lcfrlem32 36863 Lemma for ~ lcfr . (Contr...
lcfrlem33 36864 Lemma for ~ lcfr . (Contr...
lcfrlem34 36865 Lemma for ~ lcfr . (Contr...
lcfrlem35 36866 Lemma for ~ lcfr . (Contr...
lcfrlem36 36867 Lemma for ~ lcfr . (Contr...
lcfrlem37 36868 Lemma for ~ lcfr . (Contr...
lcfrlem38 36869 Lemma for ~ lcfr . Combin...
lcfrlem39 36870 Lemma for ~ lcfr . Elimin...
lcfrlem40 36871 Lemma for ~ lcfr . Elimin...
lcfrlem41 36872 Lemma for ~ lcfr . Elimin...
lcfrlem42 36873 Lemma for ~ lcfr . Elimin...
lcfr 36874 Reconstruction of a subspa...
lcdfval 36877 Dual vector space of funct...
lcdval 36878 Dual vector space of funct...
lcdval2 36879 Dual vector space of funct...
lcdlvec 36880 The dual vector space of f...
lcdlmod 36881 The dual vector space of f...
lcdvbase 36882 Vector base set of a dual ...
lcdvbasess 36883 The vector base set of the...
lcdvbaselfl 36884 A vector in the base set o...
lcdvbasecl 36885 Closure of the value of a ...
lcdvadd 36886 Vector addition for the cl...
lcdvaddval 36887 The value of the value of ...
lcdsca 36888 The ring of scalars of the...
lcdsbase 36889 Base set of scalar ring fo...
lcdsadd 36890 Scalar addition for the cl...
lcdsmul 36891 Scalar multiplication for ...
lcdvs 36892 Scalar product for the clo...
lcdvsval 36893 Value of scalar product op...
lcdvscl 36894 The scalar product operati...
lcdlssvscl 36895 Closure of scalar product ...
lcdvsass 36896 Associative law for scalar...
lcd0 36897 The zero scalar of the clo...
lcd1 36898 The unit scalar of the clo...
lcdneg 36899 The unit scalar of the clo...
lcd0v 36900 The zero functional in the...
lcd0v2 36901 The zero functional in the...
lcd0vvalN 36902 Value of the zero function...
lcd0vcl 36903 Closure of the zero functi...
lcd0vs 36904 A scalar zero times a func...
lcdvs0N 36905 A scalar times the zero fu...
lcdvsub 36906 The value of vector subtra...
lcdvsubval 36907 The value of the value of ...
lcdlss 36908 Subspaces of a dual vector...
lcdlss2N 36909 Subspaces of a dual vector...
lcdlsp 36910 Span in the set of functio...
lcdlkreqN 36911 Colinear functionals have ...
lcdlkreq2N 36912 Colinear functionals have ...
mapdffval 36915 Projectivity from vector s...
mapdfval 36916 Projectivity from vector s...
mapdval 36917 Value of projectivity from...
mapdvalc 36918 Value of projectivity from...
mapdval2N 36919 Value of projectivity from...
mapdval3N 36920 Value of projectivity from...
mapdval4N 36921 Value of projectivity from...
mapdval5N 36922 Value of projectivity from...
mapdordlem1a 36923 Lemma for ~ mapdord . (Co...
mapdordlem1bN 36924 Lemma for ~ mapdord . (Co...
mapdordlem1 36925 Lemma for ~ mapdord . (Co...
mapdordlem2 36926 Lemma for ~ mapdord . Ord...
mapdord 36927 Ordering property of the m...
mapd11 36928 The map defined by ~ df-ma...
mapddlssN 36929 The mapping of a subspace ...
mapdsn 36930 Value of the map defined b...
mapdsn2 36931 Value of the map defined b...
mapdsn3 36932 Value of the map defined b...
mapd1dim2lem1N 36933 Value of the map defined b...
mapdrvallem2 36934 Lemma for ~ mapdrval . TO...
mapdrvallem3 36935 Lemma for ~ mapdrval . (C...
mapdrval 36936 Given a dual subspace ` R ...
mapd1o 36937 The map defined by ~ df-ma...
mapdrn 36938 Range of the map defined b...
mapdunirnN 36939 Union of the range of the ...
mapdrn2 36940 Range of the map defined b...
mapdcnvcl 36941 Closure of the converse of...
mapdcl 36942 Closure the value of the m...
mapdcnvid1N 36943 Converse of the value of t...
mapdsord 36944 Strong ordering property o...
mapdcl2 36945 The mapping of a subspace ...
mapdcnvid2 36946 Value of the converse of t...
mapdcnvordN 36947 Ordering property of the c...
mapdcnv11N 36948 The converse of the map de...
mapdcv 36949 Covering property of the c...
mapdincl 36950 Closure of dual subspace i...
mapdin 36951 Subspace intersection is p...
mapdlsmcl 36952 Closure of dual subspace s...
mapdlsm 36953 Subspace sum is preserved ...
mapd0 36954 Projectivity map of the ze...
mapdcnvatN 36955 Atoms are preserved by the...
mapdat 36956 Atoms are preserved by the...
mapdspex 36957 The map of a span equals t...
mapdn0 36958 Transfer nonzero property ...
mapdncol 36959 Transfer non-colinearity f...
mapdindp 36960 Transfer (part of) vector ...
mapdpglem1 36961 Lemma for ~ mapdpg . Baer...
mapdpglem2 36962 Lemma for ~ mapdpg . Baer...
mapdpglem2a 36963 Lemma for ~ mapdpg . (Con...
mapdpglem3 36964 Lemma for ~ mapdpg . Baer...
mapdpglem4N 36965 Lemma for ~ mapdpg . (Con...
mapdpglem5N 36966 Lemma for ~ mapdpg . (Con...
mapdpglem6 36967 Lemma for ~ mapdpg . Baer...
mapdpglem8 36968 Lemma for ~ mapdpg . Baer...
mapdpglem9 36969 Lemma for ~ mapdpg . Baer...
mapdpglem10 36970 Lemma for ~ mapdpg . Baer...
mapdpglem11 36971 Lemma for ~ mapdpg . (Con...
mapdpglem12 36972 Lemma for ~ mapdpg . TODO...
mapdpglem13 36973 Lemma for ~ mapdpg . (Con...
mapdpglem14 36974 Lemma for ~ mapdpg . (Con...
mapdpglem15 36975 Lemma for ~ mapdpg . (Con...
mapdpglem16 36976 Lemma for ~ mapdpg . Baer...
mapdpglem17N 36977 Lemma for ~ mapdpg . Baer...
mapdpglem18 36978 Lemma for ~ mapdpg . Baer...
mapdpglem19 36979 Lemma for ~ mapdpg . Baer...
mapdpglem20 36980 Lemma for ~ mapdpg . Baer...
mapdpglem21 36981 Lemma for ~ mapdpg . (Con...
mapdpglem22 36982 Lemma for ~ mapdpg . Baer...
mapdpglem23 36983 Lemma for ~ mapdpg . Baer...
mapdpglem30a 36984 Lemma for ~ mapdpg . (Con...
mapdpglem30b 36985 Lemma for ~ mapdpg . (Con...
mapdpglem25 36986 Lemma for ~ mapdpg . Baer...
mapdpglem26 36987 Lemma for ~ mapdpg . Baer...
mapdpglem27 36988 Lemma for ~ mapdpg . Baer...
mapdpglem29 36989 Lemma for ~ mapdpg . Baer...
mapdpglem28 36990 Lemma for ~ mapdpg . Baer...
mapdpglem30 36991 Lemma for ~ mapdpg . Baer...
mapdpglem31 36992 Lemma for ~ mapdpg . Baer...
mapdpglem24 36993 Lemma for ~ mapdpg . Exis...
mapdpglem32 36994 Lemma for ~ mapdpg . Uniq...
mapdpg 36995 Part 1 of proof of the fir...
baerlem3lem1 36996 Lemma for ~ baerlem3 . (C...
baerlem5alem1 36997 Lemma for ~ baerlem5a . (...
baerlem5blem1 36998 Lemma for ~ baerlem5b . (...
baerlem3lem2 36999 Lemma for ~ baerlem3 . (C...
baerlem5alem2 37000 Lemma for ~ baerlem5a . (...
baerlem5blem2 37001 Lemma for ~ baerlem5b . (...
baerlem3 37002 An equality that holds whe...
baerlem5a 37003 An equality that holds whe...
baerlem5b 37004 An equality that holds whe...
baerlem5amN 37005 An equality that holds whe...
baerlem5bmN 37006 An equality that holds whe...
baerlem5abmN 37007 An equality that holds whe...
mapdindp0 37008 Vector independence lemma....
mapdindp1 37009 Vector independence lemma....
mapdindp2 37010 Vector independence lemma....
mapdindp3 37011 Vector independence lemma....
mapdindp4 37012 Vector independence lemma....
mapdhval 37013 Lemmma for ~~? mapdh . (C...
mapdhval0 37014 Lemmma for ~~? mapdh . (C...
mapdhval2 37015 Lemmma for ~~? mapdh . (C...
mapdhcl 37016 Lemmma for ~~? mapdh . (C...
mapdheq 37017 Lemmma for ~~? mapdh . Th...
mapdheq2 37018 Lemmma for ~~? mapdh . On...
mapdheq2biN 37019 Lemmma for ~~? mapdh . Pa...
mapdheq4lem 37020 Lemma for ~ mapdheq4 . Pa...
mapdheq4 37021 Lemma for ~~? mapdh . Par...
mapdh6lem1N 37022 Lemma for ~ mapdh6N . Par...
mapdh6lem2N 37023 Lemma for ~ mapdh6N . Par...
mapdh6aN 37024 Lemma for ~ mapdh6N . Par...
mapdh6b0N 37025 Lemmma for ~ mapdh6N . (C...
mapdh6bN 37026 Lemmma for ~ mapdh6N . (C...
mapdh6cN 37027 Lemmma for ~ mapdh6N . (C...
mapdh6dN 37028 Lemmma for ~ mapdh6N . (C...
mapdh6eN 37029 Lemmma for ~ mapdh6N . Pa...
mapdh6fN 37030 Lemmma for ~ mapdh6N . Pa...
mapdh6gN 37031 Lemmma for ~ mapdh6N . Pa...
mapdh6hN 37032 Lemmma for ~ mapdh6N . Pa...
mapdh6iN 37033 Lemmma for ~ mapdh6N . El...
mapdh6jN 37034 Lemmma for ~ mapdh6N . El...
mapdh6kN 37035 Lemmma for ~ mapdh6N . El...
mapdh6N 37036 Part (6) of [Baer] p. 47 l...
mapdh7eN 37037 Part (7) of [Baer] p. 48 l...
mapdh7cN 37038 Part (7) of [Baer] p. 48 l...
mapdh7dN 37039 Part (7) of [Baer] p. 48 l...
mapdh7fN 37040 Part (7) of [Baer] p. 48 l...
mapdh75e 37041 Part (7) of [Baer] p. 48 l...
mapdh75cN 37042 Part (7) of [Baer] p. 48 l...
mapdh75d 37043 Part (7) of [Baer] p. 48 l...
mapdh75fN 37044 Part (7) of [Baer] p. 48 l...
hvmapffval 37047 Map from nonzero vectors t...
hvmapfval 37048 Map from nonzero vectors t...
hvmapval 37049 Value of map from nonzero ...
hvmapvalvalN 37050 Value of value of map (i.e...
hvmapidN 37051 The value of the vector to...
hvmap1o 37052 The vector to functional m...
hvmapclN 37053 Closure of the vector to f...
hvmap1o2 37054 The vector to functional m...
hvmapcl2 37055 Closure of the vector to f...
hvmaplfl 37056 The vector to functional m...
hvmaplkr 37057 Kernel of the vector to fu...
mapdhvmap 37058 Relationship between ` map...
lspindp5 37059 Obtain an independent vect...
hdmaplem1 37060 Lemma to convert a frequen...
hdmaplem2N 37061 Lemma to convert a frequen...
hdmaplem3 37062 Lemma to convert a frequen...
hdmaplem4 37063 Lemma to convert a frequen...
mapdh8a 37064 Part of Part (8) in [Baer]...
mapdh8aa 37065 Part of Part (8) in [Baer]...
mapdh8ab 37066 Part of Part (8) in [Baer]...
mapdh8ac 37067 Part of Part (8) in [Baer]...
mapdh8ad 37068 Part of Part (8) in [Baer]...
mapdh8b 37069 Part of Part (8) in [Baer]...
mapdh8c 37070 Part of Part (8) in [Baer]...
mapdh8d0N 37071 Part of Part (8) in [Baer]...
mapdh8d 37072 Part of Part (8) in [Baer]...
mapdh8e 37073 Part of Part (8) in [Baer]...
mapdh8fN 37074 Part of Part (8) in [Baer]...
mapdh8g 37075 Part of Part (8) in [Baer]...
mapdh8i 37076 Part of Part (8) in [Baer]...
mapdh8j 37077 Part of Part (8) in [Baer]...
mapdh8 37078 Part (8) in [Baer] p. 48. ...
mapdh9a 37079 Lemma for part (9) in [Bae...
mapdh9aOLDN 37080 Lemma for part (9) in [Bae...
hdmap1ffval 37085 Preliminary map from vecto...
hdmap1fval 37086 Preliminary map from vecto...
hdmap1vallem 37087 Value of preliminary map f...
hdmap1val 37088 Value of preliminary map f...
hdmap1val0 37089 Value of preliminary map f...
hdmap1val2 37090 Value of preliminary map f...
hdmap1eq 37091 The defining equation for ...
hdmap1cbv 37092 Frequently used lemma to c...
hdmap1valc 37093 Connect the value of the p...
hdmap1cl 37094 Convert closure theorem ~ ...
hdmap1eq2 37095 Convert ~ mapdheq2 to use ...
hdmap1eq4N 37096 Convert ~ mapdheq4 to use ...
hdmap1l6lem1 37097 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6lem2 37098 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6a 37099 Lemma for ~ hdmap1l6 . Pa...
hdmap1l6b0N 37100 Lemmma for ~ hdmap1l6 . (...
hdmap1l6b 37101 Lemmma for ~ hdmap1l6 . (...
hdmap1l6c 37102 Lemmma for ~ hdmap1l6 . (...
hdmap1l6d 37103 Lemmma for ~ hdmap1l6 . (...
hdmap1l6e 37104 Lemmma for ~ hdmap1l6 . P...
hdmap1l6f 37105 Lemmma for ~ hdmap1l6 . P...
hdmap1l6g 37106 Lemmma for ~ hdmap1l6 . P...
hdmap1l6h 37107 Lemmma for ~ hdmap1l6 . P...
hdmap1l6i 37108 Lemmma for ~ hdmap1l6 . E...
hdmap1l6j 37109 Lemmma for ~ hdmap1l6 . E...
hdmap1l6k 37110 Lemmma for ~ hdmap1l6 . E...
hdmap1l6 37111 Part (6) of [Baer] p. 47 l...
hdmap1p6N 37112 (Convert ~ mapdh6N to use ...
hdmap1eulem 37113 Lemma for ~ hdmap1eu . TO...
hdmap1eulemOLDN 37114 Lemma for ~ hdmap1euOLDN ....
hdmap1eu 37115 Convert ~ mapdh9a to use t...
hdmap1euOLDN 37116 Convert ~ mapdh9aOLDN to u...
hdmap1neglem1N 37117 Lemma for ~ hdmapneg . TO...
hdmapffval 37118 Map from vectors to functi...
hdmapfval 37119 Map from vectors to functi...
hdmapval 37120 Value of map from vectors ...
hdmapfnN 37121 Functionality of map from ...
hdmapcl 37122 Closure of map from vector...
hdmapval2lem 37123 Lemma for ~ hdmapval2 . (...
hdmapval2 37124 Value of map from vectors ...
hdmapval0 37125 Value of map from vectors ...
hdmapeveclem 37126 Lemma for ~ hdmapevec . T...
hdmapevec 37127 Value of map from vectors ...
hdmapevec2 37128 The inner product of the r...
hdmapval3lemN 37129 Value of map from vectors ...
hdmapval3N 37130 Value of map from vectors ...
hdmap10lem 37131 Lemma for ~ hdmap10 . (Co...
hdmap10 37132 Part 10 in [Baer] p. 48 li...
hdmap11lem1 37133 Lemma for ~ hdmapadd . (C...
hdmap11lem2 37134 Lemma for ~ hdmapadd . (C...
hdmapadd 37135 Part 11 in [Baer] p. 48 li...
hdmapeq0 37136 Part of proof of part 12 i...
hdmapnzcl 37137 Nonzero vector closure of ...
hdmapneg 37138 Part of proof of part 12 i...
hdmapsub 37139 Part of proof of part 12 i...
hdmap11 37140 Part of proof of part 12 i...
hdmaprnlem1N 37141 Part of proof of part 12 i...
hdmaprnlem3N 37142 Part of proof of part 12 i...
hdmaprnlem3uN 37143 Part of proof of part 12 i...
hdmaprnlem4tN 37144 Lemma for ~ hdmaprnN . TO...
hdmaprnlem4N 37145 Part of proof of part 12 i...
hdmaprnlem6N 37146 Part of proof of part 12 i...
hdmaprnlem7N 37147 Part of proof of part 12 i...
hdmaprnlem8N 37148 Part of proof of part 12 i...
hdmaprnlem9N 37149 Part of proof of part 12 i...
hdmaprnlem3eN 37150 Lemma for ~ hdmaprnN . (C...
hdmaprnlem10N 37151 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem11N 37152 Lemma for ~ hdmaprnN . Sh...
hdmaprnlem15N 37153 Lemma for ~ hdmaprnN . El...
hdmaprnlem16N 37154 Lemma for ~ hdmaprnN . El...
hdmaprnlem17N 37155 Lemma for ~ hdmaprnN . In...
hdmaprnN 37156 Part of proof of part 12 i...
hdmapf1oN 37157 Part 12 in [Baer] p. 49. ...
hdmap14lem1a 37158 Prior to part 14 in [Baer]...
hdmap14lem2a 37159 Prior to part 14 in [Baer]...
hdmap14lem1 37160 Prior to part 14 in [Baer]...
hdmap14lem2N 37161 Prior to part 14 in [Baer]...
hdmap14lem3 37162 Prior to part 14 in [Baer]...
hdmap14lem4a 37163 Simplify ` ( A \ { Q } ) `...
hdmap14lem4 37164 Simplify ` ( A \ { Q } ) `...
hdmap14lem6 37165 Case where ` F ` is zero. ...
hdmap14lem7 37166 Combine cases of ` F ` . ...
hdmap14lem8 37167 Part of proof of part 14 i...
hdmap14lem9 37168 Part of proof of part 14 i...
hdmap14lem10 37169 Part of proof of part 14 i...
hdmap14lem11 37170 Part of proof of part 14 i...
hdmap14lem12 37171 Lemma for proof of part 14...
hdmap14lem13 37172 Lemma for proof of part 14...
hdmap14lem14 37173 Part of proof of part 14 i...
hdmap14lem15 37174 Part of proof of part 14 i...
hgmapffval 37177 Map from the scalar divisi...
hgmapfval 37178 Map from the scalar divisi...
hgmapval 37179 Value of map from the scal...
hgmapfnN 37180 Functionality of scalar si...
hgmapcl 37181 Closure of scalar sigma ma...
hgmapdcl 37182 Closure of the vector spac...
hgmapvs 37183 Part 15 of [Baer] p. 50 li...
hgmapval0 37184 Value of the scalar sigma ...
hgmapval1 37185 Value of the scalar sigma ...
hgmapadd 37186 Part 15 of [Baer] p. 50 li...
hgmapmul 37187 Part 15 of [Baer] p. 50 li...
hgmaprnlem1N 37188 Lemma for ~ hgmaprnN . (C...
hgmaprnlem2N 37189 Lemma for ~ hgmaprnN . Pa...
hgmaprnlem3N 37190 Lemma for ~ hgmaprnN . El...
hgmaprnlem4N 37191 Lemma for ~ hgmaprnN . El...
hgmaprnlem5N 37192 Lemma for ~ hgmaprnN . El...
hgmaprnN 37193 Part of proof of part 16 i...
hgmap11 37194 The scalar sigma map is on...
hgmapf1oN 37195 The scalar sigma map is a ...
hgmapeq0 37196 The scalar sigma map is ze...
hdmapipcl 37197 The inner product (Hermiti...
hdmapln1 37198 Linearity property that wi...
hdmaplna1 37199 Additive property of first...
hdmaplns1 37200 Subtraction property of fi...
hdmaplnm1 37201 Multiplicative property of...
hdmaplna2 37202 Additive property of secon...
hdmapglnm2 37203 g-linear property of secon...
hdmapgln2 37204 g-linear property that wil...
hdmaplkr 37205 Kernel of the vector to du...
hdmapellkr 37206 Membership in the kernel (...
hdmapip0 37207 Zero property that will be...
hdmapip1 37208 Construct a proportional v...
hdmapip0com 37209 Commutation property of Ba...
hdmapinvlem1 37210 Line 27 in [Baer] p. 110. ...
hdmapinvlem2 37211 Line 28 in [Baer] p. 110, ...
hdmapinvlem3 37212 Line 30 in [Baer] p. 110, ...
hdmapinvlem4 37213 Part 1.1 of Proposition 1 ...
hdmapglem5 37214 Part 1.2 in [Baer] p. 110 ...
hgmapvvlem1 37215 Involution property of sca...
hgmapvvlem2 37216 Lemma for ~ hgmapvv . Eli...
hgmapvvlem3 37217 Lemma for ~ hgmapvv . Eli...
hgmapvv 37218 Value of a double involuti...
hdmapglem7a 37219 Lemma for ~ hdmapg . (Con...
hdmapglem7b 37220 Lemma for ~ hdmapg . (Con...
hdmapglem7 37221 Lemma for ~ hdmapg . Line...
hdmapg 37222 Apply the scalar sigma fun...
hdmapoc 37223 Express our constructed or...
hlhilset 37226 The final Hilbert space co...
hlhilsca 37227 The scalar of the final co...
hlhilbase 37228 The base set of the final ...
hlhilplus 37229 The vector addition for th...
hlhilslem 37230 Lemma for ~ hlhilsbase2 . ...
hlhilsbase 37231 The scalar base set of the...
hlhilsplus 37232 Scalar addition for the fi...
hlhilsmul 37233 Scalar multiplication for ...
hlhilsbase2 37234 The scalar base set of the...
hlhilsplus2 37235 Scalar addition for the fi...
hlhilsmul2 37236 Scalar multiplication for ...
hlhils0 37237 The scalar ring zero for t...
hlhils1N 37238 The scalar ring unity for ...
hlhilvsca 37239 The scalar product for the...
hlhilip 37240 Inner product operation fo...
hlhilipval 37241 Value of inner product ope...
hlhilnvl 37242 The involution operation o...
hlhillvec 37243 The final constructed Hilb...
hlhildrng 37244 The star division ring for...
hlhilsrnglem 37245 Lemma for ~ hlhilsrng . (...
hlhilsrng 37246 The star division ring for...
hlhil0 37247 The zero vector for the fi...
hlhillsm 37248 The vector sum operation f...
hlhilocv 37249 The orthocomplement for th...
hlhillcs 37250 The closed subspaces of th...
hlhilphllem 37251 Lemma for ~ hlhil . (Cont...
hlhilhillem 37252 Lemma for ~ hlhil . (Cont...
hlathil 37253 Construction of a Hilbert ...
rntrclfvOAI 37254 The range of the transitiv...
moxfr 37255 Transfer at-most-one betwe...
imaiinfv 37256 Indexed intersection of an...
elrfi 37257 Elementhood in a set of re...
elrfirn 37258 Elementhood in a set of re...
elrfirn2 37259 Elementhood in a set of re...
cmpfiiin 37260 In a compact topology, a s...
ismrcd1 37261 Any function from the subs...
ismrcd2 37262 Second half of ~ ismrcd1 ....
istopclsd 37263 A closure function which s...
ismrc 37264 A function is a Moore clos...
isnacs 37267 Expand definition of Noeth...
nacsfg 37268 In a Noetherian-type closu...
isnacs2 37269 Express Noetherian-type cl...
mrefg2 37270 Slight variation on finite...
mrefg3 37271 Slight variation on finite...
nacsacs 37272 A closure system of Noethe...
isnacs3 37273 A choice-free order equiva...
incssnn0 37274 Transitivity induction of ...
nacsfix 37275 An increasing sequence of ...
constmap 37276 A constant (represented wi...
mapco2g 37277 Renaming indexes in a tupl...
mapco2 37278 Post-composition (renaming...
mapfzcons 37279 Extending a one-based mapp...
mapfzcons1 37280 Recover prefix mapping fro...
mapfzcons1cl 37281 A nonempty mapping has a p...
mapfzcons2 37282 Recover added element from...
mptfcl 37283 Interpret range of a maps-...
mzpclval 37288 Substitution lemma for ` m...
elmzpcl 37289 Double substitution lemma ...
mzpclall 37290 The set of all functions w...
mzpcln0 37291 Corrolary of ~ mzpclall : ...
mzpcl1 37292 Defining property 1 of a p...
mzpcl2 37293 Defining property 2 of a p...
mzpcl34 37294 Defining properties 3 and ...
mzpval 37295 Value of the ` mzPoly ` fu...
dmmzp 37296 ` mzPoly ` is defined for ...
mzpincl 37297 Polynomial closedness is a...
mzpconst 37298 Constant functions are pol...
mzpf 37299 A polynomial function is a...
mzpproj 37300 A projection function is p...
mzpadd 37301 The pointwise sum of two p...
mzpmul 37302 The pointwise product of t...
mzpconstmpt 37303 A constant function expres...
mzpaddmpt 37304 Sum of polynomial function...
mzpmulmpt 37305 Product of polynomial func...
mzpsubmpt 37306 The difference of two poly...
mzpnegmpt 37307 Negation of a polynomial f...
mzpexpmpt 37308 Raise a polynomial functio...
mzpindd 37309 "Structural" induction to ...
mzpmfp 37310 Relationship between multi...
mzpsubst 37311 Substituting polynomials f...
mzprename 37312 Simplified version of ~ mz...
mzpresrename 37313 A polynomial is a polynomi...
mzpcompact2lem 37314 Lemma for ~ mzpcompact2 . ...
mzpcompact2 37315 Polynomials are finitary o...
coeq0i 37316 ~ coeq0 but without explic...
fzsplit1nn0 37317 Split a finite 1-based set...
eldiophb 37320 Initial expression of Diop...
eldioph 37321 Condition for a set to be ...
diophrw 37322 Renaming and adding unused...
eldioph2lem1 37323 Lemma for ~ eldioph2 . Co...
eldioph2lem2 37324 Lemma for ~ eldioph2 . Co...
eldioph2 37325 Construct a Diophantine se...
eldioph2b 37326 While Diophantine sets wer...
eldiophelnn0 37327 Remove antecedent on ` B `...
eldioph3b 37328 Define Diophantine sets in...
eldioph3 37329 Inference version of ~ eld...
ellz1 37330 Membership in a lower set ...
lzunuz 37331 The union of a lower set o...
fz1eqin 37332 Express a one-based finite...
lzenom 37333 Lower integers are countab...
elmapresaun 37334 ~ fresaun transposed to ma...
elmapresaunres2 37335 ~ fresaunres2 transposed t...
diophin 37336 If two sets are Diophantin...
diophun 37337 If two sets are Diophantin...
eldiophss 37338 Diophantine sets are sets ...
diophrex 37339 Projecting a Diophantine s...
eq0rabdioph 37340 This is the first of a num...
eqrabdioph 37341 Diophantine set builder fo...
0dioph 37342 The null set is Diophantin...
vdioph 37343 The "universal" set (as la...
anrabdioph 37344 Diophantine set builder fo...
orrabdioph 37345 Diophantine set builder fo...
3anrabdioph 37346 Diophantine set builder fo...
3orrabdioph 37347 Diophantine set builder fo...
2sbcrex 37348 Exchange an existential qu...
sbcrexgOLD 37349 Interchange class substitu...
2sbcrexOLD 37350 Exchange an existential qu...
sbc2rex 37351 Exchange a substitution wi...
sbc2rexgOLD 37352 Exchange a substitution wi...
sbc4rex 37353 Exchange a substitution wi...
sbc4rexgOLD 37354 Exchange a substitution wi...
sbcrot3 37355 Rotate a sequence of three...
sbcrot5 37356 Rotate a sequence of five ...
sbccomieg 37357 Commute two explicit subst...
rexrabdioph 37358 Diophantine set builder fo...
rexfrabdioph 37359 Diophantine set builder fo...
2rexfrabdioph 37360 Diophantine set builder fo...
3rexfrabdioph 37361 Diophantine set builder fo...
4rexfrabdioph 37362 Diophantine set builder fo...
6rexfrabdioph 37363 Diophantine set builder fo...
7rexfrabdioph 37364 Diophantine set builder fo...
rabdiophlem1 37365 Lemma for arithmetic dioph...
rabdiophlem2 37366 Lemma for arithmetic dioph...
elnn0rabdioph 37367 Diophantine set builder fo...
rexzrexnn0 37368 Rewrite a quantification o...
lerabdioph 37369 Diophantine set builder fo...
eluzrabdioph 37370 Diophantine set builder fo...
elnnrabdioph 37371 Diophantine set builder fo...
ltrabdioph 37372 Diophantine set builder fo...
nerabdioph 37373 Diophantine set builder fo...
dvdsrabdioph 37374 Divisibility is a Diophant...
eldioph4b 37375 Membership in ` Dioph ` ex...
eldioph4i 37376 Forward-only version of ~ ...
diophren 37377 Change variables in a Diop...
rabrenfdioph 37378 Change variable numbers in...
rabren3dioph 37379 Change variable numbers in...
fphpd 37380 Pigeonhole principle expre...
fphpdo 37381 Pigeonhole principle for s...
ctbnfien 37382 An infinite subset of a co...
fiphp3d 37383 Infinite pigeonhole princi...
rencldnfilem 37384 Lemma for ~ rencldnfi . (...
rencldnfi 37385 A set of real numbers whic...
irrapxlem1 37386 Lemma for ~ irrapx1 . Div...
irrapxlem2 37387 Lemma for ~ irrapx1 . Two...
irrapxlem3 37388 Lemma for ~ irrapx1 . By ...
irrapxlem4 37389 Lemma for ~ irrapx1 . Eli...
irrapxlem5 37390 Lemma for ~ irrapx1 . Swi...
irrapxlem6 37391 Lemma for ~ irrapx1 . Exp...
irrapx1 37392 Dirichlet's approximation ...
pellexlem1 37393 Lemma for ~ pellex . Arit...
pellexlem2 37394 Lemma for ~ pellex . Arit...
pellexlem3 37395 Lemma for ~ pellex . To e...
pellexlem4 37396 Lemma for ~ pellex . Invo...
pellexlem5 37397 Lemma for ~ pellex . Invo...
pellexlem6 37398 Lemma for ~ pellex . Doin...
pellex 37399 Every Pell equation has a ...
pell1qrval 37410 Value of the set of first-...
elpell1qr 37411 Membership in a first-quad...
pell14qrval 37412 Value of the set of positi...
elpell14qr 37413 Membership in the set of p...
pell1234qrval 37414 Value of the set of genera...
elpell1234qr 37415 Membership in the set of g...
pell1234qrre 37416 General Pell solutions are...
pell1234qrne0 37417 No solution to a Pell equa...
pell1234qrreccl 37418 General solutions of the P...
pell1234qrmulcl 37419 General solutions of the P...
pell14qrss1234 37420 A positive Pell solution i...
pell14qrre 37421 A positive Pell solution i...
pell14qrne0 37422 A positive Pell solution i...
pell14qrgt0 37423 A positive Pell solution i...
pell14qrrp 37424 A positive Pell solution i...
pell1234qrdich 37425 A general Pell solution is...
elpell14qr2 37426 A number is a positive Pel...
pell14qrmulcl 37427 Positive Pell solutions ar...
pell14qrreccl 37428 Positive Pell solutions ar...
pell14qrdivcl 37429 Positive Pell solutions ar...
pell14qrexpclnn0 37430 Lemma for ~ pell14qrexpcl ...
pell14qrexpcl 37431 Positive Pell solutions ar...
pell1qrss14 37432 First-quadrant Pell soluti...
pell14qrdich 37433 A positive Pell solution i...
pell1qrge1 37434 A Pell solution in the fir...
pell1qr1 37435 1 is a Pell solution and i...
elpell1qr2 37436 The first quadrant solutio...
pell1qrgaplem 37437 Lemma for ~ pell1qrgap . ...
pell1qrgap 37438 First-quadrant Pell soluti...
pell14qrgap 37439 Positive Pell solutions ar...
pell14qrgapw 37440 Positive Pell solutions ar...
pellqrexplicit 37441 Condition for a calculated...
infmrgelbi 37442 Any lower bound of a nonem...
pellqrex 37443 There is a nontrivial solu...
pellfundval 37444 Value of the fundamental s...
pellfundre 37445 The fundamental solution o...
pellfundge 37446 Lower bound on the fundame...
pellfundgt1 37447 Weak lower bound on the Pe...
pellfundlb 37448 A nontrivial first quadran...
pellfundglb 37449 If a real is larger than t...
pellfundex 37450 The fundamental solution a...
pellfund14gap 37451 There are no solutions bet...
pellfundrp 37452 The fundamental Pell solut...
pellfundne1 37453 The fundamental Pell solut...
reglogcl 37454 General logarithm is a rea...
reglogltb 37455 General logarithm preserve...
reglogleb 37456 General logarithm preserve...
reglogmul 37457 Multiplication law for gen...
reglogexp 37458 Power law for general log....
reglogbas 37459 General log of the base is...
reglog1 37460 General log of 1 is 0. (C...
reglogexpbas 37461 General log of a power of ...
pellfund14 37462 Every positive Pell soluti...
pellfund14b 37463 The positive Pell solution...
rmxfval 37468 Value of the X sequence. ...
rmyfval 37469 Value of the Y sequence. ...
rmspecsqrtnq 37470 The discriminant used to d...
rmspecsqrtnqOLD 37471 Obsolete version of ~ rmsp...
rmspecnonsq 37472 The discriminant used to d...
qirropth 37473 This lemma implements the ...
rmspecfund 37474 The base of exponent used ...
rmxyelqirr 37475 The solutions used to cons...
rmxypairf1o 37476 The function used to extra...
rmxyelxp 37477 Lemma for ~ frmx and ~ frm...
frmx 37478 The X sequence is a nonneg...
frmy 37479 The Y sequence is an integ...
rmxyval 37480 Main definition of the X a...
rmspecpos 37481 The discriminant used to d...
rmxycomplete 37482 The X and Y sequences take...
rmxynorm 37483 The X and Y sequences defi...
rmbaserp 37484 The base of exponentiation...
rmxyneg 37485 Negation law for X and Y s...
rmxyadd 37486 Addition formula for X and...
rmxy1 37487 Value of the X and Y seque...
rmxy0 37488 Value of the X and Y seque...
rmxneg 37489 Negation law (even functio...
rmx0 37490 Value of X sequence at 0. ...
rmx1 37491 Value of X sequence at 1. ...
rmxadd 37492 Addition formula for X seq...
rmyneg 37493 Negation formula for Y seq...
rmy0 37494 Value of Y sequence at 0. ...
rmy1 37495 Value of Y sequence at 1. ...
rmyadd 37496 Addition formula for Y seq...
rmxp1 37497 Special addition-of-1 form...
rmyp1 37498 Special addition of 1 form...
rmxm1 37499 Subtraction of 1 formula f...
rmym1 37500 Subtraction of 1 formula f...
rmxluc 37501 The X sequence is a Lucas ...
rmyluc 37502 The Y sequence is a Lucas ...
rmyluc2 37503 Lucas sequence property of...
rmxdbl 37504 "Double-angle formula" for...
rmydbl 37505 "Double-angle formula" for...
monotuz 37506 A function defined on an u...
monotoddzzfi 37507 A function which is odd an...
monotoddzz 37508 A function (given implicit...
oddcomabszz 37509 An odd function which take...
2nn0ind 37510 Induction on nonnegative i...
zindbi 37511 Inductively transfer a pro...
expmordi 37512 Mantissa ordering relation...
rpexpmord 37513 Mantissa ordering relation...
rmxypos 37514 For all nonnegative indice...
ltrmynn0 37515 The Y-sequence is strictly...
ltrmxnn0 37516 The X-sequence is strictly...
lermxnn0 37517 The X-sequence is monotoni...
rmxnn 37518 The X-sequence is defined ...
ltrmy 37519 The Y-sequence is strictly...
rmyeq0 37520 Y is zero only at zero. (...
rmyeq 37521 Y is one-to-one. (Contrib...
lermy 37522 Y is monotonic (non-strict...
rmynn 37523 ` rmY ` is positive for po...
rmynn0 37524 ` rmY ` is nonnegative for...
rmyabs 37525 ` rmY ` commutes with ` ab...
jm2.24nn 37526 X(n) is strictly greater t...
jm2.17a 37527 First half of lemma 2.17 o...
jm2.17b 37528 Weak form of the second ha...
jm2.17c 37529 Second half of lemma 2.17 ...
jm2.24 37530 Lemma 2.24 of [JonesMatija...
rmygeid 37531 Y(n) increases faster than...
congtr 37532 A wff of the form ` A || (...
congadd 37533 If two pairs of numbers ar...
congmul 37534 If two pairs of numbers ar...
congsym 37535 Congruence mod ` A ` is a ...
congneg 37536 If two integers are congru...
congsub 37537 If two pairs of numbers ar...
congid 37538 Every integer is congruent...
mzpcong 37539 Polynomials commute with c...
congrep 37540 Every integer is congruent...
congabseq 37541 If two integers are congru...
acongid 37542 A wff like that in this th...
acongsym 37543 Symmetry of alternating co...
acongneg2 37544 Negate right side of alter...
acongtr 37545 Transitivity of alternatin...
acongeq12d 37546 Substitution deduction for...
acongrep 37547 Every integer is alternati...
fzmaxdif 37548 Bound on the difference be...
fzneg 37549 Reflection of a finite ran...
acongeq 37550 Two numbers in the fundame...
dvdsacongtr 37551 Alternating congruence pas...
coprmdvdsb 37552 Multiplication by a coprim...
modabsdifz 37553 Divisibility in terms of m...
dvdsabsmod0 37554 Divisibility in terms of m...
jm2.18 37555 Theorem 2.18 of [JonesMati...
jm2.19lem1 37556 Lemma for ~ jm2.19 . X an...
jm2.19lem2 37557 Lemma for ~ jm2.19 . (Con...
jm2.19lem3 37558 Lemma for ~ jm2.19 . (Con...
jm2.19lem4 37559 Lemma for ~ jm2.19 . Exte...
jm2.19 37560 Lemma 2.19 of [JonesMatija...
jm2.21 37561 Lemma for ~ jm2.20nn . Ex...
jm2.22 37562 Lemma for ~ jm2.20nn . Ap...
jm2.23 37563 Lemma for ~ jm2.20nn . Tr...
jm2.20nn 37564 Lemma 2.20 of [JonesMatija...
jm2.25lem1 37565 Lemma for ~ jm2.26 . (Con...
jm2.25 37566 Lemma for ~ jm2.26 . Rema...
jm2.26a 37567 Lemma for ~ jm2.26 . Reve...
jm2.26lem3 37568 Lemma for ~ jm2.26 . Use ...
jm2.26 37569 Lemma 2.26 of [JonesMatija...
jm2.15nn0 37570 Lemma 2.15 of [JonesMatija...
jm2.16nn0 37571 Lemma 2.16 of [JonesMatija...
jm2.27a 37572 Lemma for ~ jm2.27 . Reve...
jm2.27b 37573 Lemma for ~ jm2.27 . Expa...
jm2.27c 37574 Lemma for ~ jm2.27 . Forw...
jm2.27 37575 Lemma 2.27 of [JonesMatija...
jm2.27dlem1 37576 Lemma for ~ rmydioph . Su...
jm2.27dlem2 37577 Lemma for ~ rmydioph . Th...
jm2.27dlem3 37578 Lemma for ~ rmydioph . In...
jm2.27dlem4 37579 Lemma for ~ rmydioph . In...
jm2.27dlem5 37580 Lemma for ~ rmydioph . Us...
rmydioph 37581 ~ jm2.27 restated in terms...
rmxdiophlem 37582 X can be expressed in term...
rmxdioph 37583 X is a Diophantine functio...
jm3.1lem1 37584 Lemma for ~ jm3.1 . (Cont...
jm3.1lem2 37585 Lemma for ~ jm3.1 . (Cont...
jm3.1lem3 37586 Lemma for ~ jm3.1 . (Cont...
jm3.1 37587 Diophantine expression for...
expdiophlem1 37588 Lemma for ~ expdioph . Fu...
expdiophlem2 37589 Lemma for ~ expdioph . Ex...
expdioph 37590 The exponential function i...
setindtr 37591 Epsilon induction for sets...
setindtrs 37592 Epsilon induction scheme w...
dford3lem1 37593 Lemma for ~ dford3 . (Con...
dford3lem2 37594 Lemma for ~ dford3 . (Con...
dford3 37595 Ordinals are precisely the...
dford4 37596 ~ dford3 expressed in prim...
wopprc 37597 Unrelated: Wiener pairs t...
rpnnen3lem 37598 Lemma for ~ rpnnen3 . (Co...
rpnnen3 37599 Dedekind cut injection of ...
axac10 37600 Characterization of choice...
harinf 37601 The Hartogs number of an i...
wdom2d2 37602 Deduction for weak dominan...
ttac 37603 Tarski's theorem about cho...
pw2f1ocnv 37604 Define a bijection between...
pw2f1o2 37605 Define a bijection between...
pw2f1o2val 37606 Function value of the ~ pw...
pw2f1o2val2 37607 Membership in a mapped set...
soeq12d 37608 Equality deduction for tot...
freq12d 37609 Equality deduction for fou...
weeq12d 37610 Equality deduction for wel...
limsuc2 37611 Limit ordinals in the sens...
wepwsolem 37612 Transfer an ordering on ch...
wepwso 37613 A well-ordering induces a ...
dnnumch1 37614 Define an enumeration of a...
dnnumch2 37615 Define an enumeration (wea...
dnnumch3lem 37616 Value of the ordinal injec...
dnnumch3 37617 Define an injection from a...
dnwech 37618 Define a well-ordering fro...
fnwe2val 37619 Lemma for ~ fnwe2 . Subst...
fnwe2lem1 37620 Lemma for ~ fnwe2 . Subst...
fnwe2lem2 37621 Lemma for ~ fnwe2 . An el...
fnwe2lem3 37622 Lemma for ~ fnwe2 . Trich...
fnwe2 37623 A well-ordering can be con...
aomclem1 37624 Lemma for ~ dfac11 . This...
aomclem2 37625 Lemma for ~ dfac11 . Succ...
aomclem3 37626 Lemma for ~ dfac11 . Succ...
aomclem4 37627 Lemma for ~ dfac11 . Limi...
aomclem5 37628 Lemma for ~ dfac11 . Comb...
aomclem6 37629 Lemma for ~ dfac11 . Tran...
aomclem7 37630 Lemma for ~ dfac11 . ` ( R...
aomclem8 37631 Lemma for ~ dfac11 . Perf...
dfac11 37632 The right-hand side of thi...
kelac1 37633 Kelley's choice, basic for...
kelac2lem 37634 Lemma for ~ kelac2 and ~ d...
kelac2 37635 Kelley's choice, most comm...
dfac21 37636 Tychonoff's theorem is a c...
islmodfg 37639 Property of a finitely gen...
islssfg 37640 Property of a finitely gen...
islssfg2 37641 Property of a finitely gen...
islssfgi 37642 Finitely spanned subspaces...
fglmod 37643 Finitely generated left mo...
lsmfgcl 37644 The sum of two finitely ge...
islnm 37647 Property of being a Noethe...
islnm2 37648 Property of being a Noethe...
lnmlmod 37649 A Noetherian left module i...
lnmlssfg 37650 A submodule of Noetherian ...
lnmlsslnm 37651 All submodules of a Noethe...
lnmfg 37652 A Noetherian left module i...
kercvrlsm 37653 The domain of a linear fun...
lmhmfgima 37654 A homomorphism maps finite...
lnmepi 37655 Epimorphic images of Noeth...
lmhmfgsplit 37656 If the kernel and range of...
lmhmlnmsplit 37657 If the kernel and range of...
lnmlmic 37658 Noetherian is an invariant...
pwssplit4 37659 Splitting for structure po...
filnm 37660 Finite left modules are No...
pwslnmlem0 37661 Zeroeth powers are Noether...
pwslnmlem1 37662 First powers are Noetheria...
pwslnmlem2 37663 A sum of powers is Noether...
pwslnm 37664 Finite powers of Noetheria...
unxpwdom3 37665 Weaker version of ~ unxpwd...
pwfi2f1o 37666 The ~ pw2f1o bijection rel...
pwfi2en 37667 Finitely supported indicat...
frlmpwfi 37668 Formal linear combinations...
gicabl 37669 Being Abelian is a group i...
imasgim 37670 A relabeling of the elemen...
isnumbasgrplem1 37671 A set which is equipollent...
harn0 37672 The Hartogs number of a se...
numinfctb 37673 A numerable infinite set c...
isnumbasgrplem2 37674 If the (to be thought of a...
isnumbasgrplem3 37675 Every nonempty numerable s...
isnumbasabl 37676 A set is numerable iff it ...
isnumbasgrp 37677 A set is numerable iff it ...
dfacbasgrp 37678 A choice equivalent in abs...
islnr 37681 Property of a left-Noether...
lnrring 37682 Left-Noetherian rings are ...
lnrlnm 37683 Left-Noetherian rings have...
islnr2 37684 Property of being a left-N...
islnr3 37685 Relate left-Noetherian rin...
lnr2i 37686 Given an ideal in a left-N...
lpirlnr 37687 Left principal ideal rings...
lnrfrlm 37688 Finite-dimensional free mo...
lnrfg 37689 Finitely-generated modules...
lnrfgtr 37690 A submodule of a finitely ...
hbtlem1 37693 Value of the leading coeff...
hbtlem2 37694 Leading coefficient ideals...
hbtlem7 37695 Functionality of leading c...
hbtlem4 37696 The leading ideal function...
hbtlem3 37697 The leading ideal function...
hbtlem5 37698 The leading ideal function...
hbtlem6 37699 There is a finite set of p...
hbt 37700 The Hilbert Basis Theorem ...
dgrsub2 37705 Subtracting two polynomial...
elmnc 37706 Property of a monic polyno...
mncply 37707 A monic polynomial is a po...
mnccoe 37708 A monic polynomial has lea...
mncn0 37709 A monic polynomial is not ...
dgraaval 37714 Value of the degree functi...
dgraalem 37715 Properties of the degree o...
dgraacl 37716 Closure of the degree func...
dgraaf 37717 Degree function on algebra...
dgraaub 37718 Upper bound on degree of a...
dgraa0p 37719 A rational polynomial of d...
mpaaeu 37720 An algebraic number has ex...
mpaaval 37721 Value of the minimal polyn...
mpaalem 37722 Properties of the minimal ...
mpaacl 37723 Minimal polynomial is a po...
mpaadgr 37724 Minimal polynomial has deg...
mpaaroot 37725 The minimal polynomial of ...
mpaamn 37726 Minimal polynomial is moni...
itgoval 37731 Value of the integral-over...
aaitgo 37732 The standard algebraic num...
itgoss 37733 An integral element is int...
itgocn 37734 All integral elements are ...
cnsrexpcl 37735 Exponentiation is closed i...
fsumcnsrcl 37736 Finite sums are closed in ...
cnsrplycl 37737 Polynomials are closed in ...
rgspnval 37738 Value of the ring-span of ...
rgspncl 37739 The ring-span of a set is ...
rgspnssid 37740 The ring-span of a set con...
rgspnmin 37741 The ring-span is contained...
rgspnid 37742 The span of a subring is i...
rngunsnply 37743 Adjoining one element to a...
flcidc 37744 Finite linear combinations...
algstr 37747 Lemma to shorten proofs of...
algbase 37748 The base set of a construc...
algaddg 37749 The additive operation of ...
algmulr 37750 The multiplicative operati...
algsca 37751 The set of scalars of a co...
algvsca 37752 The scalar product operati...
mendval 37753 Value of the module endomo...
mendbas 37754 Base set of the module end...
mendplusgfval 37755 Addition in the module end...
mendplusg 37756 A specific addition in the...
mendmulrfval 37757 Multiplication in the modu...
mendmulr 37758 A specific multiplication ...
mendsca 37759 The module endomorphism al...
mendvscafval 37760 Scalar multiplication in t...
mendvsca 37761 A specific scalar multipli...
mendring 37762 The module endomorphism al...
mendlmod 37763 The module endomorphism al...
mendassa 37764 The module endomorphism al...
issdrg 37767 Property of a division sub...
issdrg2 37768 Property of a division sub...
acsfn1p 37769 Construction of a closure ...
subrgacs 37770 Closure property of subrin...
sdrgacs 37771 Closure property of divisi...
cntzsdrg 37772 Centralizers in division r...
idomrootle 37773 No element of an integral ...
idomodle 37774 Limit on the number of ` N...
fiuneneq 37775 Two finite sets of equal s...
idomsubgmo 37776 The units of an integral d...
proot1mul 37777 Any primitive ` N ` -th ro...
proot1hash 37778 If an integral domain has ...
proot1ex 37779 The complex field has prim...
isdomn3 37782 Nonzero elements form a mu...
mon1pid 37783 Monicity and degree of the...
mon1psubm 37784 Monic polynomials are a mu...
deg1mhm 37785 Homomorphic property of th...
cytpfn 37786 Functionality of the cyclo...
cytpval 37787 Substitutions for the Nth ...
fgraphopab 37788 Express a function as a su...
fgraphxp 37789 Express a function as a su...
hausgraph 37790 The graph of a continuous ...
ioounsn 37795 The closure of the upper e...
iocunico 37796 Split an open interval int...
iocinico 37797 The intersection of two se...
iocmbl 37798 An open-below, closed-abov...
cnioobibld 37799 A bounded, continuous func...
itgpowd 37800 The integral of a monomial...
arearect 37801 The area of a rectangle wh...
areaquad 37802 The area of a quadrilatera...
ifpan123g 37803 Conjunction of conditional...
ifpan23 37804 Conjunction of conditional...
ifpdfor2 37805 Define or in terms of cond...
ifporcor 37806 Corollary of commutation o...
ifpdfan2 37807 Define and with conditiona...
ifpancor 37808 Corollary of commutation o...
ifpdfor 37809 Define or in terms of cond...
ifpdfan 37810 Define and with conditiona...
ifpbi2 37811 Equivalence theorem for co...
ifpbi3 37812 Equivalence theorem for co...
ifpim1 37813 Restate implication as con...
ifpnot 37814 Restate negated wff as con...
ifpid2 37815 Restate wff as conditional...
ifpim2 37816 Restate implication as con...
ifpbi23 37817 Equivalence theorem for co...
ifpdfbi 37818 Define biimplication as co...
ifpbiidcor 37819 Restatement of ~ biid . (...
ifpbicor 37820 Corollary of commutation o...
ifpxorcor 37821 Corollary of commutation o...
ifpbi1 37822 Equivalence theorem for co...
ifpnot23 37823 Negation of conditional lo...
ifpnotnotb 37824 Factor conditional logic o...
ifpnorcor 37825 Corollary of commutation o...
ifpnancor 37826 Corollary of commutation o...
ifpnot23b 37827 Negation of conditional lo...
ifpbiidcor2 37828 Restatement of ~ biid . (...
ifpnot23c 37829 Negation of conditional lo...
ifpnot23d 37830 Negation of conditional lo...
ifpdfnan 37831 Define nand as conditional...
ifpdfxor 37832 Define xor as conditional ...
ifpbi12 37833 Equivalence theorem for co...
ifpbi13 37834 Equivalence theorem for co...
ifpbi123 37835 Equivalence theorem for co...
ifpidg 37836 Restate wff as conditional...
ifpid3g 37837 Restate wff as conditional...
ifpid2g 37838 Restate wff as conditional...
ifpid1g 37839 Restate wff as conditional...
ifpim23g 37840 Restate implication as con...
ifpim3 37841 Restate implication as con...
ifpnim1 37842 Restate negated implicatio...
ifpim4 37843 Restate implication as con...
ifpnim2 37844 Restate negated implicatio...
ifpim123g 37845 Implication of conditional...
ifpim1g 37846 Implication of conditional...
ifp1bi 37847 Substitute the first eleme...
ifpbi1b 37848 When the first variable is...
ifpimimb 37849 Factor conditional logic o...
ifpororb 37850 Factor conditional logic o...
ifpananb 37851 Factor conditional logic o...
ifpnannanb 37852 Factor conditional logic o...
ifpor123g 37853 Disjunction of conditional...
ifpimim 37854 Consequnce of implication....
ifpbibib 37855 Factor conditional logic o...
ifpxorxorb 37856 Factor conditional logic o...
rp-fakeimass 37857 A special case where impli...
rp-fakeanorass 37858 A special case where a mix...
rp-fakeoranass 37859 A special case where a mix...
rp-fakenanass 37860 A special case where nand ...
rp-fakeinunass 37861 A special case where a mix...
rp-fakeuninass 37862 A special case where a mix...
rp-isfinite5 37863 A set is said to be finite...
rp-isfinite6 37864 A set is said to be finite...
pwelg 37865 The powerclass is an eleme...
pwinfig 37866 The powerclass of an infin...
pwinfi2 37867 The powerclass of an infin...
pwinfi3 37868 The powerclass of an infin...
pwinfi 37869 The powerclass of an infin...
fipjust 37870 A definition of the finite...
cllem0 37871 The class of all sets with...
superficl 37872 The class of all supersets...
superuncl 37873 The class of all supersets...
ssficl 37874 The class of all subsets o...
ssuncl 37875 The class of all subsets o...
ssdifcl 37876 The class of all subsets o...
sssymdifcl 37877 The class of all subsets o...
fiinfi 37878 If two classes have the fi...
rababg 37879 Condition when restricted ...
elintabg 37880 Two ways of saying a set i...
elinintab 37881 Two ways of saying a set i...
elmapintrab 37882 Two ways to say a set is a...
elinintrab 37883 Two ways of saying a set i...
inintabss 37884 Upper bound on intersectio...
inintabd 37885 Value of the intersection ...
xpinintabd 37886 Value of the intersection ...
relintabex 37887 If the intersection of a c...
elcnvcnvintab 37888 Two ways of saying a set i...
relintab 37889 Value of the intersection ...
nonrel 37890 A non-relation is equal to...
elnonrel 37891 Only an ordered pair where...
cnvssb 37892 Subclass theorem for conve...
relnonrel 37893 The non-relation part of a...
cnvnonrel 37894 The converse of the non-re...
brnonrel 37895 A non-relation cannot rela...
dmnonrel 37896 The domain of the non-rela...
rnnonrel 37897 The range of the non-relat...
resnonrel 37898 A restriction of the non-r...
imanonrel 37899 An image under the non-rel...
cononrel1 37900 Composition with the non-r...
cononrel2 37901 Composition with the non-r...
elmapintab 37902 Two ways to say a set is a...
fvnonrel 37903 The function value of any ...
elinlem 37904 Two ways to say a set is a...
elcnvcnvlem 37905 Two ways to say a set is a...
cnvcnvintabd 37906 Value of the relationship ...
elcnvlem 37907 Two ways to say a set is a...
elcnvintab 37908 Two ways of saying a set i...
cnvintabd 37909 Value of the converse of t...
undmrnresiss 37910 Two ways of saying the ide...
reflexg 37911 Two ways of saying a relat...
cnvssco 37912 A condition weaker than re...
refimssco 37913 Reflexive relations are su...
cleq2lem 37914 Equality implies bijection...
cbvcllem 37915 Change of bound variable i...
intabssd 37916 When for each element ` y ...
clublem 37917 If a superset ` Y ` of ` X...
clss2lem 37918 The closure of a property ...
dfid7 37919 Definition of identity rel...
mptrcllem 37920 Show two versions of a clo...
cotrintab 37921 The intersection of a clas...
rclexi 37922 The reflexive closure of a...
rtrclexlem 37923 Existence of relation impl...
rtrclex 37924 The reflexive-transitive c...
trclubgNEW 37925 If a relation exists then ...
trclubNEW 37926 If a relation exists then ...
trclexi 37927 The transitive closure of ...
rtrclexi 37928 The reflexive-transitive c...
clrellem 37929 When the property ` ps ` h...
clcnvlem 37930 When ` A ` , an upper boun...
cnvtrucl0 37931 The converse of the trivia...
cnvrcl0 37932 The converse of the reflex...
cnvtrcl0 37933 The converse of the transi...
dmtrcl 37934 The domain of the transiti...
rntrcl 37935 The range of the transitiv...
dfrtrcl5 37936 Definition of reflexive-tr...
trcleq2lemRP 37937 Equality implies bijection...
al3im 37938 Version of ~ ax-4 for a ne...
intima0 37939 Two ways of expressing the...
elimaint 37940 Element of image of inters...
csbcog 37941 Distribute proper substitu...
cnviun 37942 Converse of indexed union....
imaiun1 37943 The image of an indexed un...
coiun1 37944 Composition with an indexe...
elintima 37945 Element of intersection of...
intimass 37946 The image under the inters...
intimass2 37947 The image under the inters...
intimag 37948 Requirement for the image ...
intimasn 37949 Two ways to express the im...
intimasn2 37950 Two ways to express the im...
ss2iundf 37951 Subclass theorem for index...
ss2iundv 37952 Subclass theorem for index...
cbviuneq12df 37953 Rule used to change the bo...
cbviuneq12dv 37954 Rule used to change the bo...
conrel1d 37955 Deduction about compositio...
conrel2d 37956 Deduction about compositio...
trrelind 37957 The intersection of transi...
xpintrreld 37958 The intersection of a tran...
restrreld 37959 The restriction of a trans...
trrelsuperreldg 37960 Concrete construction of a...
trficl 37961 The class of all transitiv...
cnvtrrel 37962 The converse of a transiti...
trrelsuperrel2dg 37963 Concrete construction of a...
dfrcl2 37966 Reflexive closure of a rel...
dfrcl3 37967 Reflexive closure of a rel...
dfrcl4 37968 Reflexive closure of a rel...
relexp2 37969 A set operated on by the r...
relexpnul 37970 If the domain and range of...
eliunov2 37971 Membership in the indexed ...
eltrclrec 37972 Membership in the indexed ...
elrtrclrec 37973 Membership in the indexed ...
briunov2 37974 Two classes related by the...
brmptiunrelexpd 37975 If two elements are connec...
fvmptiunrelexplb0d 37976 If the indexed union range...
fvmptiunrelexplb0da 37977 If the indexed union range...
fvmptiunrelexplb1d 37978 If the indexed union range...
brfvid 37979 If two elements are connec...
brfvidRP 37980 If two elements are connec...
fvilbd 37981 A set is a subset of its i...
fvilbdRP 37982 A set is a subset of its i...
brfvrcld 37983 If two elements are connec...
brfvrcld2 37984 If two elements are connec...
fvrcllb0d 37985 A restriction of the ident...
fvrcllb0da 37986 A restriction of the ident...
fvrcllb1d 37987 A set is a subset of its i...
brtrclrec 37988 Two classes related by the...
brrtrclrec 37989 Two classes related by the...
briunov2uz 37990 Two classes related by the...
eliunov2uz 37991 Membership in the indexed ...
ov2ssiunov2 37992 Any particular operator va...
relexp0eq 37993 The zeroth power of relati...
iunrelexp0 37994 Simplification of zeroth p...
relexpxpnnidm 37995 Any positive power of a cr...
relexpiidm 37996 Any power of any restricti...
relexpss1d 37997 The relational power of a ...
comptiunov2i 37998 The composition two indexe...
corclrcl 37999 The reflexive closure is i...
iunrelexpmin1 38000 The indexed union of relat...
relexpmulnn 38001 With exponents limited to ...
relexpmulg 38002 With ordered exponents, th...
trclrelexplem 38003 The union of relational po...
iunrelexpmin2 38004 The indexed union of relat...
relexp01min 38005 With exponents limited to ...
relexp1idm 38006 Repeated raising a relatio...
relexp0idm 38007 Repeated raising a relatio...
relexp0a 38008 Absorbtion law for zeroth ...
relexpxpmin 38009 The composition of powers ...
relexpaddss 38010 The composition of two pow...
iunrelexpuztr 38011 The indexed union of relat...
dftrcl3 38012 Transitive closure of a re...
brfvtrcld 38013 If two elements are connec...
fvtrcllb1d 38014 A set is a subset of its i...
trclfvcom 38015 The transitive closure of ...
cnvtrclfv 38016 The converse of the transi...
cotrcltrcl 38017 The transitive closure is ...
trclimalb2 38018 Lower bound for image unde...
brtrclfv2 38019 Two ways to indicate two e...
trclfvdecomr 38020 The transitive closure of ...
trclfvdecoml 38021 The transitive closure of ...
dmtrclfvRP 38022 The domain of the transiti...
rntrclfvRP 38023 The range of the transitiv...
rntrclfv 38024 The range of the transitiv...
dfrtrcl3 38025 Reflexive-transitive closu...
brfvrtrcld 38026 If two elements are connec...
fvrtrcllb0d 38027 A restriction of the ident...
fvrtrcllb0da 38028 A restriction of the ident...
fvrtrcllb1d 38029 A set is a subset of its i...
dfrtrcl4 38030 Reflexive-transitive closu...
corcltrcl 38031 The composition of the ref...
cortrcltrcl 38032 Composition with the refle...
corclrtrcl 38033 Composition with the refle...
cotrclrcl 38034 The composition of the ref...
cortrclrcl 38035 Composition with the refle...
cotrclrtrcl 38036 Composition with the refle...
cortrclrtrcl 38037 The reflexive-transitive c...
frege77d 38038 If the images of both ` { ...
frege81d 38039 If the image of ` U ` is a...
frege83d 38040 If the image of the union ...
frege96d 38041 If ` C ` follows ` A ` in ...
frege87d 38042 If the images of both ` { ...
frege91d 38043 If ` B ` follows ` A ` in ...
frege97d 38044 If ` A ` contains all elem...
frege98d 38045 If ` C ` follows ` A ` and...
frege102d 38046 If either ` A ` and ` C ` ...
frege106d 38047 If ` B ` follows ` A ` in ...
frege108d 38048 If either ` A ` and ` C ` ...
frege109d 38049 If ` A ` contains all elem...
frege114d 38050 If either ` R ` relates ` ...
frege111d 38051 If either ` A ` and ` C ` ...
frege122d 38052 If ` F ` is a function, ` ...
frege124d 38053 If ` F ` is a function, ` ...
frege126d 38054 If ` F ` is a function, ` ...
frege129d 38055 If ` F ` is a function and...
frege131d 38056 If ` F ` is a function and...
frege133d 38057 If ` F ` is a function and...
dfxor4 38058 Express exclusive-or in te...
dfxor5 38059 Express exclusive-or in te...
df3or2 38060 Express triple-or in terms...
df3an2 38061 Express triple-and in term...
nev 38062 Express that not every set...
ndisj 38063 Express that an intersecti...
0pssin 38064 Express that an intersecti...
rp-imass 38065 If the ` R ` -image of a c...
dfhe2 38068 The property of relation `...
dfhe3 38069 The property of relation `...
heeq12 38070 Equality law for relations...
heeq1 38071 Equality law for relations...
heeq2 38072 Equality law for relations...
sbcheg 38073 Distribute proper substitu...
hess 38074 Subclass law for relations...
xphe 38075 Any Cartesian product is h...
0he 38076 The empty relation is here...
0heALT 38077 The empty relation is here...
he0 38078 Any relation is hereditary...
unhe1 38079 The union of two relations...
snhesn 38080 Any singleton is hereditar...
idhe 38081 The identity relation is h...
psshepw 38082 The relation between sets ...
sshepw 38083 The relation between sets ...
rp-simp2-frege 38086 Simplification of triple c...
rp-simp2 38087 Simplification of triple c...
rp-frege3g 38088 Add antecedent to ~ ax-fre...
frege3 38089 Add antecedent to ~ ax-fre...
rp-misc1-frege 38090 Double-use of ~ ax-frege2 ...
rp-frege24 38091 Introducing an embedded an...
rp-frege4g 38092 Deduction related to distr...
frege4 38093 Special case of closed for...
frege5 38094 A closed form of ~ syl . ...
rp-7frege 38095 Distribute antecedent and ...
rp-4frege 38096 Elimination of a nested an...
rp-6frege 38097 Elimination of a nested an...
rp-8frege 38098 Eliminate antecedent when ...
rp-frege25 38099 Closed form for ~ a1dd . ...
frege6 38100 A closed form of ~ imim2d ...
axfrege8 38101 Swap antecedents. Identic...
frege7 38102 A closed form of ~ syl6 . ...
frege26 38104 Identical to ~ idd . Prop...
frege27 38105 We cannot (at the same tim...
frege9 38106 Closed form of ~ syl with ...
frege12 38107 A closed form of ~ com23 ....
frege11 38108 Elimination of a nested an...
frege24 38109 Closed form for ~ a1d . D...
frege16 38110 A closed form of ~ com34 ....
frege25 38111 Closed form for ~ a1dd . ...
frege18 38112 Closed form of a syllogism...
frege22 38113 A closed form of ~ com45 ....
frege10 38114 Result commuting anteceden...
frege17 38115 A closed form of ~ com3l ....
frege13 38116 A closed form of ~ com3r ....
frege14 38117 Closed form of a deduction...
frege19 38118 A closed form of ~ syl6 . ...
frege23 38119 Syllogism followed by rota...
frege15 38120 A closed form of ~ com4r ....
frege21 38121 Replace antecedent in ante...
frege20 38122 A closed form of ~ syl8 . ...
axfrege28 38123 Contraposition. Identical...
frege29 38125 Closed form of ~ con3d . ...
frege30 38126 Commuted, closed form of ~...
axfrege31 38127 Identical to ~ notnotr . ...
frege32 38129 Deduce ~ con1 from ~ con3 ...
frege33 38130 If ` ph ` or ` ps ` takes ...
frege34 38131 If as a conseqence of the ...
frege35 38132 Commuted, closed form of ~...
frege36 38133 The case in which ` ps ` i...
frege37 38134 If ` ch ` is a necessary c...
frege38 38135 Identical to ~ pm2.21 . P...
frege39 38136 Syllogism between ~ pm2.18...
frege40 38137 Anything implies ~ pm2.18 ...
axfrege41 38138 Identical to ~ notnot . A...
frege42 38140 Not not ~ id . Propositio...
frege43 38141 If there is a choice only ...
frege44 38142 Similar to a commuted ~ pm...
frege45 38143 Deduce ~ pm2.6 from ~ con1...
frege46 38144 If ` ps ` holds when ` ph ...
frege47 38145 Deduce consequence follows...
frege48 38146 Closed form of syllogism w...
frege49 38147 Closed form of deduction w...
frege50 38148 Closed form of ~ jaoi . P...
frege51 38149 Compare with ~ jaod . Pro...
axfrege52a 38150 Justification for ~ ax-fre...
frege52aid 38152 The case when the content ...
frege53aid 38153 Specialization of ~ frege5...
frege53a 38154 Lemma for ~ frege55a . Pr...
axfrege54a 38155 Justification for ~ ax-fre...
frege54cor0a 38157 Synonym for logical equiva...
frege54cor1a 38158 Reflexive equality. (Cont...
frege55aid 38159 Lemma for ~ frege57aid . ...
frege55lem1a 38160 Necessary deduction regard...
frege55lem2a 38161 Core proof of Proposition ...
frege55a 38162 Proposition 55 of [Frege18...
frege55cor1a 38163 Proposition 55 of [Frege18...
frege56aid 38164 Lemma for ~ frege57aid . ...
frege56a 38165 Proposition 56 of [Frege18...
frege57aid 38166 This is the all imporant f...
frege57a 38167 Analogue of ~ frege57aid ....
axfrege58a 38168 Identical to ~ anifp . Ju...
frege58acor 38170 Lemma for ~ frege59a . (C...
frege59a 38171 A kind of Aristotelian inf...
frege60a 38172 Swap antecedents of ~ ax-f...
frege61a 38173 Lemma for ~ frege65a . Pr...
frege62a 38174 A kind of Aristotelian inf...
frege63a 38175 Proposition 63 of [Frege18...
frege64a 38176 Lemma for ~ frege65a . Pr...
frege65a 38177 A kind of Aristotelian inf...
frege66a 38178 Swap antecedents of ~ freg...
frege67a 38179 Lemma for ~ frege68a . Pr...
frege68a 38180 Combination of applying a ...
axfrege52c 38181 Justification for ~ ax-fre...
frege52b 38183 The case when the content ...
frege53b 38184 Lemma for frege102 (via ~ ...
axfrege54c 38185 Reflexive equality of clas...
frege54b 38187 Reflexive equality of sets...
frege54cor1b 38188 Reflexive equality. (Cont...
frege55lem1b 38189 Necessary deduction regard...
frege55lem2b 38190 Lemma for ~ frege55b . Co...
frege55b 38191 Lemma for ~ frege57b . Pr...
frege56b 38192 Lemma for ~ frege57b . Pr...
frege57b 38193 Analogue of ~ frege57aid ....
axfrege58b 38194 If ` A. x ph ` is affirmed...
frege58bid 38196 If ` A. x ph ` is affirmed...
frege58bcor 38197 Lemma for ~ frege59b . (C...
frege59b 38198 A kind of Aristotelian inf...
frege60b 38199 Swap antecedents of ~ ax-f...
frege61b 38200 Lemma for ~ frege65b . Pr...
frege62b 38201 A kind of Aristotelian inf...
frege63b 38202 Lemma for ~ frege91 . Pro...
frege64b 38203 Lemma for ~ frege65b . Pr...
frege65b 38204 A kind of Aristotelian inf...
frege66b 38205 Swap antecedents of ~ freg...
frege67b 38206 Lemma for ~ frege68b . Pr...
frege68b 38207 Combination of applying a ...
frege53c 38208 Proposition 53 of [Frege18...
frege54cor1c 38209 Reflexive equality. (Cont...
frege55lem1c 38210 Necessary deduction regard...
frege55lem2c 38211 Core proof of Proposition ...
frege55c 38212 Proposition 55 of [Frege18...
frege56c 38213 Lemma for ~ frege57c . Pr...
frege57c 38214 Swap order of implication ...
frege58c 38215 Principle related to ~ sp ...
frege59c 38216 A kind of Aristotelian inf...
frege60c 38217 Swap antecedents of ~ freg...
frege61c 38218 Lemma for ~ frege65c . Pr...
frege62c 38219 A kind of Aristotelian inf...
frege63c 38220 Analogue of ~ frege63b . ...
frege64c 38221 Lemma for ~ frege65c . Pr...
frege65c 38222 A kind of Aristotelian inf...
frege66c 38223 Swap antecedents of ~ freg...
frege67c 38224 Lemma for ~ frege68c . Pr...
frege68c 38225 Combination of applying a ...
dffrege69 38226 If from the proposition th...
frege70 38227 Lemma for ~ frege72 . Pro...
frege71 38228 Lemma for ~ frege72 . Pro...
frege72 38229 If property ` A ` is hered...
frege73 38230 Lemma for ~ frege87 . Pro...
frege74 38231 If ` X ` has a property ` ...
frege75 38232 If from the proposition th...
dffrege76 38233 If from the two propositio...
frege77 38234 If ` Y ` follows ` X ` in ...
frege78 38235 Commuted form of of ~ freg...
frege79 38236 Distributed form of ~ freg...
frege80 38237 Add additional condition t...
frege81 38238 If ` X ` has a property ` ...
frege82 38239 Closed-form deduction base...
frege83 38240 Apply commuted form of ~ f...
frege84 38241 Commuted form of ~ frege81...
frege85 38242 Commuted form of ~ frege77...
frege86 38243 Conclusion about element o...
frege87 38244 If ` Z ` is a result of an...
frege88 38245 Commuted form of ~ frege87...
frege89 38246 One direction of ~ dffrege...
frege90 38247 Add antecedent to ~ frege8...
frege91 38248 Every result of an applica...
frege92 38249 Inference from ~ frege91 ....
frege93 38250 Necessary condition for tw...
frege94 38251 Looking one past a pair re...
frege95 38252 Looking one past a pair re...
frege96 38253 Every result of an applica...
frege97 38254 The property of following ...
frege98 38255 If ` Y ` follows ` X ` and...
dffrege99 38256 If ` Z ` is identical with...
frege100 38257 One direction of ~ dffrege...
frege101 38258 Lemma for ~ frege102 . Pr...
frege102 38259 If ` Z ` belongs to the ` ...
frege103 38260 Proposition 103 of [Frege1...
frege104 38261 Proposition 104 of [Frege1...
frege105 38262 Proposition 105 of [Frege1...
frege106 38263 Whatever follows ` X ` in ...
frege107 38264 Proposition 107 of [Frege1...
frege108 38265 If ` Y ` belongs to the ` ...
frege109 38266 The property of belonging ...
frege110 38267 Proposition 110 of [Frege1...
frege111 38268 If ` Y ` belongs to the ` ...
frege112 38269 Identity implies belonging...
frege113 38270 Proposition 113 of [Frege1...
frege114 38271 If ` X ` belongs to the ` ...
dffrege115 38272 If from the the circumstan...
frege116 38273 One direction of ~ dffrege...
frege117 38274 Lemma for ~ frege118 . Pr...
frege118 38275 Simplified application of ...
frege119 38276 Lemma for ~ frege120 . Pr...
frege120 38277 Simplified application of ...
frege121 38278 Lemma for ~ frege122 . Pr...
frege122 38279 If ` X ` is a result of an...
frege123 38280 Lemma for ~ frege124 . Pr...
frege124 38281 If ` X ` is a result of an...
frege125 38282 Lemma for ~ frege126 . Pr...
frege126 38283 If ` M ` follows ` Y ` in ...
frege127 38284 Communte antecedents of ~ ...
frege128 38285 Lemma for ~ frege129 . Pr...
frege129 38286 If the procedure ` R ` is ...
frege130 38287 Lemma for ~ frege131 . Pr...
frege131 38288 If the procedure ` R ` is ...
frege132 38289 Lemma for ~ frege133 . Pr...
frege133 38290 If the procedure ` R ` is ...
enrelmap 38291 The set of all possible re...
enrelmapr 38292 The set of all possible re...
enmappw 38293 The set of all mappings fr...
enmappwid 38294 The set of all mappings fr...
rfovd 38295 Value of the operator, ` (...
rfovfvd 38296 Value of the operator, ` (...
rfovfvfvd 38297 Value of the operator, ` (...
rfovcnvf1od 38298 Properties of the operator...
rfovcnvd 38299 Value of the converse of t...
rfovf1od 38300 The value of the operator,...
rfovcnvfvd 38301 Value of the converse of t...
fsovd 38302 Value of the operator, ` (...
fsovrfovd 38303 The operator which gives a...
fsovfvd 38304 Value of the operator, ` (...
fsovfvfvd 38305 Value of the operator, ` (...
fsovfd 38306 The operator, ` ( A O B ) ...
fsovcnvlem 38307 The ` O ` operator, which ...
fsovcnvd 38308 The value of the converse ...
fsovcnvfvd 38309 The value of the converse ...
fsovf1od 38310 The value of ` ( A O B ) `...
dssmapfvd 38311 Value of the duality opera...
dssmapfv2d 38312 Value of the duality opera...
dssmapfv3d 38313 Value of the duality opera...
dssmapnvod 38314 For any base set ` B ` the...
dssmapf1od 38315 For any base set ` B ` the...
dssmap2d 38316 For any base set ` B ` the...
sscon34b 38317 Relative complementation r...
rcompleq 38318 Two subclasses are equal i...
or3or 38319 Decompose disjunction into...
andi3or 38320 Distribute over triple dis...
uneqsn 38321 If a union of classes is e...
df3o2 38322 Ordinal 3 is the triplet c...
df3o3 38323 Ordinal 3 , fully expanded...
brfvimex 38324 If a binary relation holds...
brovmptimex 38325 If a binary relation holds...
brovmptimex1 38326 If a binary relation holds...
brovmptimex2 38327 If a binary relation holds...
brcoffn 38328 Conditions allowing the de...
brcofffn 38329 Conditions allowing the de...
brco2f1o 38330 Conditions allowing the de...
brco3f1o 38331 Conditions allowing the de...
ntrclsbex 38332 If (pseudo-)interior and (...
ntrclsrcomplex 38333 The relative complement of...
neik0imk0p 38334 Kuratowski's K0 axiom impl...
ntrk2imkb 38335 If an interior function is...
ntrkbimka 38336 If the interiors of disjoi...
ntrk0kbimka 38337 If the interiors of disjoi...
clsk3nimkb 38338 If the base set is not emp...
clsk1indlem0 38339 The ansatz closure functio...
clsk1indlem2 38340 The ansatz closure functio...
clsk1indlem3 38341 The ansatz closure functio...
clsk1indlem4 38342 The ansatz closure functio...
clsk1indlem1 38343 The ansatz closure functio...
clsk1independent 38344 For generalized closure fu...
neik0pk1imk0 38345 Kuratowski's K0' and K1 ax...
isotone1 38346 Two different ways to say ...
isotone2 38347 Two different ways to say ...
ntrk1k3eqk13 38348 An interior function is bo...
ntrclsf1o 38349 If (pseudo-)interior and (...
ntrclsnvobr 38350 If (pseudo-)interior and (...
ntrclsiex 38351 If (pseudo-)interior and (...
ntrclskex 38352 If (pseudo-)interior and (...
ntrclsfv1 38353 If (pseudo-)interior and (...
ntrclsfv2 38354 If (pseudo-)interior and (...
ntrclselnel1 38355 If (pseudo-)interior and (...
ntrclselnel2 38356 If (pseudo-)interior and (...
ntrclsfv 38357 The value of the interior ...
ntrclsfveq1 38358 If interior and closure fu...
ntrclsfveq2 38359 If interior and closure fu...
ntrclsfveq 38360 If interior and closure fu...
ntrclsss 38361 If interior and closure fu...
ntrclsneine0lem 38362 If (pseudo-)interior and (...
ntrclsneine0 38363 If (pseudo-)interior and (...
ntrclscls00 38364 If (pseudo-)interior and (...
ntrclsiso 38365 If (pseudo-)interior and (...
ntrclsk2 38366 An interior function is co...
ntrclskb 38367 The interiors of disjoint ...
ntrclsk3 38368 The intersection of interi...
ntrclsk13 38369 The interior of the inters...
ntrclsk4 38370 Idempotence of the interio...
ntrneibex 38371 If (pseudo-)interior and (...
ntrneircomplex 38372 The relative complement of...
ntrneif1o 38373 If (pseudo-)interior and (...
ntrneiiex 38374 If (pseudo-)interior and (...
ntrneinex 38375 If (pseudo-)interior and (...
ntrneicnv 38376 If (pseudo-)interior and (...
ntrneifv1 38377 If (pseudo-)interior and (...
ntrneifv2 38378 If (pseudo-)interior and (...
ntrneiel 38379 If (pseudo-)interior and (...
ntrneifv3 38380 The value of the neighbors...
ntrneineine0lem 38381 If (pseudo-)interior and (...
ntrneineine1lem 38382 If (pseudo-)interior and (...
ntrneifv4 38383 The value of the interior ...
ntrneiel2 38384 Membership in iterated int...
ntrneineine0 38385 If (pseudo-)interior and (...
ntrneineine1 38386 If (pseudo-)interior and (...
ntrneicls00 38387 If (pseudo-)interior and (...
ntrneicls11 38388 If (pseudo-)interior and (...
ntrneiiso 38389 If (pseudo-)interior and (...
ntrneik2 38390 An interior function is co...
ntrneix2 38391 An interior (closure) func...
ntrneikb 38392 The interiors of disjoint ...
ntrneixb 38393 The interiors (closures) o...
ntrneik3 38394 The intersection of interi...
ntrneix3 38395 The closure of the union o...
ntrneik13 38396 The interior of the inters...
ntrneix13 38397 The closure of the union o...
ntrneik4w 38398 Idempotence of the interio...
ntrneik4 38399 Idempotence of the interio...
clsneibex 38400 If (pseudo-)closure and (p...
clsneircomplex 38401 The relative complement of...
clsneif1o 38402 If a (pseudo-)closure func...
clsneicnv 38403 If a (pseudo-)closure func...
clsneikex 38404 If closure and neighborhoo...
clsneinex 38405 If closure and neighborhoo...
clsneiel1 38406 If a (pseudo-)closure func...
clsneiel2 38407 If a (pseudo-)closure func...
clsneifv3 38408 Value of the neighborhoods...
clsneifv4 38409 Value of the the closure (...
neicvgbex 38410 If (pseudo-)neighborhood a...
neicvgrcomplex 38411 The relative complement of...
neicvgf1o 38412 If neighborhood and conver...
neicvgnvo 38413 If neighborhood and conver...
neicvgnvor 38414 If neighborhood and conver...
neicvgmex 38415 If the neighborhoods and c...
neicvgnex 38416 If the neighborhoods and c...
neicvgel1 38417 A subset being an element ...
neicvgel2 38418 The complement of a subset...
neicvgfv 38419 The value of the neighborh...
ntrrn 38420 The range of the interior ...
ntrf 38421 The interior function of a...
ntrf2 38422 The interior function is a...
ntrelmap 38423 The interior function is a...
clsf2 38424 The closure function is a ...
clselmap 38425 The closure function is a ...
dssmapntrcls 38426 The interior and closure o...
dssmapclsntr 38427 The closure and interior o...
gneispa 38428 Each point ` p ` of the ne...
gneispb 38429 Given a neighborhood ` N `...
gneispace2 38430 The predicate that ` F ` i...
gneispace3 38431 The predicate that ` F ` i...
gneispace 38432 The predicate that ` F ` i...
gneispacef 38433 A generic neighborhood spa...
gneispacef2 38434 A generic neighborhood spa...
gneispacefun 38435 A generic neighborhood spa...
gneispacern 38436 A generic neighborhood spa...
gneispacern2 38437 A generic neighborhood spa...
gneispace0nelrn 38438 A generic neighborhood spa...
gneispace0nelrn2 38439 A generic neighborhood spa...
gneispace0nelrn3 38440 A generic neighborhood spa...
gneispaceel 38441 Every neighborhood of a po...
gneispaceel2 38442 Every neighborhood of a po...
gneispacess 38443 All supersets of a neighbo...
gneispacess2 38444 All supersets of a neighbo...
k0004lem1 38445 Application of ~ ssin to r...
k0004lem2 38446 A mapping with a particula...
k0004lem3 38447 When the value of a mappin...
k0004val 38448 The topological simplex of...
k0004ss1 38449 The topological simplex of...
k0004ss2 38450 The topological simplex of...
k0004ss3 38451 The topological simplex of...
k0004val0 38452 The topological simplex of...
inductionexd 38453 Simple induction example. ...
wwlemuld 38454 Natural deduction form of ...
leeq1d 38455 Specialization of ~ breq1d...
leeq2d 38456 Specialization of ~ breq2d...
absmulrposd 38457 Specialization of absmuld ...
imadisjld 38458 Natural dduction form of o...
imadisjlnd 38459 Natural deduction form of ...
wnefimgd 38460 The image of a mapping fro...
fco2d 38461 Natural deduction form of ...
fvco3d 38462 Natural deduction form of ...
wfximgfd 38463 The value of a function on...
extoimad 38464 If |f(x)| <= C for all x t...
imo72b2lem0 38465 Lemma for ~ imo72b2 . (Co...
suprleubrd 38466 Natural deduction form of ...
imo72b2lem2 38467 Lemma for ~ imo72b2 . (Co...
syldbl2 38468 Stacked hypotheseis implie...
funfvima2d 38469 A function's value in a pr...
suprlubrd 38470 Natural deduction form of ...
imo72b2lem1 38471 Lemma for ~ imo72b2 . (Co...
lemuldiv3d 38472 'Less than or equal to' re...
lemuldiv4d 38473 'Less than or equal to' re...
rspcdvinvd 38474 If something is true for a...
imo72b2 38475 IMO 1972 B2. (14th Intern...
int-addcomd 38476 AdditionCommutativity gene...
int-addassocd 38477 AdditionAssociativity gene...
int-addsimpd 38478 AdditionSimplification gen...
int-mulcomd 38479 MultiplicationCommutativit...
int-mulassocd 38480 MultiplicationAssociativit...
int-mulsimpd 38481 MultiplicationSimplificati...
int-leftdistd 38482 AdditionMultiplicationLeft...
int-rightdistd 38483 AdditionMultiplicationRigh...
int-sqdefd 38484 SquareDefinition generator...
int-mul11d 38485 First MultiplicationOne ge...
int-mul12d 38486 Second MultiplicationOne g...
int-add01d 38487 First AdditionZero generat...
int-add02d 38488 Second AdditionZero genera...
int-sqgeq0d 38489 SquareGEQZero generator ru...
int-eqprincd 38490 PrincipleOfEquality genera...
int-eqtransd 38491 EqualityTransitivity gener...
int-eqmvtd 38492 EquMoveTerm generator rule...
int-eqineqd 38493 EquivalenceImpliesDoubleIn...
int-ineqmvtd 38494 IneqMoveTerm generator rul...
int-ineq1stprincd 38495 FirstPrincipleOfInequality...
int-ineq2ndprincd 38496 SecondPrincipleOfInequalit...
int-ineqtransd 38497 InequalityTransitivity gen...
unitadd 38498 Theorem used in conjunctio...
gsumws3 38499 Valuation of a length 3 wo...
gsumws4 38500 Valuation of a length 4 wo...
amgm2d 38501 Arithmetic-geometric mean ...
amgm3d 38502 Arithmetic-geometric mean ...
amgm4d 38503 Arithmetic-geometric mean ...
nanorxor 38504 'nand' is equivalent to th...
undisjrab 38505 Union of two disjoint rest...
iso0 38506 The empty set is an ` R , ...
ssrecnpr 38507 ` RR ` is a subset of both...
seff 38508 Let set ` S ` be the real ...
sblpnf 38509 The infinity ball in the a...
prmunb2 38510 The primes are unbounded. ...
dvgrat 38511 Ratio test for divergence ...
cvgdvgrat 38512 Ratio test for convergence...
radcnvrat 38513 Let ` L ` be the limit, if...
reldvds 38514 The divides relation is in...
nznngen 38515 All positive integers in t...
nzss 38516 The set of multiples of _m...
nzin 38517 The intersection of the se...
nzprmdif 38518 Subtract one prime's multi...
hashnzfz 38519 Special case of ~ hashdvds...
hashnzfz2 38520 Special case of ~ hashnzfz...
hashnzfzclim 38521 As the upper bound ` K ` o...
caofcan 38522 Transfer a cancellation la...
ofsubid 38523 Function analogue of ~ sub...
ofmul12 38524 Function analogue of ~ mul...
ofdivrec 38525 Function analogue of ~ div...
ofdivcan4 38526 Function analogue of ~ div...
ofdivdiv2 38527 Function analogue of ~ div...
lhe4.4ex1a 38528 Example of the Fundamental...
dvsconst 38529 Derivative of a constant f...
dvsid 38530 Derivative of the identity...
dvsef 38531 Derivative of the exponent...
expgrowthi 38532 Exponential growth and dec...
dvconstbi 38533 The derivative of a functi...
expgrowth 38534 Exponential growth and dec...
bccval 38537 Value of the generalized b...
bcccl 38538 Closure of the generalized...
bcc0 38539 The generalized binomial c...
bccp1k 38540 Generalized binomial coeff...
bccm1k 38541 Generalized binomial coeff...
bccn0 38542 Generalized binomial coeff...
bccn1 38543 Generalized binomial coeff...
bccbc 38544 The binomial coefficient a...
uzmptshftfval 38545 When ` F ` is a maps-to fu...
dvradcnv2 38546 The radius of convergence ...
binomcxplemwb 38547 Lemma for ~ binomcxp . Th...
binomcxplemnn0 38548 Lemma for ~ binomcxp . Wh...
binomcxplemrat 38549 Lemma for ~ binomcxp . As...
binomcxplemfrat 38550 Lemma for ~ binomcxp . ~ b...
binomcxplemradcnv 38551 Lemma for ~ binomcxp . By...
binomcxplemdvbinom 38552 Lemma for ~ binomcxp . By...
binomcxplemcvg 38553 Lemma for ~ binomcxp . Th...
binomcxplemdvsum 38554 Lemma for ~ binomcxp . Th...
binomcxplemnotnn0 38555 Lemma for ~ binomcxp . Wh...
binomcxp 38556 Generalize the binomial th...
pm10.12 38557 Theorem *10.12 in [Whitehe...
pm10.14 38558 Theorem *10.14 in [Whitehe...
pm10.251 38559 Theorem *10.251 in [Whiteh...
pm10.252 38560 Theorem *10.252 in [Whiteh...
pm10.253 38561 Theorem *10.253 in [Whiteh...
albitr 38562 Theorem *10.301 in [Whiteh...
pm10.42 38563 Theorem *10.42 in [Whitehe...
pm10.52 38564 Theorem *10.52 in [Whitehe...
pm10.53 38565 Theorem *10.53 in [Whitehe...
pm10.541 38566 Theorem *10.541 in [Whiteh...
pm10.542 38567 Theorem *10.542 in [Whiteh...
pm10.55 38568 Theorem *10.55 in [Whitehe...
pm10.56 38569 Theorem *10.56 in [Whitehe...
pm10.57 38570 Theorem *10.57 in [Whitehe...
2alanimi 38571 Removes two universal quan...
2al2imi 38572 Removes two universal quan...
pm11.11 38573 Theorem *11.11 in [Whitehe...
pm11.12 38574 Theorem *11.12 in [Whitehe...
19.21vv 38575 Compare Theorem *11.3 in [...
2alim 38576 Theorem *11.32 in [Whitehe...
2albi 38577 Theorem *11.33 in [Whitehe...
2exim 38578 Theorem *11.34 in [Whitehe...
2exbi 38579 Theorem *11.341 in [Whiteh...
spsbce-2 38580 Theorem *11.36 in [Whitehe...
19.33-2 38581 Theorem *11.421 in [Whiteh...
19.36vv 38582 Theorem *11.43 in [Whitehe...
19.31vv 38583 Theorem *11.44 in [Whitehe...
19.37vv 38584 Theorem *11.46 in [Whitehe...
19.28vv 38585 Theorem *11.47 in [Whitehe...
pm11.52 38586 Theorem *11.52 in [Whitehe...
2exanali 38587 Theorem *11.521 in [Whiteh...
aaanv 38588 Theorem *11.56 in [Whitehe...
pm11.57 38589 Theorem *11.57 in [Whitehe...
pm11.58 38590 Theorem *11.58 in [Whitehe...
pm11.59 38591 Theorem *11.59 in [Whitehe...
pm11.6 38592 Theorem *11.6 in [Whitehea...
pm11.61 38593 Theorem *11.61 in [Whitehe...
pm11.62 38594 Theorem *11.62 in [Whitehe...
pm11.63 38595 Theorem *11.63 in [Whitehe...
pm11.7 38596 Theorem *11.7 in [Whitehea...
pm11.71 38597 Theorem *11.71 in [Whitehe...
sbeqal1 38598 If ` x = y ` always implie...
sbeqal1i 38599 Suppose you know ` x = y `...
sbeqal2i 38600 If ` x = y ` implies ` x =...
sbeqalbi 38601 When both ` x ` and ` z ` ...
axc5c4c711 38602 Proof of a theorem that ca...
axc5c4c711toc5 38603 Rederivation of ~ sp from ...
axc5c4c711toc4 38604 Rederivation of ~ axc4 fro...
axc5c4c711toc7 38605 Rederivation of ~ axc7 fro...
axc5c4c711to11 38606 Rederivation of ~ ax-11 fr...
axc11next 38607 This theorem shows that, g...
pm13.13a 38608 One result of theorem *13....
pm13.13b 38609 Theorem *13.13 in [Whitehe...
pm13.14 38610 Theorem *13.14 in [Whitehe...
pm13.192 38611 Theorem *13.192 in [Whiteh...
pm13.193 38612 Theorem *13.193 in [Whiteh...
pm13.194 38613 Theorem *13.194 in [Whiteh...
pm13.195 38614 Theorem *13.195 in [Whiteh...
pm13.196a 38615 Theorem *13.196 in [Whiteh...
2sbc6g 38616 Theorem *13.21 in [Whitehe...
2sbc5g 38617 Theorem *13.22 in [Whitehe...
iotain 38618 Equivalence between two di...
iotaexeu 38619 The iota class exists. Th...
iotasbc 38620 Definition *14.01 in [Whit...
iotasbc2 38621 Theorem *14.111 in [Whiteh...
pm14.12 38622 Theorem *14.12 in [Whitehe...
pm14.122a 38623 Theorem *14.122 in [Whiteh...
pm14.122b 38624 Theorem *14.122 in [Whiteh...
pm14.122c 38625 Theorem *14.122 in [Whiteh...
pm14.123a 38626 Theorem *14.123 in [Whiteh...
pm14.123b 38627 Theorem *14.123 in [Whiteh...
pm14.123c 38628 Theorem *14.123 in [Whiteh...
pm14.18 38629 Theorem *14.18 in [Whitehe...
iotaequ 38630 Theorem *14.2 in [Whitehea...
iotavalb 38631 Theorem *14.202 in [Whiteh...
iotasbc5 38632 Theorem *14.205 in [Whiteh...
pm14.24 38633 Theorem *14.24 in [Whitehe...
iotavalsb 38634 Theorem *14.242 in [Whiteh...
sbiota1 38635 Theorem *14.25 in [Whitehe...
sbaniota 38636 Theorem *14.26 in [Whitehe...
eubi 38637 Theorem *14.271 in [Whiteh...
iotasbcq 38638 Theorem *14.272 in [Whiteh...
elnev 38639 Any set that contains one ...
rusbcALT 38640 A version of Russell's par...
compel 38641 Equivalence between two wa...
compeq 38642 Equality between two ways ...
compne 38643 The complement of ` A ` is...
compneOLD 38644 Obsolete proof of ~ compne...
compab 38645 Two ways of saying "the co...
conss34OLD 38646 Obsolete proof of ~ compls...
conss2 38647 Contrapositive law for sub...
conss1 38648 Contrapositive law for sub...
ralbidar 38649 More general form of ~ ral...
rexbidar 38650 More general form of ~ rex...
dropab1 38651 Theorem to aid use of the ...
dropab2 38652 Theorem to aid use of the ...
ipo0 38653 If the identity relation p...
ifr0 38654 A class that is founded by...
ordpss 38655 ~ ordelpss with an anteced...
fvsb 38656 Explicit substitution of a...
fveqsb 38657 Implicit substitution of a...
xpexb 38658 A Cartesian product exists...
trelpss 38659 An element of a transitive...
addcomgi 38660 Generalization of commutat...
addrval 38670 Value of the operation of ...
subrval 38671 Value of the operation of ...
mulvval 38672 Value of the operation of ...
addrfv 38673 Vector addition at a value...
subrfv 38674 Vector subtraction at a va...
mulvfv 38675 Scalar multiplication at a...
addrfn 38676 Vector addition produces a...
subrfn 38677 Vector subtraction produce...
mulvfn 38678 Scalar multiplication prod...
addrcom 38679 Vector addition is commuta...
idiALT 38683 Placeholder for ~ idi . T...
exbir 38684 Exportation implication al...
3impexpbicom 38685 Version of ~ 3impexp where...
3impexpbicomi 38686 Inference associated with ...
bi1imp 38687 Importation inference simi...
bi2imp 38688 Importation inference simi...
bi3impb 38689 Similar to ~ 3impb with im...
bi3impa 38690 Similar to ~ 3impa with im...
bi23impib 38691 ~ 3impib with the inner im...
bi13impib 38692 ~ 3impib with the outer im...
bi123impib 38693 ~ 3impib with the implicat...
bi13impia 38694 ~ 3impia with the outer im...
bi123impia 38695 ~ 3impia with the implicat...
bi33imp12 38696 ~ 3imp with innermost impl...
bi23imp13 38697 ~ 3imp with middle implica...
bi13imp23 38698 ~ 3imp with outermost impl...
bi13imp2 38699 Similar to ~ 3imp except t...
bi12imp3 38700 Similar to ~ 3imp except a...
bi23imp1 38701 Similar to ~ 3imp except a...
bi123imp0 38702 Similar to ~ 3imp except a...
4animp1 38703 A single hypothesis unific...
4an31 38704 A rearrangement of conjunc...
4an4132 38705 A rearrangement of conjunc...
expcomdg 38706 Biconditional form of ~ ex...
iidn3 38707 ~ idn3 without virtual ded...
ee222 38708 ~ e222 without virtual ded...
ee3bir 38709 Right-biconditional form o...
ee13 38710 ~ e13 without virtual dedu...
ee121 38711 ~ e121 without virtual ded...
ee122 38712 ~ e122 without virtual ded...
ee333 38713 ~ e333 without virtual ded...
ee323 38714 ~ e323 without virtual ded...
3ornot23 38715 If the second and third di...
orbi1r 38716 ~ orbi1 with order of disj...
3orbi123 38717 ~ pm4.39 with a 3-conjunct...
syl5imp 38718 Closed form of ~ syl5 . D...
impexpd 38719 The following User's Proof...
com3rgbi 38720 The following User's Proof...
impexpdcom 38721 The following User's Proof...
ee1111 38722 Non-virtual deduction form...
pm2.43bgbi 38723 Logical equivalence of a 2...
pm2.43cbi 38724 Logical equivalence of a 3...
ee233 38725 Non-virtual deduction form...
imbi13 38726 Join three logical equival...
ee33 38727 Non-virtual deduction form...
con5 38728 Biconditional contrapositi...
con5i 38729 Inference form of ~ con5 ....
exlimexi 38730 Inference similar to Theor...
sb5ALT 38731 Equivalence for substituti...
eexinst01 38732 ~ exinst01 without virtual...
eexinst11 38733 ~ exinst11 without virtual...
vk15.4j 38734 Excercise 4j of Unit 15 of...
notnotrALT 38735 Converse of double negatio...
con3ALT2 38736 Contraposition. Alternate...
ssralv2 38737 Quantification restricted ...
sbc3or 38738 ~ sbcor with a 3-disjuncts...
sbcangOLD 38739 Distribution of class subs...
sbcorgOLD 38740 Distribution of class subs...
sbcbiiOLD 38741 Formula-building inference...
sbc3orgOLD 38742 ~ sbcorgOLD with a 3-disju...
alrim3con13v 38743 Closed form of ~ alrimi wi...
rspsbc2 38744 ~ rspsbc with two quantify...
sbcoreleleq 38745 Substitution of a setvar v...
tratrb 38746 If a class is transitive a...
ordelordALT 38747 An element of an ordinal c...
sbcim2g 38748 Distribution of class subs...
sbcbi 38749 Implication form of ~ sbcb...
trsbc 38750 Formula-building inference...
truniALT 38751 The union of a class of tr...
sbcalgOLD 38752 Move universal quantifier ...
sbcexgOLD 38753 Move existential quantifie...
sbcel12gOLD 38754 Distribute proper substitu...
sbcel2gOLD 38755 Move proper substitution i...
sbcssOLD 38756 Distribute proper substitu...
onfrALTlem5 38757 Lemma for ~ onfrALT . (Co...
onfrALTlem4 38758 Lemma for ~ onfrALT . (Co...
onfrALTlem3 38759 Lemma for ~ onfrALT . (Co...
ggen31 38760 ~ gen31 without virtual de...
onfrALTlem2 38761 Lemma for ~ onfrALT . (Co...
cbvexsv 38762 A theorem pertaining to th...
onfrALTlem1 38763 Lemma for ~ onfrALT . (Co...
onfrALT 38764 The epsilon relation is fo...
csbeq2gOLD 38765 Formula-building implicati...
19.41rg 38766 Closed form of right-to-le...
opelopab4 38767 Ordered pair membership in...
2pm13.193 38768 ~ pm13.193 for two variabl...
hbntal 38769 A closed form of ~ hbn . ~...
hbimpg 38770 A closed form of ~ hbim . ...
hbalg 38771 Closed form of ~ hbal . D...
hbexg 38772 Closed form of ~ nfex . D...
ax6e2eq 38773 Alternate form of ~ ax6e f...
ax6e2nd 38774 If at least two sets exist...
ax6e2ndeq 38775 "At least two sets exist" ...
2sb5nd 38776 Equivalence for double sub...
2uasbanh 38777 Distribute the unabbreviat...
2uasban 38778 Distribute the unabbreviat...
e2ebind 38779 Absorption of an existenti...
elpwgded 38780 ~ elpwgdedVD in convention...
trelded 38781 Deduction form of ~ trel ....
jaoded 38782 Deduction form of ~ jao . ...
sbtT 38783 A substitution into a theo...
not12an2impnot1 38784 If a double conjunction is...
in1 38787 Inference form of ~ df-vd1...
iin1 38788 ~ in1 without virtual dedu...
dfvd1ir 38789 Inference form of ~ df-vd1...
idn1 38790 Virtual deduction identity...
dfvd1imp 38791 Left-to-right part of defi...
dfvd1impr 38792 Right-to-left part of defi...
dfvd2 38795 Definition of a 2-hypothes...
dfvd2an 38798 Definition of a 2-hypothes...
dfvd2ani 38799 Inference form of ~ dfvd2a...
dfvd2anir 38800 Right-to-left inference fo...
dfvd2i 38801 Inference form of ~ dfvd2 ...
dfvd2ir 38802 Right-to-left inference fo...
dfvd3 38807 Definition of a 3-hypothes...
dfvd3i 38808 Inference form of ~ dfvd3 ...
dfvd3ir 38809 Right-to-left inference fo...
dfvd3an 38810 Definition of a 3-hypothes...
dfvd3ani 38811 Inference form of ~ dfvd3a...
dfvd3anir 38812 Right-to-left inference fo...
vd01 38822 A virtual hypothesis virtu...
vd02 38823 Two virtual hypotheses vir...
vd03 38824 A theorem is virtually inf...
vd12 38825 A virtual deduction with 1...
vd13 38826 A virtual deduction with 1...
vd23 38827 A virtual deduction with 2...
dfvd2imp 38828 The virtual deduction form...
dfvd2impr 38829 A 2-antecedent nested impl...
in2 38830 The virtual deduction intr...
int2 38831 The virtual deduction intr...
iin2 38832 ~ in2 without virtual dedu...
in2an 38833 The virtual deduction intr...
in3 38834 The virtual deduction intr...
iin3 38835 ~ in3 without virtual dedu...
in3an 38836 The virtual deduction intr...
int3 38837 The virtual deduction intr...
idn2 38838 Virtual deduction identity...
iden2 38839 Virtual deduction identity...
idn3 38840 Virtual deduction identity...
gen11 38841 Virtual deduction generali...
gen11nv 38842 Virtual deduction generali...
gen12 38843 Virtual deduction generali...
gen21 38844 Virtual deduction generali...
gen21nv 38845 Virtual deduction form of ...
gen31 38846 Virtual deduction generali...
gen22 38847 Virtual deduction generali...
ggen22 38848 ~ gen22 without virtual de...
exinst 38849 Existential Instantiation....
exinst01 38850 Existential Instantiation....
exinst11 38851 Existential Instantiation....
e1a 38852 A Virtual deduction elimin...
el1 38853 A Virtual deduction elimin...
e1bi 38854 Biconditional form of ~ e1...
e1bir 38855 Right biconditional form o...
e2 38856 A virtual deduction elimin...
e2bi 38857 Biconditional form of ~ e2...
e2bir 38858 Right biconditional form o...
ee223 38859 ~ e223 without virtual ded...
e223 38860 A virtual deduction elimin...
e222 38861 A virtual deduction elimin...
e220 38862 A virtual deduction elimin...
ee220 38863 ~ e220 without virtual ded...
e202 38864 A virtual deduction elimin...
ee202 38865 ~ e202 without virtual ded...
e022 38866 A virtual deduction elimin...
ee022 38867 ~ e022 without virtual ded...
e002 38868 A virtual deduction elimin...
ee002 38869 ~ e002 without virtual ded...
e020 38870 A virtual deduction elimin...
ee020 38871 ~ e020 without virtual ded...
e200 38872 A virtual deduction elimin...
ee200 38873 ~ e200 without virtual ded...
e221 38874 A virtual deduction elimin...
ee221 38875 ~ e221 without virtual ded...
e212 38876 A virtual deduction elimin...
ee212 38877 ~ e212 without virtual ded...
e122 38878 A virtual deduction elimin...
e112 38879 A virtual deduction elimin...
ee112 38880 ~ e112 without virtual ded...
e121 38881 A virtual deduction elimin...
e211 38882 A virtual deduction elimin...
ee211 38883 ~ e211 without virtual ded...
e210 38884 A virtual deduction elimin...
ee210 38885 ~ e210 without virtual ded...
e201 38886 A virtual deduction elimin...
ee201 38887 ~ e201 without virtual ded...
e120 38888 A virtual deduction elimin...
ee120 38889 Virtual deduction rule ~ e...
e021 38890 A virtual deduction elimin...
ee021 38891 ~ e021 without virtual ded...
e012 38892 A virtual deduction elimin...
ee012 38893 ~ e012 without virtual ded...
e102 38894 A virtual deduction elimin...
ee102 38895 ~ e102 without virtual ded...
e22 38896 A virtual deduction elimin...
e22an 38897 Conjunction form of ~ e22 ...
ee22an 38898 ~ e22an without virtual de...
e111 38899 A virtual deduction elimin...
e1111 38900 A virtual deduction elimin...
e110 38901 A virtual deduction elimin...
ee110 38902 ~ e110 without virtual ded...
e101 38903 A virtual deduction elimin...
ee101 38904 ~ e101 without virtual ded...
e011 38905 A virtual deduction elimin...
ee011 38906 ~ e011 without virtual ded...
e100 38907 A virtual deduction elimin...
ee100 38908 ~ e100 without virtual ded...
e010 38909 A virtual deduction elimin...
ee010 38910 ~ e010 without virtual ded...
e001 38911 A virtual deduction elimin...
ee001 38912 ~ e001 without virtual ded...
e11 38913 A virtual deduction elimin...
e11an 38914 Conjunction form of ~ e11 ...
ee11an 38915 ~ e11an without virtual de...
e01 38916 A virtual deduction elimin...
e01an 38917 Conjunction form of ~ e01 ...
ee01an 38918 ~ e01an without virtual de...
e10 38919 A virtual deduction elimin...
e10an 38920 Conjunction form of ~ e10 ...
ee10an 38921 ~ e10an without virtual de...
e02 38922 A virtual deduction elimin...
e02an 38923 Conjunction form of ~ e02 ...
ee02an 38924 ~ e02an without virtual de...
eel021old 38925 ~ el021old without virtual...
el021old 38926 A virtual deduction elimin...
eel132 38927 ~ syl2an with antecedents ...
eel000cT 38928 An elimination deduction. ...
eel0TT 38929 An elimination deduction. ...
eelT00 38930 An elimination deduction. ...
eelTTT 38931 An elimination deduction. ...
eelT11 38932 An elimination deduction. ...
eelT1 38933 Syllogism inference combin...
eelT12 38934 An elimination deduction. ...
eelTT1 38935 An elimination deduction. ...
eelT01 38936 An elimination deduction. ...
eel0T1 38937 An elimination deduction. ...
eel12131 38938 An elimination deduction. ...
eel2131 38939 ~ syl2an with antecedents ...
eel3132 38940 ~ syl2an with antecedents ...
eel0321old 38941 ~ el0321old without virtua...
el0321old 38942 A virtual deduction elimin...
eel2122old 38943 ~ el2122old without virtua...
el2122old 38944 A virtual deduction elimin...
eel0001 38945 An elimination deduction. ...
eel0000 38946 Elimination rule similar t...
eel1111 38947 Four-hypothesis eliminatio...
eel00001 38948 An elimination deduction. ...
eel00000 38949 Elimination rule similar ~...
eel11111 38950 Five-hypothesis eliminatio...
e12 38951 A virtual deduction elimin...
e12an 38952 Conjunction form of ~ e12 ...
el12 38953 Virtual deduction form of ...
e20 38954 A virtual deduction elimin...
e20an 38955 Conjunction form of ~ e20 ...
ee20an 38956 ~ e20an without virtual de...
e21 38957 A virtual deduction elimin...
e21an 38958 Conjunction form of ~ e21 ...
ee21an 38959 ~ e21an without virtual de...
e333 38960 A virtual deduction elimin...
e33 38961 A virtual deduction elimin...
e33an 38962 Conjunction form of ~ e33 ...
ee33an 38963 ~ e33an without virtual de...
e3 38964 Meta-connective form of ~ ...
e3bi 38965 Biconditional form of ~ e3...
e3bir 38966 Right biconditional form o...
e03 38967 A virtual deduction elimin...
ee03 38968 ~ e03 without virtual dedu...
e03an 38969 Conjunction form of ~ e03 ...
ee03an 38970 Conjunction form of ~ ee03...
e30 38971 A virtual deduction elimin...
ee30 38972 ~ e30 without virtual dedu...
e30an 38973 A virtual deduction elimin...
ee30an 38974 Conjunction form of ~ ee30...
e13 38975 A virtual deduction elimin...
e13an 38976 A virtual deduction elimin...
ee13an 38977 ~ e13an without virtual de...
e31 38978 A virtual deduction elimin...
ee31 38979 ~ e31 without virtual dedu...
e31an 38980 A virtual deduction elimin...
ee31an 38981 ~ e31an without virtual de...
e23 38982 A virtual deduction elimin...
e23an 38983 A virtual deduction elimin...
ee23an 38984 ~ e23an without virtual de...
e32 38985 A virtual deduction elimin...
ee32 38986 ~ e32 without virtual dedu...
e32an 38987 A virtual deduction elimin...
ee32an 38988 ~ e33an without virtual de...
e123 38989 A virtual deduction elimin...
ee123 38990 ~ e123 without virtual ded...
el123 38991 A virtual deduction elimin...
e233 38992 A virtual deduction elimin...
e323 38993 A virtual deduction elimin...
e000 38994 A virtual deduction elimin...
e00 38995 Elimination rule identical...
e00an 38996 Elimination rule identical...
eel00cT 38997 An elimination deduction. ...
eelTT 38998 An elimination deduction. ...
e0a 38999 Elimination rule identical...
eelT 39000 An elimination deduction. ...
eel0cT 39001 An elimination deduction. ...
eelT0 39002 An elimination deduction. ...
e0bi 39003 Elimination rule identical...
e0bir 39004 Elimination rule identical...
uun0.1 39005 Convention notation form o...
un0.1 39006 ` T. ` is the constant tru...
uunT1 39007 A deduction unionizing a n...
uunT1p1 39008 A deduction unionizing a n...
uunT21 39009 A deduction unionizing a n...
uun121 39010 A deduction unionizing a n...
uun121p1 39011 A deduction unionizing a n...
uun132 39012 A deduction unionizing a n...
uun132p1 39013 A deduction unionizing a n...
anabss7p1 39014 A deduction unionizing a n...
un10 39015 A unionizing deduction. (...
un01 39016 A unionizing deduction. (...
un2122 39017 A deduction unionizing a n...
uun2131 39018 A deduction unionizing a n...
uun2131p1 39019 A deduction unionizing a n...
uunTT1 39020 A deduction unionizing a n...
uunTT1p1 39021 A deduction unionizing a n...
uunTT1p2 39022 A deduction unionizing a n...
uunT11 39023 A deduction unionizing a n...
uunT11p1 39024 A deduction unionizing a n...
uunT11p2 39025 A deduction unionizing a n...
uunT12 39026 A deduction unionizing a n...
uunT12p1 39027 A deduction unionizing a n...
uunT12p2 39028 A deduction unionizing a n...
uunT12p3 39029 A deduction unionizing a n...
uunT12p4 39030 A deduction unionizing a n...
uunT12p5 39031 A deduction unionizing a n...
uun111 39032 A deduction unionizing a n...
3anidm12p1 39033 A deduction unionizing a n...
3anidm12p2 39034 A deduction unionizing a n...
uun123 39035 A deduction unionizing a n...
uun123p1 39036 A deduction unionizing a n...
uun123p2 39037 A deduction unionizing a n...
uun123p3 39038 A deduction unionizing a n...
uun123p4 39039 A deduction unionizing a n...
uun2221 39040 A deduction unionizing a n...
uun2221p1 39041 A deduction unionizing a n...
uun2221p2 39042 A deduction unionizing a n...
3impdirp1 39043 A deduction unionizing a n...
3impcombi 39044 A 1-hypothesis proposition...
trsspwALT 39045 Virtual deduction proof of...
trsspwALT2 39046 Virtual deduction proof of...
trsspwALT3 39047 Short predicate calculus p...
sspwtr 39048 Virtual deduction proof of...
sspwtrALT 39049 Virtual deduction proof of...
csbabgOLD 39050 Move substitution into a c...
csbunigOLD 39051 Distribute proper substitu...
csbfv12gALTOLD 39052 Move class substitution in...
csbxpgOLD 39053 Distribute proper substitu...
csbingOLD 39054 Distribute proper substitu...
csbresgOLD 39055 Distribute proper substitu...
csbrngOLD 39056 Distribute proper substitu...
csbima12gALTOLD 39057 Move class substitution in...
sspwtrALT2 39058 Short predicate calculus p...
pwtrVD 39059 Virtual deduction proof of...
pwtrrVD 39060 Virtual deduction proof of...
suctrALT 39061 The successor of a transit...
snssiALTVD 39062 Virtual deduction proof of...
snssiALT 39063 If a class is an element o...
snsslVD 39064 Virtual deduction proof of...
snssl 39065 If a singleton is a subcla...
snelpwrVD 39066 Virtual deduction proof of...
unipwrVD 39067 Virtual deduction proof of...
unipwr 39068 A class is a subclass of t...
sstrALT2VD 39069 Virtual deduction proof of...
sstrALT2 39070 Virtual deduction proof of...
suctrALT2VD 39071 Virtual deduction proof of...
suctrALT2 39072 Virtual deduction proof of...
elex2VD 39073 Virtual deduction proof of...
elex22VD 39074 Virtual deduction proof of...
eqsbc3rVD 39075 Virtual deduction proof of...
zfregs2VD 39076 Virtual deduction proof of...
tpid3gVD 39077 Virtual deduction proof of...
en3lplem1VD 39078 Virtual deduction proof of...
en3lplem2VD 39079 Virtual deduction proof of...
en3lpVD 39080 Virtual deduction proof of...
simplbi2VD 39081 Virtual deduction proof of...
3ornot23VD 39082 Virtual deduction proof of...
orbi1rVD 39083 Virtual deduction proof of...
bitr3VD 39084 Virtual deduction proof of...
3orbi123VD 39085 Virtual deduction proof of...
sbc3orgVD 39086 Virtual deduction proof of...
19.21a3con13vVD 39087 Virtual deduction proof of...
exbirVD 39088 Virtual deduction proof of...
exbiriVD 39089 Virtual deduction proof of...
rspsbc2VD 39090 Virtual deduction proof of...
3impexpVD 39091 Virtual deduction proof of...
3impexpbicomVD 39092 Virtual deduction proof of...
3impexpbicomiVD 39093 Virtual deduction proof of...
sbcel1gvOLD 39094 Class substitution into a ...
sbcoreleleqVD 39095 Virtual deduction proof of...
hbra2VD 39096 Virtual deduction proof of...
tratrbVD 39097 Virtual deduction proof of...
al2imVD 39098 Virtual deduction proof of...
syl5impVD 39099 Virtual deduction proof of...
idiVD 39100 Virtual deduction proof of...
ancomstVD 39101 Closed form of ~ ancoms . ...
ssralv2VD 39102 Quantification restricted ...
ordelordALTVD 39103 An element of an ordinal c...
equncomVD 39104 If a class equals the unio...
equncomiVD 39105 Inference form of ~ equnco...
sucidALTVD 39106 A set belongs to its succe...
sucidALT 39107 A set belongs to its succe...
sucidVD 39108 A set belongs to its succe...
imbi12VD 39109 Implication form of ~ imbi...
imbi13VD 39110 Join three logical equival...
sbcim2gVD 39111 Distribution of class subs...
sbcbiVD 39112 Implication form of ~ sbcb...
trsbcVD 39113 Formula-building inference...
truniALTVD 39114 The union of a class of tr...
ee33VD 39115 Non-virtual deduction form...
trintALTVD 39116 The intersection of a clas...
trintALT 39117 The intersection of a clas...
undif3VD 39118 The first equality of Exer...
sbcssgVD 39119 Virtual deduction proof of...
csbingVD 39120 Virtual deduction proof of...
onfrALTlem5VD 39121 Virtual deduction proof of...
onfrALTlem4VD 39122 Virtual deduction proof of...
onfrALTlem3VD 39123 Virtual deduction proof of...
simplbi2comtVD 39124 Virtual deduction proof of...
onfrALTlem2VD 39125 Virtual deduction proof of...
onfrALTlem1VD 39126 Virtual deduction proof of...
onfrALTVD 39127 Virtual deduction proof of...
csbeq2gVD 39128 Virtual deduction proof of...
csbsngVD 39129 Virtual deduction proof of...
csbxpgVD 39130 Virtual deduction proof of...
csbresgVD 39131 Virtual deduction proof of...
csbrngVD 39132 Virtual deduction proof of...
csbima12gALTVD 39133 Virtual deduction proof of...
csbunigVD 39134 Virtual deduction proof of...
csbfv12gALTVD 39135 Virtual deduction proof of...
con5VD 39136 Virtual deduction proof of...
relopabVD 39137 Virtual deduction proof of...
19.41rgVD 39138 Virtual deduction proof of...
2pm13.193VD 39139 Virtual deduction proof of...
hbimpgVD 39140 Virtual deduction proof of...
hbalgVD 39141 Virtual deduction proof of...
hbexgVD 39142 Virtual deduction proof of...
ax6e2eqVD 39143 The following User's Proof...
ax6e2ndVD 39144 The following User's Proof...
ax6e2ndeqVD 39145 The following User's Proof...
2sb5ndVD 39146 The following User's Proof...
2uasbanhVD 39147 The following User's Proof...
e2ebindVD 39148 The following User's Proof...
sb5ALTVD 39149 The following User's Proof...
vk15.4jVD 39150 The following User's Proof...
notnotrALTVD 39151 The following User's Proof...
con3ALTVD 39152 The following User's Proof...
elpwgdedVD 39153 Membership in a power clas...
sspwimp 39154 If a class is a subclass o...
sspwimpVD 39155 The following User's Proof...
sspwimpcf 39156 If a class is a subclass o...
sspwimpcfVD 39157 The following User's Proof...
suctrALTcf 39158 The sucessor of a transiti...
suctrALTcfVD 39159 The following User's Proof...
suctrALT3 39160 The successor of a transit...
sspwimpALT 39161 If a class is a subclass o...
unisnALT 39162 A set equals the union of ...
notnotrALT2 39163 Converse of double negatio...
sspwimpALT2 39164 If a class is a subclass o...
e2ebindALT 39165 Absorption of an existenti...
ax6e2ndALT 39166 If at least two sets exist...
ax6e2ndeqALT 39167 "At least two sets exist" ...
2sb5ndALT 39168 Equivalence for double sub...
chordthmALT 39169 The intersecting chords th...
isosctrlem1ALT 39170 Lemma for ~ isosctr . Thi...
iunconnlem2 39171 The indexed union of conne...
iunconnALT 39172 The indexed union of conne...
sineq0ALT 39173 A complex number whose sin...
evth2f 39174 A version of ~ evth2 using...
elunif 39175 A version of ~ eluni using...
rzalf 39176 A version of ~ rzal using ...
fvelrnbf 39177 A version of ~ fvelrnb usi...
rfcnpre1 39178 If F is a continuous funct...
ubelsupr 39179 If U belongs to A and U is...
fsumcnf 39180 A finite sum of functions ...
mulltgt0 39181 The product of a negative ...
rspcegf 39182 A version of ~ rspcev usin...
rabexgf 39183 A version of ~ rabexg usin...
fcnre 39184 A function continuous with...
sumsnd 39185 A sum of a singleton is th...
evthf 39186 A version of ~ evth using ...
cnfex 39187 The class of continuous fu...
fnchoice 39188 For a finite set, a choice...
refsumcn 39189 A finite sum of continuous...
rfcnpre2 39190 If ` F ` is a continuous f...
cncmpmax 39191 When the hypothesis for th...
rfcnpre3 39192 If F is a continuous funct...
rfcnpre4 39193 If F is a continuous funct...
sumpair 39194 Sum of two distinct comple...
rfcnnnub 39195 Given a real continuous fu...
refsum2cnlem1 39196 This is the core Lemma for...
refsum2cn 39197 The sum of two continuus r...
elunnel2 39198 A member of a union that i...
adantlllr 39199 Deduction adding a conjunc...
3adantlr3 39200 Deduction adding a conjunc...
nnxrd 39201 A natural number is an ext...
3adantll2 39202 Deduction adding a conjunc...
3adantll3 39203 Deduction adding a conjunc...
ssnel 39204 If not element of a set, t...
jcn 39205 Inference joining the cons...
elabrexg 39206 Elementhood in an image se...
ifeq123d 39207 Equality deduction for con...
sncldre 39208 A singleton is closed w.r....
n0p 39209 A polynomial with a nonzer...
pm2.65ni 39210 Inference rule for proof b...
pwssfi 39211 Every element of the power...
iuneq2df 39212 Equality deduction for ind...
nnfoctb 39213 There exists a mapping fro...
ssinss1d 39214 Intersection preserves sub...
0un 39215 The union of the empty set...
elpwinss 39216 An element of the powerset...
unidmex 39217 If ` F ` is a set, then ` ...
ndisj2 39218 A non disjointness conditi...
zenom 39219 The set of integer numbers...
rexsngf 39220 Restricted existential qua...
uzwo4 39221 Well-ordering principle: a...
unisn0 39222 The union of the singleton...
ssin0 39223 If two classes are disjoin...
inabs3 39224 Absorption law for interse...
pwpwuni 39225 Relationship between power...
disjiun2 39226 In a disjoint collection, ...
0pwfi 39227 The empty set is in any po...
ssinss2d 39228 Intersection preserves sub...
zct 39229 The set of integer numbers...
iunxsngf2 39230 A singleton index picks ou...
pwfin0 39231 A finite set always belong...
uzct 39232 An upper integer set is co...
iunxsnf 39233 A singleton index picks ou...
fiiuncl 39234 If a set is closed under t...
iunp1 39235 The addition of the next s...
fiunicl 39236 If a set is closed under t...
ixpeq2d 39237 Equality theorem for infin...
disjxp1 39238 The sets of a cartesian pr...
disjsnxp 39239 The sets in the cartesian ...
eliind 39240 Membership in indexed inte...
rspcef 39241 Restricted existential spe...
inn0f 39242 A non-empty intersection. ...
ixpssmapc 39243 An infinite Cartesian prod...
inn0 39244 A non-empty intersection. ...
elintd 39245 Membership in class inters...
eqneltri 39246 If a class is not an eleme...
ssdf 39247 A sufficient condition for...
brneqtrd 39248 Substitution of equal clas...
ssnct 39249 A set containing an uncoun...
ssuniint 39250 Sufficient condition for b...
elintdv 39251 Membership in class inters...
ssd 39252 A sufficient condition for...
ralimralim 39253 Introducing any antecedent...
snelmap 39254 Membership of the element ...
dfcleqf 39255 Equality connective betwee...
xrnmnfpnf 39256 An extended real that is n...
nelrnmpt 39257 Non-membership in the rang...
snn0d 39258 The singleton of a set is ...
iuneq1i 39259 Equality theorem for index...
nssrex 39260 Negation of subclass relat...
nelpr2 39261 If a class is not an eleme...
nelpr1 39262 If a class is not an eleme...
iunssf 39263 Subset theorem for an inde...
ssinc 39264 Inclusion relation for a m...
ssdec 39265 Inclusion relation for a m...
elixpconstg 39266 Membership in an infinite ...
iineq1d 39267 Equality theorem for index...
metpsmet 39268 A metric is a pseudometric...
ixpssixp 39269 Subclass theorem for infin...
ballss3 39270 A sufficient condition for...
iunssd 39271 Subset theorem for an inde...
iunincfi 39272 Given a sequence of increa...
nsstr 39273 If it's not a subclass, it...
rabbida 39274 Equivalent wff's yield equ...
rexanuz3 39275 Combine two different uppe...
rabeqd 39276 Equality theorem for restr...
cbvmpt22 39277 Rule to change the second ...
cbvmpt21 39278 Rule to change the first b...
eliuniin 39279 Indexed union of indexed i...
ssabf 39280 Subclass of a class abstra...
uniexd 39281 Deduction version of the Z...
pwexd 39282 Deduction version of the p...
pssnssi 39283 A proper subclass does not...
rabidim2 39284 Membership in a restricted...
xpexd 39285 The Cartesian product of t...
eluni2f 39286 Membership in class union....
eliin2f 39287 Membership in indexed inte...
nssd 39288 Negation of subclass relat...
iineq12dv 39289 Equality deduction for ind...
supxrcld 39290 The supremum of an arbitra...
elrestd 39291 A sufficient condition for...
eliuniincex 39292 Counterexample to show tha...
eliincex 39293 Counterexample to show tha...
eliinid 39294 Membership in an indexed i...
abssf 39295 Class abstraction in a sub...
fexd 39296 If the domain of a mapping...
supxrubd 39297 A member of a set of exten...
ssrabf 39298 Subclass of a restricted c...
eliin2 39299 Membership in indexed inte...
ssrab2f 39300 Subclass relation for a re...
restuni3 39301 The underlying set of a su...
rabssf 39302 Restricted class abstracti...
eliuniin2 39303 Indexed union of indexed i...
restuni4 39304 The underlying set of a su...
restuni6 39305 The underlying set of a su...
restuni5 39306 The underlying set of a su...
unirestss 39307 The union of an elementwis...
ne0d 39308 If a set has elements, the...
iniin1 39309 Indexed intersection of in...
iniin2 39310 Indexed intersection of in...
cbvrabv2 39311 A more general version of ...
iinssiin 39312 Subset implication for an ...
eliind2 39313 Membership in indexed inte...
iinssd 39314 Subset implication for an ...
ralrimia 39315 Inference from Theorem 19....
tpid2g 39316 Closed theorem form of ~ t...
rabbida2 39317 Equivalent wff's yield equ...
iinexd 39318 The existence of an indexe...
rabexf 39319 Separation Scheme in terms...
rabbida3 39320 Equivalent wff's yield equ...
resexd 39321 The restriction of a set i...
tpid1g 39322 Closed theorem form of ~ t...
fnexd 39323 If the domain of a functio...
r19.36vf 39324 Restricted quantifier vers...
raleqd 39325 Equality deduction for res...
ralimda 39326 Deduction quantifying both...
iinssf 39327 Subset implication for an ...
iinssdf 39328 Subset implication for an ...
ifcli 39329 Membership (closure) of a ...
resabs2i 39330 Absorption law for restric...
ssdf2 39331 A sufficient condition for...
rabssd 39332 Restricted class abstracti...
ssrind 39333 Add right intersection to ...
rexnegd 39334 Minus a real number. (Con...
rexlimd3 39335 * Inference from Theorem 1...
resabs1i 39336 Absorption law for restric...
nel1nelin 39337 Membership in an intersect...
nel2nelin 39338 Membership in an intersect...
rexlimdva2 39339 Inference from Theorem 19....
nel1nelini 39340 Membership in an intersect...
nel2nelini 39341 Membership in an intersect...
eliunid 39342 Membership in indexed unio...
reximddv3 39343 Deduction from Theorem 19....
reximdd 39344 Deduction from Theorem 19....
unfid 39345 The union of two finite se...
unima 39346 Image of a union. (Contri...
feq1dd 39347 Equality deduction for fun...
fnresdmss 39348 A function does not change...
fmptsnxp 39349 Maps-to notation and cross...
fvmpt2bd 39350 Value of a function given ...
rnmptfi 39351 The range of a function wi...
fresin2 39352 Restriction of a function ...
rnmptc 39353 Range of a constant functi...
ffi 39354 A function with finite dom...
suprnmpt 39355 An explicit bound for the ...
rnffi 39356 The range of a function wi...
mptelpm 39357 A function in maps-to nota...
rnmptpr 39358 Range of a function define...
resmpti 39359 Restriction of the mapping...
founiiun 39360 Union expressed as an inde...
f1oeq2d 39361 Equality deduction for one...
rnresun 39362 Distribution law for range...
f1oeq1d 39363 Equality deduction for one...
dffo3f 39364 An onto mapping expressed ...
rnresss 39365 The range of a restriction...
elrnmptd 39366 The range of a function in...
elrnmptf 39367 The range of a function in...
rnmptssrn 39368 Inclusion relation for two...
disjf1 39369 A 1 to 1 mapping built fro...
rnsnf 39370 The range of a function wh...
wessf1ornlem 39371 Given a function ` F ` on ...
wessf1orn 39372 Given a function ` F ` on ...
foelrnf 39373 Property of a surjective f...
nelrnres 39374 If ` A ` is not in the ran...
disjrnmpt2 39375 Disjointness of the range ...
elrnmpt1sf 39376 Elementhood in an image se...
founiiun0 39377 Union expressed as an inde...
disjf1o 39378 A bijection built from dis...
fompt 39379 Express being onto for a m...
disjinfi 39380 Only a finite number of di...
fvovco 39381 Value of the composition o...
ssnnf1octb 39382 There exists a bijection b...
mapdm0OLD 39383 The empty set is the only ...
nnf1oxpnn 39384 There is a bijection betwe...
rnmptssd 39385 The range of an operation ...
projf1o 39386 A biijection from a set to...
fvmap 39387 Function value for a membe...
mapsnd 39388 The value of set exponenti...
fvixp2 39389 Projection of a factor of ...
fidmfisupp 39390 A function with a finite d...
mapsnend 39391 Set exponentiation to a si...
choicefi 39392 For a finite set, a choice...
mpct 39393 The exponentiation of a co...
cnmetcoval 39394 Value of the distance func...
fcomptss 39395 Express composition of two...
elmapsnd 39396 Membership in a set expone...
mapss2 39397 Subset inheritance for set...
fsneq 39398 Equality condition for two...
difmap 39399 Difference of two sets exp...
unirnmap 39400 Given a subset of a set ex...
inmap 39401 Intersection of two sets e...
fcoss 39402 Composition of two mapping...
fsneqrn 39403 Equality condition for two...
difmapsn 39404 Difference of two sets exp...
mapssbi 39405 Subset inheritance for set...
unirnmapsn 39406 Equality theorem for a sub...
iunmapss 39407 The indexed union of set e...
ssmapsn 39408 A subset ` C ` of a set ex...
iunmapsn 39409 The indexed union of set e...
absfico 39410 Mapping domain and codomai...
icof 39411 The set of left-closed rig...
rnmpt0 39412 The range of a function in...
rnmptn0 39413 The range of a function in...
elpmrn 39414 The range of a partial fun...
imaexi 39415 The image of a set is a se...
axccdom 39416 Relax the constraint on ax...
dmmptdf 39417 The domain of the mapping ...
elpmi2 39418 The domain of a partial fu...
dmrelrnrel 39419 A relation preserving func...
fdmd 39420 The domain of a mapping. ...
fco3 39421 Functionality of a composi...
dmexd 39422 The domain of a set is a s...
fvcod 39423 Value of a function compos...
fcod 39424 Composition of two mapping...
freld 39425 A mapping is a relation. ...
frnd 39426 The range of a mapping. (...
elrnmpt2id 39427 Membership in the range of...
fvmptelrn 39428 A function's value belongs...
axccd 39429 An alternative version of ...
axccd2 39430 An alternative version of ...
funimassd 39431 Sufficient condition for t...
fimassd 39432 The image of a class is a ...
feqresmptf 39433 Express a restricted funct...
fnmptd 39434 The maps-to notation defin...
elrnmpt1d 39435 Elementhood in an image se...
dmresss 39436 The domain of a restrictio...
mptima 39437 Image of a function in map...
dmmptssf 39438 The domain of a mapping is...
dmmptdf2 39439 The domain of the mapping ...
dmuz 39440 Domain of the upper intege...
fndmd 39441 The domain of a function. ...
fmptd2f 39442 Domain and codomain of the...
mpteq1df 39443 An equality theorem for th...
mptexf 39444 If the domain of a functio...
fvmptd2 39445 Deduction version of ~ fvm...
fvmpt4 39446 Value of a function given ...
fvmptd3 39447 Deduction version of ~ fvm...
fmptf 39448 Functionality of the mappi...
resimass 39449 The image of a restriction...
mptssid 39450 The mapping operation expr...
mptfnd 39451 The maps-to notation defin...
mpteq12da 39452 An equality inference for ...
rnmptlb 39453 Boundness below of the ran...
elpreimad 39454 Membership in the preimage...
rnmptbddlem 39455 Boundness of the range of ...
rnmptbdd 39456 Boundness of the range of ...
mptima2 39457 Image of a function in map...
fvelimad 39458 Function value in an image...
fnfvimad 39459 A function's value belongs...
fmptd2 39460 Domain and codomain of the...
funimaeq 39461 Membership relation for th...
rnmptssf 39462 The range of an operation ...
rnmptbd2lem 39463 Boundness below of the ran...
rnmptbd2 39464 Boundness below of the ran...
infnsuprnmpt 39465 The indexed infimum of rea...
suprclrnmpt 39466 Closure of the indexed sup...
suprubrnmpt2 39467 A member of a nonempty ind...
suprubrnmpt 39468 A member of a nonempty ind...
rnmptssdf 39469 The range of an operation ...
rnmptbdlem 39470 Boundness above of the ran...
rnmptbd 39471 Boundness above of the ran...
rnmptss2 39472 The range of an operation ...
elmptima 39473 The image of a function in...
ralrnmpt3 39474 A restricted quantifier ov...
fvelima2 39475 Function value in an image...
funresd 39476 A restriction of a functio...
rnmptssbi 39477 The range of an operation ...
fnfvima2 39478 Given an element of the pr...
fnfvelrnd 39479 A function's value belongs...
imass2d 39480 Subset theorem for image. ...
imassmpt 39481 Membership relation for th...
fnssresd 39482 Restriction of a function ...
fpmd 39483 A total function is a part...
fconst7 39484 An alternative way to expr...
sub2times 39485 Subtracting from a number,...
xrltled 39486 'Less than' implies 'less ...
abssubrp 39487 The distance of two distin...
elfzfzo 39488 Relationship between membe...
oddfl 39489 Odd number representation ...
abscosbd 39490 Bound for the absolute val...
mul13d 39491 Commutative/associative la...
negpilt0 39492 Negative ` _pi ` is negati...
dstregt0 39493 A complex number ` A ` tha...
subadd4b 39494 Rearrangement of 4 terms i...
xrlttri5d 39495 Not equal and not larger i...
neglt 39496 The negative of a positive...
zltlesub 39497 If an integer ` N ` is sma...
divlt0gt0d 39498 The ratio of a negative nu...
subsub23d 39499 Swap subtrahend and result...
2timesgt 39500 Double of a positive real ...
reopn 39501 The reals are open with re...
elfzop1le2 39502 A member in a half-open in...
sub31 39503 Swap the first and third t...
nnne1ge2 39504 A positive integer which i...
lefldiveq 39505 A closed enough, smaller r...
negsubdi3d 39506 Distribution of negative o...
ltdiv2dd 39507 Division of a positive num...
absnpncand 39508 Triangular inequality, com...
abssinbd 39509 Bound for the absolute val...
halffl 39510 Floor of ` ( 1 / 2 ) ` . ...
monoords 39511 Ordering relation for a st...
hashssle 39512 The size of a subset of a ...
lttri5d 39513 Not equal and not larger i...
fzisoeu 39514 A finite ordered set has a...
lt3addmuld 39515 If three real numbers are ...
absnpncan2d 39516 Triangular inequality, com...
fperiodmullem 39517 A function with period T i...
fperiodmul 39518 A function with period T i...
upbdrech 39519 Choice of an upper bound f...
lt4addmuld 39520 If four real numbers are l...
absnpncan3d 39521 Triangular inequality, com...
upbdrech2 39522 Choice of an upper bound f...
ssfiunibd 39523 A finite union of bounded ...
fz1ssfz0 39524 Subset relationship for fi...
fzdifsuc2 39525 Remove a successor from th...
fzsscn 39526 A finite sequence of integ...
divcan8d 39527 A cancellation law for div...
dmmcand 39528 Cancellation law for divis...
fzssre 39529 A finite sequence of integ...
elfzelzd 39530 A member of a finite set o...
bccld 39531 A binomial coefficient, in...
leadd12dd 39532 Addition to both sides of ...
fzssnn0 39533 A finite set of sequential...
xreqle 39534 Equality implies 'less tha...
xaddid2d 39535 ` 0 ` is a left identity f...
xadd0ge 39536 A number is less than or e...
elfzolem1 39537 A member in a half-open in...
xrgtned 39538 'Greater than' implies not...
xrleneltd 39539 'Less than or equal to' an...
xaddcomd 39540 The extended real addition...
supxrre3 39541 The supremum of a nonempty...
uzfissfz 39542 For any finite subset of t...
xleadd2d 39543 Addition of extended reals...
suprltrp 39544 The supremum of a nonempty...
xleadd1d 39545 Addition of extended reals...
xreqled 39546 Equality implies 'less tha...
xrgepnfd 39547 An extended real greater o...
xrge0nemnfd 39548 A nonnegative extended rea...
supxrgere 39549 If a real number can be ap...
iuneqfzuzlem 39550 Lemma for ~ iuneqfzuz : he...
iuneqfzuz 39551 If two unions indexed by u...
xle2addd 39552 Adding both side of two in...
supxrgelem 39553 If an extended real number...
supxrge 39554 If an extended real number...
suplesup 39555 If any element of ` A ` ca...
infxrglb 39556 The infimum of a set of ex...
xadd0ge2 39557 A number is less than or e...
nepnfltpnf 39558 An extended real that is n...
ltadd12dd 39559 Addition to both sides of ...
nemnftgtmnft 39560 An extended real that is n...
xrgtso 39561 'Greater than' is a strict...
rpex 39562 The positive reals form a ...
xrge0ge0 39563 A nonnegative extended rea...
xrssre 39564 A subset of extended reals...
ssuzfz 39565 A finite subset of the upp...
absfun 39566 The absolute value is a fu...
infrpge 39567 The infimum of a non empty...
xrlexaddrp 39568 If an extended real number...
supsubc 39569 The supremum function dist...
xralrple2 39570 Show that ` A ` is less th...
nnuzdisj 39571 The first ` N ` elements o...
ltdivgt1 39572 Divsion by a number greate...
xrltned 39573 'Less than' implies not eq...
nnsplit 39574 Express the set of positiv...
divdiv3d 39575 Division into a fraction. ...
abslt2sqd 39576 Comparison of the square o...
qenom 39577 The set of rational number...
qct 39578 The set of rational number...
xrltnled 39579 'Less than' in terms of 'l...
lenlteq 39580 'less than or equal to' bu...
xrred 39581 An extended real that is n...
rr2sscn2 39582 ` RR^ 2 ` is a subset of C...
infxr 39583 The infimum of a set of ex...
infxrunb2 39584 The infimum of an unbounde...
infxrbnd2 39585 The infimum of a bounded-b...
infleinflem1 39586 Lemma for ~ infleinf , cas...
infleinflem2 39587 Lemma for ~ infleinf , whe...
infleinf 39588 If any element of ` B ` ca...
xralrple4 39589 Show that ` A ` is less th...
xralrple3 39590 Show that ` A ` is less th...
eluzelzd 39591 A member of an upper set o...
suplesup2 39592 If any element of ` A ` is...
recnnltrp 39593 ` N ` is a natural number ...
fiminre2 39594 A nonempty finite set of r...
nnn0 39595 The set of positive intege...
fzct 39596 A finite set of sequential...
rpgtrecnn 39597 Any positive real number i...
fzossuz 39598 A half-open integer interv...
fzossz 39599 A half-open integer interv...
infrefilb 39600 The infimum of a finite se...
infxrrefi 39601 The real and extended real...
xrralrecnnle 39602 Show that ` A ` is less th...
fzoct 39603 A finite set of sequential...
frexr 39604 A function taking real val...
nnrecrp 39605 The reciprocal of a positi...
qred 39606 A rational number is a rea...
reclt0d 39607 The reciprocal of a negati...
lt0neg1dd 39608 If a number is negative, i...
mnfled 39609 Minus infinity is less tha...
xrleidd 39610 'Less than or equal to' is...
negelrpd 39611 The negation of a negative...
infxrcld 39612 The infimum of an arbitrar...
xrralrecnnge 39613 Show that ` A ` is less th...
reclt0 39614 The reciprocal of a negati...
ltmulneg 39615 Multiplying by a negative ...
allbutfi 39616 For all but finitely many....
ltdiv23neg 39617 Swap denominator with othe...
xreqnltd 39618 A consequence of trichotom...
mnfnre2 39619 Minus infinity is not a re...
uzssre 39620 An upper set of integers i...
zssxr 39621 The integers are a subset ...
fisupclrnmpt 39622 A nonempty finite indexed ...
supxrunb3 39623 The supremum of an unbound...
elfzod 39624 Membership in a half-open ...
fimaxre4 39625 A nonempty finite set of r...
ren0 39626 The set of reals is nonemp...
eluzelz2 39627 A member of an upper set o...
pnfnre2 39628 Plus infinity is not a rea...
resabs2d 39629 Absorption law for restric...
uzid2 39630 Membership of the least me...
uzidd 39631 Membership of the least me...
supxrleubrnmpt 39632 The supremum of a nonempty...
uzssre2 39633 An upper set of integers i...
uzssd 39634 Subset relationship for tw...
eluzd 39635 Membership in an upper set...
elfzd 39636 Membership in a finite set...
infxrlbrnmpt2 39637 A member of a nonempty ind...
xrre4 39638 An extended real is real i...
uz0 39639 The upper integers functio...
eluzelz2d 39640 A member of an upper set o...
infleinf2 39641 If any element in ` B ` is...
unb2ltle 39642 "Unbounded below" expresse...
uzidd2 39643 Membership of the least me...
uzssd2 39644 Subset relationship for tw...
rexabslelem 39645 An indexed set of absolute...
rexabsle 39646 An indexed set of absolute...
allbutfiinf 39647 Given a "for all but finit...
supxrrernmpt 39648 The real and extended real...
suprleubrnmpt 39649 The supremum of a nonempty...
infrnmptle 39650 An indexed infimum of exte...
infxrunb3 39651 The infimum of an unbounde...
uzn0d 39652 The upper integers are all...
uzssd3 39653 Subset relationship for tw...
rexabsle2 39654 An indexed set of absolute...
infxrunb3rnmpt 39655 The infimum of an unbounde...
supxrre3rnmpt 39656 The indexed supremum of a ...
uzublem 39657 A set of reals, indexed by...
uzub 39658 A set of reals, indexed by...
ssrexr 39659 A subset of the reals is a...
supxrmnf2 39660 Removing minus infinity fr...
supxrcli 39661 The supremum of an arbitra...
uzid3 39662 Membership of the least me...
infxrlesupxr 39663 The supremum of a nonempty...
xnegeqd 39664 Equality of two extended n...
xnegrecl 39665 The extended real negative...
xnegnegi 39666 Extended real version of ~...
xnegeqi 39667 Equality of two extended n...
nfxnegd 39668 Deduction version of ~ nfx...
xnegnegd 39669 Extended real version of ~...
uzred 39670 An upper integer is a real...
xnegcli 39671 Closure of extended real n...
supminfrnmpt 39672 The indexed supremum of a ...
ceilged 39673 The ceiling of a real numb...
infxrpnf 39674 Adding plus infinity to a ...
infxrrnmptcl 39675 The infimum of an arbitrar...
leneg2d 39676 Negative of one side of 'l...
supxrltinfxr 39677 The supremum of the empty ...
max1d 39678 A number is less than or e...
ceilcld 39679 Closure of the ceiling fun...
supxrleubrnmptf 39680 The supremum of a nonempty...
nleltd 39681 'Not less than or equal to...
zxrd 39682 An integer is an extended ...
infxrgelbrnmpt 39683 The infimum of an indexed ...
rphalfltd 39684 Half of a positive real is...
uzssz2 39685 An upper set of integers i...
1xr 39686 ` 1 ` is an extended real ...
leneg3d 39687 Negative of one side of 'l...
max2d 39688 A number is less than or e...
uzn0bi 39689 The upper integers functio...
xnegrecl2 39690 If the extended real negat...
nfxneg 39691 Bound-variable hypothesis ...
uzxrd 39692 An upper integer is an ext...
infxrpnf2 39693 Removing plus infinity fro...
supminfxr 39694 The extended real suprema ...
infrpgernmpt 39695 The infimum of a non empty...
xnegre 39696 An extended real is real i...
xnegrecl2d 39697 If the extended real negat...
uzxr 39698 An upper integer is an ext...
supminfxr2 39699 The extended real suprema ...
xnegred 39700 An extended real is real i...
supminfxrrnmpt 39701 The indexed supremum of a ...
min1d 39702 The minimum of two numbers...
min2d 39703 The minimum of two numbers...
pnfged 39704 Plus infinity is an upper ...
xrnpnfmnf 39705 An extended real that is n...
uzsscn 39706 An upper set of integers i...
absimnre 39707 The absolute value of the ...
uzsscn2 39708 An upper set of integers i...
xrtgcntopre 39709 The standard topologies on...
absimlere 39710 The absolute value of the ...
rpssxr 39711 The positive reals are a s...
gtnelioc 39712 A real number larger than ...
ioossioc 39713 An open interval is a subs...
ioondisj2 39714 A condition for two open i...
ioondisj1 39715 A condition for two open i...
ioosscn 39716 An open interval is a set ...
ioogtlb 39717 An element of a closed int...
evthiccabs 39718 Extreme Value Theorem on y...
ltnelicc 39719 A real number smaller than...
eliood 39720 Membership in an open real...
iooabslt 39721 An upper bound for the dis...
gtnelicc 39722 A real number greater than...
iooinlbub 39723 An open interval has empty...
iocgtlb 39724 An element of a left open ...
iocleub 39725 An element of a left open ...
eliccd 39726 Membership in a closed rea...
iccssred 39727 A closed real interval is ...
eliccre 39728 A member of a closed inter...
eliooshift 39729 Element of an open interva...
eliocd 39730 Membership in a left open,...
snunioo2 39731 The closure of one end of ...
icoltub 39732 An element of a left close...
tgiooss 39733 The restriction of the com...
eliocre 39734 A member of a left open, r...
iooltub 39735 An element of an open inte...
ioontr 39736 The interior of an interva...
eliccxr 39737 A member of a closed inter...
snunioo1 39738 The closure of one end of ...
lbioc 39739 An left open right closed ...
ioomidp 39740 The midpoint is an element...
iccdifioo 39741 If the open inverval is re...
iccdifprioo 39742 An open interval is the cl...
ioossioobi 39743 Biconditional form of ~ io...
iccshift 39744 A closed interval shifted ...
iccsuble 39745 An upper bound to the dist...
iocopn 39746 A left open right closed i...
eliccelioc 39747 Membership in a closed int...
iooshift 39748 An open interval shifted b...
iccintsng 39749 Intersection of two adiace...
icoiccdif 39750 Left closed, right open in...
icoopn 39751 A left closed right open i...
icoub 39752 A left-closed, right-open ...
eliccxrd 39753 Membership in a closed rea...
pnfel0pnf 39754 ` +oo ` is a nonnegative e...
ge0nemnf2 39755 A nonnegative extended rea...
eliccnelico 39756 An element of a closed int...
eliccelicod 39757 A member of a closed inter...
ge0xrre 39758 A nonnegative extended rea...
ge0lere 39759 A nonnegative extended Rea...
elicores 39760 Membership in a left-close...
inficc 39761 The infimum of a nonempty ...
qinioo 39762 The rational numbers are d...
lenelioc 39763 A real number smaller than...
ioonct 39764 C non empty open interval ...
xrgtnelicc 39765 A real number greater than...
iccdificc 39766 The difference of two clos...
iocnct 39767 A non empty left-open, rig...
iccnct 39768 A closed interval, with mo...
iooiinicc 39769 A closed interval expresse...
iccgelbd 39770 An element of a closed int...
iooltubd 39771 An element of an open inte...
icoltubd 39772 An element of a left close...
qelioo 39773 The rational numbers are d...
tgqioo2 39774 Every open set of reals is...
iccleubd 39775 An element of a closed int...
elioored 39776 A member of an open interv...
ioogtlbd 39777 An element of a closed int...
ioofun 39778 ` (,) ` is a function. (C...
icomnfinre 39779 A left-closed, right-open,...
sqrlearg 39780 The square compared with i...
ressiocsup 39781 If the supremum belongs to...
ressioosup 39782 If the supremum does not b...
iooiinioc 39783 A left-open, right-closed ...
ressiooinf 39784 If the infimum does not be...
icogelbd 39785 An element of a left close...
iocleubd 39786 An element of a left open ...
uzinico 39787 An upper interval of integ...
preimaiocmnf 39788 Preimage of a right-closed...
uzinico2 39789 An upper interval of integ...
uzinico3 39790 An upper interval of integ...
icossico2 39791 Condition for a closed-bel...
dmico 39792 The domain of the closed-b...
ndmico 39793 The closed-below, open-abo...
uzubioo 39794 The upper integers are unb...
uzubico 39795 The upper integers are unb...
uzubioo2 39796 The upper integers are unb...
uzubico2 39797 The upper integers are unb...
iocgtlbd 39798 An element of a left open ...
xrtgioo2 39799 The topology on the extend...
tgioo4 39800 The standard topology on t...
fsumclf 39801 Closure of a finite sum of...
fsummulc1f 39802 Closure of a finite sum of...
fsumnncl 39803 Closure of a non empty, fi...
fsumsplit1 39804 Separate out a term in a f...
fsumge0cl 39805 The finite sum of nonnegat...
fsumf1of 39806 Re-index a finite sum usin...
fsumiunss 39807 Sum over a disjoint indexe...
fsumreclf 39808 Closure of a finite sum of...
fsumlessf 39809 A shorter sum of nonnegati...
fsumsupp0 39810 Finite sum of function val...
fsumsermpt 39811 A finite sum expressed in ...
fmul01 39812 Multiplying a finite numbe...
fmulcl 39813 If ' Y ' is closed under t...
fmuldfeqlem1 39814 induction step for the pro...
fmuldfeq 39815 X and Z are two equivalent...
fmul01lt1lem1 39816 Given a finite multiplicat...
fmul01lt1lem2 39817 Given a finite multiplicat...
fmul01lt1 39818 Given a finite multiplicat...
cncfmptss 39819 A continuous complex funct...
rrpsscn 39820 The positive reals are a s...
mulc1cncfg 39821 A version of ~ mulc1cncf u...
infrglb 39822 The infimum of a nonempty ...
expcnfg 39823 If ` F ` is a complex cont...
prodeq2ad 39824 Equality deduction for pro...
fprodsplit1 39825 Separate out a term in a f...
fprodexp 39826 Positive integer exponenti...
fprodabs2 39827 The absolute value of a fi...
fprod0 39828 A finite product with a ze...
mccllem 39829 * Induction step for ~ mcc...
mccl 39830 A multinomial coefficient,...
fprodcnlem 39831 A finite product of functi...
fprodcn 39832 A finite product of functi...
clim1fr1 39833 A class of sequences of fr...
isumneg 39834 Negation of a converging s...
climrec 39835 Limit of the reciprocal of...
climmulf 39836 A version of ~ climmul usi...
climexp 39837 The limit of natural power...
climinf 39838 A bounded monotonic non in...
climsuselem1 39839 The subsequence index ` I ...
climsuse 39840 A subsequence ` G ` of a c...
climrecf 39841 A version of ~ climrec usi...
climneg 39842 Complex limit of the negat...
climinff 39843 A version of ~ climinf usi...
climdivf 39844 Limit of the ratio of two ...
climreeq 39845 If ` F ` is a real functio...
ellimciota 39846 An explicit value for the ...
climaddf 39847 A version of ~ climadd usi...
mullimc 39848 Limit of the product of tw...
ellimcabssub0 39849 An equivalent condition fo...
limcdm0 39850 If a function has empty do...
islptre 39851 An equivalence condition f...
limccog 39852 Limit of the composition o...
limciccioolb 39853 The limit of a function at...
climf 39854 Express the predicate: Th...
mullimcf 39855 Limit of the multiplicatio...
constlimc 39856 Limit of constant function...
rexlim2d 39857 Inference removing two res...
idlimc 39858 Limit of the identity func...
divcnvg 39859 The sequence of reciprocal...
limcperiod 39860 If ` F ` is a periodic fun...
limcrecl 39861 If ` F ` is a real-valued ...
sumnnodd 39862 A series indexed by ` NN `...
lptioo2 39863 The upper bound of an open...
lptioo1 39864 The lower bound of an open...
elprn1 39865 A member of an unordered p...
elprn2 39866 A member of an unordered p...
limcmptdm 39867 The domain of a map-to fun...
clim2f 39868 Express the predicate: Th...
limcicciooub 39869 The limit of a function at...
ltmod 39870 A sufficient condition for...
islpcn 39871 A characterization for a l...
lptre2pt 39872 If a set in the real line ...
limsupre 39873 If a sequence is bounded, ...
limcresiooub 39874 The left limit doesn't cha...
limcresioolb 39875 The right limit doesn't ch...
limcleqr 39876 If the left and the right ...
lptioo2cn 39877 The upper bound of an open...
lptioo1cn 39878 The lower bound of an open...
neglimc 39879 Limit of the negative func...
addlimc 39880 Sum of two limits. (Contr...
0ellimcdiv 39881 If the numerator converges...
clim2cf 39882 Express the predicate ` F ...
limclner 39883 For a limit point, both fr...
sublimc 39884 Subtraction of two limits....
reclimc 39885 Limit of the reciprocal of...
clim0cf 39886 Express the predicate ` F ...
limclr 39887 For a limit point, both fr...
divlimc 39888 Limit of the quotient of t...
expfac 39889 Factorial grows faster tha...
climconstmpt 39890 A constant sequence conver...
climresmpt 39891 A function restricted to u...
climsubmpt 39892 Limit of the difference of...
climsubc2mpt 39893 Limit of the difference of...
climsubc1mpt 39894 Limit of the difference of...
fnlimfv 39895 The value of the limit fun...
climreclf 39896 The limit of a convergent ...
climeldmeq 39897 Two functions that are eve...
climf2 39898 Express the predicate: Th...
fnlimcnv 39899 The sequence of function v...
climeldmeqmpt 39900 Two functions that are eve...
climfveq 39901 Two functions that are eve...
clim2f2 39902 Express the predicate: Th...
climfveqmpt 39903 Two functions that are eve...
climd 39904 Express the predicate: Th...
clim2d 39905 The limit of complex numbe...
fnlimfvre 39906 The limit function of real...
allbutfifvre 39907 Given a sequence of real-v...
climleltrp 39908 The limit of complex numbe...
fnlimfvre2 39909 The limit function of real...
fnlimf 39910 The limit function of real...
fnlimabslt 39911 A sequence of function val...
climfveqf 39912 Two functions that are eve...
climmptf 39913 Exhibit a function ` G ` w...
climfveqmpt3 39914 Two functions that are eve...
climeldmeqf 39915 Two functions that are eve...
climreclmpt 39916 The limit of B convergent ...
limsupref 39917 If a sequence is bounded, ...
limsupbnd1f 39918 If a sequence is eventuall...
climbddf 39919 A converging sequence of c...
climeqf 39920 Two functions that are eve...
climeldmeqmpt3 39921 Two functions that are eve...
limsupcld 39922 Closure of the superior li...
climfv 39923 The limit of a convergent ...
limsupval3 39924 The superior limit of an i...
climfveqmpt2 39925 Two functions that are eve...
limsup0 39926 The superior limit of the ...
climeldmeqmpt2 39927 Two functions that are eve...
limsupresre 39928 The supremum limit of a fu...
climeqmpt 39929 Two functions that are eve...
climfvd 39930 The limit of a convergent ...
limsuplesup 39931 An upper bound for the sup...
limsupresico 39932 The superior limit doesn't...
limsuppnfdlem 39933 If the restriction of a fu...
limsuppnfd 39934 If the restriction of a fu...
limsupresuz 39935 If the real part of the do...
limsupub 39936 If the limsup is not ` +oo...
limsupres 39937 The superior limit of a re...
climinf2lem 39938 A convergent, non-increasi...
climinf2 39939 A convergent, non-increasi...
limsupvaluz 39940 The superior limit, when t...
limsupresuz2 39941 If the domain of a functio...
limsuppnflem 39942 If the restriction of a fu...
limsuppnf 39943 If the restriction of a fu...
limsupubuzlem 39944 If the limsup is not ` +oo...
limsupubuz 39945 For a real-valued function...
climinf2mpt 39946 A bounded below, monotonic...
climinfmpt 39947 A bounded below, monotonic...
climinf3 39948 A convergent, non-increasi...
limsupvaluzmpt 39949 The superior limit, when t...
limsupequzmpt2 39950 Two functions that are eve...
limsupubuzmpt 39951 If the limsup is not ` +oo...
limsupmnflem 39952 The superior limit of a fu...
limsupmnf 39953 The superior limit of a fu...
limsupequzlem 39954 Two functions that are eve...
limsupequz 39955 Two functions that are eve...
limsupre2lem 39956 Given a function on the ex...
limsupre2 39957 Given a function on the ex...
limsupmnfuzlem 39958 The superior limit of a fu...
limsupmnfuz 39959 The superior limit of a fu...
limsupequzmptlem 39960 Two functions that are eve...
limsupequzmpt 39961 Two functions that are eve...
limsupre2mpt 39962 Given a function on the ex...
limsupequzmptf 39963 Two functions that are eve...
limsupre3lem 39964 Given a function on the ex...
limsupre3 39965 Given a function on the ex...
limsupre3mpt 39966 Given a function on the ex...
limsupre3uzlem 39967 Given a function on the ex...
limsupre3uz 39968 Given a function on the ex...
limsupreuz 39969 Given a function on the re...
limsupvaluz2 39970 The superior limit, when t...
limsupreuzmpt 39971 Given a function on the re...
supcnvlimsup 39972 If a function on a set of ...
supcnvlimsupmpt 39973 If a function on a set of ...
0cnv 39974 If (/) is a complex number...
climuzlem 39975 Express the predicate: Th...
climuz 39976 Express the predicate: Th...
lmbr3v 39977 Express the binary relatio...
climisp 39978 If a sequence converges to...
lmbr3 39979 Express the binary relatio...
climrescn 39980 A sequence converging w.r....
climxrrelem 39981 If a seqence ranging over ...
climxrre 39982 If a sequence ranging over...
limsuplt2 39985 The defining property of t...
liminfgord 39986 Ordering property of the i...
limsupvald 39987 The superior limit of a se...
limsupresicompt 39988 The superior limit doesn't...
limsupcli 39989 Closure of the superior li...
liminfgf 39990 Closure of the inferior li...
liminfval 39991 The inferior limit of a se...
climlimsup 39992 A sequence of real numbers...
limsupge 39993 The defining property of t...
liminfgval 39994 Value of the inferior limi...
liminfcl 39995 Closure of the inferior li...
liminfvald 39996 The inferior limit of a se...
liminfval5 39997 The inferior limit of an i...
limsupresxr 39998 The superior limit of a fu...
liminfresxr 39999 The inferior limit of a fu...
liminfval2 40000 The superior limit, relati...
climlimsupcex 40001 Counterexample for ~ climl...
liminfcld 40002 Closure of the inferior li...
liminfresico 40003 The inferior limit doesn't...
limsup10exlem 40004 The range of the given fun...
limsup10ex 40005 The superior limit of a fu...
liminf10ex 40006 The inferior limit of a fu...
liminflelimsuplem 40007 The superior limit is grea...
liminflelimsup 40008 The superior limit is grea...
limsupgtlem 40009 For any positive real, the...
limsupgt 40010 Given a sequence of real n...
liminfresre 40011 The inferior limit of a fu...
liminfresicompt 40012 The inferior limit doesn't...
liminfltlimsupex 40013 An example where the ` lim...
liminfgelimsup 40014 The inferior limit is grea...
liminfvalxr 40015 Alternate definition of ` ...
liminfresuz 40016 If the real part of the do...
liminflelimsupuz 40017 The superior limit is grea...
liminfvalxrmpt 40018 Alternate definition of ` ...
liminfresuz2 40019 If the domain of a functio...
liminfgelimsupuz 40020 The inferior limit is grea...
liminfval4 40021 Alternate definition of ` ...
liminfval3 40022 Alternate definition of ` ...
liminfequzmpt2 40023 Two functions that are eve...
liminfvaluz 40024 Alternate definition of ` ...
liminf0 40025 The inferior limit of the ...
limsupval4 40026 Alternate definition of ` ...
liminfvaluz2 40027 Alternate definition of ` ...
liminfvaluz3 40028 Alternate definition of ` ...
liminflelimsupcex 40029 A counterexample for ~ lim...
limsupvaluz3 40030 Alternate definition of ` ...
liminfvaluz4 40031 Alternate definition of ` ...
limsupvaluz4 40032 Alternate definition of ` ...
climliminflimsupd 40033 If a sequence of real numb...
liminfreuzlem 40034 Given a function on the re...
liminfreuz 40035 Given a function on the re...
liminfltlem 40036 Given a sequence of real n...
liminflt 40037 Given a sequence of real n...
climliminf 40038 A sequence of real numbers...
liminflimsupclim 40039 A sequence of real numbers...
climliminflimsup 40040 A sequence of real numbers...
climliminflimsup2 40041 A sequence of real numbers...
climliminflimsup3 40042 A sequence of real numbers...
climliminflimsup4 40043 A sequence of real numbers...
xlimrel 40046 The limit on extended real...
xlimres 40047 A function converges iff i...
xlimcl 40048 The limit of a sequence of...
rexlimddv2 40049 Restricted existential eli...
xlimclim 40050 Given a sequence of reals,...
xlimconst 40051 A constant sequence conver...
climxlim 40052 A converging sequence in t...
xlimbr 40053 Express the binary relatio...
fuzxrpmcn 40054 A function mapping from an...
cnrefiisplem 40055 Lemma for ~ cnrefiisp (som...
cnrefiisp 40056 A non-real, complex number...
xlimxrre 40057 If a sequence ranging over...
xlimmnfvlem1 40058 The "only if" part of the ...
xlimmnfvlem2 40059 The "if" part of the bicon...
xlimmnfv 40060 A function converges to mi...
xlimconst2 40061 A sequence that eventually...
xlimpnfvlem1 40062 The "only if" part of the ...
xlimpnfvlem2 40063 The "if" part of the bicon...
xlimpnfv 40064 A function converges to pl...
xlimclim2lem 40065 Lemma for ~ xlimclim2 . H...
xlimclim2 40066 Given a sequence of extend...
xlimmnf 40067 A function converges to mi...
xlimpnf 40068 A function converges to pl...
xlimmnfmpt 40069 A function converges to pl...
xlimpnfmpt 40070 A function converges to pl...
climxlim2lem 40071 In this lemma for ~ climxl...
climxlim2 40072 A sequence of extended rea...
dfxlim2v 40073 An alternative definition ...
dfxlim2 40074 An alternative definition ...
coseq0 40075 A complex number whose cos...
sinmulcos 40076 Multiplication formula for...
coskpi2 40077 The cosine of an integer m...
cosnegpi 40078 The cosine of negative ` _...
sinaover2ne0 40079 If ` A ` in ` ( 0 , 2 _pi ...
cosknegpi 40080 The cosine of an integer m...
mulcncff 40081 The multiplication of two ...
subcncf 40082 The addition of two contin...
cncfmptssg 40083 A continuous complex funct...
constcncfg 40084 A constant function is a c...
idcncfg 40085 The identity function is a...
addcncf 40086 The addition of two contin...
cncfshift 40087 A periodic continuous func...
resincncf 40088 ` sin ` restricted to real...
addccncf2 40089 Adding a constant is a con...
0cnf 40090 The empty set is a continu...
fsumcncf 40091 The finite sum of continuo...
cncfperiod 40092 A periodic continuous func...
subcncff 40093 The subtraction of two con...
negcncfg 40094 The opposite of a continuo...
cnfdmsn 40095 A function with a singleto...
cncfcompt 40096 Composition of continuous ...
addcncff 40097 The addition of two contin...
ioccncflimc 40098 Limit at the upper bound, ...
cncfuni 40099 A function is continuous i...
icccncfext 40100 A continuous function on a...
cncficcgt0 40101 A the absolute value of a ...
icocncflimc 40102 Limit at the lower bound, ...
cncfdmsn 40103 A complex function with a ...
divcncff 40104 The quotient of two contin...
cncfshiftioo 40105 A periodic continuous func...
cncfiooicclem1 40106 A continuous function ` F ...
cncfiooicc 40107 A continuous function ` F ...
cncfiooiccre 40108 A continuous function ` F ...
cncfioobdlem 40109 ` G ` actually extends ` F...
cncfioobd 40110 A continuous function ` F ...
jumpncnp 40111 Jump discontinuity or disc...
cncfcompt2 40112 Composition of continuous ...
cxpcncf2 40113 The complex power function...
fprodcncf 40114 The finite product of cont...
add1cncf 40115 Addition to a constant is ...
add2cncf 40116 Addition to a constant is ...
sub1cncfd 40117 Subtracting a constant is ...
sub2cncfd 40118 Subtraction from a constan...
fprodsub2cncf 40119 ` F ` is continuous. (Con...
fprodadd2cncf 40120 ` F ` is continuous. (Con...
fprodsubrecnncnvlem 40121 The sequence ` S ` of fini...
fprodsubrecnncnv 40122 The sequence ` S ` of fini...
fprodaddrecnncnvlem 40123 The sequence ` S ` of fini...
fprodaddrecnncnv 40124 The sequence ` S ` of fini...
dvsinexp 40125 The derivative of sin^N . ...
dvcosre 40126 The real derivative of the...
dvsinax 40127 Derivative exercise: the d...
dvsubf 40128 The subtraction rule for e...
dvmptconst 40129 Function-builder for deriv...
dvcnre 40130 From compex differentiatio...
dvmptidg 40131 Function-builder for deriv...
dvresntr 40132 Function-builder for deriv...
fperdvper 40133 The derivative of a period...
dvmptresicc 40134 Derivative of a function r...
dvasinbx 40135 Derivative exercise: the d...
dvresioo 40136 Restriction of a derivativ...
dvdivf 40137 The quotient rule for ever...
dvdivbd 40138 A sufficient condition for...
dvsubcncf 40139 A sufficient condition for...
dvmulcncf 40140 A sufficient condition for...
dvcosax 40141 Derivative exercise: the d...
dvdivcncf 40142 A sufficient condition for...
dvbdfbdioolem1 40143 Given a function with boun...
dvbdfbdioolem2 40144 A function on an open inte...
dvbdfbdioo 40145 A function on an open inte...
ioodvbdlimc1lem1 40146 If ` F ` has bounded deriv...
ioodvbdlimc1lem2 40147 Limit at the lower bound o...
ioodvbdlimc1 40148 A real function with bound...
ioodvbdlimc2lem 40149 Limit at the upper bound o...
ioodvbdlimc2 40150 A real function with bound...
dvdmsscn 40151 ` X ` is a subset of ` CC ...
dvmptmulf 40152 Function-builder for deriv...
dvnmptdivc 40153 Function-builder for itera...
dvdsn1add 40154 If ` K ` divides ` N ` but...
dvxpaek 40155 Derivative of the polynomi...
dvnmptconst 40156 The ` N ` -th derivative o...
dvnxpaek 40157 The ` n ` -th derivative o...
dvnmul 40158 Function-builder for the `...
dvmptfprodlem 40159 Induction step for ~ dvmpt...
dvmptfprod 40160 Function-builder for deriv...
dvnprodlem1 40161 ` D ` is bijective. (Cont...
dvnprodlem2 40162 Induction step for ~ dvnpr...
dvnprodlem3 40163 The multinomial formula fo...
dvnprod 40164 The multinomial formula fo...
itgsin0pilem1 40165 Calculation of the integra...
ibliccsinexp 40166 sin^n on a closed interval...
itgsin0pi 40167 Calculation of the integra...
iblioosinexp 40168 sin^n on an open integral ...
itgsinexplem1 40169 Integration by parts is ap...
itgsinexp 40170 A recursive formula for th...
iblconstmpt 40171 A constant function is int...
itgeq1d 40172 Equality theorem for an in...
mbf0 40173 The empty set is a measura...
mbfres2cn 40174 Measurability of a piecewi...
vol0 40175 The measure of the empty s...
ditgeqiooicc 40176 A function ` F ` on an ope...
volge0 40177 The volume of a set is alw...
cnbdibl 40178 A continuous bounded funct...
snmbl 40179 A singleton is measurable....
ditgeq3d 40180 Equality theorem for the d...
iblempty 40181 The empty function is inte...
iblsplit 40182 The union of two integrabl...
volsn 40183 A singleton has 0 Lebesgue...
itgvol0 40184 If the domani is negligibl...
itgcoscmulx 40185 Exercise: the integral of ...
iblsplitf 40186 A version of ~ iblsplit us...
ibliooicc 40187 If a function is integrabl...
volioc 40188 The measure of left open, ...
iblspltprt 40189 If a function is integrabl...
itgsincmulx 40190 Exercise: the integral of ...
itgsubsticclem 40191 lemma for ~ itgsubsticc . ...
itgsubsticc 40192 Integration by u-substitut...
itgioocnicc 40193 The integral of a piecewis...
iblcncfioo 40194 A continuous function ` F ...
itgspltprt 40195 The ` S. ` integral splits...
itgiccshift 40196 The integral of a function...
itgperiod 40197 The integral of a periodic...
itgsbtaddcnst 40198 Integral substitution, add...
itgeq2d 40199 Equality theorem for an in...
volico 40200 The measure of left closed...
sublevolico 40201 The Lebesgue measure of a ...
dmvolss 40202 Lebesgue measurable sets a...
ismbl3 40203 The predicate " ` A ` is L...
volioof 40204 The function that assigns ...
ovolsplit 40205 The Lebesgue outer measure...
fvvolioof 40206 The function value of the ...
volioore 40207 The measure of an open int...
fvvolicof 40208 The function value of the ...
voliooico 40209 An open interval and a lef...
ismbl4 40210 The predicate " ` A ` is L...
volioofmpt 40211 ` ( ( vol o. (,) ) o. F ) ...
volicoff 40212 ` ( ( vol o. [,) ) o. F ) ...
voliooicof 40213 The Lebesgue measure of op...
volicofmpt 40214 ` ( ( vol o. [,) ) o. F ) ...
volicc 40215 The Lebesgue measure of a ...
voliccico 40216 A closed interval and a le...
mbfdmssre 40217 The domain of a measurable...
stoweidlem1 40218 Lemma for ~ stoweid . Thi...
stoweidlem2 40219 lemma for ~ stoweid : here...
stoweidlem3 40220 Lemma for ~ stoweid : if `...
stoweidlem4 40221 Lemma for ~ stoweid : a cl...
stoweidlem5 40222 There exists a δ as ...
stoweidlem6 40223 Lemma for ~ stoweid : two ...
stoweidlem7 40224 This lemma is used to prov...
stoweidlem8 40225 Lemma for ~ stoweid : two ...
stoweidlem9 40226 Lemma for ~ stoweid : here...
stoweidlem10 40227 Lemma for ~ stoweid . Thi...
stoweidlem11 40228 This lemma is used to prov...
stoweidlem12 40229 Lemma for ~ stoweid . Thi...
stoweidlem13 40230 Lemma for ~ stoweid . Thi...
stoweidlem14 40231 There exists a ` k ` as in...
stoweidlem15 40232 This lemma is used to prov...
stoweidlem16 40233 Lemma for ~ stoweid . The...
stoweidlem17 40234 This lemma proves that the...
stoweidlem18 40235 This theorem proves Lemma ...
stoweidlem19 40236 If a set of real functions...
stoweidlem20 40237 If a set A of real functio...
stoweidlem21 40238 Once the Stone Weierstrass...
stoweidlem22 40239 If a set of real functions...
stoweidlem23 40240 This lemma is used to prov...
stoweidlem24 40241 This lemma proves that for...
stoweidlem25 40242 This lemma proves that for...
stoweidlem26 40243 This lemma is used to prov...
stoweidlem27 40244 This lemma is used to prov...
stoweidlem28 40245 There exists a δ as ...
stoweidlem29 40246 When the hypothesis for th...
stoweidlem30 40247 This lemma is used to prov...
stoweidlem31 40248 This lemma is used to prov...
stoweidlem32 40249 If a set A of real functio...
stoweidlem33 40250 If a set of real functions...
stoweidlem34 40251 This lemma proves that for...
stoweidlem35 40252 This lemma is used to prov...
stoweidlem36 40253 This lemma is used to prov...
stoweidlem37 40254 This lemma is used to prov...
stoweidlem38 40255 This lemma is used to prov...
stoweidlem39 40256 This lemma is used to prov...
stoweidlem40 40257 This lemma proves that q_n...
stoweidlem41 40258 This lemma is used to prov...
stoweidlem42 40259 This lemma is used to prov...
stoweidlem43 40260 This lemma is used to prov...
stoweidlem44 40261 This lemma is used to prov...
stoweidlem45 40262 This lemma proves that, gi...
stoweidlem46 40263 This lemma proves that set...
stoweidlem47 40264 Subtracting a constant fro...
stoweidlem48 40265 This lemma is used to prov...
stoweidlem49 40266 There exists a function q_...
stoweidlem50 40267 This lemma proves that set...
stoweidlem51 40268 There exists a function x ...
stoweidlem52 40269 There exists a neighborood...
stoweidlem53 40270 This lemma is used to prov...
stoweidlem54 40271 There exists a function ` ...
stoweidlem55 40272 This lemma proves the exis...
stoweidlem56 40273 This theorem proves Lemma ...
stoweidlem57 40274 There exists a function x ...
stoweidlem58 40275 This theorem proves Lemma ...
stoweidlem59 40276 This lemma proves that the...
stoweidlem60 40277 This lemma proves that the...
stoweidlem61 40278 This lemma proves that the...
stoweidlem62 40279 This theorem proves the St...
stoweid 40280 This theorem proves the St...
stowei 40281 This theorem proves the St...
wallispilem1 40282 ` I ` is monotone: increas...
wallispilem2 40283 A first set of properties ...
wallispilem3 40284 I maps to real values. (C...
wallispilem4 40285 ` F ` maps to explicit exp...
wallispilem5 40286 The sequence ` H ` converg...
wallispi 40287 Wallis' formula for π :...
wallispi2lem1 40288 An intermediate step betwe...
wallispi2lem2 40289 Two expressions are proven...
wallispi2 40290 An alternative version of ...
stirlinglem1 40291 A simple limit of fraction...
stirlinglem2 40292 ` A ` maps to positive rea...
stirlinglem3 40293 Long but simple algebraic ...
stirlinglem4 40294 Algebraic manipulation of ...
stirlinglem5 40295 If ` T ` is between ` 0 ` ...
stirlinglem6 40296 A series that converges to...
stirlinglem7 40297 Algebraic manipulation of ...
stirlinglem8 40298 If ` A ` converges to ` C ...
stirlinglem9 40299 ` ( ( B `` N ) - ( B `` ( ...
stirlinglem10 40300 A bound for any B(N)-B(N +...
stirlinglem11 40301 ` B ` is decreasing. (Con...
stirlinglem12 40302 The sequence ` B ` is boun...
stirlinglem13 40303 ` B ` is decreasing and ha...
stirlinglem14 40304 The sequence ` A ` converg...
stirlinglem15 40305 The Stirling's formula is ...
stirling 40306 Stirling's approximation f...
stirlingr 40307 Stirling's approximation f...
dirkerval 40308 The N_th Dirichlet Kernel....
dirker2re 40309 The Dirchlet Kernel value ...
dirkerdenne0 40310 The Dirchlet Kernel denomi...
dirkerval2 40311 The N_th Dirichlet Kernel ...
dirkerre 40312 The Dirichlet Kernel at an...
dirkerper 40313 the Dirichlet Kernel has p...
dirkerf 40314 For any natural number ` N...
dirkertrigeqlem1 40315 Sum of an even number of a...
dirkertrigeqlem2 40316 Trigonomic equality lemma ...
dirkertrigeqlem3 40317 Trigonometric equality lem...
dirkertrigeq 40318 Trigonometric equality for...
dirkeritg 40319 The definite integral of t...
dirkercncflem1 40320 If ` Y ` is a multiple of ...
dirkercncflem2 40321 Lemma used to prove that t...
dirkercncflem3 40322 The Dirichlet Kernel is co...
dirkercncflem4 40323 The Dirichlet Kernel is co...
dirkercncf 40324 For any natural number ` N...
fourierdlem1 40325 A partition interval is a ...
fourierdlem2 40326 Membership in a partition....
fourierdlem3 40327 Membership in a partition....
fourierdlem4 40328 ` E ` is a function that m...
fourierdlem5 40329 ` S ` is a function. (Con...
fourierdlem6 40330 ` X ` is in the periodic p...
fourierdlem7 40331 The difference between a p...
fourierdlem8 40332 A partition interval is a ...
fourierdlem9 40333 ` H ` is a complex functio...
fourierdlem10 40334 Condition on the bounds of...
fourierdlem11 40335 If there is a partition, t...
fourierdlem12 40336 A point of a partition is ...
fourierdlem13 40337 Value of ` V ` in terms of...
fourierdlem14 40338 Given the partition ` V ` ...
fourierdlem15 40339 The range of the partition...
fourierdlem16 40340 The coefficients of the fo...
fourierdlem17 40341 The defined ` L ` is actua...
fourierdlem18 40342 The function ` S ` is cont...
fourierdlem19 40343 If two elements of ` D ` h...
fourierdlem20 40344 Every interval in the part...
fourierdlem21 40345 The coefficients of the fo...
fourierdlem22 40346 The coefficients of the fo...
fourierdlem23 40347 If ` F ` is continuous and...
fourierdlem24 40348 A sufficient condition for...
fourierdlem25 40349 If ` C ` is not in the ran...
fourierdlem26 40350 Periodic image of a point ...
fourierdlem27 40351 A partition open interval ...
fourierdlem28 40352 Derivative of ` ( F `` ( X...
fourierdlem29 40353 Explicit function value fo...
fourierdlem30 40354 Sum of three small pieces ...
fourierdlem31 40355 If ` A ` is finite and for...
fourierdlem32 40356 Limit of a continuous func...
fourierdlem33 40357 Limit of a continuous func...
fourierdlem34 40358 A partition is one to one....
fourierdlem35 40359 There is a single point in...
fourierdlem36 40360 ` F ` is an isomorphism. ...
fourierdlem37 40361 ` I ` is a function that m...
fourierdlem38 40362 The function ` F ` is cont...
fourierdlem39 40363 Integration by parts of ...
fourierdlem40 40364 ` H ` is a continuous func...
fourierdlem41 40365 Lemma used to prove that e...
fourierdlem42 40366 The set of points in a mov...
fourierdlem43 40367 ` K ` is a real function. ...
fourierdlem44 40368 A condition for having ` (...
fourierdlem46 40369 The function ` F ` has a l...
fourierdlem47 40370 For ` r ` large enough, th...
fourierdlem48 40371 The given periodic functio...
fourierdlem49 40372 The given periodic functio...
fourierdlem50 40373 Continuity of ` O ` and it...
fourierdlem51 40374 ` X ` is in the periodic p...
fourierdlem52 40375 d16:d17,d18:jca |- ( ph ->...
fourierdlem53 40376 The limit of ` F ( s ) ` a...
fourierdlem54 40377 Given a partition ` Q ` an...
fourierdlem55 40378 ` U ` is a real function. ...
fourierdlem56 40379 Derivative of the ` K ` fu...
fourierdlem57 40380 The derivative of ` O ` . ...
fourierdlem58 40381 The derivative of ` K ` is...
fourierdlem59 40382 The derivative of ` H ` is...
fourierdlem60 40383 Given a differentiable fun...
fourierdlem61 40384 Given a differentiable fun...
fourierdlem62 40385 The function ` K ` is cont...
fourierdlem63 40386 The upper bound of interva...
fourierdlem64 40387 The partition ` V ` is fin...
fourierdlem65 40388 The distance of two adjace...
fourierdlem66 40389 Value of the ` G ` functio...
fourierdlem67 40390 ` G ` is a function. (Con...
fourierdlem68 40391 The derivative of ` O ` is...
fourierdlem69 40392 A piecewise continuous fun...
fourierdlem70 40393 A piecewise continuous fun...
fourierdlem71 40394 A periodic piecewise conti...
fourierdlem72 40395 The derivative of ` O ` is...
fourierdlem73 40396 A version of the Riemann L...
fourierdlem74 40397 Given a piecewise smooth f...
fourierdlem75 40398 Given a piecewise smooth f...
fourierdlem76 40399 Continuity of ` O ` and it...
fourierdlem77 40400 If ` H ` is bounded, then ...
fourierdlem78 40401 ` G ` is continuous when r...
fourierdlem79 40402 ` E ` projects every inter...
fourierdlem80 40403 The derivative of ` O ` is...
fourierdlem81 40404 The integral of a piecewis...
fourierdlem82 40405 Integral by substitution, ...
fourierdlem83 40406 The fourier partial sum fo...
fourierdlem84 40407 If ` F ` is piecewise coni...
fourierdlem85 40408 Limit of the function ` G ...
fourierdlem86 40409 Continuity of ` O ` and it...
fourierdlem87 40410 The integral of ` G ` goes...
fourierdlem88 40411 Given a piecewise continuo...
fourierdlem89 40412 Given a piecewise continuo...
fourierdlem90 40413 Given a piecewise continuo...
fourierdlem91 40414 Given a piecewise continuo...
fourierdlem92 40415 The integral of a piecewis...
fourierdlem93 40416 Integral by substitution (...
fourierdlem94 40417 For a piecewise smooth fun...
fourierdlem95 40418 Algebraic manipulation of ...
fourierdlem96 40419 limit for ` F ` at the low...
fourierdlem97 40420 ` F ` is continuous on the...
fourierdlem98 40421 ` F ` is continuous on the...
fourierdlem99 40422 limit for ` F ` at the upp...
fourierdlem100 40423 A piecewise continuous fun...
fourierdlem101 40424 Integral by substitution f...
fourierdlem102 40425 For a piecewise smooth fun...
fourierdlem103 40426 The half lower part of the...
fourierdlem104 40427 The half upper part of the...
fourierdlem105 40428 A piecewise continuous fun...
fourierdlem106 40429 For a piecewise smooth fun...
fourierdlem107 40430 The integral of a piecewis...
fourierdlem108 40431 The integral of a piecewis...
fourierdlem109 40432 The integral of a piecewis...
fourierdlem110 40433 The integral of a piecewis...
fourierdlem111 40434 The fourier partial sum fo...
fourierdlem112 40435 Here abbreviations (local ...
fourierdlem113 40436 Fourier series convergence...
fourierdlem114 40437 Fourier series convergence...
fourierdlem115 40438 Fourier serier convergence...
fourierd 40439 Fourier series convergence...
fourierclimd 40440 Fourier series convergence...
fourierclim 40441 Fourier series convergence...
fourier 40442 Fourier series convergence...
fouriercnp 40443 If ` F ` is continuous at ...
fourier2 40444 Fourier series convergence...
sqwvfoura 40445 Fourier coefficients for t...
sqwvfourb 40446 Fourier series ` B ` coeff...
fourierswlem 40447 The Fourier series for the...
fouriersw 40448 Fourier series convergence...
fouriercn 40449 If the derivative of ` F `...
elaa2lem 40450 Elementhood in the set of ...
elaa2 40451 Elementhood in the set of ...
etransclem1 40452 ` H ` is a function. (Con...
etransclem2 40453 Derivative of ` G ` . (Co...
etransclem3 40454 The given ` if ` term is a...
etransclem4 40455 ` F ` expressed as a finit...
etransclem5 40456 A change of bound variable...
etransclem6 40457 A change of bound variable...
etransclem7 40458 The given product is an in...
etransclem8 40459 ` F ` is a function. (Con...
etransclem9 40460 If ` K ` divides ` N ` but...
etransclem10 40461 The given ` if ` term is a...
etransclem11 40462 A change of bound variable...
etransclem12 40463 ` C ` applied to ` N ` . ...
etransclem13 40464 ` F ` applied to ` Y ` . ...
etransclem14 40465 Value of the term ` T ` , ...
etransclem15 40466 Value of the term ` T ` , ...
etransclem16 40467 Every element in the range...
etransclem17 40468 The ` N ` -th derivative o...
etransclem18 40469 The given function is inte...
etransclem19 40470 The ` N ` -th derivative o...
etransclem20 40471 ` H ` is smooth. (Contrib...
etransclem21 40472 The ` N ` -th derivative o...
etransclem22 40473 The ` N ` -th derivative o...
etransclem23 40474 This is the claim proof in...
etransclem24 40475 ` P ` divides the I -th de...
etransclem25 40476 ` P ` factorial divides th...
etransclem26 40477 Every term in the sum of t...
etransclem27 40478 The ` N ` -th derivative o...
etransclem28 40479 ` ( P - 1 ) ` factorial di...
etransclem29 40480 The ` N ` -th derivative o...
etransclem30 40481 The ` N ` -th derivative o...
etransclem31 40482 The ` N ` -th derivative o...
etransclem32 40483 This is the proof for the ...
etransclem33 40484 ` F ` is smooth. (Contrib...
etransclem34 40485 The ` N ` -th derivative o...
etransclem35 40486 ` P ` does not divide the ...
etransclem36 40487 The ` N ` -th derivative o...
etransclem37 40488 ` ( P - 1 ) ` factorial di...
etransclem38 40489 ` P ` divides the I -th de...
etransclem39 40490 ` G ` is a function. (Con...
etransclem40 40491 The ` N ` -th derivative o...
etransclem41 40492 ` P ` does not divide the ...
etransclem42 40493 The ` N ` -th derivative o...
etransclem43 40494 ` G ` is a continuous func...
etransclem44 40495 The given finite sum is no...
etransclem45 40496 ` K ` is an integer. (Con...
etransclem46 40497 This is the proof for equa...
etransclem47 40498 ` _e ` is transcendental. ...
etransclem48 40499 ` _e ` is transcendental. ...
etransc 40500 ` _e ` is transcendental. ...
rrxtopn 40501 The topology of the genera...
rrxngp 40502 Generalized Euclidean real...
rrxbasefi 40503 The base of the generalize...
rrxtps 40504 Generalized Euclidean real...
rrxdsfi 40505 The distance over generali...
rrxtopnfi 40506 The topology of the n-dime...
rrxmetfi 40507 Euclidean space is a metri...
rrxtopon 40508 The topology on Generalize...
rrxtop 40509 The topology on Generalize...
rrndistlt 40510 Given two points in the sp...
rrxtoponfi 40511 The topology on n-dimensio...
rrxunitopnfi 40512 The base set of the standa...
rrxtopn0 40513 The topology of the zero-d...
qndenserrnbllem 40514 n-dimensional rational num...
qndenserrnbl 40515 n-dimensional rational num...
rrxtopn0b 40516 The topology of the zero-d...
qndenserrnopnlem 40517 n-dimensional rational num...
qndenserrnopn 40518 n-dimensional rational num...
qndenserrn 40519 n-dimensional rational num...
rrxsnicc 40520 A multidimensional singlet...
rrnprjdstle 40521 The distance between two p...
rrndsmet 40522 ` D ` is a metric for the ...
rrndsxmet 40523 ` D ` is an extended metri...
ioorrnopnlem 40524 The a point in an indexed ...
ioorrnopn 40525 The indexed product of ope...
ioorrnopnxrlem 40526 Given a point ` F ` that b...
ioorrnopnxr 40527 The indexed product of ope...
issal 40534 Express the predicate " ` ...
pwsal 40535 The power set of a given s...
salunicl 40536 SAlg sigma-algebra is clos...
saluncl 40537 The union of two sets in a...
prsal 40538 The pair of the empty set ...
saldifcl 40539 The complement of an eleme...
0sal 40540 The empty set belongs to e...
salgenval 40541 The sigma-algebra generate...
saliuncl 40542 SAlg sigma-algebra is clos...
salincl 40543 The intersection of two se...
saluni 40544 A set is an element of any...
saliincl 40545 SAlg sigma-algebra is clos...
saldifcl2 40546 The difference of two elem...
intsaluni 40547 The union of an arbitrary ...
intsal 40548 The arbitrary intersection...
salgenn0 40549 The set used in the defini...
salgencl 40550 ` SalGen ` actually genera...
issald 40551 Sufficient condition to pr...
salexct 40552 An example of non trivial ...
sssalgen 40553 A set is a subset of the s...
salgenss 40554 The sigma-algebra generate...
salgenuni 40555 The base set of the sigma-...
issalgend 40556 One side of ~ dfsalgen2 . ...
salexct2 40557 An example of a subset tha...
unisalgen 40558 The union of a set belongs...
dfsalgen2 40559 Alternate characterization...
salexct3 40560 An example of a sigma-alge...
salgencntex 40561 This counterexample shows ...
salgensscntex 40562 This counterexample shows ...
issalnnd 40563 Sufficient condition to pr...
dmvolsal 40564 Lebesgue measurable sets f...
saldifcld 40565 The complement of an eleme...
saluncld 40566 The union of two sets in a...
salgencld 40567 ` SalGen ` actually genera...
0sald 40568 The empty set belongs to e...
iooborel 40569 An open interval is a Bore...
salincld 40570 The intersection of two se...
salunid 40571 A set is an element of any...
unisalgen2 40572 The union of a set belongs...
bor1sal 40573 The Borel sigma-algebra on...
iocborel 40574 A left-open, right-closed ...
subsaliuncllem 40575 A subspace sigma-algebra i...
subsaliuncl 40576 A subspace sigma-algebra i...
subsalsal 40577 A subspace sigma-algebra i...
subsaluni 40578 A set belongs to the subsp...
sge0rnre 40581 When ` sum^ ` is applied t...
fge0icoicc 40582 If ` F ` maps to nonnegati...
sge0val 40583 The value of the sum of no...
fge0npnf 40584 If ` F ` maps to nonnegati...
sge0rnn0 40585 The range used in the defi...
sge0vald 40586 The value of the sum of no...
fge0iccico 40587 A range of nonnegative ext...
gsumge0cl 40588 Closure of group sum, for ...
sge0reval 40589 Value of the sum of nonneg...
sge0pnfval 40590 If a term in the sum of no...
fge0iccre 40591 A range of nonnegative ext...
sge0z 40592 Any nonnegative extended s...
sge00 40593 The sum of nonnegative ext...
fsumlesge0 40594 Every finite subsum of non...
sge0revalmpt 40595 Value of the sum of nonneg...
sge0sn 40596 A sum of a nonnegative ext...
sge0tsms 40597 ` sum^ ` applied to a nonn...
sge0cl 40598 The arbitrary sum of nonne...
sge0f1o 40599 Re-index a nonnegative ext...
sge0snmpt 40600 A sum of a nonnegative ext...
sge0ge0 40601 The sum of nonnegative ext...
sge0xrcl 40602 The arbitrary sum of nonne...
sge0repnf 40603 The of nonnegative extende...
sge0fsum 40604 The arbitrary sum of a fin...
sge0rern 40605 If the sum of nonnegative ...
sge0supre 40606 If the arbitrary sum of no...
sge0fsummpt 40607 The arbitrary sum of a fin...
sge0sup 40608 The arbitrary sum of nonne...
sge0less 40609 A shorter sum of nonnegati...
sge0rnbnd 40610 The range used in the defi...
sge0pr 40611 Sum of a pair of nonnegati...
sge0gerp 40612 The arbitrary sum of nonne...
sge0pnffigt 40613 If the sum of nonnegative ...
sge0ssre 40614 If a sum of nonnegative ex...
sge0lefi 40615 A sum of nonnegative exten...
sge0lessmpt 40616 A shorter sum of nonnegati...
sge0ltfirp 40617 If the sum of nonnegative ...
sge0prle 40618 The sum of a pair of nonne...
sge0gerpmpt 40619 The arbitrary sum of nonne...
sge0resrnlem 40620 The sum of nonnegative ext...
sge0resrn 40621 The sum of nonnegative ext...
sge0ssrempt 40622 If a sum of nonnegative ex...
sge0resplit 40623 ` sum^ ` splits into two p...
sge0le 40624 If all of the terms of sum...
sge0ltfirpmpt 40625 If the extended sum of non...
sge0split 40626 Split a sum of nonnegative...
sge0lempt 40627 If all of the terms of sum...
sge0splitmpt 40628 Split a sum of nonnegative...
sge0ss 40629 Change the index set to a ...
sge0iunmptlemfi 40630 Sum of nonnegative extende...
sge0p1 40631 The addition of the next t...
sge0iunmptlemre 40632 Sum of nonnegative extende...
sge0fodjrnlem 40633 Re-index a nonnegative ext...
sge0fodjrn 40634 Re-index a nonnegative ext...
sge0iunmpt 40635 Sum of nonnegative extende...
sge0iun 40636 Sum of nonnegative extende...
sge0nemnf 40637 The generalized sum of non...
sge0rpcpnf 40638 The sum of an infinite num...
sge0rernmpt 40639 If the sum of nonnegative ...
sge0lefimpt 40640 A sum of nonnegative exten...
nn0ssge0 40641 Nonnegative integers are n...
sge0clmpt 40642 The generalized sum of non...
sge0ltfirpmpt2 40643 If the extended sum of non...
sge0isum 40644 If a series of nonnegative...
sge0xrclmpt 40645 The generalized sum of non...
sge0xp 40646 Combine two generalized su...
sge0isummpt 40647 If a series of nonnegative...
sge0ad2en 40648 The value of the infinite ...
sge0isummpt2 40649 If a series of nonnegative...
sge0xaddlem1 40650 The extended addition of t...
sge0xaddlem2 40651 The extended addition of t...
sge0xadd 40652 The extended addition of t...
sge0fsummptf 40653 The generalized sum of a f...
sge0snmptf 40654 A sum of a nonnegative ext...
sge0ge0mpt 40655 The sum of nonnegative ext...
sge0repnfmpt 40656 The of nonnegative extende...
sge0pnffigtmpt 40657 If the generalized sum of ...
sge0splitsn 40658 Separate out a term in a g...
sge0pnffsumgt 40659 If the sum of nonnegative ...
sge0gtfsumgt 40660 If the generalized sum of ...
sge0uzfsumgt 40661 If a real number is smalle...
sge0pnfmpt 40662 If a term in the sum of no...
sge0seq 40663 A series of nonnegative re...
sge0reuz 40664 Value of the generalized s...
sge0reuzb 40665 Value of the generalized s...
ismea 40668 Express the predicate " ` ...
dmmeasal 40669 The domain of a measure is...
meaf 40670 A measure is a function th...
mea0 40671 The measure of the empty s...
nnfoctbdjlem 40672 There exists a mapping fro...
nnfoctbdj 40673 There exists a mapping fro...
meadjuni 40674 The measure of the disjoin...
meacl 40675 The measure of a set is a ...
iundjiunlem 40676 The sets in the sequence `...
iundjiun 40677 Given a sequence ` E ` of ...
meaxrcl 40678 The measure of a set is an...
meadjun 40679 The measure of the union o...
meassle 40680 The measure of a set is la...
meaunle 40681 The measure of the union o...
meadjiunlem 40682 The sum of nonnegative ext...
meadjiun 40683 The measure of the disjoin...
ismeannd 40684 Sufficient condition to pr...
meaiunlelem 40685 The measure of the union o...
meaiunle 40686 The measure of the union o...
psmeasurelem 40687 ` M ` applied to a disjoin...
psmeasure 40688 Point supported measure, R...
voliunsge0lem 40689 The Lebesgue measure funct...
voliunsge0 40690 The Lebesgue measure funct...
volmea 40691 The Lebeasgue measure on t...
meage0 40692 If the measure of a measur...
meadjunre 40693 The measure of the union o...
meassre 40694 If the measure of a measur...
meale0eq0 40695 A measure that is smaller ...
meadif 40696 The measure of the differe...
meaiuninclem 40697 Measures are continuous fr...
meaiuninc 40698 Measures are continuous fr...
meaiuninc2 40699 Measures are continuous fr...
meaiininclem 40700 Measures are continuous fr...
meaiininc 40701 Measures are continuous fr...
meaiininc2 40702 Measures are continuous fr...
caragenval 40707 The sigma-algebra generate...
isome 40708 Express the predicate " ` ...
caragenel 40709 Membership in the Caratheo...
omef 40710 An outer measure is a func...
ome0 40711 The outer measure of the e...
omessle 40712 The outer measure of a set...
omedm 40713 The domain of an outer mea...
caragensplit 40714 If ` E ` is in the set gen...
caragenelss 40715 An element of the Caratheo...
carageneld 40716 Membership in the Caratheo...
omecl 40717 The outer measure of a set...
caragenss 40718 The sigma-algebra generate...
omeunile 40719 The outer measure of the u...
caragen0 40720 The empty set belongs to a...
omexrcl 40721 The outer measure of a set...
caragenunidm 40722 The base set of an outer m...
caragensspw 40723 The sigma-algebra generate...
omessre 40724 If the outer measure of a ...
caragenuni 40725 The base set of the sigma-...
caragenuncllem 40726 The Caratheodory's constru...
caragenuncl 40727 The Caratheodory's constru...
caragendifcl 40728 The Caratheodory's constru...
caragenfiiuncl 40729 The Caratheodory's constru...
omeunle 40730 The outer measure of the u...
omeiunle 40731 The outer measure of the i...
omelesplit 40732 The outer measure of a set...
omeiunltfirp 40733 If the outer measure of a ...
omeiunlempt 40734 The outer measure of the i...
carageniuncllem1 40735 The outer measure of ` A i...
carageniuncllem2 40736 The Caratheodory's constru...
carageniuncl 40737 The Caratheodory's constru...
caragenunicl 40738 The Caratheodory's constru...
caragensal 40739 Caratheodory's method gene...
caratheodorylem1 40740 Lemma used to prove that C...
caratheodorylem2 40741 Caratheodory's constructio...
caratheodory 40742 Caratheodory's constructio...
0ome 40743 The map that assigns 0 to ...
isomenndlem 40744 ` O ` is sub-additive w.r....
isomennd 40745 Sufficient condition to pr...
caragenel2d 40746 Membership in the Caratheo...
omege0 40747 If the outer measure of a ...
omess0 40748 If the outer measure of a ...
caragencmpl 40749 A measure built with the C...
vonval 40754 Value of the Lebesgue meas...
ovnval 40755 Value of the Lebesgue oute...
elhoi 40756 Membership in a multidimen...
icoresmbl 40757 A closed-below, open-above...
hoissre 40758 The projection of a half-o...
ovnval2 40759 Value of the Lebesgue oute...
volicorecl 40760 The Lebesgue measure of a ...
hoiprodcl 40761 The pre-measure of half-op...
hoicvr 40762 ` I ` is a countable set o...
hoissrrn 40763 A half-open interval is a ...
ovn0val 40764 The Lebesgue outer measure...
ovnn0val 40765 The value of a (multidimen...
ovnval2b 40766 Value of the Lebesgue oute...
volicorescl 40767 The Lebesgue measure of a ...
ovnprodcl 40768 The product used in the de...
hoiprodcl2 40769 The pre-measure of half-op...
hoicvrrex 40770 Any subset of the multidim...
ovnsupge0 40771 The set used in the defini...
ovnlecvr 40772 Given a subset of multidim...
ovnpnfelsup 40773 ` +oo ` is an element of t...
ovnsslelem 40774 The (multidimensional, non...
ovnssle 40775 The (multidimensional) Leb...
ovnlerp 40776 The Lebesgue outer measure...
ovnf 40777 The Lebesgue outer measure...
ovncvrrp 40778 The Lebesgue outer measure...
ovn0lem 40779 For any finite dimension, ...
ovn0 40780 For any finite dimension, ...
ovncl 40781 The Lebesgue outer measure...
ovn02 40782 For the zero-dimensional s...
ovnxrcl 40783 The Lebesgue outer measure...
ovnsubaddlem1 40784 The Lebesgue outer measure...
ovnsubaddlem2 40785 ` ( voln* `` X ) ` is suba...
ovnsubadd 40786 ` ( voln* `` X ) ` is suba...
ovnome 40787 ` ( voln* `` X ) ` is an o...
vonmea 40788 ` ( voln `` X ) ` is a mea...
volicon0 40789 The measure of a nonempty ...
hsphoif 40790 ` H ` is a function (that ...
hoidmvval 40791 The dimensional volume of ...
hoissrrn2 40792 A half-open interval is a ...
hsphoival 40793 ` H ` is a function (that ...
hoiprodcl3 40794 The pre-measure of half-op...
volicore 40795 The Lebesgue measure of a ...
hoidmvcl 40796 The dimensional volume of ...
hoidmv0val 40797 The dimensional volume of ...
hoidmvn0val 40798 The dimensional volume of ...
hsphoidmvle2 40799 The dimensional volume of ...
hsphoidmvle 40800 The dimensional volume of ...
hoidmvval0 40801 The dimensional volume of ...
hoiprodp1 40802 The dimensional volume of ...
sge0hsphoire 40803 If the generalized sum of ...
hoidmvval0b 40804 The dimensional volume of ...
hoidmv1lelem1 40805 The supremum of ` U ` belo...
hoidmv1lelem2 40806 This is the contradiction ...
hoidmv1lelem3 40807 The dimensional volume of ...
hoidmv1le 40808 The dimensional volume of ...
hoidmvlelem1 40809 The supremum of ` U ` belo...
hoidmvlelem2 40810 This is the contradiction ...
hoidmvlelem3 40811 This is the contradiction ...
hoidmvlelem4 40812 The dimensional volume of ...
hoidmvlelem5 40813 The dimensional volume of ...
hoidmvle 40814 The dimensional volume of ...
ovnhoilem1 40815 The Lebesgue outer measure...
ovnhoilem2 40816 The Lebesgue outer measure...
ovnhoi 40817 The Lebesgue outer measure...
dmovn 40818 The domain of the Lebesgue...
hoicoto2 40819 The half-open interval exp...
dmvon 40820 Lebesgue measurable n-dime...
hoi2toco 40821 The half-open interval exp...
hoidifhspval 40822 ` D ` is a function that r...
hspval 40823 The value of the half-spac...
ovnlecvr2 40824 Given a subset of multidim...
ovncvr2 40825 ` B ` and ` T ` are the le...
dmovnsal 40826 The domain of the Lebesgue...
unidmovn 40827 Base set of the n-dimensio...
rrnmbl 40828 The set of n-dimensional R...
hoidifhspval2 40829 ` D ` is a function that r...
hspdifhsp 40830 A n-dimensional half-open ...
unidmvon 40831 Base set of the n-dimensio...
hoidifhspf 40832 ` D ` is a function that r...
hoidifhspval3 40833 ` D ` is a function that r...
hoidifhspdmvle 40834 The dimensional volume of ...
voncmpl 40835 The Lebesgue measure is co...
hoiqssbllem1 40836 The center of the n-dimens...
hoiqssbllem2 40837 The center of the n-dimens...
hoiqssbllem3 40838 A n-dimensional ball conta...
hoiqssbl 40839 A n-dimensional ball conta...
hspmbllem1 40840 Any half-space of the n-di...
hspmbllem2 40841 Any half-space of the n-di...
hspmbllem3 40842 Any half-space of the n-di...
hspmbl 40843 Any half-space of the n-di...
hoimbllem 40844 Any n-dimensional half-ope...
hoimbl 40845 Any n-dimensional half-ope...
opnvonmbllem1 40846 The half-open interval exp...
opnvonmbllem2 40847 An open subset of the n-di...
opnvonmbl 40848 An open subset of the n-di...
opnssborel 40849 Open sets of a generalized...
borelmbl 40850 All Borel subsets of the n...
volicorege0 40851 The Lebesgue measure of a ...
isvonmbl 40852 The predicate " ` A ` is m...
mblvon 40853 The n-dimensional Lebesgue...
vonmblss 40854 n-dimensional Lebesgue mea...
volico2 40855 The measure of left closed...
vonmblss2 40856 n-dimensional Lebesgue mea...
ovolval2lem 40857 The value of the Lebesgue ...
ovolval2 40858 The value of the Lebesgue ...
ovnsubadd2lem 40859 ` ( voln* `` X ) ` is suba...
ovnsubadd2 40860 ` ( voln* `` X ) ` is suba...
ovolval3 40861 The value of the Lebesgue ...
ovnsplit 40862 The n-dimensional Lebesgue...
ovolval4lem1 40863 |- ( ( ph /\ n e. A ) -> ...
ovolval4lem2 40864 The value of the Lebesgue ...
ovolval4 40865 The value of the Lebesgue ...
ovolval5lem1 40866 |- ( ph -> ( sum^ ` ( n e....
ovolval5lem2 40867 |- ( ( ph /\ n e. NN ) ->...
ovolval5lem3 40868 The value of the Lebesgue ...
ovolval5 40869 The value of the Lebesgue ...
ovnovollem1 40870 if ` F ` is a cover of ` B...
ovnovollem2 40871 if ` I ` is a cover of ` (...
ovnovollem3 40872 The 1-dimensional Lebesgue...
ovnovol 40873 The 1-dimensional Lebesgue...
vonvolmbllem 40874 If a subset ` B ` of real ...
vonvolmbl 40875 A subset of Real numbers i...
vonvol 40876 The 1-dimensional Lebesgue...
vonvolmbl2 40877 A subset ` X ` of the spac...
vonvol2 40878 The 1-dimensional Lebesgue...
hoimbl2 40879 Any n-dimensional half-ope...
voncl 40880 The Lebesgue measure of a ...
vonhoi 40881 The Lebesgue outer measure...
vonxrcl 40882 The Lebesgue measure of a ...
ioosshoi 40883 A n-dimensional open inter...
vonn0hoi 40884 The Lebesgue outer measure...
von0val 40885 The Lebesgue measure (for ...
vonhoire 40886 The Lebesgue measure of a ...
iinhoiicclem 40887 A n-dimensional closed int...
iinhoiicc 40888 A n-dimensional closed int...
iunhoiioolem 40889 A n-dimensional open inter...
iunhoiioo 40890 A n-dimensional open inter...
ioovonmbl 40891 Any n-dimensional open int...
iccvonmbllem 40892 Any n-dimensional closed i...
iccvonmbl 40893 Any n-dimensional closed i...
vonioolem1 40894 The sequence of the measur...
vonioolem2 40895 The n-dimensional Lebesgue...
vonioo 40896 The n-dimensional Lebesgue...
vonicclem1 40897 The sequence of the measur...
vonicclem2 40898 The n-dimensional Lebesgue...
vonicc 40899 The n-dimensional Lebesgue...
snvonmbl 40900 A n-dimensional singleton ...
vonn0ioo 40901 The n-dimensional Lebesgue...
vonn0icc 40902 The n-dimensional Lebesgue...
ctvonmbl 40903 Any n-dimensional countabl...
vonn0ioo2 40904 The n-dimensional Lebesgue...
vonsn 40905 The n-dimensional Lebesgue...
vonn0icc2 40906 The n-dimensional Lebesgue...
vonct 40907 The n-dimensional Lebesgue...
vitali2 40908 There are non-measurable s...
pimltmnf2 40911 Given a real-valued functi...
preimagelt 40912 The preimage of a right-op...
preimalegt 40913 The preimage of a left-ope...
pimconstlt0 40914 Given a constant function,...
pimconstlt1 40915 Given a constant function,...
pimltpnf 40916 Given a real-valued functi...
pimgtpnf2 40917 Given a real-valued functi...
salpreimagelt 40918 If all the preimages of le...
pimrecltpos 40919 The preimage of an unbound...
salpreimalegt 40920 If all the preimages of ri...
pimiooltgt 40921 The preimage of an open in...
preimaicomnf 40922 Preimage of an open interv...
pimltpnf2 40923 Given a real-valued functi...
pimgtmnf2 40924 Given a real-valued functi...
pimdecfgtioc 40925 Given a non-increasing fun...
pimincfltioc 40926 Given a non decreasing fun...
pimdecfgtioo 40927 Given a non decreasing fun...
pimincfltioo 40928 Given a non decreasing fun...
preimaioomnf 40929 Preimage of an open interv...
preimageiingt 40930 A preimage of a left-close...
preimaleiinlt 40931 A preimage of a left-open,...
pimgtmnf 40932 Given a real-valued functi...
pimrecltneg 40933 The preimage of an unbound...
salpreimagtge 40934 If all the preimages of le...
salpreimaltle 40935 If all the preimages of ri...
issmflem 40936 The predicate " ` F ` is a...
issmf 40937 The predicate " ` F ` is a...
salpreimalelt 40938 If all the preimages of ri...
salpreimagtlt 40939 If all the preimages of le...
smfpreimalt 40940 Given a function measurabl...
smff 40941 A function measurable w.r....
smfdmss 40942 The domain of a function m...
issmff 40943 The predicate " ` F ` is a...
issmfd 40944 A sufficient condition for...
smfpreimaltf 40945 Given a function measurabl...
issmfdf 40946 A sufficient condition for...
sssmf 40947 The restriction of a sigma...
mbfresmf 40948 A Real valued, measurable ...
cnfsmf 40949 A continuous function is m...
incsmflem 40950 A non decreasing function ...
incsmf 40951 A real-valued, non-decreas...
smfsssmf 40952 If a function is measurabl...
issmflelem 40953 The predicate " ` F ` is a...
issmfle 40954 The predicate " ` F ` is a...
smfpimltmpt 40955 Given a function measurabl...
smfpimltxr 40956 Given a function measurabl...
issmfdmpt 40957 A sufficient condition for...
smfconst 40958 Given a sigma-algebra over...
sssmfmpt 40959 The restriction of a sigma...
cnfrrnsmf 40960 A function, continuous fro...
smfid 40961 The identity function is B...
bormflebmf 40962 A Borel measurable functio...
smfpreimale 40963 Given a function measurabl...
issmfgtlem 40964 The predicate " ` F ` is a...
issmfgt 40965 The predicate " ` F ` is a...
issmfled 40966 A sufficient condition for...
smfpimltxrmpt 40967 Given a function measurabl...
smfmbfcex 40968 A constant function, with ...
issmfgtd 40969 A sufficient condition for...
smfpreimagt 40970 Given a function measurabl...
smfaddlem1 40971 Given the sum of two funct...
smfaddlem2 40972 The sum of two sigma-measu...
smfadd 40973 The sum of two sigma-measu...
decsmflem 40974 A non-increasing function ...
decsmf 40975 A real-valued, non-increas...
smfpreimagtf 40976 Given a function measurabl...
issmfgelem 40977 The predicate " ` F ` is a...
issmfge 40978 The predicate " ` F ` is a...
smflimlem1 40979 Lemma for the proof that t...
smflimlem2 40980 Lemma for the proof that t...
smflimlem3 40981 The limit of sigma-measura...
smflimlem4 40982 Lemma for the proof that t...
smflimlem5 40983 Lemma for the proof that t...
smflimlem6 40984 Lemma for the proof that t...
smflim 40985 The limit of sigma-measura...
nsssmfmbflem 40986 The sigma-measurable funct...
nsssmfmbf 40987 The sigma-measurable funct...
smfpimgtxr 40988 Given a function measurabl...
smfpimgtmpt 40989 Given a function measurabl...
smfpreimage 40990 Given a function measurabl...
mbfpsssmf 40991 Real valued, measurable fu...
smfpimgtxrmpt 40992 Given a function measurabl...
smfpimioompt 40993 Given a function measurabl...
smfpimioo 40994 Given a function measurabl...
smfresal 40995 Given a sigma-measurable f...
smfrec 40996 The reciprocal of a sigma-...
smfres 40997 The restriction of sigma-m...
smfmullem1 40998 The multiplication of two ...
smfmullem2 40999 The multiplication of two ...
smfmullem3 41000 The multiplication of two ...
smfmullem4 41001 The multiplication of two ...
smfmul 41002 The multiplication of two ...
smfmulc1 41003 A sigma-measurable functio...
smfdiv 41004 The fraction of two sigma-...
smfpimbor1lem1 41005 Every open set belongs to ...
smfpimbor1lem2 41006 Given a sigma-measurable f...
smfpimbor1 41007 Given a sigma-measurable f...
smf2id 41008 Twice the identity functio...
smfco 41009 The composition of a Borel...
smfneg 41010 The negative of a sigma-me...
smffmpt 41011 A function measurable w.r....
smflim2 41012 The limit of a sequence of...
smfpimcclem 41013 Lemma for ~ smfpimcc given...
smfpimcc 41014 Given a countable set of s...
issmfle2d 41015 A sufficient condition for...
smflimmpt 41016 The limit of a sequence of...
smfsuplem1 41017 The supremum of a countabl...
smfsuplem2 41018 The supremum of a countabl...
smfsuplem3 41019 The supremum of a countabl...
smfsup 41020 The supremum of a countabl...
smfsupmpt 41021 The supremum of a countabl...
smfsupxr 41022 The supremum of a countabl...
smfinflem 41023 The infimum of a countable...
smfinf 41024 The infimum of a countable...
smfinfmpt 41025 The infimum of a countable...
smflimsuplem1 41026 If ` H ` converges, the ` ...
smflimsuplem2 41027 The superior limit of a se...
smflimsuplem3 41028 The limit of the ` ( H `` ...
smflimsuplem4 41029 If ` H ` converges, the ` ...
smflimsuplem5 41030 ` H ` converges to the sup...
smflimsuplem6 41031 The superior limit of a se...
smflimsuplem7 41032 The superior limit of a se...
smflimsuplem8 41033 The superior limit of a se...
smflimsup 41034 The superior limit of a se...
smflimsupmpt 41035 The superior limit of a se...
smfliminflem 41036 The inferior limit of a co...
smfliminf 41037 The inferior limit of a co...
smfliminfmpt 41038 The inferior limit of a co...
sigarval 41039 Define the signed area by ...
sigarim 41040 Signed area takes value in...
sigarac 41041 Signed area is anticommuta...
sigaraf 41042 Signed area is additive by...
sigarmf 41043 Signed area is additive (w...
sigaras 41044 Signed area is additive by...
sigarms 41045 Signed area is additive (w...
sigarls 41046 Signed area is linear by t...
sigarid 41047 Signed area of a flat para...
sigarexp 41048 Expand the signed area for...
sigarperm 41049 Signed area ` ( A - C ) G ...
sigardiv 41050 If signed area between vec...
sigarimcd 41051 Signed area takes value in...
sigariz 41052 If signed area is zero, th...
sigarcol 41053 Given three points ` A ` ,...
sharhght 41054 Let ` A B C ` be a triangl...
sigaradd 41055 Subtracting (double) area ...
cevathlem1 41056 Ceva's theorem first lemma...
cevathlem2 41057 Ceva's theorem second lemm...
cevath 41058 Ceva's theorem. Let ` A B...
hirstL-ax3 41059 The third axiom of a syste...
ax3h 41060 Recovery of ~ ax-3 from ~ ...
aibandbiaiffaiffb 41061 A closed form showing (a i...
aibandbiaiaiffb 41062 A closed form showing (a i...
notatnand 41063 Do not use. Use intnanr i...
aistia 41064 Given a is equivalent to `...
aisfina 41065 Given a is equivalent to `...
bothtbothsame 41066 Given both a, b are equiva...
bothfbothsame 41067 Given both a, b are equiva...
aiffbbtat 41068 Given a is equivalent to b...
aisbbisfaisf 41069 Given a is equivalent to b...
axorbtnotaiffb 41070 Given a is exclusive to b,...
aiffnbandciffatnotciffb 41071 Given a is equivalent to (...
axorbciffatcxorb 41072 Given a is equivalent to (...
aibnbna 41073 Given a implies b, (not b)...
aibnbaif 41074 Given a implies b, not b, ...
aiffbtbat 41075 Given a is equivalent to b...
astbstanbst 41076 Given a is equivalent to T...
aistbistaandb 41077 Given a is equivalent to T...
aisbnaxb 41078 Given a is equivalent to b...
atbiffatnnb 41079 If a implies b, then a imp...
bisaiaisb 41080 Application of bicom1 with...
atbiffatnnbalt 41081 If a implies b, then a imp...
abnotbtaxb 41082 Assuming a, not b, there e...
abnotataxb 41083 Assuming not a, b, there e...
conimpf 41084 Assuming a, not b, and a i...
conimpfalt 41085 Assuming a, not b, and a i...
aistbisfiaxb 41086 Given a is equivalent to T...
aisfbistiaxb 41087 Given a is equivalent to F...
aifftbifffaibif 41088 Given a is equivalent to T...
aifftbifffaibifff 41089 Given a is equivalent to T...
atnaiana 41090 Given a, it is not the cas...
ainaiaandna 41091 Given a, a implies it is n...
abcdta 41092 Given (((a and b) and c) a...
abcdtb 41093 Given (((a and b) and c) a...
abcdtc 41094 Given (((a and b) and c) a...
abcdtd 41095 Given (((a and b) and c) a...
abciffcbatnabciffncba 41096 Operands in a biconditiona...
abciffcbatnabciffncbai 41097 Operands in a biconditiona...
nabctnabc 41098 not ( a -> ( b /\ c ) ) we...
jabtaib 41099 For when pm3.4 lacks a pm3...
onenotinotbothi 41100 From one negated implicati...
twonotinotbothi 41101 From these two negated imp...
clifte 41102 show d is the same as an i...
cliftet 41103 show d is the same as an i...
clifteta 41104 show d is the same as an i...
cliftetb 41105 show d is the same as an i...
confun 41106 Given the hypotheses there...
confun2 41107 Confun simplified to two p...
confun3 41108 Confun's more complex form...
confun4 41109 An attempt at derivative. ...
confun5 41110 An attempt at derivative. ...
plcofph 41111 Given, a,b and a "definiti...
pldofph 41112 Given, a,b c, d, "definiti...
plvcofph 41113 Given, a,b,d, and "definit...
plvcofphax 41114 Given, a,b,d, and "definit...
plvofpos 41115 rh is derivable because ON...
mdandyv0 41116 Given the equivalences set...
mdandyv1 41117 Given the equivalences set...
mdandyv2 41118 Given the equivalences set...
mdandyv3 41119 Given the equivalences set...
mdandyv4 41120 Given the equivalences set...
mdandyv5 41121 Given the equivalences set...
mdandyv6 41122 Given the equivalences set...
mdandyv7 41123 Given the equivalences set...
mdandyv8 41124 Given the equivalences set...
mdandyv9 41125 Given the equivalences set...
mdandyv10 41126 Given the equivalences set...
mdandyv11 41127 Given the equivalences set...
mdandyv12 41128 Given the equivalences set...
mdandyv13 41129 Given the equivalences set...
mdandyv14 41130 Given the equivalences set...
mdandyv15 41131 Given the equivalences set...
mdandyvr0 41132 Given the equivalences set...
mdandyvr1 41133 Given the equivalences set...
mdandyvr2 41134 Given the equivalences set...
mdandyvr3 41135 Given the equivalences set...
mdandyvr4 41136 Given the equivalences set...
mdandyvr5 41137 Given the equivalences set...
mdandyvr6 41138 Given the equivalences set...
mdandyvr7 41139 Given the equivalences set...
mdandyvr8 41140 Given the equivalences set...
mdandyvr9 41141 Given the equivalences set...
mdandyvr10 41142 Given the equivalences set...
mdandyvr11 41143 Given the equivalences set...
mdandyvr12 41144 Given the equivalences set...
mdandyvr13 41145 Given the equivalences set...
mdandyvr14 41146 Given the equivalences set...
mdandyvr15 41147 Given the equivalences set...
mdandyvrx0 41148 Given the exclusivities se...
mdandyvrx1 41149 Given the exclusivities se...
mdandyvrx2 41150 Given the exclusivities se...
mdandyvrx3 41151 Given the exclusivities se...
mdandyvrx4 41152 Given the exclusivities se...
mdandyvrx5 41153 Given the exclusivities se...
mdandyvrx6 41154 Given the exclusivities se...
mdandyvrx7 41155 Given the exclusivities se...
mdandyvrx8 41156 Given the exclusivities se...
mdandyvrx9 41157 Given the exclusivities se...
mdandyvrx10 41158 Given the exclusivities se...
mdandyvrx11 41159 Given the exclusivities se...
mdandyvrx12 41160 Given the exclusivities se...
mdandyvrx13 41161 Given the exclusivities se...
mdandyvrx14 41162 Given the exclusivities se...
mdandyvrx15 41163 Given the exclusivities se...
H15NH16TH15IH16 41164 Given 15 hypotheses and a ...
dandysum2p2e4 41165 CONTRADICTION PRO...
mdandysum2p2e4 41166 CONTRADICTION PROVED AT 1 ...
r19.32 41167 Theorem 19.32 of [Margaris...
rexsb 41168 An equivalent expression f...
rexrsb 41169 An equivalent expression f...
2rexsb 41170 An equivalent expression f...
2rexrsb 41171 An equivalent expression f...
cbvral2 41172 Change bound variables of ...
cbvrex2 41173 Change bound variables of ...
2ralbiim 41174 Split a biconditional and ...
raaan2 41175 Rearrange restricted quant...
rmoimi 41176 Restricted "at most one" i...
2reu5a 41177 Double restricted existent...
reuimrmo 41178 Restricted uniqueness impl...
rmoanim 41179 Introduction of a conjunct...
reuan 41180 Introduction of a conjunct...
2reurex 41181 Double restricted quantifi...
2reurmo 41182 Double restricted quantifi...
2reu2rex 41183 Double restricted existent...
2rmoswap 41184 A condition allowing swap ...
2rexreu 41185 Double restricted existent...
2reu1 41186 Double restricted existent...
2reu2 41187 Double restricted existent...
2reu3 41188 Double restricted existent...
2reu4a 41189 Definition of double restr...
2reu4 41190 Definition of double restr...
2reu7 41191 Two equivalent expressions...
2reu8 41192 Two equivalent expressions...
ralbinrald 41199 Elemination of a restricte...
nvelim 41200 If a class is the universa...
alneu 41201 If a statement holds for a...
eu2ndop1stv 41202 If there is a unique secon...
eldmressn 41203 Element of the domain of a...
fveqvfvv 41204 If a function's value at a...
funresfunco 41205 Composition of two functio...
fnresfnco 41206 Composition of two functio...
funcoressn 41207 A composition restricted t...
funressnfv 41208 A restriction to a singlet...
dfateq12d 41209 Equality deduction for "de...
nfdfat 41210 Bound-variable hypothesis ...
dfdfat2 41211 Alternate definition of th...
dfafv2 41212 Alternative definition of ...
afveq12d 41213 Equality deduction for fun...
afveq1 41214 Equality theorem for funct...
afveq2 41215 Equality theorem for funct...
nfafv 41216 Bound-variable hypothesis ...
csbafv12g 41217 Move class substitution in...
afvfundmfveq 41218 If a class is a function r...
afvnfundmuv 41219 If a set is not in the dom...
ndmafv 41220 The value of a class outsi...
afvvdm 41221 If the function value of a...
nfunsnafv 41222 If the restriction of a cl...
afvvfunressn 41223 If the function value of a...
afvprc 41224 A function's value at a pr...
afvvv 41225 If a function's value at a...
afvpcfv0 41226 If the value of the altern...
afvnufveq 41227 The value of the alternati...
afvvfveq 41228 The value of the alternati...
afv0fv0 41229 If the value of the altern...
afvfvn0fveq 41230 If the function's value at...
afv0nbfvbi 41231 The function's value at an...
afvfv0bi 41232 The function's value at an...
afveu 41233 The value of a function at...
fnbrafvb 41234 Equivalence of function va...
fnopafvb 41235 Equivalence of function va...
funbrafvb 41236 Equivalence of function va...
funopafvb 41237 Equivalence of function va...
funbrafv 41238 The second argument of a b...
funbrafv2b 41239 Function value in terms of...
dfafn5a 41240 Representation of a functi...
dfafn5b 41241 Representation of a functi...
fnrnafv 41242 The range of a function ex...
afvelrnb 41243 A member of a function's r...
afvelrnb0 41244 A member of a function's r...
dfaimafn 41245 Alternate definition of th...
dfaimafn2 41246 Alternate definition of th...
afvelima 41247 Function value in an image...
afvelrn 41248 A function's value belongs...
fnafvelrn 41249 A function's value belongs...
fafvelrn 41250 A function's value belongs...
ffnafv 41251 A function maps to a class...
afvres 41252 The value of a restricted ...
tz6.12-afv 41253 Function value. Theorem 6...
tz6.12-1-afv 41254 Function value (Theorem 6....
dmfcoafv 41255 Domains of a function comp...
afvco2 41256 Value of a function compos...
rlimdmafv 41257 Two ways to express that a...
aoveq123d 41258 Equality deduction for ope...
nfaov 41259 Bound-variable hypothesis ...
csbaovg 41260 Move class substitution in...
aovfundmoveq 41261 If a class is a function r...
aovnfundmuv 41262 If an ordered pair is not ...
ndmaov 41263 The value of an operation ...
ndmaovg 41264 The value of an operation ...
aovvdm 41265 If the operation value of ...
nfunsnaov 41266 If the restriction of a cl...
aovvfunressn 41267 If the operation value of ...
aovprc 41268 The value of an operation ...
aovrcl 41269 Reverse closure for an ope...
aovpcov0 41270 If the alternative value o...
aovnuoveq 41271 The alternative value of t...
aovvoveq 41272 The alternative value of t...
aov0ov0 41273 If the alternative value o...
aovovn0oveq 41274 If the operation's value a...
aov0nbovbi 41275 The operation's value on a...
aovov0bi 41276 The operation's value on a...
rspceaov 41277 A frequently used special ...
fnotaovb 41278 Equivalence of operation v...
ffnaov 41279 An operation maps to a cla...
faovcl 41280 Closure law for an operati...
aovmpt4g 41281 Value of a function given ...
aoprssdm 41282 Domain of closure of an op...
ndmaovcl 41283 The "closure" of an operat...
ndmaovrcl 41284 Reverse closure law, in co...
ndmaovcom 41285 Any operation is commutati...
ndmaovass 41286 Any operation is associati...
ndmaovdistr 41287 Any operation is distribut...
dfnelbr2 41290 Alternate definition of th...
nelbr 41291 The binary relation of a s...
nelbrim 41292 If a set is related to ano...
nelbrnel 41293 A set is related to anothe...
nelbrnelim 41294 If a set is related to ano...
ralralimp 41295 Selecting one of two alter...
elprneb 41296 An element of a proper uno...
opidg 41297 The ordered pair ` <. A , ...
otiunsndisjX 41298 The union of singletons co...
fvifeq 41299 Equality of function value...
rnfdmpr 41300 The range of a one-to-one ...
imarnf1pr 41301 The image of the range of ...
funop1 41302 A function is an ordered p...
fun2dmnopgexmpl 41303 A function with a domain c...
opabresex0d 41304 A collection of ordered pa...
opabbrfex0d 41305 A collection of ordered pa...
opabresexd 41306 A collection of ordered pa...
opabbrfexd 41307 A collection of ordered pa...
leltletr 41308 Transitive law, weaker for...
cnambpcma 41309 ((a-b)+c)-a = c-a holds fo...
cnapbmcpd 41310 ((a+b)-c)+d = ((a+d)+b)-c ...
leaddsuble 41311 Addition and subtraction o...
2leaddle2 41312 If two real numbers are le...
ltnltne 41313 Variant of trichotomy law ...
p1lep2 41314 A real number increasd by ...
ltsubsubaddltsub 41315 If the result of subtracti...
zm1nn 41316 An integer minus 1 is posi...
nn0resubcl 41317 Closure law for subtractio...
zgeltp1eq 41318 If an integer is between a...
1t10e1p1e11 41319 11 is 1 times 10 to the po...
1t10e1p1e11OLD 41320 Obsolete version of ~ 1t10...
deccarry 41321 Add 1 to a 2 digit number ...
eluzge0nn0 41322 If an integer is greater t...
nltle2tri 41323 Negated extended trichotom...
ssfz12 41324 Subset relationship for fi...
elfz2z 41325 Membership of an integer i...
2elfz3nn0 41326 If there are two elements ...
fz0addcom 41327 The addition of two member...
2elfz2melfz 41328 If the sum of two integers...
fz0addge0 41329 The sum of two integers in...
elfzlble 41330 Membership of an integer i...
elfzelfzlble 41331 Membership of an element o...
fzopred 41332 Join a predecessor to the ...
fzopredsuc 41333 Join a predecessor and a s...
1fzopredsuc 41334 Join 0 and a successor to ...
el1fzopredsuc 41335 An element of an open inte...
subsubelfzo0 41336 Subtracting a difference f...
fzoopth 41337 A half-open integer range ...
2ffzoeq 41338 Two functions over a half-...
m1mod0mod1 41339 An integer decreased by 1 ...
elmod2 41340 An integer modulo 2 is eit...
smonoord 41341 Ordering relation for a st...
fsummsndifre 41342 A finite sum with one of i...
fsumsplitsndif 41343 Separate out a term in a f...
fsummmodsndifre 41344 A finite sum of summands m...
fsummmodsnunz 41345 A finite sum of summands m...
setsidel 41346 The injected slot is an el...
setsnidel 41347 The injected slot is an el...
setsv 41348 The value of the structure...
iccpval 41351 Partition consisting of a ...
iccpart 41352 A special partition. Corr...
iccpartimp 41353 Implications for a class b...
iccpartres 41354 The restriction of a parti...
iccpartxr 41355 If there is a partition, t...
iccpartgtprec 41356 If there is a partition, t...
iccpartipre 41357 If there is a partition, t...
iccpartiltu 41358 If there is a partition, t...
iccpartigtl 41359 If there is a partition, t...
iccpartlt 41360 If there is a partition, t...
iccpartltu 41361 If there is a partition, t...
iccpartgtl 41362 If there is a partition, t...
iccpartgt 41363 If there is a partition, t...
iccpartleu 41364 If there is a partition, t...
iccpartgel 41365 If there is a partition, t...
iccpartrn 41366 If there is a partition, t...
iccpartf 41367 The range of the partition...
iccpartel 41368 If there is a partition, t...
iccelpart 41369 An element of any partitio...
iccpartiun 41370 A half opened interval of ...
icceuelpartlem 41371 Lemma for ~ icceuelpart . ...
icceuelpart 41372 An element of a partitione...
iccpartdisj 41373 The segments of a partitio...
iccpartnel 41374 A point of a partition is ...
fargshiftfv 41375 If a class is a function, ...
fargshiftf 41376 If a class is a function, ...
fargshiftf1 41377 If a function is 1-1, then...
fargshiftfo 41378 If a function is onto, the...
fargshiftfva 41379 The values of a shifted fu...
lswn0 41380 The last symbol of a not e...
pfxval 41383 Value of a prefix. (Contr...
pfx00 41384 A zero length prefix. (Co...
pfx0 41385 A prefix of an empty set i...
pfxcl 41386 Closure of the prefix extr...
pfxmpt 41387 Value of the prefix extrac...
pfxres 41388 Value of the prefix extrac...
pfxf 41389 A prefix of a word is a fu...
pfxfn 41390 Value of the prefix extrac...
pfxlen 41391 Length of a prefix. Could...
pfxid 41392 A word is a prefix of itse...
pfxrn 41393 The range of a prefix of a...
pfxn0 41394 A prefix consisting of at ...
pfxnd 41395 The value of the prefix ex...
pfxlen0 41396 Length of a prefix of a wo...
addlenrevpfx 41397 The sum of the lengths of ...
addlenpfx 41398 The sum of the lengths of ...
pfxfv 41399 A symbol in a prefix of a ...
pfxfv0 41400 The first symbol in a pref...
pfxtrcfv 41401 A symbol in a word truncat...
pfxtrcfv0 41402 The first symbol in a word...
pfxfvlsw 41403 The last symbol in a (not ...
pfxeq 41404 The prefixes of two words ...
pfxtrcfvl 41405 The last symbol in a word ...
pfxsuffeqwrdeq 41406 Two words are equal if and...
pfxsuff1eqwrdeq 41407 Two (nonempty) words are e...
disjwrdpfx 41408 Sets of words are disjoint...
ccatpfx 41409 Joining a prefix with an a...
pfxccat1 41410 Recover the left half of a...
pfx1 41411 A prefix of length 1. (Co...
pfx2 41412 A prefix of length 2. (Co...
pfxswrd 41413 A prefix of a subword. Co...
swrdpfx 41414 A subword of a prefix. Co...
pfxpfx 41415 A prefix of a prefix. Cou...
pfxpfxid 41416 A prefix of a prefix with ...
pfxcctswrd 41417 The concatenation of the p...
lenpfxcctswrd 41418 The length of the concaten...
lenrevpfxcctswrd 41419 The length of the concaten...
pfxlswccat 41420 Reconstruct a nonempty wor...
ccats1pfxeq 41421 The last symbol of a word ...
ccats1pfxeqrex 41422 There exists a symbol such...
pfxccatin12lem1 41423 Lemma 1 for ~ pfxccatin12 ...
pfxccatin12lem2 41424 Lemma 2 for ~ pfxccatin12 ...
pfxccatin12 41425 The subword of a concatena...
pfxccat3 41426 The subword of a concatena...
pfxccatpfx1 41427 A prefix of a concatenatio...
pfxccatpfx2 41428 A prefix of a concatenatio...
pfxccat3a 41429 A prefix of a concatenatio...
pfxccatid 41430 A prefix of a concatenatio...
ccats1pfxeqbi 41431 A word is a prefix of a wo...
pfxccatin12d 41432 The subword of a concatena...
reuccatpfxs1lem 41433 Lemma for ~ reuccatpfxs1 ....
reuccatpfxs1 41434 There is a unique word hav...
splvalpfx 41435 Value of the substring rep...
repswpfx 41436 A prefix of a repeated sym...
cshword2 41437 Perform a cyclical shift f...
pfxco 41438 Mapping of words commutes ...
fmtno 41441 The ` N ` th Fermat number...
fmtnoge3 41442 Each Fermat number is grea...
fmtnonn 41443 Each Fermat number is a po...
fmtnom1nn 41444 A Fermat number minus one ...
fmtnoodd 41445 Each Fermat number is odd....
fmtnorn 41446 A Fermat number is a funct...
fmtnof1 41447 The enumeration of the Fer...
fmtnoinf 41448 The set of Fermat numbers ...
fmtnorec1 41449 The first recurrence relat...
sqrtpwpw2p 41450 The floor of the square ro...
fmtnosqrt 41451 The floor of the square ro...
fmtno0 41452 The ` 0 ` th Fermat number...
fmtno1 41453 The ` 1 ` st Fermat number...
fmtnorec2lem 41454 Lemma for ~ fmtnorec2 (ind...
fmtnorec2 41455 The second recurrence rela...
fmtnodvds 41456 Any Fermat number divides ...
goldbachthlem1 41457 Lemma 1 for ~ goldbachth ....
goldbachthlem2 41458 Lemma 2 for ~ goldbachth ....
goldbachth 41459 Goldbach's theorem: Two d...
fmtnorec3 41460 The third recurrence relat...
fmtnorec4 41461 The fourth recurrence rela...
fmtno2 41462 The ` 2 ` nd Fermat number...
fmtno3 41463 The ` 3 ` rd Fermat number...
fmtno4 41464 The ` 4 ` th Fermat number...
fmtno5lem1 41465 Lemma 1 for ~ fmtno5 . (C...
fmtno5lem2 41466 Lemma 2 for ~ fmtno5 . (C...
fmtno5lem3 41467 Lemma 3 for ~ fmtno5 . (C...
fmtno5lem4 41468 Lemma 4 for ~ fmtno5 . (C...
fmtno5 41469 The ` 5 ` th Fermat number...
fmtno0prm 41470 The ` 0 ` th Fermat number...
fmtno1prm 41471 The ` 1 ` st Fermat number...
fmtno2prm 41472 The ` 2 ` nd Fermat number...
257prm 41473 257 is a prime number (the...
fmtno3prm 41474 The ` 3 ` rd Fermat number...
odz2prm2pw 41475 Any power of two is coprim...
fmtnoprmfac1lem 41476 Lemma for ~ fmtnoprmfac1 :...
fmtnoprmfac1 41477 Divisor of Fermat number (...
fmtnoprmfac2lem1 41478 Lemma for ~ fmtnoprmfac2 ....
fmtnoprmfac2 41479 Divisor of Fermat number (...
fmtnofac2lem 41480 Lemma for ~ fmtnofac2 (Ind...
fmtnofac2 41481 Divisor of Fermat number (...
fmtnofac1 41482 Divisor of Fermat number (...
fmtno4sqrt 41483 The floor of the square ro...
fmtno4prmfac 41484 If P was a (prime) factor ...
fmtno4prmfac193 41485 If P was a (prime) factor ...
fmtno4nprmfac193 41486 193 is not a (prime) facto...
fmtno4prm 41487 The ` 4 `-th Fermat number...
65537prm 41488 65537 is a prime number (t...
fmtnofz04prm 41489 The first five Fermat numb...
fmtnole4prm 41490 The first five Fermat numb...
fmtno5faclem1 41491 Lemma 1 for ~ fmtno5fac . ...
fmtno5faclem2 41492 Lemma 2 for ~ fmtno5fac . ...
fmtno5faclem3 41493 Lemma 3 for ~ fmtno5fac . ...
fmtno5fac 41494 The factorisation of the `...
fmtno5nprm 41495 The ` 5 ` th Fermat number...
prmdvdsfmtnof1lem1 41496 Lemma 1 for ~ prmdvdsfmtno...
prmdvdsfmtnof1lem2 41497 Lemma 2 for ~ prmdvdsfmtno...
prmdvdsfmtnof 41498 The mapping of a Fermat nu...
prmdvdsfmtnof1 41499 The mapping of a Fermat nu...
prminf2 41500 The set of prime numbers i...
pwdif 41501 The difference of two numb...
pwm1geoserALT 41502 The n-th power of a number...
2pwp1prm 41503 For every prime number of ...
2pwp1prmfmtno 41504 Every prime number of the ...
m2prm 41505 The second Mersenne number...
m3prm 41506 The third Mersenne number ...
2exp5 41507 Two to the fifth power is ...
flsqrt 41508 A condition equivalent to ...
flsqrt5 41509 The floor of the square ro...
3ndvds4 41510 3 does not divide 4. (Con...
139prmALT 41511 139 is a prime number. In...
31prm 41512 31 is a prime number. In ...
m5prm 41513 The fifth Mersenne number ...
2exp7 41514 Two to the seventh power i...
127prm 41515 127 is a prime number. (C...
m7prm 41516 The seventh Mersenne numbe...
2exp11 41517 Two to the eleventh power ...
m11nprm 41518 The eleventh Mersenne numb...
mod42tp1mod8 41519 If a number is ` 3 ` modul...
sfprmdvdsmersenne 41520 If ` Q ` is a safe prime (...
sgprmdvdsmersenne 41521 If ` P ` is a Sophie Germa...
lighneallem1 41522 Lemma 1 for ~ lighneal . ...
lighneallem2 41523 Lemma 2 for ~ lighneal . ...
lighneallem3 41524 Lemma 3 for ~ lighneal . ...
lighneallem4a 41525 Lemma 1 for ~ lighneallem4...
lighneallem4b 41526 Lemma 2 for ~ lighneallem4...
lighneallem4 41527 Lemma 3 for ~ lighneal . ...
lighneal 41528 If a power of a prime ` P ...
modexp2m1d 41529 The square of an integer w...
proththdlem 41530 Lemma for ~ proththd . (C...
proththd 41531 Proth's theorem (1878). I...
5tcu2e40 41532 5 times the cube of 2 is 4...
3exp4mod41 41533 3 to the fourth power is -...
41prothprmlem1 41534 Lemma 1 for ~ 41prothprm ....
41prothprmlem2 41535 Lemma 2 for ~ 41prothprm ....
41prothprm 41536 41 is a _Proth prime_. (C...
iseven 41541 The predicate "is an even ...
isodd 41542 The predicate "is an odd n...
evenz 41543 An even number is an integ...
oddz 41544 An odd number is an intege...
evendiv2z 41545 The result of dividing an ...
oddp1div2z 41546 The result of dividing an ...
oddm1div2z 41547 The result of dividing an ...
isodd2 41548 The predicate "is an odd n...
dfodd2 41549 Alternate definition for o...
dfodd6 41550 Alternate definition for o...
dfeven4 41551 Alternate definition for e...
evenm1odd 41552 The predecessor of an even...
evenp1odd 41553 The successor of an even n...
oddp1eveni 41554 The successor of an odd nu...
oddm1eveni 41555 The predecessor of an odd ...
evennodd 41556 An even number is not an o...
oddneven 41557 An odd number is not an ev...
enege 41558 The negative of an even nu...
onego 41559 The negative of an odd num...
m1expevenALTV 41560 Exponentiation of -1 by an...
m1expoddALTV 41561 Exponentiation of -1 by an...
dfeven2 41562 Alternate definition for e...
dfodd3 41563 Alternate definition for o...
iseven2 41564 The predicate "is an even ...
isodd3 41565 The predicate "is an odd n...
2dvdseven 41566 2 divides an even number. ...
2ndvdsodd 41567 2 does not divide an odd n...
2dvdsoddp1 41568 2 divides an odd number in...
2dvdsoddm1 41569 2 divides an odd number de...
dfeven3 41570 Alternate definition for e...
dfodd4 41571 Alternate definition for o...
dfodd5 41572 Alternate definition for o...
zefldiv2ALTV 41573 The floor of an even numbe...
zofldiv2ALTV 41574 The floor of an odd numer ...
oddflALTV 41575 Odd number representation ...
iseven5 41576 The predicate "is an even ...
isodd7 41577 The predicate "is an odd n...
dfeven5 41578 Alternate definition for e...
dfodd7 41579 Alternate definition for o...
zneoALTV 41580 No even integer equals an ...
zeoALTV 41581 An integer is even or odd....
zeo2ALTV 41582 An integer is even or odd ...
nneoALTV 41583 A positive integer is even...
nneoiALTV 41584 A positive integer is even...
odd2np1ALTV 41585 An integer is odd iff it i...
oddm1evenALTV 41586 An integer is odd iff its ...
oddp1evenALTV 41587 An integer is odd iff its ...
oexpnegALTV 41588 The exponential of the neg...
oexpnegnz 41589 The exponential of the neg...
bits0ALTV 41590 Value of the zeroth bit. ...
bits0eALTV 41591 The zeroth bit of an even ...
bits0oALTV 41592 The zeroth bit of an odd n...
divgcdoddALTV 41593 Either ` A / ( A gcd B ) `...
opoeALTV 41594 The sum of two odds is eve...
opeoALTV 41595 The sum of an odd and an e...
omoeALTV 41596 The difference of two odds...
omeoALTV 41597 The difference of an odd a...
oddprmALTV 41598 A prime not equal to ` 2 `...
0evenALTV 41599 0 is an even number. (Con...
0noddALTV 41600 0 is not an odd number. (...
1oddALTV 41601 1 is an odd number. (Cont...
1nevenALTV 41602 1 is not an even number. ...
2evenALTV 41603 2 is an even number. (Con...
2noddALTV 41604 2 is not an odd number. (...
nn0o1gt2ALTV 41605 An odd nonnegative integer...
nnoALTV 41606 An alternate characterizat...
nn0oALTV 41607 An alternate characterizat...
nn0e 41608 An alternate characterizat...
nn0onn0exALTV 41609 For each odd nonnegative i...
nn0enn0exALTV 41610 For each even nonnegative ...
nnpw2evenALTV 41611 2 to the power of a positi...
epoo 41612 The sum of an even and an ...
emoo 41613 The difference of an even ...
epee 41614 The sum of two even number...
emee 41615 The difference of two even...
evensumeven 41616 If a summand is even, the ...
3odd 41617 3 is an odd number. (Cont...
4even 41618 4 is an even number. (Con...
5odd 41619 5 is an odd number. (Cont...
6even 41620 6 is an even number. (Con...
7odd 41621 7 is an odd number. (Cont...
8even 41622 8 is an even number. (Con...
evenprm2 41623 A prime number is even iff...
oddprmne2 41624 Every prime number not bei...
oddprmuzge3 41625 A prime number which is od...
evenltle 41626 If an even number is great...
odd2prm2 41627 If an odd number is the su...
even3prm2 41628 If an even number is the s...
mogoldbblem 41629 Lemma for ~ mogoldbb . (C...
perfectALTVlem1 41630 Lemma for ~ perfectALTV . ...
perfectALTVlem2 41631 Lemma for ~ perfectALTV . ...
perfectALTV 41632 The Euclid-Euler theorem, ...
isgbe 41639 The predicate "is an even ...
isgbow 41640 The predicate "is a weak o...
isgbo 41641 The predicate "is an odd G...
gbeeven 41642 An even Goldbach number is...
gbowodd 41643 A weak odd Goldbach number...
gbogbow 41644 A (strong) odd Goldbach nu...
gboodd 41645 An odd Goldbach number is ...
gbepos 41646 Any even Goldbach number i...
gbowpos 41647 Any weak odd Goldbach numb...
gbopos 41648 Any odd Goldbach number is...
gbegt5 41649 Any even Goldbach number i...
gbowgt5 41650 Any weak odd Goldbach numb...
gbowge7 41651 Any weak odd Goldbach numb...
gboge9 41652 Any odd Goldbach number is...
gbege6 41653 Any even Goldbach number i...
gbpart6 41654 The Goldbach partition of ...
gbpart7 41655 The (weak) Goldbach partit...
gbpart8 41656 The Goldbach partition of ...
gbpart9 41657 The (strong) Goldbach part...
gbpart11 41658 The (strong) Goldbach part...
6gbe 41659 6 is an even Goldbach numb...
7gbow 41660 7 is a weak odd Goldbach n...
8gbe 41661 8 is an even Goldbach numb...
9gbo 41662 9 is an odd Goldbach numbe...
11gbo 41663 11 is an odd Goldbach numb...
stgoldbwt 41664 If the strong ternary Gold...
sbgoldbwt 41665 If the strong binary Goldb...
sbgoldbst 41666 If the strong binary Goldb...
sbgoldbaltlem1 41667 Lemma 1 for ~ sbgoldbalt :...
sbgoldbaltlem2 41668 Lemma 2 for ~ sbgoldbalt :...
sbgoldbalt 41669 An alternate (related to t...
sbgoldbb 41670 If the strong binary Goldb...
sgoldbeven3prm 41671 If the binary Goldbach con...
sbgoldbm 41672 If the strong binary Goldb...
mogoldbb 41673 If the modern version of t...
sbgoldbmb 41674 The strong binary Goldbach...
sbgoldbo 41675 If the strong binary Goldb...
nnsum3primes4 41676 4 is the sum of at most 3 ...
nnsum4primes4 41677 4 is the sum of at most 4 ...
nnsum3primesprm 41678 Every prime is "the sum of...
nnsum4primesprm 41679 Every prime is "the sum of...
nnsum3primesgbe 41680 Any even Goldbach number i...
nnsum4primesgbe 41681 Any even Goldbach number i...
nnsum3primesle9 41682 Every integer greater than...
nnsum4primesle9 41683 Every integer greater than...
nnsum4primesodd 41684 If the (weak) ternary Gold...
nnsum4primesoddALTV 41685 If the (strong) ternary Go...
evengpop3 41686 If the (weak) ternary Gold...
evengpoap3 41687 If the (strong) ternary Go...
nnsum4primeseven 41688 If the (weak) ternary Gold...
nnsum4primesevenALTV 41689 If the (strong) ternary Go...
wtgoldbnnsum4prm 41690 If the (weak) ternary Gold...
stgoldbnnsum4prm 41691 If the (strong) ternary Go...
bgoldbnnsum3prm 41692 If the binary Goldbach con...
bgoldbtbndlem1 41693 Lemma 1 for ~ bgoldbtbnd :...
bgoldbtbndlem2 41694 Lemma 2 for ~ bgoldbtbnd ....
bgoldbtbndlem3 41695 Lemma 3 for ~ bgoldbtbnd ....
bgoldbtbndlem4 41696 Lemma 4 for ~ bgoldbtbnd ....
bgoldbtbnd 41697 If the binary Goldbach con...
tgoldbachgtALTV 41700 Variant of Thierry Arnoux'...
bgoldbachlt 41701 The binary Goldbach conjec...
tgblthelfgott 41703 The ternary Goldbach conje...
tgoldbachlt 41704 The ternary Goldbach conje...
tgoldbach 41705 The ternary Goldbach conje...
bgoldbachltOLD 41707 Obsolete version of ~ bgol...
tgblthelfgottOLD 41709 Obsolete version of ~ tgbl...
tgoldbachltOLD 41710 Obsolete version of ~ tgol...
tgoldbachOLD 41712 Obsolete version of ~ tgol...
1hegrlfgr 41713 A graph ` G ` with one hyp...
upwlksfval 41716 The set of simple walks (i...
isupwlk 41717 Properties of a pair of fu...
isupwlkg 41718 Generalisation of ~ isupwl...
upwlkbprop 41719 Basic properties of a simp...
upwlkwlk 41720 A simple walk is a walk. ...
upgrwlkupwlk 41721 In a pseudograph, a walk i...
upgrwlkupwlkb 41722 In a pseudograph, the defi...
upgrisupwlkALT 41723 Alternate proof of ~ upgri...
sprid 41724 Two identical representati...
elsprel 41725 An unordered pair is an el...
spr0nelg 41726 The empty set is not an el...
sprval 41729 The set of all unordered p...
sprvalpw 41730 The set of all unordered p...
sprssspr 41731 The set of all unordered p...
spr0el 41732 The empty set is not an un...
sprvalpwn0 41733 The set of all unordered p...
sprel 41734 An element of the set of a...
prssspr 41735 An element of a subset of ...
prelspr 41736 An unordered pair of eleme...
prsprel 41737 The elements of a pair fro...
prsssprel 41738 The elements of a pair fro...
sprvalpwle2 41739 The set of all unordered p...
sprsymrelfvlem 41740 Lemma for ~ sprsymrelf and...
sprsymrelf1lem 41741 Lemma for ~ sprsymrelf1 . ...
sprsymrelfolem1 41742 Lemma 1 for ~ sprsymrelfo ...
sprsymrelfolem2 41743 Lemma 2 for ~ sprsymrelfo ...
sprsymrelfv 41744 The value of the function ...
sprsymrelf 41745 The mapping ` F ` is a fun...
sprsymrelf1 41746 The mapping ` F ` is a one...
sprsymrelfo 41747 The mapping ` F ` is a fun...
sprsymrelf1o 41748 The mapping ` F ` is a bij...
sprbisymrel 41749 There is a bijection betwe...
sprsymrelen 41750 The class ` P ` of subsets...
upgredgssspr 41751 The set of edges of a pseu...
uspgropssxp 41752 The set ` G ` of "simple p...
uspgrsprfv 41753 The value of the function ...
uspgrsprf 41754 The mapping ` F ` is a fun...
uspgrsprf1 41755 The mapping ` F ` is a one...
uspgrsprfo 41756 The mapping ` F ` is a fun...
uspgrsprf1o 41757 The mapping ` F ` is a bij...
uspgrex 41758 The class ` G ` of all "si...
uspgrbispr 41759 There is a bijection betwe...
uspgrspren 41760 The set ` G ` of the "simp...
uspgrymrelen 41761 The set ` G ` of the "simp...
uspgrbisymrel 41762 There is a bijection betwe...
uspgrbisymrelALT 41763 Alternate proof of ~ uspgr...
ovn0dmfun 41764 If a class operation value...
xpsnopab 41765 A Cartesian product with a...
xpiun 41766 A Cartesian product expres...
ovn0ssdmfun 41767 If a class' operation valu...
fnxpdmdm 41768 The domain of the domain o...
cnfldsrngbas 41769 The base set of a subring ...
cnfldsrngadd 41770 The group addition operati...
cnfldsrngmul 41771 The ring multiplication op...
plusfreseq 41772 If the empty set is not co...
mgmplusfreseq 41773 If the empty set is not co...
0mgm 41774 A set with an empty base s...
mgmpropd 41775 If two structures have the...
ismgmd 41776 Deduce a magma from its pr...
mgmhmrcl 41781 Reverse closure of a magma...
submgmrcl 41782 Reverse closure for submag...
ismgmhm 41783 Property of a magma homomo...
mgmhmf 41784 A magma homomorphism is a ...
mgmhmpropd 41785 Magma homomorphism depends...
mgmhmlin 41786 A magma homomorphism prese...
mgmhmf1o 41787 A magma homomorphism is bi...
idmgmhm 41788 The identity homomorphism ...
issubmgm 41789 Expand definition of a sub...
issubmgm2 41790 Submagmas are subsets that...
rabsubmgmd 41791 Deduction for proving that...
submgmss 41792 Submagmas are subsets of t...
submgmid 41793 Every magma is trivially a...
submgmcl 41794 Submagmas are closed under...
submgmmgm 41795 Submagmas are themselves m...
submgmbas 41796 The base set of a submagma...
subsubmgm 41797 A submagma of a submagma i...
resmgmhm 41798 Restriction of a magma hom...
resmgmhm2 41799 One direction of ~ resmgmh...
resmgmhm2b 41800 Restriction of the codomai...
mgmhmco 41801 The composition of magma h...
mgmhmima 41802 The homomorphic image of a...
mgmhmeql 41803 The equalizer of two magma...
submgmacs 41804 Submagmas are an algebraic...
ismhm0 41805 Property of a monoid homom...
mhmismgmhm 41806 Each monoid homomorphism i...
opmpt2ismgm 41807 A structure with a group a...
copissgrp 41808 A structure with a constan...
copisnmnd 41809 A structure with a constan...
0nodd 41810 0 is not an odd integer. ...
1odd 41811 1 is an odd integer. (Con...
2nodd 41812 2 is not an odd integer. ...
oddibas 41813 Lemma 1 for ~ oddinmgm : ...
oddiadd 41814 Lemma 2 for ~ oddinmgm : ...
oddinmgm 41815 The structure of all odd i...
nnsgrpmgm 41816 The structure of positive ...
nnsgrp 41817 The structure of positive ...
nnsgrpnmnd 41818 The structure of positive ...
iscllaw 41825 The predicate "is a closed...
iscomlaw 41826 The predicate "is a commut...
clcllaw 41827 Closure of a closed operat...
isasslaw 41828 The predicate "is an assoc...
asslawass 41829 Associativity of an associ...
mgmplusgiopALT 41830 Slot 2 (group operation) o...
sgrpplusgaopALT 41831 Slot 2 (group operation) o...
intopval 41838 The internal (binary) oper...
intop 41839 An internal (binary) opera...
clintopval 41840 The closed (internal binar...
assintopval 41841 The associative (closed in...
assintopmap 41842 The associative (closed in...
isclintop 41843 The predicate "is a closed...
clintop 41844 A closed (internal binary)...
assintop 41845 An associative (closed int...
isassintop 41846 The predicate "is an assoc...
clintopcllaw 41847 The closure law holds for ...
assintopcllaw 41848 The closure low holds for ...
assintopasslaw 41849 The associative low holds ...
assintopass 41850 An associative (closed int...
ismgmALT 41859 The predicate "is a magma....
iscmgmALT 41860 The predicate "is a commut...
issgrpALT 41861 The predicate "is a semigr...
iscsgrpALT 41862 The predicate "is a commut...
mgm2mgm 41863 Equivalence of the two def...
sgrp2sgrp 41864 Equivalence of the two def...
idfusubc0 41865 The identity functor for a...
idfusubc 41866 The identity functor for a...
inclfusubc 41867 The "inclusion functor" fr...
lmod0rng 41868 If the scalar ring of a mo...
nzrneg1ne0 41869 The additive inverse of th...
0ringdif 41870 A zero ring is a ring whic...
0ringbas 41871 The base set of a zero rin...
0ring1eq0 41872 In a zero ring, a ring whi...
nrhmzr 41873 There is no ring homomorph...
isrng 41876 The predicate "is a non-un...
rngabl 41877 A non-unital ring is an (a...
rngmgp 41878 A non-unital ring is a sem...
ringrng 41879 A unital ring is a (non-un...
ringssrng 41880 The unital rings are (non-...
isringrng 41881 The predicate "is a unital...
rngdir 41882 Distributive law for the m...
rngcl 41883 Closure of the multiplicat...
rnglz 41884 The zero of a nonunital ri...
rnghmrcl 41889 Reverse closure of a non-u...
rnghmfn 41890 The mapping of two non-uni...
rnghmval 41891 The set of the non-unital ...
isrnghm 41892 A function is a non-unital...
isrnghmmul 41893 A function is a non-unital...
rnghmmgmhm 41894 A non-unital ring homomorp...
rnghmval2 41895 The non-unital ring homomo...
isrngisom 41896 An isomorphism of non-unit...
rngimrcl 41897 Reverse closure for an iso...
rnghmghm 41898 A non-unital ring homomorp...
rnghmf 41899 A ring homomorphism is a f...
rnghmmul 41900 A homomorphism of non-unit...
isrnghm2d 41901 Demonstration of non-unita...
isrnghmd 41902 Demonstration of non-unita...
rnghmf1o 41903 A non-unital ring homomorp...
isrngim 41904 An isomorphism of non-unit...
rngimf1o 41905 An isomorphism of non-unit...
rngimrnghm 41906 An isomorphism of non-unit...
rnghmco 41907 The composition of non-uni...
idrnghm 41908 The identity homomorphism ...
c0mgm 41909 The constant mapping to ze...
c0mhm 41910 The constant mapping to ze...
c0ghm 41911 The constant mapping to ze...
c0rhm 41912 The constant mapping to ze...
c0rnghm 41913 The constant mapping to ze...
c0snmgmhm 41914 The constant mapping to ze...
c0snmhm 41915 The constant mapping to ze...
c0snghm 41916 The constant mapping to ze...
zrrnghm 41917 The constant mapping to ze...
rhmfn 41918 The mapping of two rings t...
rhmval 41919 The ring homomorphisms bet...
rhmisrnghm 41920 Each unital ring homomorph...
lidldomn1 41921 If a (left) ideal (which i...
lidlssbas 41922 The base set of the restri...
lidlbas 41923 A (left) ideal of a ring i...
lidlabl 41924 A (left) ideal of a ring i...
lidlmmgm 41925 The multiplicative group o...
lidlmsgrp 41926 The multiplicative group o...
lidlrng 41927 A (left) ideal of a ring i...
zlidlring 41928 The zero (left) ideal of a...
uzlidlring 41929 Only the zero (left) ideal...
lidldomnnring 41930 A (left) ideal of a domain...
0even 41931 0 is an even integer. (Co...
1neven 41932 1 is not an even integer. ...
2even 41933 2 is an even integer. (Co...
2zlidl 41934 The even integers are a (l...
2zrng 41935 The ring of integers restr...
2zrngbas 41936 The base set of R is the s...
2zrngadd 41937 The group addition operati...
2zrng0 41938 The additive identity of R...
2zrngamgm 41939 R is an (additive) magma. ...
2zrngasgrp 41940 R is an (additive) semigro...
2zrngamnd 41941 R is an (additive) monoid....
2zrngacmnd 41942 R is a commutative (additi...
2zrngagrp 41943 R is an (additive) group. ...
2zrngaabl 41944 R is an (additive) abelian...
2zrngmul 41945 The ring multiplication op...
2zrngmmgm 41946 R is a (multiplicative) ma...
2zrngmsgrp 41947 R is a (multiplicative) se...
2zrngALT 41948 The ring of integers restr...
2zrngnmlid 41949 R has no multiplicative (l...
2zrngnmrid 41950 R has no multiplicative (r...
2zrngnmlid2 41951 R has no multiplicative (l...
2zrngnring 41952 R is not a unital ring. (...
cznrnglem 41953 Lemma for ~ cznrng : The ...
cznabel 41954 The ring constructed from ...
cznrng 41955 The ring constructed from ...
cznnring 41956 The ring constructed from ...
rngcvalALTV 41961 Value of the category of n...
rngcval 41962 Value of the category of n...
rnghmresfn 41963 The class of non-unital ri...
rnghmresel 41964 An element of the non-unit...
rngcbas 41965 Set of objects of the cate...
rngchomfval 41966 Set of arrows of the categ...
rngchom 41967 Set of arrows of the categ...
elrngchom 41968 A morphism of non-unital r...
rngchomfeqhom 41969 The functionalized Hom-set...
rngccofval 41970 Composition in the categor...
rngcco 41971 Composition in the categor...
dfrngc2 41972 Alternate definition of th...
rnghmsscmap2 41973 The non-unital ring homomo...
rnghmsscmap 41974 The non-unital ring homomo...
rnghmsubcsetclem1 41975 Lemma 1 for ~ rnghmsubcset...
rnghmsubcsetclem2 41976 Lemma 2 for ~ rnghmsubcset...
rnghmsubcsetc 41977 The non-unital ring homomo...
rngccat 41978 The category of non-unital...
rngcid 41979 The identity arrow in the ...
rngcsect 41980 A section in the category ...
rngcinv 41981 An inverse in the category...
rngciso 41982 An isomorphism in the cate...
rngcbasALTV 41983 Set of objects of the cate...
rngchomfvalALTV 41984 Set of arrows of the categ...
rngchomALTV 41985 Set of arrows of the categ...
elrngchomALTV 41986 A morphism of non-unital r...
rngccofvalALTV 41987 Composition in the categor...
rngccoALTV 41988 Composition in the categor...
rngccatidALTV 41989 Lemma for ~ rngccatALTV . ...
rngccatALTV 41990 The category of non-unital...
rngcidALTV 41991 The identity arrow in the ...
rngcsectALTV 41992 A section in the category ...
rngcinvALTV 41993 An inverse in the category...
rngcisoALTV 41994 An isomorphism in the cate...
rngchomffvalALTV 41995 The value of the functiona...
rngchomrnghmresALTV 41996 The value of the functiona...
rngcifuestrc 41997 The "inclusion functor" fr...
funcrngcsetc 41998 The "natural forgetful fun...
funcrngcsetcALT 41999 Alternate proof of ~ funcr...
zrinitorngc 42000 The zero ring is an initia...
zrtermorngc 42001 The zero ring is a termina...
zrzeroorngc 42002 The zero ring is a zero ob...
ringcvalALTV 42007 Value of the category of r...
ringcval 42008 Value of the category of u...
rhmresfn 42009 The class of unital ring h...
rhmresel 42010 An element of the unital r...
ringcbas 42011 Set of objects of the cate...
ringchomfval 42012 Set of arrows of the categ...
ringchom 42013 Set of arrows of the categ...
elringchom 42014 A morphism of unital rings...
ringchomfeqhom 42015 The functionalized Hom-set...
ringccofval 42016 Composition in the categor...
ringcco 42017 Composition in the categor...
dfringc2 42018 Alternate definition of th...
rhmsscmap2 42019 The unital ring homomorphi...
rhmsscmap 42020 The unital ring homomorphi...
rhmsubcsetclem1 42021 Lemma 1 for ~ rhmsubcsetc ...
rhmsubcsetclem2 42022 Lemma 2 for ~ rhmsubcsetc ...
rhmsubcsetc 42023 The unital ring homomorphi...
ringccat 42024 The category of unital rin...
ringcid 42025 The identity arrow in the ...
rhmsscrnghm 42026 The unital ring homomorphi...
rhmsubcrngclem1 42027 Lemma 1 for ~ rhmsubcrngc ...
rhmsubcrngclem2 42028 Lemma 2 for ~ rhmsubcrngc ...
rhmsubcrngc 42029 The unital ring homomorphi...
rngcresringcat 42030 The restriction of the cat...
ringcsect 42031 A section in the category ...
ringcinv 42032 An inverse in the category...
ringciso 42033 An isomorphism in the cate...
ringcbasbas 42034 An element of the base set...
funcringcsetc 42035 The "natural forgetful fun...
funcringcsetcALTV2lem1 42036 Lemma 1 for ~ funcringcset...
funcringcsetcALTV2lem2 42037 Lemma 2 for ~ funcringcset...
funcringcsetcALTV2lem3 42038 Lemma 3 for ~ funcringcset...
funcringcsetcALTV2lem4 42039 Lemma 4 for ~ funcringcset...
funcringcsetcALTV2lem5 42040 Lemma 5 for ~ funcringcset...
funcringcsetcALTV2lem6 42041 Lemma 6 for ~ funcringcset...
funcringcsetcALTV2lem7 42042 Lemma 7 for ~ funcringcset...
funcringcsetcALTV2lem8 42043 Lemma 8 for ~ funcringcset...
funcringcsetcALTV2lem9 42044 Lemma 9 for ~ funcringcset...
funcringcsetcALTV2 42045 The "natural forgetful fun...
ringcbasALTV 42046 Set of objects of the cate...
ringchomfvalALTV 42047 Set of arrows of the categ...
ringchomALTV 42048 Set of arrows of the categ...
elringchomALTV 42049 A morphism of rings is a f...
ringccofvalALTV 42050 Composition in the categor...
ringccoALTV 42051 Composition in the categor...
ringccatidALTV 42052 Lemma for ~ ringccatALTV ....
ringccatALTV 42053 The category of rings is a...
ringcidALTV 42054 The identity arrow in the ...
ringcsectALTV 42055 A section in the category ...
ringcinvALTV 42056 An inverse in the category...
ringcisoALTV 42057 An isomorphism in the cate...
ringcbasbasALTV 42058 An element of the base set...
funcringcsetclem1ALTV 42059 Lemma 1 for ~ funcringcset...
funcringcsetclem2ALTV 42060 Lemma 2 for ~ funcringcset...
funcringcsetclem3ALTV 42061 Lemma 3 for ~ funcringcset...
funcringcsetclem4ALTV 42062 Lemma 4 for ~ funcringcset...
funcringcsetclem5ALTV 42063 Lemma 5 for ~ funcringcset...
funcringcsetclem6ALTV 42064 Lemma 6 for ~ funcringcset...
funcringcsetclem7ALTV 42065 Lemma 7 for ~ funcringcset...
funcringcsetclem8ALTV 42066 Lemma 8 for ~ funcringcset...
funcringcsetclem9ALTV 42067 Lemma 9 for ~ funcringcset...
funcringcsetcALTV 42068 The "natural forgetful fun...
irinitoringc 42069 The ring of integers is an...
zrtermoringc 42070 The zero ring is a termina...
zrninitoringc 42071 The zero ring is not an in...
nzerooringczr 42072 There is no zero object in...
srhmsubclem1 42073 Lemma 1 for ~ srhmsubc . ...
srhmsubclem2 42074 Lemma 2 for ~ srhmsubc . ...
srhmsubclem3 42075 Lemma 3 for ~ srhmsubc . ...
srhmsubc 42076 According to ~ df-subc , t...
sringcat 42077 The restriction of the cat...
crhmsubc 42078 According to ~ df-subc , t...
cringcat 42079 The restriction of the cat...
drhmsubc 42080 According to ~ df-subc , t...
drngcat 42081 The restriction of the cat...
fldcat 42082 The restriction of the cat...
fldc 42083 The restriction of the cat...
fldhmsubc 42084 According to ~ df-subc , t...
rngcrescrhm 42085 The category of non-unital...
rhmsubclem1 42086 Lemma 1 for ~ rhmsubc . (...
rhmsubclem2 42087 Lemma 2 for ~ rhmsubc . (...
rhmsubclem3 42088 Lemma 3 for ~ rhmsubc . (...
rhmsubclem4 42089 Lemma 4 for ~ rhmsubc . (...
rhmsubc 42090 According to ~ df-subc , t...
rhmsubccat 42091 The restriction of the cat...
srhmsubcALTVlem1 42092 Lemma 1 for ~ srhmsubcALTV...
srhmsubcALTVlem2 42093 Lemma 2 for ~ srhmsubcALTV...
srhmsubcALTV 42094 According to ~ df-subc , t...
sringcatALTV 42095 The restriction of the cat...
crhmsubcALTV 42096 According to ~ df-subc , t...
cringcatALTV 42097 The restriction of the cat...
drhmsubcALTV 42098 According to ~ df-subc , t...
drngcatALTV 42099 The restriction of the cat...
fldcatALTV 42100 The restriction of the cat...
fldcALTV 42101 The restriction of the cat...
fldhmsubcALTV 42102 According to ~ df-subc , t...
rngcrescrhmALTV 42103 The category of non-unital...
rhmsubcALTVlem1 42104 Lemma 1 for ~ rhmsubcALTV ...
rhmsubcALTVlem2 42105 Lemma 2 for ~ rhmsubcALTV ...
rhmsubcALTVlem3 42106 Lemma 3 for ~ rhmsubcALTV ...
rhmsubcALTVlem4 42107 Lemma 4 for ~ rhmsubcALTV ...
rhmsubcALTV 42108 According to ~ df-subc , t...
rhmsubcALTVcat 42109 The restriction of the cat...
xpprsng 42110 The Cartesian product of a...
opeliun2xp 42111 Membership of an ordered p...
eliunxp2 42112 Membership in a union of C...
mpt2mptx2 42113 Express a two-argument fun...
cbvmpt2x2 42114 Rule to change the bound v...
dmmpt2ssx2 42115 The domain of a mapping is...
mpt2exxg2 42116 Existence of an operation ...
ovmpt2rdxf 42117 Value of an operation give...
ovmpt2rdx 42118 Value of an operation give...
ovmpt2x2 42119 The value of an operation ...
fdmdifeqresdif 42120 The restriction of a condi...
offvalfv 42121 The function operation exp...
ofaddmndmap 42122 The function operation app...
mapsnop 42123 A singleton of an ordered ...
mapprop 42124 An unordered pair containi...
ztprmneprm 42125 A prime is not an integer ...
2t6m3t4e0 42126 2 times 6 minus 3 times 4 ...
ssnn0ssfz 42127 For any finite subset of `...
nn0sumltlt 42128 If the sum of two nonnegat...
bcpascm1 42129 Pascal's rule for the bino...
altgsumbc 42130 The sum of binomial coeffi...
altgsumbcALT 42131 Alternate proof of ~ altgs...
zlmodzxzlmod 42132 The ` ZZ `-module ` ZZ X. ...
zlmodzxzel 42133 An element of the (base se...
zlmodzxz0 42134 The ` 0 ` of the ` ZZ `-mo...
zlmodzxzscm 42135 The scalar multiplication ...
zlmodzxzadd 42136 The addition of the ` ZZ `...
zlmodzxzsubm 42137 The subtraction of the ` Z...
zlmodzxzsub 42138 The subtraction of the ` Z...
gsumpr 42139 Group sum of a pair. (Con...
mgpsumunsn 42140 Extract a summand/factor f...
mgpsumz 42141 If the group sum for the m...
mgpsumn 42142 If the group sum for the m...
gsumsplit2f 42143 Split a group sum into two...
gsumdifsndf 42144 Extract a summand from a f...
exple2lt6 42145 A nonnegative integer to t...
pgrple2abl 42146 Every symmetric group on a...
pgrpgt2nabl 42147 Every symmetric group on a...
invginvrid 42148 Identity for a multiplicat...
rmsupp0 42149 The support of a mapping o...
domnmsuppn0 42150 The support of a mapping o...
rmsuppss 42151 The support of a mapping o...
mndpsuppss 42152 The support of a mapping o...
scmsuppss 42153 The support of a mapping o...
rmsuppfi 42154 The support of a mapping o...
rmfsupp 42155 A mapping of a multiplicat...
mndpsuppfi 42156 The support of a mapping o...
mndpfsupp 42157 A mapping of a scalar mult...
scmsuppfi 42158 The support of a mapping o...
scmfsupp 42159 A mapping of a scalar mult...
suppmptcfin 42160 The support of a mapping w...
mptcfsupp 42161 A mapping with value 0 exc...
fsuppmptdmf 42162 A mapping with a finite do...
lmodvsmdi 42163 Multiple distributive law ...
gsumlsscl 42164 Closure of a group sum in ...
ascl0 42165 The scalar 0 embedded into...
ascl1 42166 The scalar 1 embedded into...
assaascl0 42167 The scalar 0 embedded into...
assaascl1 42168 The scalar 1 embedded into...
ply1vr1smo 42169 The variable in a polynomi...
ply1ass23l 42170 Associative identity with ...
ply1sclrmsm 42171 The ring multiplication of...
coe1id 42172 Coefficient vector of the ...
coe1sclmulval 42173 The value of the coefficie...
ply1mulgsumlem1 42174 Lemma 1 for ~ ply1mulgsum ...
ply1mulgsumlem2 42175 Lemma 2 for ~ ply1mulgsum ...
ply1mulgsumlem3 42176 Lemma 3 for ~ ply1mulgsum ...
ply1mulgsumlem4 42177 Lemma 4 for ~ ply1mulgsum ...
ply1mulgsum 42178 The product of two polynom...
evl1at0 42179 Polynomial evaluation for ...
evl1at1 42180 Polynomial evaluation for ...
linply1 42181 A term of the form ` x - C...
lineval 42182 A term of the form ` x - C...
zringsubgval 42183 Subtraction in the ring of...
linevalexample 42184 The polynomial ` x - 3 ` o...
dmatALTval 42189 The algebra of ` N ` x ` N...
dmatALTbas 42190 The base set of the algebr...
dmatALTbasel 42191 An element of the base set...
dmatbas 42192 The set of all ` N ` x ` N...
lincop 42197 A linear combination as op...
lincval 42198 The value of a linear comb...
dflinc2 42199 Alternative definition of ...
lcoop 42200 A linear combination as op...
lcoval 42201 The value of a linear comb...
lincfsuppcl 42202 A linear combination of ve...
linccl 42203 A linear combination of ve...
lincval0 42204 The value of an empty line...
lincvalsng 42205 The linear combination ove...
lincvalsn 42206 The linear combination ove...
lincvalpr 42207 The linear combination ove...
lincval1 42208 The linear combination ove...
lcosn0 42209 Properties of a linear com...
lincvalsc0 42210 The linear combination whe...
lcoc0 42211 Properties of a linear com...
linc0scn0 42212 If a set contains the zero...
lincdifsn 42213 A vector is a linear combi...
linc1 42214 A vector is a linear combi...
lincellss 42215 A linear combination of a ...
lco0 42216 The set of empty linear co...
lcoel0 42217 The zero vector is always ...
lincsum 42218 The sum of two linear comb...
lincscm 42219 A linear combinations mult...
lincsumcl 42220 The sum of two linear comb...
lincscmcl 42221 The multiplication of a li...
lincsumscmcl 42222 The sum of a linear combin...
lincolss 42223 According to the statement...
ellcoellss 42224 Every linear combination o...
lcoss 42225 A set of vectors of a modu...
lspsslco 42226 Lemma for ~ lspeqlco . (C...
lcosslsp 42227 Lemma for ~ lspeqlco . (C...
lspeqlco 42228 Equivalence of a _span_ of...
rellininds 42232 The class defining the rel...
linindsv 42234 The classes of the module ...
islininds 42235 The property of being a li...
linindsi 42236 The implications of being ...
linindslinci 42237 The implications of being ...
islinindfis 42238 The property of being a li...
islinindfiss 42239 The property of being a li...
linindscl 42240 A linearly independent set...
lindepsnlininds 42241 A linearly dependent subse...
islindeps 42242 The property of being a li...
lincext1 42243 Property 1 of an extension...
lincext2 42244 Property 2 of an extension...
lincext3 42245 Property 3 of an extension...
lindslinindsimp1 42246 Implication 1 for ~ lindsl...
lindslinindimp2lem1 42247 Lemma 1 for ~ lindslininds...
lindslinindimp2lem2 42248 Lemma 2 for ~ lindslininds...
lindslinindimp2lem3 42249 Lemma 3 for ~ lindslininds...
lindslinindimp2lem4 42250 Lemma 4 for ~ lindslininds...
lindslinindsimp2lem5 42251 Lemma 5 for ~ lindslininds...
lindslinindsimp2 42252 Implication 2 for ~ lindsl...
lindslininds 42253 Equivalence of definitions...
linds0 42254 The empty set is always a ...
el0ldep 42255 A set containing the zero ...
el0ldepsnzr 42256 A set containing the zero ...
lindsrng01 42257 Any subset of a module is ...
lindszr 42258 Any subset of a module ove...
snlindsntorlem 42259 Lemma for ~ snlindsntor . ...
snlindsntor 42260 A singleton is linearly in...
ldepsprlem 42261 Lemma for ~ ldepspr . (Co...
ldepspr 42262 If a vector is a scalar mu...
lincresunit3lem3 42263 Lemma 3 for ~ lincresunit3...
lincresunitlem1 42264 Lemma 1 for properties of ...
lincresunitlem2 42265 Lemma for properties of a ...
lincresunit1 42266 Property 1 of a specially ...
lincresunit2 42267 Property 2 of a specially ...
lincresunit3lem1 42268 Lemma 1 for ~ lincresunit3...
lincresunit3lem2 42269 Lemma 2 for ~ lincresunit3...
lincresunit3 42270 Property 3 of a specially ...
lincreslvec3 42271 Property 3 of a specially ...
islindeps2 42272 Conditions for being a lin...
islininds2 42273 Implication of being a lin...
isldepslvec2 42274 Alternative definition of ...
lindssnlvec 42275 A singleton not containing...
lmod1lem1 42276 Lemma 1 for ~ lmod1 . (Co...
lmod1lem2 42277 Lemma 2 for ~ lmod1 . (Co...
lmod1lem3 42278 Lemma 3 for ~ lmod1 . (Co...
lmod1lem4 42279 Lemma 4 for ~ lmod1 . (Co...
lmod1lem5 42280 Lemma 5 for ~ lmod1 . (Co...
lmod1 42281 The (smallest) structure r...
lmod1zr 42282 The (smallest) structure r...
lmod1zrnlvec 42283 There is a (left) module (...
lmodn0 42284 Left modules exist. (Cont...
zlmodzxzequa 42285 Example of an equation wit...
zlmodzxznm 42286 Example of a linearly depe...
zlmodzxzldeplem 42287 A and B are not equal. (C...
zlmodzxzequap 42288 Example of an equation wit...
zlmodzxzldeplem1 42289 Lemma 1 for ~ zlmodzxzldep...
zlmodzxzldeplem2 42290 Lemma 2 for ~ zlmodzxzldep...
zlmodzxzldeplem3 42291 Lemma 3 for ~ zlmodzxzldep...
zlmodzxzldeplem4 42292 Lemma 4 for ~ zlmodzxzldep...
zlmodzxzldep 42293 { A , B } is a linearly de...
ldepsnlinclem1 42294 Lemma 1 for ~ ldepsnlinc ....
ldepsnlinclem2 42295 Lemma 2 for ~ ldepsnlinc ....
lvecpsslmod 42296 The class of all (left) ve...
ldepsnlinc 42297 The reverse implication of...
ldepslinc 42298 For (left) vector spaces, ...
offval0 42299 Value of an operation appl...
suppdm 42300 If the range of a function...
eluz2cnn0n1 42301 An integer greater than 1 ...
divge1b 42302 The ratio of a real number...
divgt1b 42303 The ratio of a real number...
ltsubaddb 42304 Equivalence for the "less ...
ltsubsubb 42305 Equivalence for the "less ...
ltsubadd2b 42306 Equivalence for the "less ...
divsub1dir 42307 Distribution of division o...
expnegico01 42308 An integer greater than 1 ...
elfzolborelfzop1 42309 An element of a half-open ...
pw2m1lepw2m1 42310 2 to the power of a positi...
zgtp1leeq 42311 If an integer is between a...
flsubz 42312 An integer can be moved in...
fldivmod 42313 Expressing the floor of a ...
mod0mul 42314 If an integer is 0 modulo ...
modn0mul 42315 If an integer is not 0 mod...
m1modmmod 42316 An integer decreased by 1 ...
difmodm1lt 42317 The difference between an ...
nn0onn0ex 42318 For each odd nonnegative i...
nn0enn0ex 42319 For each even nonnegative ...
nneop 42320 A positive integer is even...
nneom 42321 A positive integer is even...
nn0eo 42322 A nonnegative integer is e...
nnpw2even 42323 2 to the power of a positi...
zefldiv2 42324 The floor of an even integ...
zofldiv2 42325 The floor of an odd intege...
nn0ofldiv2 42326 The floor of an odd nonneg...
flnn0div2ge 42327 The floor of a positive in...
flnn0ohalf 42328 The floor of the half of a...
logcxp0 42329 Logarithm of a complex pow...
regt1loggt0 42330 The natural logarithm for ...
fdivval 42333 The quotient of two functi...
fdivmpt 42334 The quotient of two functi...
fdivmptf 42335 The quotient of two functi...
refdivmptf 42336 The quotient of two functi...
fdivpm 42337 The quotient of two functi...
refdivpm 42338 The quotient of two functi...
fdivmptfv 42339 The function value of a qu...
refdivmptfv 42340 The function value of a qu...
bigoval 42343 Set of functions of order ...
elbigofrcl 42344 Reverse closure of the "bi...
elbigo 42345 Properties of a function o...
elbigo2 42346 Properties of a function o...
elbigo2r 42347 Sufficient condition for a...
elbigof 42348 A function of order G(x) i...
elbigodm 42349 The domain of a function o...
elbigoimp 42350 The defining property of a...
elbigolo1 42351 A function (into the posit...
rege1logbrege0 42352 The general logarithm, wit...
rege1logbzge0 42353 The general logarithm, wit...
fllogbd 42354 A real number is between t...
relogbmulbexp 42355 The logarithm of the produ...
relogbdivb 42356 The logarithm of the quoti...
logbge0b 42357 The logarithm of a number ...
logblt1b 42358 The logarithm of a number ...
fldivexpfllog2 42359 The floor of a positive re...
nnlog2ge0lt1 42360 A positive integer is 1 if...
logbpw2m1 42361 The floor of the binary lo...
fllog2 42362 The floor of the binary lo...
blenval 42365 The binary length of an in...
blen0 42366 The binary length of 0. (...
blenn0 42367 The binary length of a "nu...
blenre 42368 The binary length of a pos...
blennn 42369 The binary length of a pos...
blennnelnn 42370 The binary length of a pos...
blennn0elnn 42371 The binary length of a non...
blenpw2 42372 The binary length of a pow...
blenpw2m1 42373 The binary length of a pow...
nnpw2blen 42374 A positive integer is betw...
nnpw2blenfzo 42375 A positive integer is betw...
nnpw2blenfzo2 42376 A positive integer is eith...
nnpw2pmod 42377 Every positive integer can...
blen1 42378 The binary length of 1. (...
blen2 42379 The binary length of 2. (...
nnpw2p 42380 Every positive integer can...
nnpw2pb 42381 A number is a positive int...
blen1b 42382 The binary length of a non...
blennnt2 42383 The binary length of a pos...
nnolog2flm1 42384 The floor of the binary lo...
blennn0em1 42385 The binary length of the h...
blennngt2o2 42386 The binary length of an od...
blengt1fldiv2p1 42387 The binary length of an in...
blennn0e2 42388 The binary length of an ev...
digfval 42391 Operation to obtain the ` ...
digval 42392 The ` K ` th digit of a no...
digvalnn0 42393 The ` K ` th digit of a no...
nn0digval 42394 The ` K ` th digit of a no...
dignn0fr 42395 The digits of the fraction...
dignn0ldlem 42396 Lemma for ~ dignnld . (Co...
dignnld 42397 The leading digits of a po...
dig2nn0ld 42398 The leading digits of a po...
dig2nn1st 42399 The first (relevant) digit...
dig0 42400 All digits of 0 are 0. (C...
digexp 42401 The ` K ` th digit of a po...
dig1 42402 All but one digits of 1 ar...
0dig1 42403 The ` 0 ` th digit of 1 is...
0dig2pr01 42404 The integers 0 and 1 corre...
dig2nn0 42405 A digit of a nonnegative i...
0dig2nn0e 42406 The last bit of an even in...
0dig2nn0o 42407 The last bit of an odd int...
dig2bits 42408 The ` K ` th digit of a no...
dignn0flhalflem1 42409 Lemma 1 for ~ dignn0flhalf...
dignn0flhalflem2 42410 Lemma 2 for ~ dignn0flhalf...
dignn0ehalf 42411 The digits of the half of ...
dignn0flhalf 42412 The digits of the rounded ...
nn0sumshdiglemA 42413 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglemB 42414 Lemma for ~ nn0sumshdig (i...
nn0sumshdiglem1 42415 Lemma 1 for ~ nn0sumshdig ...
nn0sumshdiglem2 42416 Lemma 2 for ~ nn0sumshdig ...
nn0sumshdig 42417 A nonnegative integer can ...
nn0mulfsum 42418 Trivial algorithm to calcu...
nn0mullong 42419 Standard algorithm (also k...
nfintd 42420 Bound-variable hypothesis ...
nfiund 42421 Bound-variable hypothesis ...
iunord 42422 The indexed union of a col...
iunordi 42423 The indexed union of a col...
rspcdf 42424 Restricted specialization,...
spd 42425 Specialization deduction, ...
spcdvw 42426 A version of ~ spcdv where...
tfis2d 42427 Transfinite Induction Sche...
bnd2d 42428 Deduction form of ~ bnd2 ....
dffun3f 42429 Alternate definition of fu...
setrecseq 42432 Equality theorem for set r...
nfsetrecs 42433 Bound-variable hypothesis ...
setrec1lem1 42434 Lemma for ~ setrec1 . Thi...
setrec1lem2 42435 Lemma for ~ setrec1 . If ...
setrec1lem3 42436 Lemma for ~ setrec1 . If ...
setrec1lem4 42437 Lemma for ~ setrec1 . If ...
setrec1 42438 This is the first of two f...
setrec2fun 42439 This is the second of two ...
setrec2lem1 42440 Lemma for ~ setrec2 . The...
setrec2lem2 42441 Lemma for ~ setrec2 . The...
setrec2 42442 This is the second of two ...
setrec2v 42443 Version of ~ setrec2 with ...
elsetrecslem 42444 Lemma for ~ elsetrecs . A...
elsetrecs 42445 A set ` A ` is an element ...
vsetrec 42446 Construct ` _V ` using set...
0setrec 42447 If a function sends the em...
onsetreclem1 42448 Lemma for ~ onsetrec . (C...
onsetreclem2 42449 Lemma for ~ onsetrec . (C...
onsetreclem3 42450 Lemma for ~ onsetrec . (C...
onsetrec 42451 Construct ` On ` using set...
elpglem1 42454 Lemma for ~ elpg . (Contr...
elpglem2 42455 Lemma for ~ elpg . (Contr...
elpglem3 42456 Lemma for ~ elpg . (Contr...
elpg 42457 Membership in the class of...
19.8ad 42458 If a wff is true, it is tr...
sbidd 42459 An identity theorem for su...
sbidd-misc 42460 An identity theorem for su...
gte-lte 42465 Simple relationship betwee...
gt-lt 42466 Simple relationship betwee...
gte-lteh 42467 Relationship between ` <_ ...
gt-lth 42468 Relationship between ` < `...
ex-gt 42469 Simple example of ` > ` , ...
ex-gte 42470 Simple example of ` >_ ` ,...
sinhval-named 42477 Value of the named sinh fu...
coshval-named 42478 Value of the named cosh fu...
tanhval-named 42479 Value of the named tanh fu...
sinh-conventional 42480 Conventional definition of...
sinhpcosh 42481 Prove that ` ( sinh `` A )...
secval 42488 Value of the secant functi...
cscval 42489 Value of the cosecant func...
cotval 42490 Value of the cotangent fun...
seccl 42491 The closure of the secant ...
csccl 42492 The closure of the cosecan...
cotcl 42493 The closure of the cotange...
reseccl 42494 The closure of the secant ...
recsccl 42495 The closure of the cosecan...
recotcl 42496 The closure of the cotange...
recsec 42497 The reciprocal of secant i...
reccsc 42498 The reciprocal of cosecant...
reccot 42499 The reciprocal of cotangen...
rectan 42500 The reciprocal of tangent ...
sec0 42501 The value of the secant fu...
onetansqsecsq 42502 Prove the tangent squared ...
cotsqcscsq 42503 Prove the tangent squared ...
ifnmfalse 42504 If A is not a member of B,...
logb2aval 42505 Define the value of the ` ...
comraddi 42512 Commute RHS addition. See...
mvlladdd 42513 Move LHS left addition to ...
mvlraddi 42514 Move LHS right addition to...
mvrladdd 42515 Move RHS left addition to ...
mvrladdi 42516 Move RHS left addition to ...
assraddsubd 42517 Associate RHS addition-sub...
assraddsubi 42518 Associate RHS addition-sub...
joinlmuladdmuli 42519 Join AB+CB into (A+C) on L...
joinlmulsubmuld 42520 Join AB-CB into (A-C) on L...
joinlmulsubmuli 42521 Join AB-CB into (A-C) on L...
mvlrmuld 42522 Move LHS right multiplicat...
mvlrmuli 42523 Move LHS right multiplicat...
i2linesi 42524 Solve for the intersection...
i2linesd 42525 Solve for the intersection...
alimp-surprise 42526 Demonstrate that when usin...
alimp-no-surprise 42527 There is no "surprise" in ...
empty-surprise 42528 Demonstrate that when usin...
empty-surprise2 42529 "Prove" that false is true...
eximp-surprise 42530 Show what implication insi...
eximp-surprise2 42531 Show that "there exists" w...
alsconv 42536 There is an equivalence be...
alsi1d 42537 Deduction rule: Given "al...
alsi2d 42538 Deduction rule: Given "al...
alsc1d 42539 Deduction rule: Given "al...
alsc2d 42540 Deduction rule: Given "al...
alscn0d 42541 Deduction rule: Given "al...
alsi-no-surprise 42542 Demonstrate that there is ...
5m4e1 42543 Prove that 5 - 4 = 1. (Co...
2p2ne5 42544 Prove that ` 2 + 2 =/= 5 `...
resolution 42545 Resolution rule. This is ...
testable 42546 In classical logic all wff...
aacllem 42547 Lemma for other theorems a...
amgmwlem 42548 Weighted version of ~ amgm...
amgmlemALT 42549 Alternate proof of ~ amgml...
amgmw2d 42550 Weighted arithmetic-geomet...
young2d 42551 Young's inequality for ` n...
  Copyright terms: Public domain W3C validator